1
|
Akram M, Kumar D, Saurav S, Saxena M, Saxena DR, Kamaal N, Dixit GP. Molecular Characterization of Yellow Mosaic Disease Causing Begomoviruses in Pigeonpea (Cajanus cajan L.) from Three Agro-ecological Zones of India. Curr Microbiol 2025; 82:95. [PMID: 39833482 DOI: 10.1007/s00284-025-04080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Pigeonpea (Cajanus cajan L.) plants exhibiting symptoms of yellow mosaic disease (YMD) were collected in winter 2023 from multiple agricultural fields of Kanpur, Sehore, and Madhubani, representing three different agro-ecological zones in India. The recorded disease incidence ranged from 3 to 5%, 1 to 4%, and 12 to 20% in these zones, respectively. This study aimed to identify and characterize the causal agent, suspected to be a begomovirus, an emerging plant pathogen of pigeonpea causing YMD. Total DNA was extracted from 28 YMD-affected leaf samples and subjected to rolling circle amplification for PCR-based virus detection. Of all the tested samples, one tested positive for mungbean yellow mosaic virus (MYMV), while the remaining tested positive for mungbean yellow mosaic India virus (MYMIV). Subsequently, PCR-based amplification and sequencing of the full-length DNA-A and DNA-B components were conducted. BLASTn analysis revealed that the assembled sequences of the DNA-A and DNA-B components had the highest nucleotide identity with MYMIV (DNA-A: 97-99%, DNA-B: 95-97%) and MYMV (DNA-A: 99%, DNA-B: 98%). Phylogenetic analysis supported these findings. Additionally, the DNA-A and DNA-B components obtained from each sample were found to be cognate, with over 92% similarity in their common region. Thus, the cognate DNA components constituted the isolates of MYMIV and MYMV identified from pigeonpea. The identified isolates exhibited the typical genome organization of an Old World bipartite begomovirus, with no recombination events detected. This study reports, for the first time, the complete annotated genomes of MYMIV from Sehore and Madhubani, as well as MYMIV and MYMV from Kanpur, infecting pigeonpea.
Collapse
Affiliation(s)
- Mohammad Akram
- Division of Crop Protection, ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India
| | - Deepender Kumar
- Division of Crop Protection, ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India.
| | - Sonu Saurav
- Department of Plant Pathology, R.A.K. College of Agriculture, Sehore, 466001, India
| | - Moly Saxena
- Department of Plant Pathology, R.A.K. College of Agriculture, Sehore, 466001, India
| | - Deep Ratna Saxena
- Department of Plant Pathology, R.A.K. College of Agriculture, Sehore, 466001, India
| | - Naimuddin Kamaal
- Division of Crop Protection, ICAR-Indian Institute of Pulses Research, Kanpur, 208024, India
| | | |
Collapse
|
2
|
Picanço MM, Guedes RNC, da Silva RS, Galvão C, Souza PGC, Barreto AB, Sant'Ana LCDS, Lopes PHQ, Picanço MC. Unveiling the overlooked: Current and future distribution dynamics of kissing bugs and palm species linked to oral Chagas disease transmission. Acta Trop 2024; 258:107367. [PMID: 39173726 DOI: 10.1016/j.actatropica.2024.107367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Chagas disease, a neglected global health concern primarily transmitted through the bite and feces of kissing bugs, has garnered increasing attention due to recent outbreaks in northern Brazil, highlighting the role of oral transmission facilitated by the kissing bugs species Rhodnius robustus and Rhodnius pictipes. These vectors are associated with palm trees with large crowns, such as the maripa palm (Attalea maripa) and moriche palm (Mauritia flexuosa). In this study, we employ maximum entropy (MaxEnt) ecological niche models to analyze the spatial distribution of these vectors and palm species, predicting current and future climate suitability. Our models indicate broader potential habitats than documented occurrences, with high suitability in northern South America, southern Central America, central Africa, and southeast Asia. Projections suggest increased climate suitability by 2040, followed by a reduction by 2080. This study identifies present and future areas suitable for kissing bugs and palm tree species due to climate change, aiding in the design of prevention and management strategies.
Collapse
Affiliation(s)
- Mayara M Picanço
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Ricardo S da Silva
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil.
| | - Cleber Galvão
- Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21.040-360, Brazil.
| | - Philipe Guilherme C Souza
- Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro, Uberlândia, Minas Gerais, 38411-104, Brazil.
| | - Alice B Barreto
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| | | | - Pedro Henrique Q Lopes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - Marcelo C Picanço
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
3
|
Nanini F, Souza PGC, Soliman EP, Zauza EAV, Domingues MM, Santos FA, Wilcken CF, da Silva RS, Corrêa AS. Genetic diversity, population structure and ecological niche modeling of Thyrinteina arnobia (Lepidoptera: Geometridae), a native Eucalyptus pest in Brazil. Sci Rep 2024; 14:20963. [PMID: 39251761 PMCID: PMC11384784 DOI: 10.1038/s41598-024-71816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Thyrinteina arnobia (Lepidoptera: Geometridae) is a native American species. Despite its historical importance as an insect pest in Eucalyptus plantations, more information is needed regarding the population diversity, demography, and climatic variables associated with its distribution in different regions of Brazil. We used a phylogeographic approach to infer the genetic diversity, genetic structure, and demographic parameters of T. arnobia. We also conducted an ecological niche modeling (ENM) to predict suitable areas for T. arnobia occurrence in Brazil and other countries worldwide. Although T. arnobia populations have low genetic diversity in Brazil, we identified mitochondrial haplogroups predominating in different Brazilian regions and high ФST and ФCT values in AMOVA, suggesting a low frequency of insect movement among these regions. These results indicate that outbreaks of T. arnobia in Eucalyptus areas in different regions of Brazil are associated with local or regional populations, with no significant contribution from long-distance dispersal from different regions or biomes, suggesting that pest management strategies would be implemented on a regional scale. In Brazil, the demographic and spatial expansion signals of T. arnobia seem to be associated with the history of geographical expansion of Eucalyptus plantations, a new sustainable host for this species. ENM indicated that isothermality and annual rainfall are critical climatic factors for the occurrence of T. arnobia in tropical and subtropical areas in the Americas. ENM also suggested that T. arnobia is a potential pest in Eucalyptus areas in all Brazilian territory and in regions from Africa, Asia, and Oceania.
Collapse
Affiliation(s)
- Frederico Nanini
- Departamento de Entomologia e Acarologia, ESALQ - Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Philipe G C Souza
- Departamento de Agronomia, Instituto Federal de Ciência e Tecnologia do Triângulo Mineiro (IFTM Campus Uberlândia), Uberlândia, Minas Gerais, Brazil
| | | | | | | | - Fábio A Santos
- Departamento de Proteção Vegetal, UNESP/FCA - Campus de Botucatu, Botucatu, São Paulo, Brasil
| | - Carlos F Wilcken
- Departamento de Proteção Vegetal, UNESP/FCA - Campus de Botucatu, Botucatu, São Paulo, Brasil
| | - Ricardo S da Silva
- Departamento de Agronomia, Universidade Federal do Vale do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - Alberto S Corrêa
- Departamento de Entomologia e Acarologia, ESALQ - Universidade de São Paulo, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
4
|
Xie L, Wu X, Li X, Chen M, Zhang N, Zong S, Yan Y. Impacts of climate change and host plant availability on the potential distribution of Bradysia odoriphaga (Diptera: Sciaridae) in China. PEST MANAGEMENT SCIENCE 2024; 80:2724-2737. [PMID: 38372475 DOI: 10.1002/ps.7977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Chinese chives (Allium tuberosum Rottler ex Sprengel) are favored by consumers because of its delicious taste and unique fragrance. Bradysia odoriphaga (Diptera: Sciaridae) is a main pest that severely harms Chinese chives and other Liliaceae's production. Climate change may change the future distribution of B. odoriphaga in China. In this study, the CLIMEX was employed to project the potential distribution of B. odoriphaga in China, based on China's historical climate data (1987-2016) and forecast climate data (2021-2100). RESULTS Bradysia odoriphaga distributed mainly between 19.8° N-48.3° N and 74.8° E-134.3° E, accounting for 73.25% of the total mainland area of China under historical climate conditions. Among them, the favorable and highly favorable habitats accounted for 30.64% of the total potential distribution. Under future climate conditions, B. odoriphaga will be distributed mainly between 19.8° N-49.3° N and 73.8° E-134.3° E, accounting for 84.89% of China's total mainland area. Among them, the favorable and highly favorable habitats will account for 35.23% of the total potential distribution, indicating an increase in the degree of fitness. Areas with relatively appropriate temperature and humidity will be more suitable for the survival of B. odoriphaga. Temperature was a more important determinant of the climatic suitability of the pest B. odoriphaga than humidity. Host plants (Liliaceae) availability also had impact on climate suitability in some regions. CONCLUSIONS These projected potential distributions will provide supportive information for monitoring and early forecasting of pest outbreaks, and to reduce future economic and ecological losses. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lixia Xie
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| | - Xinran Wu
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| | - Xue Li
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Menglei Chen
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| | - Na Zhang
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| | - Shixiang Zong
- Key Laboratory of Beijing for the Control of Forest Pests, Beijing Forestry University, Beijing, China
| | - Yi Yan
- Department of Entomology, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China; Shandong Province Higher Education Collaborative Innovation Center for Comprehensive Management of Agricultural and Forestry Crop Diseases and Pests in the Yellow River Basin; Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
5
|
da Silva NR, Souza PGC, de Oliveira GS, da Silva Santana A, Bacci L, Silva GA, Barry EJDV, de Aguiar Coelho F, Soares MA, Picanço MC, Sarmento RA, da Silva RS. A MaxEnt Model of Citrus Black Fly Aleurocanthus woglumi Ashby (Hemiptera: Aleyrodidae) under Different Climate Change Scenarios. PLANTS (BASEL, SWITZERLAND) 2024; 13:535. [PMID: 38498543 PMCID: PMC10891955 DOI: 10.3390/plants13040535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
The citrus blackfly (CBF), Aleurocanthus woglumi Ashby, is an exotic pest native to Southeast Asia that has spread rapidly to the world's main centers of citrus production, having been recently introduced to Brazil. In this study, a maximum entropy niche model (MaxEnt) was used to predict the potential worldwide distribution of CBF under current and future climate change scenarios for 2030 and 2050. These future scenarios came from the Coupled Model Intercomparison Project Phase 6 (CMIP6), SSP1-2.6, and SSP5-8.5. The MaxEnt model predicted the potential distribution of CBF with area under receiver operator curve (AUC) values of 0.953 and 0.930 in the initial and final models, respectively. The average temperature of the coldest quarter months, precipitation of the rainiest month, isothermality, and precipitation of the driest month were the strongest predictors of CBF distribution, with contributions of 36.7%, 14.7%, 13.2%, and 10.2%, respectively. The model based on the current time conditions predicted that suitable areas for the potential occurrence of CBF, including countries such as Brazil, China, the European Union, the USA, Egypt, Turkey, and Morocco, are located in tropical and subtropical regions. Models from SSP1-2.6 (2030 and 2050) and SSP5-8.5 (2030) predicted that suitable habitats for CBF are increasing dramatically worldwide under future climate change scenarios, particularly in areas located in the southern US, southern Europe, North Africa, South China, and part of Australia. On the other hand, the SSP5-8.5 model of 2050 indicated a great retraction of the areas suitable for CBF located in the tropical region, with an emphasis on countries such as Brazil, Colombia, Venezuela, and India. In general, the CMIP6 models predicted greater risks of invasion and dissemination of CBF until 2030 and 2050 in the southern regions of the USA, European Union, and China, which are some of the world's largest orange producers. Knowledge of the current situation and future propagation paths of the pest serve as tools to improve the strategic government policies employed in CBF's regulation, commercialization, inspection, combat, and phytosanitary management.
Collapse
Affiliation(s)
- Nilson Rodrigues da Silva
- Departamento de Engenharia Agronômica do Sertão (DEAS), Universidade Federal de Sergipe (UFS), Rodovia Eng. Jorge Neto—Km 03, s/n, Nossa Senhora da Glória 49680-000, SE, Brazil;
| | - Philipe Guilherme Corcino Souza
- Departamento de Agronomia, Instituto Federal de Ciência e Tecnologia do Triângulo Mineiro (IFTM Campus Uberlândia), Uberlândia 38400-970, MG, Brazil;
| | - Gildriano Soares de Oliveira
- Programa de Pós Graduação em Produção Vegetal, Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Diamantina 39100-000, MG, Brazil; (G.S.d.O.); (E.J.D.V.B.); (M.A.S.)
| | - Alisson da Silva Santana
- Departamento de Engenharia Agronômica (DEA), Universidade Federal de Sergipe (UFS), São Cristóvão 49100-000, SE, Brazil; (A.d.S.S.); (L.B.)
| | - Leandro Bacci
- Departamento de Engenharia Agronômica (DEA), Universidade Federal de Sergipe (UFS), São Cristóvão 49100-000, SE, Brazil; (A.d.S.S.); (L.B.)
| | - Gerson Adriano Silva
- Laboratório de Entomologia e Fitopatologia, Universidade Estadual Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil;
| | - Edmond Joseph Djibril Victor Barry
- Programa de Pós Graduação em Produção Vegetal, Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Diamantina 39100-000, MG, Brazil; (G.S.d.O.); (E.J.D.V.B.); (M.A.S.)
| | - Fernanda de Aguiar Coelho
- Programa de Pós-Graduação em Ciência Florestal, Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Diamantina 39100-000, MG, Brazil;
| | - Marcus Alvarenga Soares
- Programa de Pós Graduação em Produção Vegetal, Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Diamantina 39100-000, MG, Brazil; (G.S.d.O.); (E.J.D.V.B.); (M.A.S.)
| | - Marcelo Coutinho Picanço
- Departamento de Entomologia, Universidade Federal de Viçosa, Campus UFV, Viçosa 36570-000, MG, Brazil;
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Campus Gurupi, Gurupi 77402-970, TO, Brazil;
| | - Ricardo Siqueira da Silva
- Programa de Pós Graduação em Produção Vegetal, Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Diamantina 39100-000, MG, Brazil; (G.S.d.O.); (E.J.D.V.B.); (M.A.S.)
- Programa de Pós-Graduação em Ciência Florestal, Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Diamantina 39100-000, MG, Brazil;
| |
Collapse
|
6
|
Dhole RR, Singh RN, Dhanapal R, Singla S, Ramkumar G, Muthuusamy R, Salmen SH, Alharbi SA, Narayanan M, Karuppusamy I. Impact assessment of natural variations in different weather factors on the incidence of whitefly, Bemisia tabaci Genn. and yellow vein mosaic disease in Abelmoschus esculentus (L.) Moench. ENVIRONMENTAL RESEARCH 2023; 231:116209. [PMID: 37217129 DOI: 10.1016/j.envres.2023.116209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
Bemisia tabaci Gennadius, also renowned as the silver leaf whitefly, is among the most damaging polyphagous insect pests in many commercially important crops and commodities. A set of field experiments were conducted for three consecutive years i.e., 2018-2020, to investigate the role of variations in rainfall, temperature, and relative humidity on the abundance of B. tabaci in okra (Abelmoschus esculentus L. Moench). In the first experiment, the variety Arka Anamika was cultivated twice a year to analyse the incidence of B. tabaci concerning the prevailing weather factors and the overall pooled incidence recorded during the dry and wet season was 1.34 ± 0.51 to 20.03 ± 1.42 and 2.26 ± 1.08 to 18.3 ± 1.96, respectively. Similarly, it was observed that the highest number of B. tabaci catch (19.51 ± 1.64 whiteflies/3 leaves) was recorded in morning hours between 08:31 to 09:30 a.m. The Yellow Vein Mosaic Disease (YVMD) is a devastating disease of okra caused by begomovirus, for which B. tabaci acts as a vector. In another experiment, screening was conducted to check the relative susceptibility of three different varieties viz., ArkaAnamika, PusaSawani, and ParbhaniKranti against B. tabaci (incidence) and YVMD ((Percent Disease Incidence (PDI), Disease Severity Index (DSI), and Area Under the Disease Progress Curve (AUDPC)). The recorded data was normalized by standard transformation and subjected to ANOVA for population dynamics and PDI. Pearson's rank correlation matrix and Principal Component Analysis (PCA) have been used to relate the influences of various weather conditions on distribution and abundance. SPSS and R software were used to create the regression model for predicting the population of B. tabaci. Late sown PusaSawani evolved as a highly susceptible variety in terms of B. tabaci (24.83 ± 6.79 adults/3leaves; mean ± SE; N = 10) as well as YVMD i.e., PDI (38.00 ± 4.95 infected plants/50plants), DSI (71.6-96.4% at 30 DAS) and AUDPC (mean β-value = 0.76; R2 = 0.96) while early sown Parbhani Kranti least susceptible to both. However, the variety ArkaAnamika was observed as moderately susceptible to B. tabaci and its resultant disease. Moreover, environmental factors were predominantly responsible for regulating the population of insect pests in the field and hence its productivity like rainfall and relative humidity were negative while the temperature was positively correlated with B. tabaci (incidence) and YVMD (AUDPC). The findings are helpful for the farmers to choose need-based IPM strategies than timing-based, which would fit perfectly with the present agro-ecosystems in all ways.
Collapse
Affiliation(s)
- Radheshyam Ramakrishna Dhole
- Department of Entomology and Agricultural Zoology, I. Ag. Sc., BHU, Varanasi, 221005, Uttar Pradesh, India; Department of Entomology, Narayan Institute of Agricultural Sciences, Gopal Narayan Singh University, Jamuhar, Sasaram, 821 305, Bihar, India
| | - Rajendra Nath Singh
- Department of Entomology and Agricultural Zoology, I. Ag. Sc., BHU, Varanasi, 221005, Uttar Pradesh, India
| | - Rajendran Dhanapal
- Department of Entomology and Agricultural Zoology, I. Ag. Sc., BHU, Varanasi, 221005, Uttar Pradesh, India; Department of Entomology, Adhiparasakthi Horticultural College, Tamil Nadu Agricultural University, Ranipet, 632 506, Tamil Nadu, India
| | - Saurav Singla
- Department of Statistics, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Govindaraju Ramkumar
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru, 560 089, Karnataka, India
| | - Ranganathan Muthuusamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational Research Institute, Hosur, 635 130, Tamil Nadu, India
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602 105, Tamil Nadu, India.
| | - Indira Karuppusamy
- Research Center for Strategic Materials, Corrosion Resistant Steel Group, National Institute for Materials Science (NIMS), Tsukuba, Japan.
| |
Collapse
|
7
|
Borges CE, Von Dos Santos Veloso R, da Conceição CA, Mendes DS, Ramirez-Cabral NY, Shabani F, Shafapourtehrany M, Nery MC, da Silva RS. Forecasting Brassica napus production under climate change with a mechanistic species distribution model. Sci Rep 2023; 13:12656. [PMID: 37542082 PMCID: PMC10403512 DOI: 10.1038/s41598-023-38910-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023] Open
Abstract
Brassica napus, a versatile crop with significant socioeconomic importance, serves as a valuable source of nutrition for humans and animals while also being utilized in biodiesel production. The expansion potential of B. napus is profoundly influenced by climatic variations, yet there remains a scarcity of studies investigating the correlation between climatic factors and its distribution. This research employs CLIMEX to identify the current and future ecological niches of B. napus under the RCP 8.5 emission scenario, utilizing the Access 1.0 and CNRM-CM5 models for the time frame of 2040-2059. Additionally, a sensitivity analysis of parameters was conducted to determine the primary climatic factors affecting B. napus distribution and model responsiveness. The simulated outcomes demonstrate a satisfactory alignment with the known current distribution of B. napus, with 98% of occurrence records classified as having medium to high climatic suitability. However, the species displays high sensitivity to thermal parameters, thereby suggesting that temperature increases could trigger shifts in suitable and unsuitable areas for B. napus, impacting regions such as Canada, China, Brazil, and the United States.
Collapse
Affiliation(s)
- Cláudia Eduarda Borges
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Ronnie Von Dos Santos Veloso
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Crislaine Alves da Conceição
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Débora Sampaio Mendes
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Nadiezhda Yz Ramirez-Cabral
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW, 2351, Australia
- INIFAP, Campo Experimental Zacatecas, Km, 24.5 Carretera Zacatecas-Fresnillo, 98500, Calera de V.R., ZAC, Mexico
| | - Farzin Shabani
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Mahyat Shafapourtehrany
- Kandilli Observatory and Earthquake Research Institute, Department of Geodesy, Bogazici University, 34680, Cengelkoy, Istanbul, Turkey
| | - Marcela Carlota Nery
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| | - Ricardo Siqueira da Silva
- Universidade Federal dos Vales Jequitinhonha e Mucuri, Campus JK, Rodovia MGT 367 - Km 583, nº 5.000, Alto da Jacuba, Diamantina, MG, CEP 39100-000, Brazil
| |
Collapse
|
8
|
Aidoo OF, Souza PGC, Silva RS, Júnior PAS, Picanço MC, Heve WK, Duker RQ, Ablormeti FK, Sétamou M, Borgemeister C. Modeling climate change impacts on potential global distribution of Tamarixia radiata Waterston (Hymenoptera: Eulophidae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160962. [PMID: 36565865 DOI: 10.1016/j.scitotenv.2022.160962] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an efficient vector of "Candidatus Liberibacter" species, the causative agents implicated in citrus greening or huanglongbing (HLB). HLB is the most devastating citrus disease and has killed millions of citrus trees worldwide. Classical biological control using Tamarixia radiata Waterston (Hymenoptera: Eulophidae) against ACP has been successful in some regions. Climatic conditions are critical in determining suitable areas for the geographical distribution of T. radiata. However, paucity of information on climate change impacts on the global spread of T. radiata restricts international efforts to manage ACP with T. radiata. We investigated the potential global distribution of T. radiata using 317 native and non-native occurrence records and 20 environmental data sets (with correlation coefficients (|r| > 0.7)). Using the Maximum Entropy model, these data were analyzed for two shared socioeconomic pathways (SSPs) and two time periods (2030s and 2050s). We showed that habitat suitability for T. radiata occurred in all continents except Antarctica. However, the highly suitable areas for T. radiata were found in parts of the Americas, Asia, Africa and Oceania. The climate suitable areas would increase until the 2050s. The predictions showed that mean temperature of coldest quarter and precipitation of warmest quarter were the most important environmental variables that influenced the distribution of T. radiata. The model reliably predicted habitat suitability for T. radiata, which can be adapted in classical biological control programs to effectively manage ACP in an environmentally friendly manner.
Collapse
Affiliation(s)
- Owusu F Aidoo
- Department of Biological, Physical and Mathematical Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, PMB, Somanya, E/R, Ghana
| | - Philipe G C Souza
- Department of Agronomy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil
| | - Ricardo S Silva
- Department of Agronomy, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG 39100-000, Brazil.
| | - Paulo A S Júnior
- Department of Entomology, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - Marcelo C Picanço
- Department of Entomology, Universidade Federal de Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900, Brazil
| | - William K Heve
- Department of Biological, Physical and Mathematical Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, PMB, Somanya, E/R, Ghana
| | - Rahmat Q Duker
- Department of Biological, Physical and Mathematical Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, PMB, Somanya, E/R, Ghana
| | - Fred K Ablormeti
- Council for Scientific and Industrial Research (CSIR), P. O. Box 245, Sekondi, W/R, Ghana
| | - Mamoudou Sétamou
- Citrus Center, Texas A & M University-Kingsville, 312 N. International Blvd., Weslaco, TX 78599, USA
| | - Christian Borgemeister
- Centre for Development Research (ZEF), University of Bonn, Genscherallee 3, 53113 Bonn, Germany
| |
Collapse
|
9
|
Mbuta DM, Khamis FM, Sokame BM, Ng’ong’a F, Akutse KS. Household perception and infestation dynamics of bedbugs among residential communities and its potential distribution in Africa. Sci Rep 2022; 12:19900. [PMID: 36400831 PMCID: PMC9674637 DOI: 10.1038/s41598-022-24339-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Bedbugs have experienced an extraordinary upsurge in the recent past across the world. This cross-sectional study aimed to explore the community perception of the pest outbreaks, the population dynamics, and dispersal patterns under different habitat systems. A survey was conducted within communities in nine counties in Kenya, where geographical coordinates of the sites of bedbug presence were recorded and maximum entropy distribution modelling (MaxEnt) was used to map and predict the potentially suitable habitat, while system thinking and system dynamics approach with Vensim PLE 8.0.9 software was applied to implement bedbug infestation dynamics. Our results indicated that majority of the respondents had ample knowledge on bedbugs and were concerned about the physico-psychologic and socio-economic health effects. Spatial distribution analysis showed regions in Kenya with optimal to suitable for bedbug occurrence in the whole country, and similar results were found at continental level across Africa. Furthermore, infestation dynamics results showed a rapid mobility of bedbug from one house to another. In terms of management strategies, the models showed that the combination of chemical with other control methods was considerably much more effective compared to the use of chemical approach only, appointing integrated pest management strategy as a better intervention approach in controlling the pest.
Collapse
Affiliation(s)
- Dennis M. Mbuta
- grid.419326.b0000 0004 1794 5158International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya ,grid.411943.a0000 0000 9146 7108Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Fathiya M. Khamis
- grid.419326.b0000 0004 1794 5158International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Bonoukpoè M. Sokame
- grid.419326.b0000 0004 1794 5158International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Florence Ng’ong’a
- grid.411943.a0000 0000 9146 7108Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Komivi S. Akutse
- grid.419326.b0000 0004 1794 5158International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
10
|
Kalyankumar KK, Malathi VG, Renukadevi P, S MK, Manivannan N, Patil SG, Karthikeyan G. Molecular epidemiology on seasonal variation of yellow mosaic disease incidence in blackgram (Vigna mungo L. Hepper) with its vector Bemisia tabaci. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1985-1995. [PMID: 35930085 DOI: 10.1007/s00484-022-02334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
The yellow mosaic disease (YMD) of blackgram caused by Mungbean yellow mosaic virus has emerged as a serious threat to grain legume production, especially in Southeastern Asia. Seasonal incidence of YMD with its vector population was assessed in three different agroclimatic zones of Tamil Nadu in India for three consecutive cropping seasons namely, Rabi 2018 (October-December), Summer 2019 (March-May), and Kharif 2019 (June-August) at three different time intervals viz., 20, 40, and 60 days after sowing (DAS). For all three seasons, disease incidence and whitefly count were recorded for a resistant and susceptible variety of blackgram in fields without any vector control intervention. The highest disease incidence (87%) was observed in the Panpozhi location during the summer season followed by Vamban and Coimbatore locations. The whitefly count was made through both visual count and yellow sticky traps. The whitefly population was highest at 20 DAS and decreased with the increasing age of crop for all the three locations assessed. Molecular epidemiology was analyzed by determining latent infection of mungbean yellow mosaic virus (MYMV) using molecular diagnosis. Latent infection was found to be well pronounced in the Coimbatore location during the Kharif season, where the crop was asymptomatic in both the resistant and susceptible varieties for all the three time periods assessed. The latent infection of MYMV observed in Coimbatore and Vamban ranged from 16.6 to 83.3% in both resistant and susceptible varieties for all three seasons. In Panpozhi, the latent infection of MYMV ranged from 16.6 to 66.6% for the susceptible variety (CO-5) for all three seasons observed. However, in the Panpozhi location, the resistant variety (VBN-8) failed to record any latent infection.
Collapse
Affiliation(s)
| | - V G Malathi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - P Renukadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Mohan Kumar S
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - N Manivannan
- National Pulses Research Centre, Tamil Nadu Agricultural University, Vamban, 622303, Pudukkottai, India
| | - S G Patil
- Department of Physical Sciences and Information Technology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - G Karthikeyan
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
- Department of Physical Sciences and Information Technology, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
11
|
Duque TS, da Silva RS, Maciel JC, Silva DV, Fernandes BCC, Júnior APB, dos Santos JB. Potential Distribution of and Sensitivity Analysis for Urochloa panicoides Weed Using Modeling: An Implication of Invasion Risk Analysis for China and Europe. PLANTS 2022; 11:plants11131761. [PMID: 35807713 PMCID: PMC9269421 DOI: 10.3390/plants11131761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
Urochloapanicoides P. Beauv. is considered one of the most harmful weeds in the United States and Australia. It is invasive in Pakistan, Mexico, and Brazil, but its occurrence is hardly reported in China and European countries. Species distribution models enable the measurement of the impact of climate change on plant growth, allowing for risk analysis, effective management, and invasion prevention. The objective of this study was to develop current and future climate models of suitable locations for U. panicoides and to determine the most influential climatic parameters. Occurrence data and biological information on U. panicoides were collected, and climatic parameters were used to generate the Ecoclimatic Index (EI) and to perform sensitivity analysis. The future projections for 2050, 2080, and 2100 were modeled under the A2 SRES scenario using the Global Climate Model, CSIRO-Mk3.0 (CS). The potential distribution of U. panicoides coincided with the data collected, and the reliability of the final model was demonstrated. The generated model identified regions where the occurrence was favorable, despite few records of the species. Sensitivity analysis showed that the most sensitive parameters of the model were related to temperature, humidity, and cold stress. Future projections predict reductions in climate suitability for U. panicoides in Brazil, Australia, India, and Africa, and an increase in suitability in Mexico, the United States, European countries, and China. The rise in suitability of China and Europe is attributed to predicted climate change, including reduction in cold stress. From the results obtained, preventive management strategies can be formulated against the spread of U. panicoides, avoiding economic and biodiversity losses.
Collapse
Affiliation(s)
- Tayna Sousa Duque
- Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina CEP 39100-000, MG, Brazil; (R.S.d.S.); (J.C.M.); (J.B.d.S.)
- Correspondence: ; Tel.: +55-38-9-9924-2408
| | - Ricardo Siqueira da Silva
- Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina CEP 39100-000, MG, Brazil; (R.S.d.S.); (J.C.M.); (J.B.d.S.)
| | - Josiane Costa Maciel
- Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina CEP 39100-000, MG, Brazil; (R.S.d.S.); (J.C.M.); (J.B.d.S.)
| | - Daniel Valadão Silva
- Departamento de Agronomia e Ciências Vegetais, Universidade Federal Rural do Semi-Árido, Mossoró CEP 59625-900, RN, Brazil; (D.V.S.); (B.C.C.F.); (A.P.B.J.)
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciências Vegetais, Universidade Federal Rural do Semi-Árido, Mossoró CEP 59625-900, RN, Brazil; (D.V.S.); (B.C.C.F.); (A.P.B.J.)
| | - Aurélio Paes Barros Júnior
- Departamento de Agronomia e Ciências Vegetais, Universidade Federal Rural do Semi-Árido, Mossoró CEP 59625-900, RN, Brazil; (D.V.S.); (B.C.C.F.); (A.P.B.J.)
| | - José Barbosa dos Santos
- Departamento de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina CEP 39100-000, MG, Brazil; (R.S.d.S.); (J.C.M.); (J.B.d.S.)
| |
Collapse
|
12
|
Soares JRS, da Silva RS, Ramos RS, Picanço MC. Distribution and invasion risk assessments of Chrysodeixis includens (Walker, [1858]) (Lepidoptera: Noctuidae) using CLIMEX. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:1137-1149. [PMID: 33844091 DOI: 10.1007/s00484-021-02094-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Chrysodeixis includens is a polyphagous pest restricted to the American continent. The occurrence of C. includens is allied, among other factors, by favorable conditions such as temperature, humidity, presence of hosts, and migratory behavior. In this work, we built spatiotemporal species distribution models at continental and global levels for the distribution of C. includens using CLIMEX to determine times and regions favorable for year-round survival and migration of this species and in case of invasion on other continents to apply timely and right phytosanitary measures. Our models estimated high climate suitability for C. includens in Central and large proportions of South America throughout the year. Moreover, there is suitability for C. includens growth in all months of the year in Central and northern part of South America. In the northern hemisphere, these conditions range from April to October, while in mid-southern parts of South America, favorable periods comprise October through June. The countries with the highest suitability for C. includens outside the American continent are located on the African and Asian continents. Our results show variable climate suitability for C. includens during the year that help to understand likely migration pattern in North America. This information would direct efforts for appropriate C. includens management during warm and moist periods of the year. Furthermore, our models notify the need for the development of strategies for the inspection and interception of C. includens especially in central Africa, India, South and Southeast Asia, and Northeast Australia.
Collapse
Affiliation(s)
- João Rafael Silva Soares
- Dept de Agronomia, Universidade Federal de Viçosa, Avenida P. H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil.
| | - Ricardo Siqueira da Silva
- Dept de Agronomia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367 - Km 583, Nº 5000, Diamantina, MG, 39100-000, Brazil
| | - Rodrigo Soares Ramos
- Dept de Entomologia, Universidade Federal de Viçosa, Avenida P. H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| | - Marcelo Coutinho Picanço
- Dept de Agronomia, Universidade Federal de Viçosa, Avenida P. H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
- Dept de Entomologia, Universidade Federal de Viçosa, Avenida P. H. Rolfs, s/n, Viçosa, MG, 36570-900, Brazil
| |
Collapse
|
13
|
Skendžić S, Zovko M, Živković IP, Lešić V, Lemić D. The Impact of Climate Change on Agricultural Insect Pests. INSECTS 2021; 12:440. [PMID: 34066138 PMCID: PMC8150874 DOI: 10.3390/insects12050440] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 11/21/2022]
Abstract
Climate change and global warming are of great concern to agriculture worldwide and are among the most discussed issues in today's society. Climate parameters such as increased temperatures, rising atmospheric CO2 levels, and changing precipitation patterns have significant impacts on agricultural production and on agricultural insect pests. Changes in climate can affect insect pests in several ways. They can result in an expansion of their geographic distribution, increased survival during overwintering, increased number of generations, altered synchrony between plants and pests, altered interspecific interaction, increased risk of invasion by migratory pests, increased incidence of insect-transmitted plant diseases, and reduced effectiveness of biological control, especially natural enemies. As a result, there is a serious risk of crop economic losses, as well as a challenge to human food security. As a major driver of pest population dynamics, climate change will require adaptive management strategies to deal with the changing status of pests. Several priorities can be identified for future research on the effects of climatic changes on agricultural insect pests. These include modified integrated pest management tactics, monitoring climate and pest populations, and the use of modelling prediction tools.
Collapse
Affiliation(s)
- Sandra Skendžić
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia; (I.P.Ž.); (D.L.)
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia;
| | - Monika Zovko
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia;
| | - Ivana Pajač Živković
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia; (I.P.Ž.); (D.L.)
| | - Vinko Lešić
- Innovation Centre Nikola Tesla, Unska 3, 10000 Zagreb, Croatia;
| | - Darija Lemić
- Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetosimunska 25, 10000 Zagreb, Croatia; (I.P.Ž.); (D.L.)
| |
Collapse
|
14
|
Santos AA, Ribeiro AV, Farias ES, Carmo DG, Santos RC, Fidelis EG, Bacci L, Picanço MC. Wet and warm conditions contribute to the occurrence of the neotropical butterfly Ascia monuste orseis Godart (Lepidoptera: Pieridae) on Brassica crops. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:247-256. [PMID: 33011875 DOI: 10.1007/s00484-020-02026-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Ascia monuste orseis Godart (Lepidoptera: Pieridae) is a neotropical butterfly distributed in South America. During the larval stage, this insect causes economic losses on Brassica crops. Wet and warm conditions are known to increase subspecies occurrence, but it remains unclear why these conditions are more suitable. In this study, we have shown that both conditions are highly favourable for A. monuste orseis. We determined the thermal requirements for immature development and then created models for A. monuste orseis occurrence using Climex algorithm. Two models were built: one for the year-round presence and other for seasonal suitability. We validated the models using subspecies occurrence records and monitoring in two Brazilian regions (Northeast and Southeast). The minimum, optimum and maximum temperature for immature development were estimated at 16.37, 29.16 and 34.95 °C, respectively. The model for year-round presence indicated tropical areas as highly suitable for A. monuste orseis occurrence (with 88% of accuracy) and the seasonal models showed unsuitable areas in some parts of South America during cold and dry periods. Such predictions were observed in the monitored areas where A. monuste orseis was not found. These results can be associated with the mortality caused by low temperature to immature stages and drought conditions that may induce adult migration to moist habitats. Thus, we suggest that A. monuste orseis occurs mainly during wet and warm seasons on Brassica crops due to deleterious effects caused by cold and dry conditions. This information can be used to improve A. monuste orseis management in Brassica crops.
Collapse
Affiliation(s)
- Abraão Almeida Santos
- Departamento de Agronomia, Universidade Federal de Viçosa, Vicosa, Minas Gerais, 36570-900, Brazil.
| | - Arthur Vieira Ribeiro
- Departamento de Entomologia, Universidade Federal de Viçosa, Vicosa, Minas Gerais, 36570-900, Brazil
| | - Elizeu Sá Farias
- Departamento de Entomologia, Universidade Federal de Viçosa, Vicosa, Minas Gerais, 36570-900, Brazil
| | - Daiane Graças Carmo
- Departamento de Entomologia, Universidade Federal de Viçosa, Vicosa, Minas Gerais, 36570-900, Brazil
| | - Renata Cordeiro Santos
- Departamento de Entomologia, Universidade Federal de Viçosa, Vicosa, Minas Gerais, 36570-900, Brazil
| | | | - Leandro Bacci
- Departamento de Engenharia Agronômica, Universidade Federal de Sergipe, Sao Cristovao, Sergipe, 49100-000, Brazil
| | - Marcelo Coutinho Picanço
- Departamento de Entomologia, Universidade Federal de Viçosa, Vicosa, Minas Gerais, 36570-900, Brazil
| |
Collapse
|
15
|
Decision support for pest management: Using field data for optimizing temperature-dependent population dynamics models. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2020.109402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Stoeckli S, Felber R, Haye T. Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:2019-2032. [PMID: 32860106 PMCID: PMC7658091 DOI: 10.1007/s00484-020-01992-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Climate change can alter the habitat suitability of invasive species and promote their establishment. The highly polyphagous brown marmorated stinkbug, Halyomorpha halys Stål (Hemiptera: Pentatomidae), is native to East Asia and invasive in Europe and North America, damaging a wide variety of fruit and vegetable crops. In Switzerland, crop damage and increasing populations have been observed since 2017 and related to increasing temperatures. We studied the climatic suitability, population growth, and the number of generations under present and future climate conditions for H. halys in Switzerland, using a modified version of the bioclimatic model package CLIMEX. To address the high topographic variability in Switzerland, model simulations were based on climate data of high spatial resolution (approx. 2 km), which significantly increased their explanatory power, and identified many more climatically suitable areas in comparison to previous models. The validation of the CLIMEX model using observational records collected in a citizen science initiative between 2004 and 2019 revealed that more than 15 years after its accidental introduction, H. halys has colonised nearly all bioclimatic suitable areas in Switzerland and there is limited potential for range expansion into new areas under present climate conditions. Simulations with climate change scenarios suggest an extensive range expansion into higher altitudes, an increase in generations per year, an earlier start of H. halys activity in spring and a prolonged period for nymphs to complete development in autumn. A permanent shift from one to two generations per year and the associated population growth of H. halys may result in increasing crop damages in Switzerland. These results highlight the need for monitoring the spread and population development in the north-western part of Switzerland and higher altitudes of the valleys of the south.
Collapse
Affiliation(s)
- Sibylle Stoeckli
- Research Institute of Organic Agriculture (FiBL), Ackerstrasse 113, P.O. Box 219, 5070 Frick, Switzerland
| | - Raphael Felber
- Agroscope, Reckenholzstrasse 191, 8046 Zurich, Switzerland
- Now at: Office for Environment, Canton of Zug, Aabachstrasse 5, 6300 Zug, Switzerland
| | - Tim Haye
- CABI, Rue des Grillons 1, 2800 Delémont, Switzerland
| |
Collapse
|
17
|
Krause-Sakate R, Watanabe LFM, Gorayeb ES, da Silva FB, Alvarez DDL, Bello VH, Nogueira AM, de Marchi BR, Vicentin E, Ribeiro-Junior MR, Marubayashi JM, Rojas-Bertini CA, Muller C, Bueno RCODF, Rosales M, Ghanim M, Pavan MA. Population Dynamics of Whiteflies and Associated Viruses in South America: Research Progress and Perspectives. INSECTS 2020; 11:insects11120847. [PMID: 33260578 PMCID: PMC7760982 DOI: 10.3390/insects11120847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Whiteflies are one of the most important and widespread pests in the world. In South America, the currently most important species occurring are Bemisia afer,Trialeurodes vaporariorum, and the cryptic species Middle East-Asia Minor 1, Mediterranean, and New World, from Bemisia tabaci complex. The present review compiles information from several studies conducted in South America regarding these insects, providing data related to the dynamics and distribution of whiteflies, the associated viruses, and the management strategies to keep whiteflies under the economic damage threshold. Abstract By having an extensive territory and suitable climate conditions, South America is one of the most important agricultural regions in the world, providing different kinds of vegetable products to different regions of the world. However, such favorable conditions for plant production also allow the development of several pests, increasing production costs. Among them, whiteflies (Hemiptera: Aleyrodidae) stand out for their potential for infesting several crops and for being resistant to insecticides, having high rates of reproduction and dispersal, besides their efficient activity as virus vectors. Currently, the most important species occurring in South America are Bemisia afer, Trialeurodes vaporariorum, and the cryptic species Middle East-Asia Minor 1, Mediterranean, and New World, from Bemisia tabaci complex. In this review, a series of studies performed in South America were compiled in an attempt to unify the advances that have been developed in whitefly management in this continent. At first, a background of the current whitefly distribution in South American countries as well as factors affecting them are shown, followed by a background of the whitefly transmitted viruses in South America, addressing their location and association with whiteflies in each country. Afterwards, a series of management strategies are proposed to be implemented in South American fields, including cultural practices and biological and chemical control, finalizing with a section containing future perspectives and directions for further research.
Collapse
Affiliation(s)
- Renate Krause-Sakate
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
- Correspondence: ; Tel.: +55-14-3880-7487
| | - Luís Fernando Maranho Watanabe
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Eduardo Silva Gorayeb
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
- Facultad de Agronomía e Ingeniería, Pontificia Universidad Católica de Chile, Forestal, Vicuña Mackena, 4860, Macul, Santiago 7820436, Chile; (C.A.R.-B.); (M.R.)
| | - Felipe Barreto da Silva
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Daniel de Lima Alvarez
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Vinicius Henrique Bello
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Angélica Maria Nogueira
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | | | - Eduardo Vicentin
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Marcos Roberto Ribeiro-Junior
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Julio Massaharu Marubayashi
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Claudia Andrea Rojas-Bertini
- Facultad de Agronomía e Ingeniería, Pontificia Universidad Católica de Chile, Forestal, Vicuña Mackena, 4860, Macul, Santiago 7820436, Chile; (C.A.R.-B.); (M.R.)
| | | | - Regiane Cristina Oliveira de Freitas Bueno
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Marlene Rosales
- Facultad de Agronomía e Ingeniería, Pontificia Universidad Católica de Chile, Forestal, Vicuña Mackena, 4860, Macul, Santiago 7820436, Chile; (C.A.R.-B.); (M.R.)
| | - Murad Ghanim
- Department of Entomology, Institute of Plant Protection, The Volcani Center, Rishon LeZion 7505101, Israel;
| | - Marcelo Agenor Pavan
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| |
Collapse
|