1
|
Darmasaputra GS, van Rijnberk LM, Galli M. Functional consequences of somatic polyploidy in development. Development 2024; 151:dev202392. [PMID: 38415794 PMCID: PMC10946441 DOI: 10.1242/dev.202392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyploid cells contain multiple genome copies and arise in many animal tissues as a regulated part of development. However, polyploid cells can also arise due to cell division failure, DNA damage or tissue damage. Although polyploidization is crucial for the integrity and function of many tissues, the cellular and tissue-wide consequences of polyploidy can be very diverse. Nonetheless, many polyploid cell types and tissues share a remarkable similarity in function, providing important information about the possible contribution of polyploidy to cell and tissue function. Here, we review studies on polyploid cells in development, underlining parallel functions between different polyploid cell types, as well as differences between developmentally-programmed and stress-induced polyploidy.
Collapse
Affiliation(s)
- Gabriella S. Darmasaputra
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Lotte M. van Rijnberk
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Matilde Galli
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
2
|
Braat J, Havaux M. The SIAMESE family of cell-cycle inhibitors in the response of plants to environmental stresses. FRONTIERS IN PLANT SCIENCE 2024; 15:1362460. [PMID: 38434440 PMCID: PMC10904545 DOI: 10.3389/fpls.2024.1362460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024]
Abstract
Environmental abiotic constraints are known to reduce plant growth. This effect is largely due to the inhibition of cell division in the leaf and root meristems caused by perturbations of the cell cycle machinery. Progression of the cell cycle is regulated by CDK kinases whose phosphorylation activities are dependent on cyclin proteins. Recent results have emphasized the role of inhibitors of the cyclin-CDK complexes in the impairment of the cell cycle and the resulting growth inhibition under environmental constraints. Those cyclin-CDK inhibitors (CKIs) include the KRP and SIAMESE families of proteins. This review presents the current knowledge on how CKIs respond to environmental changes and on the role played by one subclass of CKIs, the SIAMESE RELATED proteins (SMRs), in the tolerance of plants to abiotic stresses. The SMRs could play a central role in adjusting the balance between growth and stress defenses in plants exposed to environmental stresses.
Collapse
Affiliation(s)
| | - Michel Havaux
- Aix Marseille University, CEA, CNRS UMR7265, Bioscience and Biotechnology Institute of Aix Marseille, Saint-Paul-lez-Durance, France
| |
Collapse
|
3
|
Wu H, Galli M, Spears CJ, Zhan J, Liu P, Yadegari R, Dannenhoffer JM, Gallavotti A, Becraft PW. NAKED ENDOSPERM1, NAKED ENDOSPERM2, and OPAQUE2 interact to regulate gene networks in maize endosperm development. THE PLANT CELL 2023; 36:19-39. [PMID: 37795691 PMCID: PMC10734603 DOI: 10.1093/plcell/koad247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 10/06/2023]
Abstract
NAKED ENDOSPERM1 (NKD1), NKD2, and OPAQUE2 (O2) are transcription factors important for cell patterning and nutrient storage in maize (Zea mays) endosperm. To study the complex regulatory interrelationships among these 3 factors in coregulating gene networks, we developed a set of nkd1, nkd2, and o2 homozygous lines, including all combinations of mutant and wild-type genes. Among the 8 genotypes tested, we observed diverse phenotypes and gene interactions affecting cell patterning, starch content, and storage proteins. From ∼8 to ∼16 d after pollination, maize endosperm undergoes a transition from cellular development to nutrient accumulation for grain filling. Gene network analysis showed that NKD1, NKD2, and O2 dynamically regulate a hierarchical gene network during this period, directing cellular development early and then transitioning to constrain cellular development while promoting the biosynthesis and storage of starch, proteins, and lipids. Genetic interactions regulating this network are also dynamic. The assay for transposase-accessible chromatin using sequencing (ATAC-seq) showed that O2 influences the global regulatory landscape, decreasing NKD1 and NKD2 target site accessibility, while NKD1 and NKD2 increase O2 target site accessibility. In summary, interactions of NKD1, NKD2, and O2 dynamically affect the hierarchical gene network and regulatory landscape during the transition from cellular development to grain filling in maize endosperm.
Collapse
Affiliation(s)
- Hao Wu
- Genetics, Development and Cell Biology Department, Iowa State University, Ames, IA 50011, USA
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08901-8520, USA
| | - Carla J Spears
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Junpeng Zhan
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08901-8520, USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ
| | - Philip W Becraft
- Genetics, Development and Cell Biology Department, Iowa State University, Ames, IA 50011, USA
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
4
|
Lu L, Yang H, Xu Y, Zhang L, Wu J, Yi H. Laser capture microdissection-based spatiotemporal transcriptomes uncover regulatory networks during seed abortion in seedless Ponkan (Citrus reticulata). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:642-661. [PMID: 37077034 DOI: 10.1111/tpj.16251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Seed abortion is an important process in the formation of seedless characteristics in citrus fruits. However, the molecular regulatory mechanism underlying citrus seed abortion is poorly understood. Laser capture microdissection-based RNA-seq combined with Pacbio-seq was used to profile seed development in the Ponkan cultivars 'Huagan No. 4' (seedless Ponkan) (Citrus reticulata) and 'E'gan No. 1' (seeded Ponkan) (C. reticulata) in two types of seed tissue across three developmental stages. Through comparative transcriptome and dynamic phytohormone analyses, plant hormone signal, cell division and nutrient metabolism-related processes were revealed to play critical roles in the seed abortion of 'Huagan No. 4'. Moreover, several genes may play indispensable roles in seed abortion of 'Huagan No. 4', such as CrWRKY74, CrWRKY48 and CrMYB3R4. Overexpression of CrWRKY74 in Arabidopsis resulted in severe seed abortion. By analyzing the downstream regulatory network, we further determined that CrWRKY74 participated in seed abortion regulation by inducing abnormal programmed cell death. Of particular importance is that a preliminary model was proposed to depict the regulatory networks underlying seed abortion in citrus. The results of this study provide novel insights into the molecular mechanism across citrus seed development, and reveal the master role of CrWRKY74 in seed abortion of 'Huagan No. 4'.
Collapse
Affiliation(s)
- Liqing Lu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Haijian Yang
- Fruit Tree Research Institute of Chongqing Academy of Agricultural Sciences, Chongqing, 401329, P.R. China
| | - Yanhui Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Li Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Juxun Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hualin Yi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
5
|
Bellucci M, Caceres ME, Paolocci F, Vega JM, Ortiz JPA, Ceccarelli M, De Marchis F, Pupilli F. ORIGIN OF RECOGNITION COMPLEX 3 controls the development of maternal excess endosperm in the Paspalum simplex agamic complex (Poaceae). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3074-3093. [PMID: 36812152 DOI: 10.1093/jxb/erad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/21/2023] [Indexed: 05/21/2023]
Abstract
Pseudogamous apomixis in Paspalum simplex generates seeds with embryos genetically identical to the mother plant and endosperms deviating from the canonical 2(maternal):1(paternal) parental genome contribution into a maternal excess 4m:1p genome ratio. In P. simplex, the gene homologous to that coding for subunit 3 of the ORIGIN OF RECOGNITION COMPLEX (PsORC3) exists in three isogenic forms: PsORC3a is apomixis specific and constitutively expressed in developing endosperm whereas PsORCb and PsORCc are up-regulated in sexual endosperms and silenced in apomictic ones. This raises the question of how the different arrangement and expression profiles of these three ORC3 isogenes are linked to seed development in interploidy crosses generating maternal excess endosperms. We demonstrate that down-regulation of PsORC3b in sexual tetraploid plants is sufficient to restore seed fertility in interploidy 4n×2n crosses and, in turn, its expression level at the transition from proliferating to endoreduplication endosperm developmental stages dictates the fate of these seeds. Furthermore, we show that only when being maternally inherited can PsORC3c up-regulate PsORC3b. Our findings lay the basis for an innovative route-based on ORC3 manipulation-to introgress the apomictic trait into sexual crops and overcome the fertilization barriers in interploidy crosses.
Collapse
Affiliation(s)
- Michele Bellucci
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Maria Eugenia Caceres
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Francesco Paolocci
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Juan Manuel Vega
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR and Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Juan Pablo Amelio Ortiz
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR), CONICET-UNR and Laboratorio de Biología Molecular, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Marilena Ceccarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Francesca De Marchis
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| | - Fulvio Pupilli
- Institute of Biosciences and Bioresources (IBBR), National Research Council (CNR), 06128, Perugia, Italy
| |
Collapse
|
6
|
Li J, Wang L, Wan J, Dang K, Lin Y, Meng S, Qiu X, Wang Q, Zhao J, Mu L, Luo H, Ding D, Chen Z, Tang J. Dynamic patterns of gene expression and regulatory variation in the maize seed coat. BMC PLANT BIOLOGY 2023; 23:82. [PMID: 36750803 PMCID: PMC9903604 DOI: 10.1186/s12870-023-04078-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Seed size is an important factor contributing to maize yield, but its molecular mechanism remains unclear. The seed coat, which serves as one of the three components of the maize grain, determines seed size to a certain extent. The seed coat also shares the maternal genotype and is an ideal material for studying heterosis. RESULTS In this study, the self-pollinated seeds of the maize hybrid Yudan888 and its parental lines were continuously collected from 0 day after pollination (DAP) to 15 DAP for phenotyping, cytological observation and RNA-seq. The phenotypic data showed that 3 DAP and 8 DAP are the best time points to study maize seed coat heterosis. Cytological observations indicated that maize seed coat heterosis might be the result of the coordination between cell number and cell size. Furthermore, the RNA-seq results showed that the nonadditive genes changed significantly between 3 and 8 DAP. However, the number of genes expressed additively was not significantly different. Our findings suggest that seed coat heterosis in hybrid is the result of nonadditive expression caused by dynamic changes in genes at different time points during seed expansion and seed coat development. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment indicated that genes related to DNA replication, cell cycle regulation, circadian rhythms and metabolite accumulation contributed significantly to hybrid seed coat heterosis. CONCLUSION Maize seed coat phenotyping allowed us to infer that 3 DAP and 8 DAP are important time points in the study of seed coat heterosis. Our findings provide evidence for genes involved in DNA replication, cell cycle regulation, circadian rhythms and metabolite accumulation in hybrid with high or low parental expression as major contributors to hybrid seed coat heterosis.
Collapse
Affiliation(s)
- Juan Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Liangfa Wang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Hebi Academy of Agricultural Sciences, Hebi, 458030, China
| | - Jiong Wan
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kuntai Dang
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuan Lin
- Hebi Academy of Agricultural Sciences, Hebi, 458030, China
| | - Shujun Meng
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoqian Qiu
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qiyue Wang
- Hebi Academy of Agricultural Sciences, Hebi, 458030, China
| | - Jiawen Zhao
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Liqin Mu
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongbing Luo
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Dong Ding
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Zehui Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.
- Institute of Upland Food Crops, Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| | - Jihua Tang
- National Key Laboratory of Wheat and Maize Crop Science; Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
- The Shennong Laboratory, Zhengzhou, 450002, China.
| |
Collapse
|
7
|
Sun Q, Li Y, Gong D, Hu A, Zhong W, Zhao H, Ning Q, Tan Z, Liang K, Mu L, Jackson D, Zhang Z, Yang F, Qiu F. A NAC-EXPANSIN module enhances maize kernel size by controlling nucellus elimination. Nat Commun 2022; 13:5708. [PMID: 36175574 PMCID: PMC9522829 DOI: 10.1038/s41467-022-33513-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Maize early endosperm development is initiated in coordination with elimination of maternal nucellar tissues. However, the underlying mechanisms are largely unknown. Here, we characterize a major quantitative trait locus for maize kernel size and weight that encodes an EXPANSIN gene, ZmEXPB15. The encoded β-expansin protein is expressed specifically in nucellus, and positively controls kernel size and weight by promoting nucellus elimination. We further show that two nucellus-enriched transcription factors (TFs), ZmNAC11 and ZmNAC29, activate ZmEXPB15 expression. Accordingly, these two TFs also promote kernel size and weight through nucellus elimination regulation, and genetic analyses support their interaction with ZmEXPB15. Importantly, hybrids derived from a ZmEXPB15 overexpression line have increased kernel weight, demonstrates its potential value in breeding. Together, we reveal a pathway modulating the cellular processes of maternal nucellus elimination and early endosperm development, and an approach to improve kernel weight.
Collapse
Affiliation(s)
- Qin Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Yunfu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Aoqing Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Wanshun Zhong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Qiang Ning
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Kun Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Luyao Mu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - David Jackson
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, 430070, Wuhan, Hubei, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, 430070, Wuhan, Hubei, China.
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, 430070, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Consonni G, Castorina G, Varotto S. The Italian Research on the Molecular Characterization of Maize Kernel Development. Int J Mol Sci 2022; 23:11383. [PMID: 36232684 PMCID: PMC9570349 DOI: 10.3390/ijms231911383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The study of the genetic control of maize seed development and seed-related pathways has been one of the most important themes approached by the Italian scientific community. Maize has always attracted the interest of the Italian community of agricultural genetics since its beginning, as some of its founders based their research projects on and developed their "schools" by adopting maize as a reference species. Some of them spent periods in the United States, where maize was already becoming a model system, to receive their training. In this manuscript we illustrate the research work carried out in Italy by different groups that studied maize kernels and underline their contributions in elucidating fundamental aspects of caryopsis development through the characterization of maize mutants. Since the 1980s, most of the research projects aimed at the comprehension of the genetic control of seed development and the regulation of storage products' biosyntheses and accumulation, and have been based on forward genetics approaches. We also document that for some decades, Italian groups, mainly based in Northern Italy, have contributed to improve the knowledge of maize genomics, and were both fundamental for further international studies focused on the correct differentiation and patterning of maize kernel compartments and strongly contributed to recent advances in maize research.
Collapse
Affiliation(s)
- Gabriella Consonni
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Giulia Castorina
- Dipartimento di Scienze Agrarie e Ambientali (DiSAA), Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy
| | - Serena Varotto
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Università degli Studi di Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| |
Collapse
|
9
|
Zhang M, Zheng H, Jin L, Xing L, Zou J, Zhang L, Liu C, Chu J, Xu M, Wang L. miR169o and ZmNF-YA13 act in concert to coordinate the expression of ZmYUC1 that determines seed size and weight in maize kernels. THE NEW PHYTOLOGIST 2022; 235:2270-2284. [PMID: 35713356 DOI: 10.1111/nph.18317] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs (miRNAs) play key regulatory roles in seed development and emerge as new key targets for engineering grain size and yield. The Zma-miRNA169 family is highly expressed during maize seed development, but its functional roles in seed development remain elusive. Here, we generated zma-miR169o and ZmNF-YA13 transgenic plants. Phenotypic and genetic analyses were performed on these lines. Seed development and auxins contents were investigated. Overexpression of maize miRNA zma-miR169o increases seed size and weight, whereas the opposite is true when its expression is suppressed. Further studies revealed that zma-miR169 acts by negatively regulating its target gene, a transcription factor ZmNF-YA13 that also plays a key role in determining seed size. We demonstrate that ZmNF-YA13 regulates the expression of the auxin biosynthetic gene ZmYUC1, which modulates auxin levels in the early developing seeds and determines the number of endosperm cells, thereby governing maize seed size and ultimately yield. Overall, our present study has identified zma-miR169o and ZmNF-YA13 that form a functional module regulating auxin accumulation in maize seeds and playing an important role in determining maize seed size and yield, providing a set of novel molecular tools for yield improvement in molecular breeding and genetic engineering.
Collapse
Affiliation(s)
- Min Zhang
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Hongyan Zheng
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
- National Nanfan Research Institute (Sanya), 572022, Sanya, Hainan, China
| | - Lian Jin
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Lijuan Xing
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Junjie Zou
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Lan Zhang
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Miaoyun Xu
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
| | - Lei Wang
- Biotechnology Research Institute, CAAS/Key Laboratory of Agricultural Genomics (Beijing), Ministry of Agriculture, 100081, Beijing, China
- National Nanfan Research Institute (Sanya), 572022, Sanya, Hainan, China
| |
Collapse
|
10
|
Lian T, Wang X, Li S, Jiang H, Zhang C, Wang H, Jiang L. Comparative Transcriptome Analysis Reveals Mechanisms of Folate Accumulation in Maize Grains. Int J Mol Sci 2022; 23:ijms23031708. [PMID: 35163628 PMCID: PMC8836222 DOI: 10.3390/ijms23031708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Previously, the complexity of folate accumulation in the early stages of maize kernel development has been reported, but the mechanisms of folate accumulation are unclear. Two maize inbred lines, DAN3130 and JI63, with different patterns of folate accumulation and different total folate contents in mature kernels were used to investigate the transcriptional regulation of folate metabolism during late stages of kernel formation by comparative transcriptome analysis. The folate accumulation during DAP 24 to mature kernels could be controlled by circumjacent pathways of folate biosynthesis, such as pyruvate metabolism, glutamate metabolism, and serine/glycine metabolism. In addition, the folate variation between these two inbred lines was related to those genes among folate metabolism, such as genes in the pteridine branch, para-aminobenzoate branch, serine/tetrahydrofolate (THF)/5-methyltetrahydrofolate cycle, and the conversion of THF monoglutamate to THF polyglutamate. The findings provided insight into folate accumulation mechanisms during maize kernel formation to promote folate biofortification.
Collapse
Affiliation(s)
- Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Plant Genetics, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Xuxia Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
| | - Sha Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
| | - Haiyang Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
- National Agricultural Science and Technology Center, Chengdu 610213, China
- Correspondence: (H.W.); (L.J.)
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Correspondence: (H.W.); (L.J.)
| |
Collapse
|
11
|
Wu H, Becraft PW, Dannenhoffer JM. Maize Endosperm Development: Tissues, Cells, Molecular Regulation and Grain Quality Improvement. FRONTIERS IN PLANT SCIENCE 2022; 13:852082. [PMID: 35330868 PMCID: PMC8940253 DOI: 10.3389/fpls.2022.852082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/11/2022] [Indexed: 05/12/2023]
Abstract
Maize endosperm plays important roles in human diet, animal feed and industrial applications. Knowing the mechanisms that regulate maize endosperm development could facilitate the improvement of grain quality. This review provides a detailed account of maize endosperm development at the cellular and histological levels. It features the stages of early development as well as developmental patterns of the various individual tissues and cell types. It then covers molecular genetics, gene expression networks, and current understanding of key regulators as they affect the development of each tissue. The article then briefly considers key changes that have occurred in endosperm development during maize domestication. Finally, it considers prospects for how knowledge of the regulation of endosperm development could be utilized to enhance maize grain quality to improve agronomic performance, nutrition and economic value.
Collapse
Affiliation(s)
- Hao Wu
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
| | - Philip W. Becraft
- Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, United States
- *Correspondence: Philip W. Becraft,
| | | |
Collapse
|
12
|
Jong LW, Fujiwara T, Hirooka S, Miyagishima SY. Cell size for commitment to cell division and number of successive cell divisions in cyanidialean red algae. PROTOPLASMA 2021; 258:1103-1118. [PMID: 33675395 DOI: 10.1007/s00709-021-01628-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Several eukaryotic cell lineages proliferate by multiple fission cell cycles, during which cells grow to manyfold of their original size, then undergo several rounds of cell division without intervening growth. A previous study on volvocine green algae, including both unicellular and multicellular (colonial) species, showed a correlation between the minimum number of successive cell divisions without intervening cellular growth, and the threshold cell size for commitment to the first round of successive cell divisions: two times the average newly born daughter cell volume for unicellular Chlamydomonas reinhardtii, four times for four-celled Tetrabaena socialis, in which each cell in the colony produces a daughter colony by two successive cell divisions, and eight times for the eight-celled Gonium pectorale, in which each cell produces a daughter colony by three successive cell divisions. To assess whether this phenomenon is also applicable to other lineages, we have characterized cyanidialean red algae, namely, Cyanidioschyzon merolae, which proliferates by binary fission, as well as Cyanidium caldarium and Galdieria sulphuraria, which form up to four and 32 daughter cells (autospores), respectively, in a mother cell before hatching out. The result shows that there is also a correlation between the number of successive cell divisions and the threshold cell size for cell division or the first round of the successive cell divisions. In both C. merolae and C. caldarium, the cell size checkpoint for cell division(s) exists in the G1-phase, as previously shown in volvocine green algae. When C. merolae cells were arrested in the G1-phase and abnormally enlarged by conditional depletion of CDKA, the cells underwent two or more successive cell divisions without intervening cellular growth after recovery of CDKA, similarly to C. caldarium and G. sulphuraria. These results suggest that the threshold size for cell division is a major factor in determining the number of successive cell divisions and that evolutionary changes in the mechanism of cell size monitoring resulted in a variation of multiple fission cell cycle in eukaryotic algae.
Collapse
Affiliation(s)
- Lin Wei Jong
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, Japan.
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan.
| |
Collapse
|
13
|
Pedroza-Garcia JA, Eekhout T, Achon I, Nisa MU, Coussens G, Vercauteren I, Van den Daele H, Pauwels L, Van Lijsebettens M, Raynaud C, De Veylder L. Maize ATR safeguards genome stability during kernel development to prevent early endosperm endocycle onset and cell death. THE PLANT CELL 2021; 33:2662-2684. [PMID: 34086963 PMCID: PMC8408457 DOI: 10.1093/plcell/koab158] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/31/2021] [Indexed: 05/06/2023]
Abstract
The ataxia-telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) kinases coordinate the DNA damage response. The roles described for Arabidopsis thaliana ATR and ATM are assumed to be conserved over other plant species, but molecular evidence is scarce. Here, we demonstrate that the functions of ATR and ATM are only partially conserved between Arabidopsis and maize (Zea mays). In both species, ATR and ATM play a key role in DNA repair and cell cycle checkpoint activation, but whereas Arabidopsis plants do not suffer from the absence of ATR under control growth conditions, maize mutant plants accumulate replication defects, likely due to their large genome size. Moreover, contrarily to Arabidopsis, maize ATM deficiency does not trigger meiotic defects, whereas the ATR kinase appears to be crucial for the maternal fertility. Strikingly, ATR is required to repress premature endocycle onset and cell death in the maize endosperm. Its absence results in a reduction of kernel size, protein and starch content, and a stochastic death of kernels, a process being counteracted by ATM. Additionally, while Arabidopsis atr atm double mutants are viable, no such mutants could be obtained for maize. Therefore, our data highlight that the mechanisms maintaining genome integrity may be more important for vegetative and reproductive development than previously anticipated.
Collapse
Affiliation(s)
- Jose Antonio Pedroza-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Maher-Un Nisa
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, 91405, Orsay, France
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Hilde Van den Daele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent B-9052, Belgium
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, Paris University, Sorbonne Paris-Cite, University of Paris-Saclay, 91405, Orsay, France
| | | |
Collapse
|
14
|
Dai D, Ma Z, Song R. Maize endosperm development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:613-627. [PMID: 33448626 DOI: 10.1111/jipb.13069] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Recent breakthroughs in transcriptome analysis and gene characterization have provided valuable resources and information about the maize endosperm developmental program. The high temporal-resolution transcriptome analysis has yielded unprecedented access to information about the genetic control of seed development. Detailed spatial transcriptome analysis using laser-capture microdissection has revealed the expression patterns of specific populations of genes in the four major endosperm compartments: the basal endosperm transfer layer (BETL), aleurone layer (AL), starchy endosperm (SE), and embryo-surrounding region (ESR). Although the overall picture of the transcriptional regulatory network of endosperm development remains fragmentary, there have been some exciting advances, such as the identification of OPAQUE11 (O11) as a central hub of the maize endosperm regulatory network connecting endosperm development, nutrient metabolism, and stress responses, and the discovery that the endosperm adjacent to scutellum (EAS) serves as a dynamic interface for endosperm-embryo crosstalk. In addition, several genes that function in BETL development, AL differentiation, and the endosperm cell cycle have been identified, such as ZmSWEET4c, Thk1, and Dek15, respectively. Here, we focus on current advances in understanding the molecular factors involved in BETL, AL, SE, ESR, and EAS development, including the specific transcriptional regulatory networks that function in each compartment during endosperm development.
Collapse
Affiliation(s)
- Dawei Dai
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zeyang Ma
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
15
|
Yang T, Guo L, Ji C, Wang H, Wang J, Zheng X, Xiao Q, Wu Y. The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling. THE PLANT CELL 2021; 33:104-128. [PMID: 33751093 PMCID: PMC8136913 DOI: 10.1093/plcell/koaa008] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 05/06/2023]
Abstract
Grain filling in maize (Zea mays) is regulated by a group of spatiotemporally synchronized transcription factors (TFs), but the factors that coordinate their expression remain unknown. We used the promoter of the grain filling-specific TF gene Opaque2 (O2) to screen upstream regulatory factors and identified a B3 domain TF, ZmABI19, that directly binds to the O2 promoter for transactivation. zmabi19 mutants displayed developmental defects in the endosperm and embryo, and mature kernels were opaque and reduced in size. The accumulation of zeins, starch and lipids dramatically decreased in zmabi19 mutants. RNA sequencing revealed an alteration of the nutrient reservoir activity and starch and sucrose metabolism in zmabi19 endosperms, and plant phytohormone signal transduction and lipid metabolism in zmabi19 embryos. Chromatin immunoprecipitation followed by sequencing coupled with differential expression analysis identified 106 high-confidence direct ZmABI19 targets. ZmABI19 directly regulates multiple key grain filling TFs including O2, Prolamine-box binding factor 1, ZmbZIP22, NAC130, and Opaque11 in the endosperm and Viviparous1 in the embryo. A number of phytohormone-related genes were also bound and regulated by ZmABI19. Our results demonstrate that ZmABI19 functions as a grain filling initiation regulator. ZmABI19 roles in coupling early endosperm and embryo development are also discussed.
Collapse
Affiliation(s)
- Tao Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liangxing Guo
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Ji
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haihai Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiechen Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xixi Zheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qiao Xiao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Author for communication:
| |
Collapse
|
16
|
Desvoyes B, Gutierrez C. Roles of plant retinoblastoma protein: cell cycle and beyond. EMBO J 2020; 39:e105802. [PMID: 32865261 PMCID: PMC7527812 DOI: 10.15252/embj.2020105802] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
The human retinoblastoma (RB1) protein is a tumor suppressor that negatively regulates cell cycle progression through its interaction with members of the E2F/DP family of transcription factors. However, RB-related (RBR) proteins are an early acquisition during eukaryote evolution present in plant lineages, including unicellular algae, ancient plants (ferns, lycophytes, liverworts, mosses), gymnosperms, and angiosperms. The main RBR protein domains and interactions with E2Fs are conserved in all eukaryotes and not only regulate the G1/S transition but also the G2/M transition, as part of DREAM complexes. RBR proteins are also important for asymmetric cell division, stem cell maintenance, and the DNA damage response (DDR). RBR proteins play crucial roles at every developmental phase transition, in association with chromatin factors, as well as during the reproductive phase during female and male gametes production and embryo development. Here, we review the processes where plant RBR proteins play a role and discuss possible avenues of research to obtain a full picture of the multifunctional roles of RBR for plant life.
Collapse
|
17
|
Zhang Z, Qu J, Li F, Li S, Xu S, Zhang R, Xue J, Guo D. Genome-wide evolutionary characterization and expression analysis of SIAMESE-RELATED family genes in maize. BMC Evol Biol 2020; 20:91. [PMID: 32727363 PMCID: PMC7389639 DOI: 10.1186/s12862-020-01619-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 04/29/2020] [Indexed: 11/12/2022] Open
Abstract
Background The SIAMESE (SIM) locus is a cell-cycle kinase inhibitor (CKI) gene that has to date been identified only in plants; it encodes a protein that promotes transformation from mitosis to endoreplication. Members of the SIAMESE-RELATED (SMR) family have similar functions, and some are related to cell-cycle responses and abiotic stresses. However, the functions of SMRs are poorly understood in maize (Zea mays L.). Results In the present study, 12 putative SMRs were identified throughout the entire genome of maize, and these were clustered into six groups together with the SMRs from seven other plant species. Members of the ZmSMR family were divided into four groups according to their protein sequences. Various cis-acting elements in the upstream sequences of ZmSMRs responded to abiotic stresses. Expression analyses revealed that all ZmSMRs were upregulated at 5, 20, 25, and 35 days after pollination. In addition, we found that ZmSMR9/11/12 may have regulated the initiation of endoreplication in endosperm central cells. Additionally, ZmSMR2/10 may have been primarily responsible for the endoreplication regulation of outer endosperm or aleurone cells. The relatively high expression levels of almost all ZmSMRs in the ears and tassels also implied that these genes may function in seed development. The effects of treatments with ABA, heat, cold, salt, and drought on maize seedlings and expression of ZmSMR genes suggested that ZmSMRs were strongly associated with response to abiotic stresses. Conclusion The present study is the first to conduct a genome-wide analysis of members of the ZmSMR family by investigating their locations in chromosomes, identifying regulatory elements in their promoter regions, and examining motifs in their protein sequences. Expression analysis of different endosperm developmental periods, tissues, abiotic stresses, and hormonal treatments suggests that ZmSMR genes may function in endoreplication and regulate the development of reproductive organs. These results may provide valuable information for future studies of the functions of the SMR family in maize.
Collapse
Affiliation(s)
- Zhengquan Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Maize engineering technology research center of shaanxi province, Yangling, 712100, Shaanxi, China
| | - Jianzhou Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Maize engineering technology research center of shaanxi province, Yangling, 712100, Shaanxi, China
| | - Feifei Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Maize engineering technology research center of shaanxi province, Yangling, 712100, Shaanxi, China
| | - Silu Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Maize engineering technology research center of shaanxi province, Yangling, 712100, Shaanxi, China
| | - Shutu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Maize engineering technology research center of shaanxi province, Yangling, 712100, Shaanxi, China
| | - Renhe Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Maize engineering technology research center of shaanxi province, Yangling, 712100, Shaanxi, China
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Maize engineering technology research center of shaanxi province, Yangling, 712100, Shaanxi, China
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Maize engineering technology research center of shaanxi province, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
18
|
Protein sorting into protein bodies during barley endosperm development is putatively regulated by cytoskeleton members, MVBs and the HvSNF7s. Sci Rep 2020; 10:1864. [PMID: 32024857 PMCID: PMC7002727 DOI: 10.1038/s41598-020-58740-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/20/2020] [Indexed: 01/07/2023] Open
Abstract
Cereal endosperm is a short-lived tissue adapted for nutrient storage, containing specialized organelles, such as protein bodies (PBs) and protein storage vacuoles (PSVs), for the accumulation of storage proteins. During development, protein trafficking and storage require an extensive reorganization of the endomembrane system. Consequently, endomembrane-modifying proteins will influence the final grain quality and yield. However, little is known about the molecular mechanism underlying endomembrane system remodeling during barley grain development. By using label-free quantitative proteomics profiling, we quantified 1,822 proteins across developing barley grains. Based on proteome annotation and a homology search, 94 proteins associated with the endomembrane system were identified that exhibited significant changes in abundance during grain development. Clustering analysis allowed characterization of three different development phases; notably, integration of proteomics data with in situ subcellular microscopic analyses showed a high abundance of cytoskeleton proteins associated with acidified PBs at the early development stages. Moreover, endosomal sorting complex required for transport (ESCRT)-related proteins and their transcripts are most abundant at early and mid-development. Specifically, multivesicular bodies (MVBs), and the ESCRT-III HvSNF7 proteins are associated with PBs during barley endosperm development. Together our data identified promising targets to be genetically engineered to modulate seed storage protein accumulation that have a growing role in health and nutritional issues.
Collapse
|
19
|
Pan Z, Liu M, Xiao Z, Ren X, Zhao H, Gong D, Liang K, Tan Z, Shao Y, Qiu F. ZmSMK9, a pentatricopeptide repeat protein, is involved in the cis-splicing of nad5, kernel development and plant architecture in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110205. [PMID: 31521217 DOI: 10.1016/j.plantsci.2019.110205] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/08/2019] [Accepted: 07/25/2019] [Indexed: 05/23/2023]
Abstract
Maize kernel size and weight are essential contributors to its yield. So the identification of the genes controlling kernel size and weight can give us a chance to gain the yield. Here, we identified a small kernel mutant, Zea mays small kernel 9 (Zmsmk9), in maize. Cytological observation showed that the development of the endosperm and embryo was delayed in Zmsmk9 mutants at the early stages, resulting in a small kernel phenotype. Interestingly, despite substantial variation in kernel size, the germination of Zmsmk9 seeds was comparable to that of WT, and could develop into normal plants with upright leaf architecture. We cloned Zmsmk9 via map-based cloning. ZmSMK9 encodes a P-type pentatricopeptide repeat protein that targets to mitochondria, and is involved in RNA splicing in mitochondrial NADH dehydrogenase5 (nad5) intron-1 and intron-4. Consistent with the delayed development phenotype, transcriptome analysis of 12-DAP endosperm showed that starch and zeins biosynthesis related genes were dramatically down regulated in Zmsmk9, while cell cycle and cell growth related genes were dramatically increased. As a result, ZmSMK9 is a novel gene required for the splicing of nad5 intron-1 and intron-4, kernel development, and plant architecture in maize.
Collapse
Affiliation(s)
- Zhenyuan Pan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Min Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ziyi Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xuemei Ren
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hailiang Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kun Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yangqing Shao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
20
|
Song W, Zhu J, Zhao H, Li Y, Liu J, Zhang X, Huang L, Lai J. OS1 functions in the allocation of nutrients between the endosperm and embryo in maize seeds. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:706-727. [PMID: 30506638 DOI: 10.1111/jipb.12755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/27/2018] [Indexed: 05/05/2023]
Abstract
Uncovering the genetic basis of seed development will provide useful tools for improving both crop yield and nutritional value. However, the genetic regulatory networks of maize (Zea mays) seed development remain largely unknown. The maize opaque endosperm and small germ 1 (os1) mutant has opaque endosperm and a small embryo. Here, we cloned OS1 and show that it encodes a putative transcription factor containing an RWP-RK domain. Transcriptional analysis indicated that OS1 expression is elevated in early endosperm development, especially in the basal endosperm transfer layer (BETL), conducting zone (CZ), and central starch endosperm (CSE) cells. RNA sequencing (RNA-Seq) analysis of the os1 mutant revealed sharp downregulation of certain genes in specific cell types, including ZmMRP-1 and Meg1 in BETL cells and a majority of zein- and starch-related genes in CSE cells. Using a haploid induction system, we show that wild-type endosperm could rescue the smaller size of os1 embryo, which suggests that nutrients are allocated by the wild-type endosperm. Therefore, our data imply that the network regulated by OS1 accomplishes a key step in nutrient allocation between endosperm and embryo within maize seeds. Identification of this network will help uncover the mechanisms regulating the nutritional balance between endosperm and embryo.
Collapse
Affiliation(s)
- Weibin Song
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jinjie Zhu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Haiming Zhao
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Yingnan Li
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jiangtao Liu
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Xiangbo Zhang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Liangliang Huang
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| | - Jinsheng Lai
- State Key Laboratory of Agrobiotechnology and National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100094, China
| |
Collapse
|
21
|
Carotenuto G, Sciascia I, Oddi L, Volpe V, Genre A. Size matters: three methods for estimating nuclear size in mycorrhizal roots of Medicago truncatula by image analysis. BMC PLANT BIOLOGY 2019; 156:265-273. [PMID: 31054574 DOI: 10.1046/j.1469-8137.2002.00508.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND The intracellular accommodation of arbuscular mycorrhizal (AM) fungi involves a profound molecular reprogramming of the host cell architecture and metabolism, based on the activation of a symbiotic signaling pathway. In analogy with other plant biotrophs, AM fungi are reported to trigger cell cycle reactivation in their host tissues, possibly in support of the enhanced metabolic demand required for the symbiosis. RESULTS We here compare the efficiency of three Fiji/ImageJ image analysis plugins in localizing and quantifying the increase in nuclear size - a hallmark of recursive events of endoreduplication - in M. truncatula roots colonized by the AM fungus Gigaspora margarita. All three approaches proved to be versatile and upgradeable, allowing the investigation of nuclear changes in a complex tissue; 3D Object Counter provided more detailed information than both TrackMate and Round Surface Detector plugins. On this base we challenged 3D Object Counter with two case studies: verifying the lack of endoreduplication-triggering responses in Medicago truncatula mutants with a known non-symbiotic phenotype; and analysing the correlation in space and time between the induction of cortical cell division and endoreduplication upon AM colonization. Both case studies revealed important biological aspects. Mutant phenotype analyses have demonstrated that the knock-out mutation of different key genes in the symbiotic signaling pathway block AM-associated endoreduplication. Furthermore, our data show that cell divisions occur during initial stages of root colonization and are followed by recursive activation of the endocycle in preparation for arbuscule accommodation. CONCLUSIONS In conclusion, our results indicate 3D Object Counter as the best performing Fiji/ImageJ image analysis script in plant root thick sections and its application highlighted endoreduplication as a major feature of the AM pre-penetration response in root cortical cells.
Collapse
Affiliation(s)
- Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Ivan Sciascia
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Ludovica Oddi
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy.
| |
Collapse
|
22
|
Carotenuto G, Sciascia I, Oddi L, Volpe V, Genre A. Size matters: three methods for estimating nuclear size in mycorrhizal roots of Medicago truncatula by image analysis. BMC PLANT BIOLOGY 2019; 19:180. [PMID: 31054574 PMCID: PMC6500585 DOI: 10.1186/s12870-019-1791-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/18/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND The intracellular accommodation of arbuscular mycorrhizal (AM) fungi involves a profound molecular reprogramming of the host cell architecture and metabolism, based on the activation of a symbiotic signaling pathway. In analogy with other plant biotrophs, AM fungi are reported to trigger cell cycle reactivation in their host tissues, possibly in support of the enhanced metabolic demand required for the symbiosis. RESULTS We here compare the efficiency of three Fiji/ImageJ image analysis plugins in localizing and quantifying the increase in nuclear size - a hallmark of recursive events of endoreduplication - in M. truncatula roots colonized by the AM fungus Gigaspora margarita. All three approaches proved to be versatile and upgradeable, allowing the investigation of nuclear changes in a complex tissue; 3D Object Counter provided more detailed information than both TrackMate and Round Surface Detector plugins. On this base we challenged 3D Object Counter with two case studies: verifying the lack of endoreduplication-triggering responses in Medicago truncatula mutants with a known non-symbiotic phenotype; and analysing the correlation in space and time between the induction of cortical cell division and endoreduplication upon AM colonization. Both case studies revealed important biological aspects. Mutant phenotype analyses have demonstrated that the knock-out mutation of different key genes in the symbiotic signaling pathway block AM-associated endoreduplication. Furthermore, our data show that cell divisions occur during initial stages of root colonization and are followed by recursive activation of the endocycle in preparation for arbuscule accommodation. CONCLUSIONS In conclusion, our results indicate 3D Object Counter as the best performing Fiji/ImageJ image analysis script in plant root thick sections and its application highlighted endoreduplication as a major feature of the AM pre-penetration response in root cortical cells.
Collapse
Affiliation(s)
- Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Ivan Sciascia
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Ludovica Oddi
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy.
| |
Collapse
|
23
|
Bernardi J, Battaglia R, Bagnaresi P, Lucini L, Marocco A. Transcriptomic and metabolomic analysis of ZmYUC1 mutant reveals the role of auxin during early endosperm formation in maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:133-145. [PMID: 30824046 DOI: 10.1016/j.plantsci.2019.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 05/22/2023]
Abstract
Kernel size in cereal is an important agronomic trait controlled by the interaction of genetic and environmental factors. The endosperm occupies most of the kernel area; for this reason, the endosperm cells dimension, number and metabolic content strongly influence kernel properties. This paper presents the transcriptomic and metabolomic analysis of the maize defective endosperm 18 (de18) mutant, where auxin accumulation in the endosperm is impaired. This mutation, involving the ZmYuc1 gene, leads to a reduced kernel size compared to the wild-type line B37. Our results mainly indicate that IAA concentration controls sugar and protein metabolism during kernel differentiation and it is necessary for BETL formation. Furthermore, a fine tuning of different auxin conjugates is reported as the main mechanism to counteract the auxin deficit. Some candidates as master regulators of endosperm transcriptional regulation mediated by auxin are found between MYB and MADS-box gene families. A link between auxin and storage protein accumulation is highlighted, suggesting that IAA directly or indirectly, through CK or ABA, regulates the transcription of zein coding genes. This study represents a move forward with respect to the current knowledge about the role of auxin during maize endosperm differentiation thus revealing the genes that are modulated by auxin and that control agronomic traits as kernel size and metabolic composition.
Collapse
Affiliation(s)
- Jamila Bernardi
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Raffaella Battaglia
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Bagnaresi
- Council for Agricultural Research and Economics, Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| |
Collapse
|
24
|
Differences in Effective Ploidy Drive Genome-Wide Endosperm Expression Polarization and Seed Failure in Wild Tomato Hybrids. Genetics 2019; 212:141-152. [PMID: 30902809 DOI: 10.1534/genetics.119.302056] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/18/2019] [Indexed: 01/24/2023] Open
Abstract
Parental imbalances in the endosperm leading to impaired development and eventual hybrid seed failure are common causes of postzygotic isolation in flowering plants. Endosperm sensitivity to parental dosage is reflected by canonical phenotypes of "parental excess" in reciprocal interploid crosses. Moreover, parental-excess traits are also evident in many homoploid interspecific crosses, potentially reflecting among-lineage variation in "effective ploidy" driven by endosperm properties. However, the genetic basis of effective ploidy is unknown and genome-wide expression perturbations in parental-excess endosperms from homoploid crosses have yet to be reported. The tomato clade (Solanum section Lycopersicon), encompassing closely related diploids with partial-to-complete hybrid seed failure, provides outstanding opportunities to study these issues. Here, we compared replicated endosperm transcriptomes from six crosses within and among three wild tomato lineages. Strikingly, strongly inviable hybrid crosses displayed conspicuous, asymmetric expression perturbations that mirror previously characterized parental-excess phenotypes. Solanum peruvianum, the species inferred to have evolved higher effective ploidy than the other two, drove expression landscape polarization between maternal and paternal roles. This global expression divergence was mirrored in functionally important gene families such as MADS-box transcription factors and E3 ubiquitin ligases, and revealed differences in cell cycle tuning that match phenotypic differences in developing endosperm and mature seed size between reciprocal crosses. Our work starts to uncover the complex interactions between expression divergence, parental conflict, and hybrid seed failure that likely contributed to plant diversity.
Collapse
|
25
|
Li F, Wang L, Zhang Z, Li T, Feng J, Xu S, Zhang R, Guo D, Xue J. ZmSMR4, a novel cyclin-dependent kinase inhibitor (CKI) gene in maize (Zea mays L.), functions as a key player in plant growth, development and tolerance to abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:120-131. [PMID: 30823990 DOI: 10.1016/j.plantsci.2018.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 06/09/2023]
Abstract
Endoreduplication is a key cell cycle variant in the developing maize endosperm and has been associated with cell enlargement and dry matter accumulation. Therefore, identification of the key genes associated with endosperm development and endoreduplication would not only lay the groundwork for understanding the biological process of endoreduplication but also be important for maize breeding. Here, we identified 12 putative endoreduplication-related candidate genes as members of the Zea mays L. SIAMESE-RELATED (ZmSMR) gene family and denoted them ZmSMR1-ZmSMR12. Sequence analysis indicated that all the ZmSMR protein sequences exhibited modest sequence similarity to the SIAMESE gene from Arabidopsis. Further analyses suggested that most ZmSMR genes might be associated with the transition from mitosis to endoreduplication because the expression levels of most ZmSMR genes were upregulated in endosperm cells during the phase of switching to an endoreduplication cell cycle. Additionally, the ZmSMRs responded to various abiotic stresses at the transcriptional level. One member of the ZmSMR gene family, the ZmSMR4 (KY946768) gene, was isolated as the first maize endoreduplication-related gene and has been used to develop transgenic Arabidopsis plants. ZmSMR4 was localized to the nucleus and could interact with ZmCDKA and ZmCDKB. Moreover, ZmSMR4 was able to rescue the multicellular trichome phenotype of Arabidopsis sim mutants and enhanced the endoreduplication levels of transgenic Arabidopsis plants. Arabidopsis plants overexpressing ZmSMR4 not only displayed enhanced leaf margin serrations but also showed several interesting breeding phenotypes, such as early blossoming and fuller seeds. Taken together, our data suggest that the ZmSMR4 gene is plant-specific and functions as a key player in the signalling network that controls plant growth, development and responses to abiotic stress by regulating the transition between the mitotic cycle and endoreduplication.
Collapse
Affiliation(s)
- Feifei Li
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Licheng Wang
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Zhengquan Zhang
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Ting Li
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Jiaojiao Feng
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Shutu Xu
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Renhe Zhang
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Dongwei Guo
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China.
| | - Jiquan Xue
- Key Laboratory of the Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, China; Maize Engineering and Technology Research Centre of Shaanxi Province, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
26
|
Roth M, Florez-Rueda AM, Paris M, Städler T. Wild tomato endosperm transcriptomes reveal common roles of genomic imprinting in both nuclear and cellular endosperm. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1084-1101. [PMID: 29953688 DOI: 10.1111/tpj.14012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/01/2018] [Accepted: 06/20/2018] [Indexed: 05/06/2023]
Abstract
Genomic imprinting is a conspicuous feature of the endosperm, a triploid tissue nurturing the embryo and synchronizing angiosperm seed development. An unknown subset of imprinted genes (IGs) is critical for successful seed development and should have highly conserved functions. Recent genome-wide studies have found limited conservation of IGs among distantly related species, but there is a paucity of data from closely related lineages. Moreover, most studies focused on model plants with nuclear endosperm development, and comparisons with properties of IGs in cellular-type endosperm development are lacking. Using laser-assisted microdissection, we characterized parent-specific expression in the cellular endosperm of three wild tomato lineages (Solanum section Lycopersicon). We identified 1025 candidate IGs and 167 with putative homologs previously identified as imprinted in distantly related taxa with nuclear-type endosperm. Forty-two maternally expressed genes (MEGs) and 17 paternally expressed genes (PEGs) exhibited conserved imprinting status across all three lineages, but differences in power to assess imprinted expression imply that the actual degree of conservation might be higher than that directly estimated (20.7% for PEGs and 10.4% for MEGs). Regardless, the level of shared imprinting status was higher for PEGs than for MEGs, indicating dissimilar evolutionary trajectories. Expression-level data suggest distinct epigenetic modulation of MEGs and PEGs, and gene ontology analyses revealed MEGs and PEGs to be enriched for different functions. Importantly, our data provide evidence that MEGs and PEGs interact in modulating both gene expression and the endosperm cell cycle, and uncovered conserved cellular functions of IGs uniting taxa with cellular- and nuclear-type endosperm.
Collapse
Affiliation(s)
- Morgane Roth
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Ana M Florez-Rueda
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Margot Paris
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| | - Thomas Städler
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich-Basel Plant Science Center, ETH Zurich, 8092, Zurich, Switzerland
| |
Collapse
|
27
|
Abstract
Polyploid cells, which contain multiple copies of the typically diploid genome, are widespread in plants and animals. Polyploidization can be developmentally programmed or stress induced, and arises from either cell-cell fusion or a process known as endoreplication, in which cells replicate their DNA but either fail to complete cytokinesis or to progress through M phase entirely. Polyploidization offers cells several potential fitness benefits, including the ability to increase cell size and biomass production without disrupting cell and tissue structure, and allowing improved cell longevity through higher tolerance to genomic stress and apoptotic signals. Accordingly, recent studies have uncovered crucial roles for polyploidization in compensatory cell growth during tissue regeneration in the heart, liver, epidermis and intestine. Here, we review current knowledge of the molecular pathways that generate polyploidy and discuss how polyploidization is used in tissue repair and regeneration.
Collapse
Affiliation(s)
| | - Bruce A Edgar
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| |
Collapse
|
28
|
Roth M, Florez-Rueda AM, Griesser S, Paris M, Städler T. Incidence and developmental timing of endosperm failure in post-zygotic isolation between wild tomato lineages. ANNALS OF BOTANY 2018; 121:107-118. [PMID: 29280998 PMCID: PMC5786209 DOI: 10.1093/aob/mcx133] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/04/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Defective hybrid seed development in angiosperms might mediate the rapid establishment of intrinsic post-zygotic isolation between closely related species. Extensive crosses within and among three lineages of wild tomatoes (Solanum section Lycopersicon) were performed to address the incidence, developmental timing and histological manifestations of hybrid seed failure. These lineages encompass different, yet fairly recent, divergence times and both allopatric and partially sympatric pairs. METHODS Mature seeds were scored visually 2 months after hand pollinations, and viable-looking seeds were assessed for germination success. Using histological sections from early-developing seeds from a sub-set of crosses, the growth of three major seed compartments (endosperm, embryo and seed coat) was measured at critical developmental stages up to 21 d after pollination, with a focus on the timing and histological manifestations of endosperm misdevelopment in abortive hybrid seeds. KEY RESULTS For two of three interspecific combinations including the most closely related pair that was also studied histologically, almost all mature seeds appeared 'flat' and proved inviable; histological analyses revealed impaired endosperm proliferation at early globular embryo stages, concomitant with embryo arrest and seed abortion in both cross directions. The third interspecific combination yielded a mixture of flat, inviable and plump, viable seeds; many of the latter germinated and exhibited near-normal juvenile phenotypes or, in some instances, hybrid necrosis and impaired growth. CONCLUSIONS The overall results suggest that near-complete hybrid seed failure can evolve fairly rapidly and without apparent divergence in reproductive phenology/biology. While the evidence accrued here is largely circumstantial, early-acting disruptions of normal endosperm development are most probably the common cause of seed failure regardless of the type of endosperm (nuclear or cellular).
Collapse
Affiliation(s)
- Morgane Roth
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Ana M Florez-Rueda
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Stephan Griesser
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Margot Paris
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
| | - Thomas Städler
- Plant Ecological Genetics, Institute of Integrative Biology & Zurich–Basel Plant Science Center, ETH Zurich, Zurich, Switzerland
- For correspondence. Email
| |
Collapse
|
29
|
Transcriptome Dynamics during Maize Endosperm Development. PLoS One 2016; 11:e0163814. [PMID: 27695101 PMCID: PMC5047526 DOI: 10.1371/journal.pone.0163814] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/14/2016] [Indexed: 11/19/2022] Open
Abstract
The endosperm is a major organ of the seed that plays vital roles in determining seed weight and quality. However, genome-wide transcriptome patterns throughout maize endosperm development have not been comprehensively investigated to date. Accordingly, we performed a high-throughput RNA sequencing (RNA-seq) analysis of the maize endosperm transcriptome at 5, 10, 15 and 20 days after pollination (DAP). We found that more than 11,000 protein-coding genes underwent alternative splicing (AS) events during the four developmental stages studied. These genes were mainly involved in intracellular protein transport, signal transmission, cellular carbohydrate metabolism, cellular lipid metabolism, lipid biosynthesis, protein modification, histone modification, cellular amino acid metabolism, and DNA repair. Additionally, 7,633 genes, including 473 transcription factors (TFs), were differentially expressed among the four developmental stages. The differentially expressed TFs were from 50 families, including the bZIP, WRKY, GeBP and ARF families. Further analysis of the stage-specific TFs showed that binding, nucleus and ligand-dependent nuclear receptor activities might be important at 5 DAP, that immune responses, signalling, binding and lumen development are involved at 10 DAP, that protein metabolic processes and the cytoplasm might be important at 15 DAP, and that the responses to various stimuli are different at 20 DAP compared with the other developmental stages. This RNA-seq analysis provides novel, comprehensive insights into the transcriptome dynamics during early endosperm development in maize.
Collapse
|
30
|
Hands P, Rabiger DS, Koltunow A. Mechanisms of endosperm initiation. PLANT REPRODUCTION 2016; 29:215-25. [PMID: 27450467 PMCID: PMC4978757 DOI: 10.1007/s00497-016-0290-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/14/2016] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE Overview of developmental events and signalling during central cell maturation and early endosperm development with a focus on mechanisms of sexual and autonomous endosperm initiation. Endosperm is important for seed viability and global food supply. The mechanisms regulating the developmental transition between Female Gametophyte (FG) maturation and early endosperm development in angiosperms are difficult to study as they occur buried deep within the ovule. Knowledge of the molecular events underlying this developmental window of events has significantly increased with the combined use of mutants, cell specific markers, and plant hormone sensing reporters. Here, we review recent discoveries concerning the developmental events and signalling of FG maturation, fertilization, and endosperm development. We focus on the regulation of the initiation of endosperm development with and without fertilization in Arabidopsis and the apomict Hieracium, comparing this to what is known in monocots where distinct differences in developmental patterning may underlie alternative mechanisms of suppression and initiation. The Polycomb Repressive Complex 2 (PRC2), plant hormones, and transcription factors are iteratively involved in early fertilization-induced endosperm formation in Arabidopsis. Auxin increases and PRC2 complex inactivation can also induce fertilization-independent endosperm proliferation in Arabidopsis. Function of the PRC2 complex member FERTILIZATION-INDEPENDENT ENDOSPERM and two loci AutE and LOP are required for autonomous endosperm development in apomictic Hieracium. A comparative understanding of cues required for early endosperm development will facilitate genetic engineering approaches for the development of resilient seed crops, especially if an option for fertilization-independent endosperm formation was possible to combat stress-induced crop failure.
Collapse
Affiliation(s)
- Philip Hands
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - David S Rabiger
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia
| | - Anna Koltunow
- CSIRO Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Private Bag 2, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
31
|
Parent-of-Origin-Effect rough endosperm Mutants in Maize. Genetics 2016; 204:221-31. [PMID: 27440865 DOI: 10.1534/genetics.116.191775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/12/2016] [Indexed: 01/06/2023] Open
Abstract
Parent-of-origin-effect loci have non-Mendelian inheritance in which phenotypes are determined by either the maternal or paternal allele alone. In angiosperms, parent-of-origin effects can be caused by loci required for gametophyte development or by imprinted genes needed for seed development. Few parent-of-origin-effect loci have been identified in maize (Zea mays) even though there are a large number of imprinted genes known from transcriptomics. We screened rough endosperm (rgh) mutants for parent-of-origin effects using reciprocal crosses with inbred parents. Six maternal rough endosperm (mre) and three paternal rough endosperm (pre) mutants were identified with three mre loci mapped. When inherited from the female parent, mre/+ seeds reduce grain fill with a rough, etched, or pitted endosperm surface. Pollen transmission of pre mutants results in rgh endosperm as well as embryo lethality. Eight of the mutants had significant distortion from the expected one-to-one ratio for parent-of-origin effects. Linked markers for mre1, mre2, and mre3 indicated that the mutant alleles have no bias in transmission. Histological analysis of mre1, mre2, mre3, and pre*-949 showed altered timing of starch grain accumulation and basal endosperm transfer cell layer (BETL) development. The mre1 locus delays BETL and starchy endosperm development, while mre2 and pre*-949 cause ectopic starchy endosperm differentiation. We conclude that many parent-of-origin effects in maize have incomplete penetrance of kernel phenotypes and that there is a large diversity of endosperm developmental roles for parent-of-origin-effect loci.
Collapse
|
32
|
Hřibová E, Holušová K, Trávníček P, Petrovská B, Ponert J, Šimková H, Kubátová B, Jersáková J, Čurn V, Suda J, Doležel J, Vrána J. The Enigma of Progressively Partial Endoreplication: New Insights Provided by Flow Cytometry and Next-Generation Sequencing. Genome Biol Evol 2016; 8:1996-2005. [PMID: 27324917 PMCID: PMC4943206 DOI: 10.1093/gbe/evw141] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In many plant species, somatic cell differentiation is accompanied by endoreduplication, a process during which cells undergo one or more rounds of DNA replication cycles in the absence of mitosis, resulting in nuclei with multiples of 2C DNA amounts (4C, 8C, 16C, etc.). In some orchids, a disproportionate increase in nuclear DNA contents has been observed, where successive endoreduplication cycles result in DNA amounts 2C + P, 2C + 3P, 2C + 7P, etc., where P is the DNA content of the replicated part of the 2C nuclear genome. This unique phenomenon was termed "progressively partial endoreplication" (PPE). We investigated processes behind the PPE in Ludisia discolor using flow cytometry (FCM) and Illumina sequencing. In particular, we wanted to determine whether chromatin elimination or incomplete genome duplication was involved, and to identify types of DNA sequences that were affected. Cell cycle analysis of root tip cell nuclei pulse-labeled with EdU revealed two cell cycles, one ending above the population of nuclei with 2C + P content, and the other with a typical "horseshoe" pattern of S-phase nuclei ranging from 2C to 4C DNA contents. The process leading to nuclei with 2C + P amounts therefore involves incomplete genome replication. Subsequent Illumina sequencing of flow-sorted 2C and 2C + P nuclei showed that all types of repetitive DNA sequences were affected during PPE; a complete elimination of any specific type of repetitive DNA was not observed. We hypothesize that PPE is part of a highly controlled transition mechanism from proliferation phase to differentiation phase of plant tissue development.
Collapse
Affiliation(s)
- Eva Hřibová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Kateřina Holušová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Pavel Trávníček
- Institute of Botany, the Czech Academy of Sciences, Průhonice, Czech Republic Department of Botany, Faculty of Science, Charles University in Prague, Czech Republic Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Czech Republic
| | - Beáta Petrovská
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jan Ponert
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Czech Republic Prague Botanical Garden, Prague, Czech Republic
| | - Hana Šimková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Barbora Kubátová
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Czech Republic
| | - Jana Jersáková
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in České Budějovice, Czech Republic
| | - Vladislav Čurn
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Czech Republic
| | - Jan Suda
- Institute of Botany, the Czech Academy of Sciences, Průhonice, Czech Republic Department of Botany, Faculty of Science, Charles University in Prague, Czech Republic
| | - Jaroslav Doležel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| | - Jan Vrána
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Olomouc, Czech Republic
| |
Collapse
|
33
|
Min H, Chen C, Wei S, Shang X, Sun M, Xia R, Liu X, Hao D, Chen H, Xie Q. Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. FRONTIERS IN PLANT SCIENCE 2016; 7:1080. [PMID: 27507977 PMCID: PMC4961006 DOI: 10.3389/fpls.2016.01080] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/08/2016] [Indexed: 05/20/2023]
Abstract
Zea mays is an important crop that is sensitive to drought stress, but survival rates and growth status remain strong in some drought-tolerant lines under stress conditions. Under drought conditions, many biological processes, such as photosynthesis, carbohydrate metabolism and energy metabolism, are suppressed, while little is known about how the transcripts of genes respond to drought stress in the genome-wide rang in the seedling stage. In our study, the transcriptome profiles of two maize recombination inbred lines (drought-tolerant RIL70 and drought-sensitive RIL93) were analyzed at different drought stages to elucidate the dynamic mechanisms underlying drought tolerance in maize seedlings during drought conditions. Different numbers of differentially expressed genes presented in the different stages of drought stress in the two RILs, for the numbers of RIL93 vs. RIL70 were: 9 vs. 358, 477 vs. 103, and 5207 vs. 152 respectively in DT1, DT2, and DT5. Gene Ontology enrichment analysis revealed that in the initial drought-stressed stage, the primary differentially expressed genes involved in cell wall biosynthesis and transmembrane transport biological processes were overrepresented in RIL70 compared to RIL93. On the contrary, differentially expressed genes profiles presented at 2 and 5 day-treatments, the primary differentially expressed genes involved in response to stress, protein folding, oxidation-reduction, photosynthesis and carbohydrate metabolism, were overrepresented in RIL93 compared to RIL70. In addition, the transcription of genes encoding key members of the cell cycle and cell division processes were blocked, but ABA- and programmed cell death-related processes responded positively in RIL93. In contrast, the expression of cell cycle genes, ABA- and programmed cell death-related genes was relatively stable in RIL70. The results we obtained supported the working hypothesis that signaling events associated with turgor homeostasis, as established by cell wall biosynthesis regulation- and aquaporin-related genes, responded early in RIL70, which led to more efficient detoxification signaling (response to stress, protein folding, oxidation-reduction) during drought stress. This energy saving response at the early stages of drought should facilitate more cell activity under stress conditions and result in drought tolerance in RIL70.
Collapse
Affiliation(s)
- Haowei Min
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Chengxuan Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Shaowei Wei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xiaoling Shang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Meiyun Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Ran Xia
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xiangguo Liu
- Argo-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Dongyun Hao
- Argo-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Huabang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Qi Xie
| |
Collapse
|
34
|
|
35
|
Sornay E, Forzani C, Forero-Vargas M, Dewitte W, Murray JAH. Activation of CYCD7;1 in the central cell and early endosperm overcomes cell-cycle arrest in the Arabidopsis female gametophyte, and promotes early endosperm and embryo development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:41-55. [PMID: 26261067 PMCID: PMC5102630 DOI: 10.1111/tpj.12957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 05/27/2023]
Abstract
In angiosperms, double fertilization of the egg and central cell of the megagametophyte leads to the development of the embryo and endosperm, respectively. Control of cell cycle progression in the megagametophyte is essential for successful fertilization and development. Central cell-targeted expression of the D-type cyclin CYCD7;1 (end CYCD7;1) using the imprinted FWA promoter overcomes cycle arrest of the central cell in the Arabidopsis female gametophyte in the unfertilized ovule, leading to multinucleate central cells at high frequency. Unlike FERTILIZATION-INDEPENDENT SEED (fis) mutants, but similar to lethal RETINOBLASTOMA-RELATED (rbr) mutants, no seed coat development is triggered. Unlike the case with loss of rbr, post-fertilization end CYCD7;1 in the endosperm enhances the number of nuclei during syncytial endosperm development and induces the partial abortion of developing seeds, associated with the enhanced size of the surviving seeds. The frequency of lethality was less than the frequency of multinucleate central cells, indicating that these aspects are not causally linked. These larger seeds contain larger embryos composed of more cells of wild-type size, surrounded by a seed coat composed of more cells. Seedlings arising from these larger seeds displayed faster seedling establishment and early growth. Similarly, two different embryo-lethal mutants also conferred enlarged seed size in surviving siblings, consistent with seed size increase being a general response to sibling lethality, although the cellular mechanisms were found to be distinct. Our data suggest that tight control of CYCD activity in the central cell and in the developing endosperm is required for optimal seed formation.
Collapse
Affiliation(s)
- Emily Sornay
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - Céline Forzani
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
- Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, Route de Saint-Cyr, 78026, Versailles, Cedex, France
| | - Manuel Forero-Vargas
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
- Facultad de Ingenieria, Universidad de Ibagué, Calle Barrio Ambalá, Ibagué, 730002, Colombia
| | - Walter Dewitte
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| | - James A H Murray
- Cardiff School Biosciences, Cardiff University, Sir Martin Evans building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
36
|
Cross FR, Umen JG. The Chlamydomonas cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:370-392. [PMID: 25690512 PMCID: PMC4409525 DOI: 10.1111/tpj.12795] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/03/2015] [Accepted: 02/04/2015] [Indexed: 05/18/2023]
Abstract
The position of Chlamydomonas within the eukaryotic phylogeny makes it a unique model in at least two important ways: as a representative of the critically important, early-diverging lineage leading to plants; and as a microbe retaining important features of the last eukaryotic common ancestor (LECA) that has been lost in the highly studied yeast lineages. Its cell biology has been studied for many decades and it has well-developed experimental genetic tools, both classical (Mendelian) and molecular. Unlike land plants, it is a haploid with very few gene duplicates, making it ideal for loss-of-function genetic studies. The Chlamydomonas cell cycle has a striking temporal and functional separation between cell growth and rapid cell division, probably connected to the interplay between diurnal cycles that drive photosynthetic cell growth and the cell division cycle; it also exhibits a highly choreographed interaction between the cell cycle and its centriole-basal body-flagellar cycle. Here, we review the current status of studies of the Chlamydomonas cell cycle. We begin with an overview of cell-cycle control in the well-studied yeast and animal systems, which has yielded a canonical, well-supported model. We discuss briefly what is known about similarities and differences in plant cell-cycle control, compared with this model. We next review the cytology and cell biology of the multiple-fission cell cycle of Chlamydomonas. Lastly, we review recent genetic approaches and insights into Chlamydomonas cell-cycle regulation that have been enabled by a new generation of genomics-based tools.
Collapse
Affiliation(s)
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
37
|
Abstract
Grain produced from cereal crops is a primary source of human food and animal feed worldwide. To understand the genetic basis of seed-size variation, a grain yield component, we conducted a genome-wide scan to detect evidence of selection in the maize Krug Yellow Dent long-term divergent seed-size selection experiment. Previous studies have documented significant phenotypic divergence between the populations. Allele frequency estimates for ∼3 million single nucleotide polymorphisms (SNPs) in the base population and selected populations were estimated from pooled whole-genome resequencing of 48 individuals per population. Using FST values across sliding windows, 94 divergent regions with a median of six genes per region were identified. Additionally, 2729 SNPs that reached fixation in both selected populations with opposing fixed alleles were identified, many of which clustered in two regions of the genome. Copy-number variation was highly prevalent between the selected populations, with 532 total regions identified on the basis of read-depth variation and comparative genome hybridization. Regions important for seed weight in natural variation were identified in the maize nested association mapping population. However, the number of regions that overlapped with the long-term selection experiment did not exceed that expected by chance, possibly indicating unique sources of variation between the two populations. The results of this study provide insights into the genetic elements underlying seed-size variation in maize and could also have applications for other cereal crops.
Collapse
|
38
|
Folsom JJ, Begcy K, Hao X, Wang D, Walia H. Rice fertilization-Independent Endosperm1 regulates seed size under heat stress by controlling early endosperm development. PLANT PHYSIOLOGY 2014; 165:238-48. [PMID: 24590858 PMCID: PMC4012583 DOI: 10.1104/pp.113.232413] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 02/25/2014] [Indexed: 05/18/2023]
Abstract
Although heat stress reduces seed size in rice (Oryza sativa), little is known about the molecular mechanisms underlying the observed reduction in seed size and yield. To elucidate the mechanistic basis of heat sensitivity and reduced seed size, we imposed a moderate (34°C) and a high (42°C) heat stress treatment on developing rice seeds during the postfertilization stage. Both stress treatments reduced the final seed size. At a cellular level, the moderate heat stress resulted in precocious endosperm cellularization, whereas severe heat-stressed seeds failed to cellularize. Initiation of endosperm cellularization is a critical developmental transition required for normal seed development, and it is controlled by Polycomb Repressive Complex2 (PRC2) in Arabidopsis (Arabidopsis thaliana). We observed that a member of PRC2 called Fertilization-Independent Endosperm1 (OsFIE1) was sensitive to temperature changes, and its expression was negatively correlated with the duration of the syncytial stage during heat stress. Seeds from plants overexpressing OsFIE1 had reduced seed size and exhibited precocious cellularization. The DNA methylation status and a repressive histone modification of OsFIE1 were observed to be temperature sensitive. Our data suggested that the thermal sensitivity of seed enlargement could partly be caused by altered epigenetic regulation of endosperm development during the transition from the syncytial to the cellularized state.
Collapse
|
39
|
Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth. Nat Rev Mol Cell Biol 2014; 15:197-210. [PMID: 24556841 DOI: 10.1038/nrm3756] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In endoreplication cell cycles, known as endocycles, cells successively replicate their genomes without segregating chromosomes during mitosis and thereby become polyploid. Such cycles, for which there are many variants, are widespread in protozoa, plants and animals. Endocycling cells can achieve ploidies of >200,000 C (chromatin-value); this increase in genomic DNA content allows a higher genomic output, which can facilitate the construction of very large cells or enhance macromolecular secretion. These cells execute normal S phases, using a G1-S regulatory apparatus similar to the one used by mitotic cells, but their capability to segregate chromosomes has been suppressed, typically by downregulation of mitotic cyclin-dependent kinase activity. Endocycles probably evolved many times, and the various endocycle mechanisms found in nature highlight the versatility of the cell cycle control machinery.
Collapse
|
40
|
Breuer C, Braidwood L, Sugimoto K. Endocycling in the path of plant development. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:78-85. [PMID: 24507498 DOI: 10.1016/j.pbi.2013.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 05/29/2023]
Abstract
Genome duplication is a widespread phenomenon in many eukaryotes. In plants numeric changes of chromosome sets have tremendous impact on growth performance and yields, hence, are of high importance for agriculture. In contrast to polyploidisation in which the genome is duplicated throughout the entire organism and stably inherited by the offspring, endopolyploidy relies on endocycles in which cells multiply the genome in specific tissues and cell types. During the endocycle cells repeatedly replicate their DNA but skip mitosis, leading to genome duplication after each round. Endocycles are common in multicellular eukaryotes and are often involved in the regulation of cell and organ growth. In plants, changes in cellular ploidy have also been associated with other developmental processes as well as physiological interactions with the surrounding environment. Thus, endocycles play pivotal roles throughout the life cycle of many plant species.
Collapse
Affiliation(s)
- Christian Breuer
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Luke Braidwood
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
41
|
Sabelli PA, Dante RA, Nguyen HN, Gordon-Kamm WJ, Larkins BA. Expression, regulation and activity of a B2-type cyclin in mitotic and endoreduplicating maize endosperm. FRONTIERS IN PLANT SCIENCE 2014; 5:561. [PMID: 25368625 PMCID: PMC4201103 DOI: 10.3389/fpls.2014.00561] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/29/2014] [Indexed: 05/18/2023]
Abstract
Cyclin-dependent kinases, the master regulators of the eukaryotic cell cycle, are complexes comprised of a catalytic serine/threonine protein kinase and an essential regulatory cyclin. The maize genome encodes over 50 cyclins grouped in different types, but they have been little investigated. We characterized a type B2 cyclin (CYCB2;2) during maize endosperm development, which comprises a cell proliferation phase based on the standard mitotic cell cycle, followed by an endoreduplication phase in which DNA replication is reiterated in the absence of mitosis or cytokinesis. CYCB2;2 RNA was present throughout the period of endosperm development studied, but its level declined as the endosperm transitioned from a mitotic to an endoreduplication cell cycle. However, the level of CYCB2;2 protein remained relatively constant during both stages of endosperm development. CYCB2;2 was recalcitrant to degradation by the 26S proteasome in endoreduplicating endosperm extracts, which could explain its sustained accumulation during endosperm development. In addition, although CYCB2;2 was generally localized to the nucleus of endosperm cells, a lower molecular weight form of the protein accumulated specifically in the cytosol of endoreduplicating endosperm cells. In dividing cells, CYCB2;2 appeared to be localized to the phragmoplast and may be involved in cytokinesis and cell wall formation. Kinase activity was associated with CYCB2;2 in mitotic endosperm, but was absent or greatly reduced in immature ear and endoreduplicating endosperm. CYCB2;2-associated kinase phosphorylated maize E2F1 and the "pocket" domains of RBR1 and RBR3. CYCB2;2 interacted with both maize CDKA;1 and CDKA;3 in insect cells. These results suggest CYCB2;2 functions primarily during the mitotic cell cycle, and they are discussed in the context of the roles of cyclins, CDKs and proteasome activity in the regulation of the cell cycle during endosperm development.
Collapse
Affiliation(s)
- Paolo A. Sabelli
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
- *Correspondence: Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes Building, Tucson, AZ 85721, USA e-mail:
| | | | - Hong N. Nguyen
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
| | | | | |
Collapse
|
42
|
Bai F, Settles AM. Imprinting in plants as a mechanism to generate seed phenotypic diversity. FRONTIERS IN PLANT SCIENCE 2014; 5:780. [PMID: 25674092 PMCID: PMC4307191 DOI: 10.3389/fpls.2014.00780] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/16/2014] [Indexed: 05/21/2023]
Abstract
Normal plant development requires epigenetic regulation to enforce changes in developmental fate. Genomic imprinting is a type of epigenetic regulation in which identical alleles of genes are expressed in a parent-of-origin dependent manner. Deep sequencing of transcriptomes has identified hundreds of imprinted genes with scarce evidence for the developmental importance of individual imprinted loci. Imprinting is regulated through global DNA demethylation in the central cell prior to fertilization and directed repression of individual loci with the Polycomb Repressive Complex 2 (PRC2). There is significant evidence for transposable elements and repeat sequences near genes acting as cis-elements to determine imprinting status of a gene, implying that imprinted gene expression patterns may evolve randomly and at high frequency. Detailed genetic analysis of a few imprinted loci suggests an imprinted pattern of gene expression is often dispensable for seed development. Few genes show conserved imprinted expression within or between plant species. These data are not fully explained by current models for the evolution of imprinting in plant seeds. We suggest that imprinting may have evolved to provide a mechanism for rapid neofunctionalization of genes during seed development to increase phenotypic diversity of seeds.
Collapse
Affiliation(s)
| | - A. M. Settles
- *Correspondence: A. M. Settles, Horticultural Sciences Department and Plant Molecular and Cellular Biology Program, University of Florida, P. O. Box 110690, Gainesville, FL 32611-0690, USA e-mail:
| |
Collapse
|
43
|
Dante RA, Larkins BA, Sabelli PA. Cell cycle control and seed development. FRONTIERS IN PLANT SCIENCE 2014; 5:493. [PMID: 25295050 PMCID: PMC4171995 DOI: 10.3389/fpls.2014.00493] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/05/2014] [Indexed: 05/18/2023]
Abstract
Seed development is a complex process that requires coordinated integration of many genetic, metabolic, and physiological pathways and environmental cues. Different cell cycle types, such as asymmetric cell division, acytokinetic mitosis, mitotic cell division, and endoreduplication, frequently occur in sequential yet overlapping manner during the development of the embryo and the endosperm, seed structures that are both products of double fertilization. Asymmetric cell divisions in the embryo generate polarized daughter cells with different cell fates. While nuclear and cell division cycles play a key role in determining final seed cell numbers, endoreduplication is often associated with processes such as cell enlargement and accumulation of storage metabolites that underlie cell differentiation and growth of the different seed compartments. This review focuses on recent advances in our understanding of different cell cycle mechanisms operating during seed development and their impact on the growth, development, and function of seed tissues. Particularly, the roles of core cell cycle regulators, such as cyclin-dependent-kinases and their inhibitors, the Retinoblastoma-Related/E2F pathway and the proteasome-ubiquitin system, are discussed in the contexts of different cell cycle types that characterize seed development. The contributions of nuclear and cellular proliferative cycles and endoreduplication to cereal endosperm development are also discussed.
Collapse
Affiliation(s)
- Ricardo A. Dante
- Embrapa Agricultural InformaticsCampinas, Brazil
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| | - Brian A. Larkins
- Department of Agronomy and Horticulture, University of NebraskaLincoln, NE, USA
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| | - Paolo A. Sabelli
- School of Plant Sciences, University of ArizonaTucson, AZ, USA
- *Correspondence: Ricardo A. Dante, Embrapa Agricultural Informatics, Avenida André Tosello 209, Campinas, São Paulo 13083-886, Brazil e-mail: ; Brian A. Larkins, Department of Agronomy and Horticulture, University of Nebraska, 230J Whittier Research Center, 2200 Vine Street, Lincoln, NE 68583-0857, USA e-mail: ; Paolo A. Sabelli, School of Plant Sciences, University of Arizona, 303 Forbes, 1140 East South Campus Drive, Tucson, AZ 85721-0036, USA e-mail:
| |
Collapse
|
44
|
Pirrello J, Bourdon M, Cheniclet C, Bourge M, Brown SC, Renaudin JP, Frangne N, Chevalier C. How fruit developmental biology makes use of flow cytometry approaches. Cytometry A 2013; 85:115-25. [PMID: 24273206 DOI: 10.1002/cyto.a.22417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/20/2013] [Accepted: 10/26/2013] [Indexed: 12/15/2022]
Abstract
Fleshy fruit species such as tomato are important because of their nutritional and economic value. Several stages of fruit development such as ovary formation, fruit set, and fruit maturation have already been the subject of many developmental studies. However, fruit growth per se has been much less addressed. Fruit growth like all plant organs depends upon the developmental processes of cell division and cell expansion. The activity of cell divisions sets the number of cells that will compose the fruit; the cell expansion activity then determines its final size. Among the various mechanisms that may influence the determination of cell size, endopolyploidy by the means of endoreduplication, i.e. genome amplification in the absence of mitosis, appears to be of great importance in fleshy fruits. In tomato fruit, endoreduplication is associated with DNA-dependent cell expansion: cell size can reach spectacular levels such as hundreds of times its initial size (e.g. >0.5 mm in diameter), with as much as a 256-fold increase in nuclear DNA content. Using tomato fruit development as a model, recent investigations combining the use of flow cytometry, cellular imaging and molecular analyses have provided new data in favor of the long-standing karyoplasmic ratio theory, stating that cells tend to adjust their cytoplasmic volume to the nuclear DNA content. By establishing a highly structured cellular system where multiple physiological functions are integrated, endoreduplication acts as a morphogenetic factor supporting cell growth during tomato fruit development. In the context of plant breeding, deciphering the mechanisms controlling fruit growth, in particular those connecting the process of nuclear endoreduplication with modulation of gene expression, the regulation of cell size and final fruit size and composition, is necessary to understand better the establishment of fleshy fruit quality traits.
Collapse
Affiliation(s)
- Julien Pirrello
- INRA, Unité Mixte de Recherche 1332 Biologie du Fruit et Pathologie, CS20032, F-33882 Villenave d'Ornon, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Nie DM, Ouyang YD, Wang X, Zhou W, Hu CG, Yao J. Genome-wide analysis of endosperm-specific genes in rice. Gene 2013; 530:236-47. [PMID: 23948082 DOI: 10.1016/j.gene.2013.07.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 12/31/2022]
Abstract
The endosperm of the cereal crop is an important nutrient source for humans. It also acts as a critical integrator of plant seed growth and development. Despite its importance, the comprehensive understanding in regulating of endosperm development in rice remains elusive. Here, we performed a genomic survey comprising the identification and functional characterization of the endosperm-specific genes (OsEnS) in rice using Affymetrix microarray data and Gene Ontology (GO) analysis. A total of 151 endosperm-specific genes were identified, and the expression patterns of 13 selected genes were confirmed by qRT-PCR analysis. Promoter regions of the endosperm-specific expression genes were analyzed by PLACE Signal Scan Search. The results indicated that some motifs were involved in endosperm-specific expression regulation, and some cis-elements were responsible for hormone regulation. The bootstrap analysis indicated that the RY repeat (CATGCA box) was over-represented in promoter regions of endosperm-specific expression genes. GO analysis indicated that these genes could be classified into 12 groups, namely, transcription factor, stress/defense, seed storage protein (SSP), carbohydrate and energy metabolism, seed maturation, protein metabolism, lipid metabolism, transport, cell wall related, hormone related, signal transduction, and one unclassified group. Taken together, our results provide informative clues for further functional characterization of the endosperm-specific genes, which facilitate the understanding of the molecular mechanism in rice endosperm development.
Collapse
Affiliation(s)
- Dong-Ming Nie
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
46
|
Control of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm. Proc Natl Acad Sci U S A 2013; 110:E1827-36. [PMID: 23610440 DOI: 10.1073/pnas.1304903110] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The endosperm of cereal grains is one of the most valuable products of modern agriculture. Cereal endosperm development comprises different phases characterized by mitotic cell proliferation, endoreduplication, the accumulation of storage compounds, and programmed cell death. Although manipulation of these processes could maximize grain yield, how they are regulated and integrated is poorly understood. We show that the Retinoblastoma-related (RBR) pathway controls key aspects of endosperm development in maize. Down-regulation of RBR1 by RNAi resulted in up-regulation of RBR3-type genes, as well as the MINICHROMOSOME MAINTENANCE 2-7 gene family and PROLIFERATING CELL NUCLEAR ANTIGEN, which encode essential DNA replication factors. Both the mitotic and endoreduplication cell cycles were stimulated. Developing transgenic endosperm contained 42-58% more cells and ∼70% more DNA than wild type, whereas there was a reduction in cell and nuclear sizes. In addition, cell death was enhanced. The DNA content of mature endosperm increased 43% upon RBR1 down-regulation, whereas storage protein content and kernel weight were essentially not affected. Down-regulation of both RBR1 and CYCLIN DEPENDENT KINASE A (CDKA);1 indicated that CDKA;1 is epistatic to RBR1 and controls endoreduplication through an RBR1-dependent pathway. However, the repressive activity of RBR1 on downstream targets was independent from CDKA;1, suggesting diversification of RBR1 activities. Furthermore, RBR1 negatively regulated CDK activity, suggesting the presence of a feedback loop. These results indicate that the RBR1 pathway plays a major role in regulation of different processes during maize endosperm development and suggest the presence of tissue/organ-level regulation of endosperm/seed homeostasis.
Collapse
|
47
|
Popielarska-Konieczna M, Kozieradzka-Kiszkurno M, Tuleja M, Ślesak H, Kapusta P, Marcińska I, Bohdanowicz J. Genotype-dependent efficiency of endosperm development in culture of selected cereals: histological and ultrastructural studies. PROTOPLASMA 2013; 250:361-369. [PMID: 22643840 DOI: 10.1007/s00709-012-0419-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
The paper reports studies, including histological and ultrastructural analyses, of in vitro cell proliferation and development of immature endosperm tissue isolated from caryopses of Triticum aestivum, Triticum durum, and Triticosecale plants. Endosperm isolated at 7-10 days post-anthesis developed well on MS medium supplemented with auxins and/or cytokinins. The efficiency of endosperm response was highly genotype-dependent and best in two winter cultivars of hexaploid species. The pathways of development and proliferation were very similar among the selected species and cultivars. Histological and scanning electron microscope (SEM) analysis revealed that only the part of the endosperm not touching the medium surface continued growth and development, resulting in swelling. The central part of swollen regions was composed mainly of cells containing many large starch grains. The peripheric parts of developed endosperm consisted of highly vacuolated cells and small cells with dense cytoplasm. SEM showed that cells from the swollen region were covered partially with a membraneous structure. Transmission electron microscope studies of cells from the outer part of the developing region showed features typical for cell activity connected with lipid metabolism.
Collapse
|
48
|
Bourdon M, Pirrello J, Cheniclet C, Coriton O, Bourge M, Brown S, Moïse A, Peypelut M, Rouyère V, Renaudin JP, Chevalier C, Frangne N. Evidence for karyoplasmic homeostasis during endoreduplication and a ploidy-dependent increase in gene transcription during tomato fruit growth. Development 2012; 139:3817-26. [PMID: 22991446 DOI: 10.1242/dev.084053] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Endopolyploidy is a widespread process that corresponds to the amplification of the genome in the absence of mitosis. In tomato, very high ploidy levels (up to 256C) are reached during fruit development, concomitant with very large cell sizes. Using cellular approaches (fluorescence and electron microscopy) we provide a structural analysis of endoreduplicated nuclei at the level of chromatin and nucleolar organisation, nuclear shape and relationship with other cellular organelles such as mitochondria. We demonstrate that endopolyploidy in pericarp leads to the formation of polytene chromosomes and markedly affects nuclear structure. Nuclei manifest a complex shape, with numerous deep grooves that are filled with mitochondria, affording a fairly constant ratio between nuclear surface and nuclear volume. We provide the first direct evidence that endopolyploidy plays a role in increased transcription of rRNA and mRNA on a per-nucleus basis. Overall, our results provide quantitative evidence in favour of the karyoplasmic theory and show that endoreduplication is associated with complex cellular organisation during tomato fruit development.
Collapse
Affiliation(s)
- Matthieu Bourdon
- University of Bordeaux, UMR1332 Biologie du Fruit et Pathologie, BP 81, F-33140 Villenave d'Ornon, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kakumanu A, Ambavaram MM, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. PLANT PHYSIOLOGY 2012; 160:846-67. [PMID: 22837360 PMCID: PMC3461560 DOI: 10.1104/pp.112.200444] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/19/2012] [Indexed: 05/18/2023]
Abstract
Drought stress affects cereals especially during the reproductive stage. The maize (Zea mays) drought transcriptome was studied using RNA-Seq analysis to compare drought-treated and well-watered fertilized ovary and basal leaf meristem tissue. More drought-responsive genes responded in the ovary compared with the leaf meristem. Gene Ontology enrichment analysis revealed a massive decrease in transcript abundance of cell division and cell cycle genes in the drought-stressed ovary only. Among Gene Ontology categories related to carbohydrate metabolism, changes in starch and Suc metabolism-related genes occurred in the ovary, consistent with a decrease in starch levels, and in Suc transporter function, with no comparable changes occurring in the leaf meristem. Abscisic acid (ABA)-related processes responded positively, but only in the ovaries. Related responses suggested the operation of low glucose sensing in drought-stressed ovaries. The data are discussed in the context of the susceptibility of maize kernel to drought stress leading to embryo abortion and the relative robustness of dividing vegetative tissue taken at the same time from the same plant subjected to the same conditions. Our working hypothesis involves signaling events associated with increased ABA levels, decreased glucose levels, disruption of ABA/sugar signaling, activation of programmed cell death/senescence through repression of a phospholipase C-mediated signaling pathway, and arrest of the cell cycle in the stressed ovary at 1 d after pollination. Increased invertase levels in the stressed leaf meristem, on the other hand, resulted in that tissue maintaining hexose levels at an "unstressed" level, and at lower ABA levels, which was correlated with successful resistance to drought stress.
Collapse
Affiliation(s)
| | | | - Curtis Klumas
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | | | | | - Elijah Myers
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | - Ruth Grene
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | - Andy Pereira
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| |
Collapse
|
50
|
Becraft PW, Gutierrez-Marcos J. Endosperm development: dynamic processes and cellular innovations underlying sibling altruism. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:579-93. [PMID: 23801534 DOI: 10.1002/wdev.31] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The endosperm is a product of fertilization that evolved to support and nourish its genetic twin sibling embryo. Cereal endosperm accumulates starch and protein stores, which later support the germinating seedling. These nutritional stores prompted the domestication of cereals and are the focus of ongoing efforts for crop improvement and biotechnological innovations. Endosperm development entails several novel modifications to basic cellular and developmental processes. Cereals display nuclear endosperm development, which begins with a period of free nuclear division to generate a coenocyte. Cytoskeletal arrays distribute nuclei around the periphery of the cytoplasm and direct the subsequent deposition of cell wall material during cellularization. Positional cues and signaling systems function dynamically in the specification of the four major cell types: transfer cells, embryo-surrounding cells, starchy endosperm (SE), and aleurone. Genome balance, epigenetic gene regulation, and parent-of-origin effects are essential for directing these processes. Transfer cells transport solutes, including sugars and amino acids, from the maternal plant tissues into the developing grain where they are partitioned between embryo and SE cells. Cells of the embryo-surrounding region appear to coordinate development of the embryo and endosperm. As the seed matures, SE cells assimilate starch and protein stores, undergo DNA endoreduplication, and finally undergo programmed cell death. In contrast, aleurone cells follow a maturation program similar to the embryo, allowing them to survive desiccation. At germination, the aleurone cells secrete amylases and proteases that hydrolyze the storage products of the SE to nourish the germinating seedling.
Collapse
Affiliation(s)
- Philip W Becraft
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA.
| | | |
Collapse
|