1
|
Klimiec-Moskal E, Koceniak P, Weglarczyk K, Slowik A, Siedlar M, Dziedzic T. Circulating Chemokines and Short- and Long-Term Outcomes After Ischemic Stroke. Mol Neurobiol 2025; 62:421-428. [PMID: 38861234 PMCID: PMC11711783 DOI: 10.1007/s12035-024-04279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Chemokines are vital in post-cerebral ischemia inflammatory reactions. We investigate the possible relationship between plasma chemokines and short-term and long-term outcomes after stroke. This study included 235 patients (median age, 72 years; 49.8% female) suffering from ischemic stroke, or transient ischemic attack admitted to the hospital within 24 h of onset. We evaluated chemokines CCL2, CCL5, CXCL8, CXCL9, and CXCL10 in plasma samples collected upon admission. Further, we assessed functional outcomes at 3- and 12-months, all-cause fatality over 5 years, and episodes of delirium within the first 7 days of admission. Multivariate analysis revealed an association between higher CXCL10 levels and an increased risk of poor functional outcomes at 3 months (OR: 3.02, 95%CI: 1.22-7.46, p = 0.016) and 12 months (OR: 2.32, 95%CI: 1.03-5.26, p = 0.043), as well as an increased death risk (HR: 1.79, 95%CI: 1.04-3.07, p = 0.036). High CXCL8 levels independently predicted poor functional outcomes at 12 months (OR: 2.69, 95%CI: 1.39-6.31, p = 0.005) and a higher 5-year case fatality rate (HR: 1.90, 95%CI: 1.23-2.93, p = 0.004). Elevated CXCL9 levels also predicted unfavourable functional outcomes at 12 months (OR: 2.45, 95%CI: 1.07-5.61, p = 0.034). In univariate analysis, increased levels of CXCL8, CXCL9, and CXCL10 showed an association with delirium, although this link was not evident in the multivariate analysis. Plasma CXCL8 and CXCL10 show potential as prognostic biomarkers for stroke outcomes and as therapeutic targets suitable for reverse translation.
Collapse
Affiliation(s)
- Elzbieta Klimiec-Moskal
- Department of Neurology, Jagiellonian University Medical College, Ul. Botaniczna 3, 31-503, Kraków, Poland
| | - Piotr Koceniak
- Department of Neurology, Jagiellonian University Medical College, Ul. Botaniczna 3, 31-503, Kraków, Poland
| | - Kazimierz Weglarczyk
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University Medical College, Ul. Botaniczna 3, 31-503, Kraków, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Dziedzic
- Department of Neurology, Jagiellonian University Medical College, Ul. Botaniczna 3, 31-503, Kraków, Poland.
| |
Collapse
|
2
|
Wang S, Liu W, Zhai Y, Liu C, Ge P, Zhang D. Systemic immune-inflammatory markers and long-term prognosis after revascularization in Moyamoya disease: a retrospective study. Front Neurol 2024; 15:1418729. [PMID: 39286803 PMCID: PMC11402733 DOI: 10.3389/fneur.2024.1418729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Background Systemic immune-inflammatory markers combine various individual inflammatory cell parameters to comprehensively explore their relationship with the development and long-term outcomes of cardiovascular, cerebrovascular, and oncological disorders. The systemic immune-inflammatory marker index has not been extensively studied in terms of its impact on the long-term prognosis following cerebral revascularization in MMD patients. Our research aims to address this gap and improve the prediction of long-term outcomes for these patients. Methods We included 851 patients with Moyamoya disease who underwent cerebral revascularization at our medical center from 2009 to 2021. Systemic immune-inflammatory markers were calculated based on routine blood test results at admission, and follow-up was conducted for over 6 months after surgery. During monitoring and upon release, we evaluated patient neurological condition by utilizing the modified Rankin Scale (mRS). We examined the correlation between alterations in mRS ratings and systemic immune-inflammatory markers. Results Comparing the unfavorable long-term prognosis group to the favorable long-term prognosis group, it was found that the NLR level was markedly higher (p = 0.037), while the LMR was lower in the unfavorable long-term prognosis group (p = 0.004). Results from logistic regression analysis revealed that the high-level LMR group had a lower risk of unfavorable long-term prognosis compared to the low-level group (T3: OR = 0.433, 95% CI [0.204-0.859], p = 0.026). The AUC of the model was 0.750 (95% CI [0.693-0.806]). Conclusion Lymphocyte-to-monocyte ratio levels are independently linked to an increased risk of unfavorable long-term prognosis, highlighting LMR as a new and effective predictor for postoperative Moyamoya patients.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuanren Zhai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Chenglong Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Peicong Ge
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Department of Neurosurgery, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Xu Q, Liu Y, Tian X, Xia X, Zhang Y, Zhang X, Wang Y, Sun P, Meng X, Wang A. Monocyte Chemoattractant Protein-1, Inflammatory Biomarkers, and Prognosis of Patients With Ischemic Stroke or Transient Ischemic Attack: Fndings From a Nationwide Registry Study. J Am Heart Assoc 2024; 13:e035820. [PMID: 39119971 DOI: 10.1161/jaha.124.035820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Recent Mendelian randomization and meta-analysis highlight the relevance of MCP-1 (monocyte chemoattractant protein-1) in stroke. We aimed to investigate the associations between MCP-1 and clinical outcomes in patients with ischemic stroke or transient ischemic attack and test whether inflammation mediates or jointly contributes to the relationships. METHODS AND RESULTS A total of 10 700 patients from the Third China National Stroke Registry study were included. Multivariable Cox regression was used for recurrent stroke and all-cause death, and logistic regression was used for poor functional outcome. Mediation analyses were performed to clarify whether inflammation mediates the associations. After adjusting for potential confounders, low MCP-1 level (<337.6 pg/mL) was associated with a reduced risk of all-cause death (hazard ratio [HR], 0.65 [95% CI, 0.51-0.82]) and poor functional outcome (odds ratio, 0.81 [95% CI, 0.70-0.94]) but was not associated with recurrent stroke (HR, 1.10 [95% CI, 0.95-1.27]), compared with high MCP-1 level (≥337.6 pg/mL). The association between MCP-1 and all-cause death was partially mediated by highly sensitive C-reactive protein, interleukin-6, and YKL-40 (Chitinase-3-like protein 1; mediated proportion: 7.4%, 10.5%, and 7.4%, respectively). The corresponding mediated proportion for poor functional outcome was 9.9%, 17.1%, and 7.1%, respectively. Patients with combined high levels of MCP-1 and inflammatory biomarkers had the highest risks of all-cause death and poor functional outcome. CONCLUSIONS Low plasma MCP-1 level was associated with decreased risks of all-cause mortality and poor functional outcome after ischemic stroke or transient ischemic attack. Inflammation partially mediated and jointly contributed to the associations.
Collapse
Affiliation(s)
- Qin Xu
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Department of Clinical Epidemiology and Clinical Trial Capital Medical University Beijing China
- Beijing Municipal Key Laboratory of Clinical Epidemiology Beijing China
| | - Yuanliang Liu
- Department of Neurology The Second People's Hospital of Guiyang Guizhou China
| | - Xue Tian
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Department of Epidemiology and Health Statistics, School of Public Health Capital Medical University Beijing China
| | - Xue Xia
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Department of Clinical Epidemiology and Clinical Trial Capital Medical University Beijing China
| | - Yijun Zhang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Department of Epidemiology and Health Statistics, School of Public Health Capital Medical University Beijing China
| | - Xiaoli Zhang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Department of Clinical Epidemiology and Clinical Trial Capital Medical University Beijing China
- Advanced Innovation Center for Human Brain Protection Capital Medical University Beijing China
- Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
| | - Ping Sun
- Department of Neurology The Second People's Hospital of Guiyang Guizhou China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Department of Clinical Epidemiology and Clinical Trial Capital Medical University Beijing China
| | - Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital Capital Medical University Beijing China
- China National Clinical Research Center for Neurological Diseases Beijing China
- Department of Clinical Epidemiology and Clinical Trial Capital Medical University Beijing China
- Beijing Municipal Key Laboratory of Clinical Epidemiology Beijing China
| |
Collapse
|
4
|
Wang Y, Zhang J, Dai L, Kong Y, Wei Y, Wu L, Yin J. Leukocyte counts and ratios as potential predictors of large vessel occlusion in acute ischemic stroke: A retrospective cohort study. Medicine (Baltimore) 2024; 103:e37904. [PMID: 38640307 PMCID: PMC11029938 DOI: 10.1097/md.0000000000037904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
Leukocyte counts and ratios are independent biomarkers to determine the severity and prognosis of acute ischemic stroke (AIS). In AIS, the connection between leukocytes and large vessel occlusion (LVO) is uncertain. This study aims to determine the relationship between the existence of LVO and leukocyte counts and ratios on admission to AIS. Patients were retrospectively evaluated within six hours of AIS starting between January 2019 and April 2023. On admission, blood specimens were collected, and leukocyte subtype counts were promptly analyzed. Computed tomography or digital subtraction angiography were utilized to verify the existence of LVO. Regression analysis and receiver operating characteristic (ROC) curves were employed to investigate the connections between the counts and ratios of leukocytes and the existence of LVO, as well as the discriminatory ability of these variables in predicting LVO. Total white blood cell (WBC) count, neutrophil count, and neutrophil-to-lymphocyte ratio (NLR) were substantially higher in the LVO existence group compared to the LVO absence group, whereas the ratio of eosinophils to neutrophils (ENR × 102) was lower (P < .001, respectively). Significant associations were observed between total WBC counts, neutrophil counts, NLR, and ENR × 102 and the existence of LVO (P < .001, respectively). Total WBC counts, neutrophil counts, NLR, and ENR × 102 had respective areas under the curves (AUC) of 0.730, 0.748, 0.704, and 0.680 for identifying LVO. Our results show that in AIS patients, the existence of LVO is independently associated with elevated total WBC and neutrophil counts, high NLR, and low ENR × 102 levels. Neutrophil and total WBC counts, as well as NLR and levels of ENR × 102, may serve as potential biomarkers for predicting LVO. Neuroinflammation, based on the existence of LVO, should be given particular attention in future investigations.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurology, Xingtai Central Hospital, Xingtai, China
| | - Jie Zhang
- Department of Neurology, Xingtai Central Hospital, Xingtai, China
| | - Lin Dai
- Physical Examination Center, Xingtai Central Hospital, Xingtai, China
| | - Yongmei Kong
- Department of Neurology, Xingtai Central Hospital, Xingtai, China
| | - Yuqing Wei
- Department of Neurology, Xingtai Central Hospital, Xingtai, China
| | - Lijuan Wu
- Department of Neurology, Xingtai Central Hospital, Xingtai, China
| | - Juntao Yin
- Department of Neurology, Xingtai Central Hospital, Xingtai, China
| |
Collapse
|
5
|
Qin R, Huang L, Xu W, Qin Q, Liang X, Lai X, Huang X, Xie M, Chen L. Unveiling the role of HIST2H2AC in stroke through single-cell and transcriptome analysis. Funct Integr Genomics 2024; 24:76. [PMID: 38656411 DOI: 10.1007/s10142-024-01355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
Stroke is a leading cause of death and disability, and genetic risk factors play a significant role in its development. Unfortunately, effective therapies for stroke are currently limited. Early detection and diagnosis are critical for improving outcomes and developing new treatment strategies. In this study, we aimed to identify potential biomarkers and effective prevention and treatment strategies for stroke by conducting transcriptome and single-cell analyses. Our analysis included screening for biomarkers, functional enrichment analysis, immune infiltration, cell-cell communication, and single-cell metabolism. Through differential expression analysis, enrichment analysis, and protein-protein interaction (PPI) network construction, we identified HIST2H2AC as a potential biomarker for stroke. Our study also highlighted the diagnostic role of HIST2H2AC in stroke, its relationship with immune cells in the stroke environment, and our improved understanding of metabolic pathways after stroke. Overall, our research provided important insights into the pathogenesis of stroke, including potential biomarkers and treatment strategies that can be explored further to improve outcomes for stroke patients.
Collapse
Affiliation(s)
- Rongxing Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Lijuan Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- National Center for International Research of Biological Targeting Diagnosis and Therapy (Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research), Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Wei Xu
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- National Center for International Research of Biological Targeting Diagnosis and Therapy (Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research), Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Qingchun Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- National Center for International Research of Biological Targeting Diagnosis and Therapy (Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research), Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xiaojun Liang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xinyu Lai
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Xiaoying Huang
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Minshan Xie
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Li Chen
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
- National Center for International Research of Biological Targeting Diagnosis and Therapy (Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research), Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
6
|
Zhou Y, Han X, Mu Q, Xing L, Wu Y, Li C, Liu Y, Wang F. The effect of the interaction of sleep onset latency and age on ischemic stroke severity via inflammatory chemokines. Front Neurol 2024; 15:1323878. [PMID: 38434201 PMCID: PMC10906267 DOI: 10.3389/fneur.2024.1323878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Objective Prolonged sleep onset latency (PSOL) and age have been linked to ischemic stroke (IS) severity and the production of chemokines and inflammation, both of which contribute to IS development. This study aimed to explore the relationship between chemokines, inflammation, and the interplay between sleep onset latency (SOL) and age in influencing stroke severity. Methods A cohort of 281 participants with mild to moderate IS was enrolled. Stroke severity was assessed using the National Institutes of Health Stroke Scale (NIHSS), and SOL was recorded. Serum levels of macrophage inflammatory protein-1alpha (MIP-1α), macrophage inflammatory protein-1beta (MIP-1β), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were measured. Results NIHSS scores of middle-aged participants with PSOL were significantly higher than those with normal sleep onset latency (NSOL) (p = 0.046). This difference was also observed when compared to both the elderly with NSOL (p = 0.022), and PSOL (p < 0.001). Among middle-aged adults with PSOL, MIP-1β exhibited a protective effect on NIHSS scores (β = -0.01, t = -2.11, p = 0.039, R2 = 0.13). MIP-1α demonstrated a protective effect on NIHSS scores in the elderly with NSOL (β = -0.03, t = -2.27, p = 0.027, R2 = 0.12). Conclusion This study reveals a hitherto undocumented association between PSOL and IS severity, along with the potential protective effects of MIP-1β in mitigating stroke severity, especially among middle-aged patients.
Collapse
Affiliation(s)
- Yuyu Zhou
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, China
| | - Xiaoli Han
- Clinical Nutrition Department, Friendship Hospital of Urumqi, Urumqi, China
| | - Qingshuang Mu
- Xinjiang Key Laboratory of Neurological Disorder Research, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lifei Xing
- Department of Neurology, Sinopharm North Hospital, Baotou, China
| | - Yan Wu
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| | - Cunbao Li
- Medical Neurobiology Lab, Inner Mongolia Medical University, Huhhot, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Fan Wang
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| |
Collapse
|
7
|
Li Y, Wang D, Guo R, Ma B, Miao L, Sun M, He L, Lin L, Pan Y, Ren J, Liu J. Neuroprotective effect of Astragali Radix on cerebral infarction based on proteomics. Front Pharmacol 2023; 14:1162134. [PMID: 37361203 PMCID: PMC10289882 DOI: 10.3389/fphar.2023.1162134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Objective: Astragali Radix (AR, Huangqi in Chinese) has a neuroprotective effect on cerebral infarction (CI). In order to explore the biological basis and therapeutic mechanism of AR in CI, a double-blind randomized controlled trial was established in this study, and proteomics analysis was carried out on serum samples of patients. Methods: The patients were divided into the AR group (n = 35) and the control group (n = 30). The curative effect was evaluated by the traditional Chinese medicine (TCM) syndrome score and clinical indicators, and the serum of the two groups was analyzed by proteomics. Based on bioinformatics analysis methods, the changes in differential proteins between two groups of samples were explored, and the key proteins were validated through enzyme-linked immunosorbent assay (ELISA). Results: The results of this study showed that the scores of deficiency of vital energy (DVE), blood stasis (BS), and NIH Stroke Scale (NIHSS) decreased significantly (p < 0.05), while the scores of the Barthel Index (BI) increased, indicating that AR could significantly improve the symptoms of CI patients. In addition, we found that compared with the control group, AR upregulated 43 proteins and downregulated 20 proteins, especially focusing on anti-atherosclerosis and neuroprotective effects. Moreover, ELISA indicated the levels of IL-6, TNF-α, VCAM-1, MCP-1, and ICAM-1 were significantly decreased in the serum of the AR group (p < 0.05, p < 0.01). Conclusion: This study found that AR can significantly recover the clinical symptoms of CI. Serum proteomics research results show that AR may act on IL-6, TNF-α, VCAM-1, MCP-1, and ICAM-1, and play anti-atherosclerosis and neuroprotective roles. Clinical Trial Registration: [clinicaltrials.gov], identifier [NCT02846207].
Collapse
Affiliation(s)
- Ying Li
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Daoping Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rongjuan Guo
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Ma
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lan Miao
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingqian Sun
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijuan He
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Li Lin
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinghong Pan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junguo Ren
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianxun Liu
- Beijing Key Laboratory of Pharmacology of Chinese Materia Region, Xiyuan Hospital, Institute of Basic Medical Sciences, National Clinical Research Center of Cardiovascular Disease of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Ziqing Z, Yunpeng L, Yiqi L, Yang W. Friends or foes: The mononuclear phagocyte system in ischemic stroke. Brain Pathol 2023; 33:e13151. [PMID: 36755470 PMCID: PMC10041168 DOI: 10.1111/bpa.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Ischemic stroke (IS) is a major cause of disability and death in adults, and the immune response plays an indispensable role in its pathological process. After the onset of IS, an inflammatory storm, with the infiltration and mobilization of the mononuclear phagocyte system (MPS), is triggered in the brain. Microglia are rapidly activated in situ, followed by waves of circulating monocytes into the ischemic area. Activated microglia and monocytes/macrophages are mainly distributed in the peri-infarct area. These cells have similar morphology and functions, such as secreting cytokines and phagocytosis. Previously, the presence of the MPS was considered a marker of an exacerbated inflammatory response that contributes to brain damage. However, recent studies have suggested a rather complicated role of the MPS in IS. Here, we reviewed articles focusing on various functions of the MPS among different phases of IS, including recruitment, polarization, phagocytosis, angiogenesis, and interaction with other types of cells. Moreover, due to the characteristics of the MPS, we also noted clinical research addressing alterations in the MPS as potential biomarkers for IS patients for the purposes of predicting prognosis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhang Ziqing
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yunpeng
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yiqi
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Wang Yang
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
9
|
Dang H, Mao W, Wang S, Sha J, Lu M, Cong L, Meng X, Li H. Systemic inflammation response index as a prognostic predictor in patients with acute ischemic stroke: A propensity score matching analysis. Front Neurol 2023; 13:1049241. [PMID: 36703636 PMCID: PMC9871574 DOI: 10.3389/fneur.2022.1049241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Background Acute ischemic stroke (AIS), the most common type of stroke, is a major cause of morbidity and mortality worldwide. A growing number of studies have demonstrated that inflammation is a critical mechanism in AIS. Being an easily available and effective inflammatory marker, the systemic inflammation response index (SIRI) shows a high association with mortality in patients with cancer and intracerebral hemorrhage. In this study, we evaluated the potential prognostic role of SIRI in critically ill patients with AIS. Methods Clinic data were extracted from the Medical Information Mart data for the Intensive Care IV (MIMIC-IV) database. The optimal cutoff value of SIRI was determined by X-tile software. The primary outcome was the 90-day all-cause mortality, and the secondary outcomes were 30-day and 1-year all-cause mortality of patients with AIS. Cox proportional hazards regression analyses were used to assess the association between SIRI levels and all-cause mortality, and survival curves were estimated using the Kaplan-Meier method. Furthermore, a 1:1 propensity score matching (PSM) method was performed to balance the influence of potential confounding factors. Results A total of 2,043 patients were included in our study. X-tile software indicated that the optimal cutoff value of the SIRI for 90-day mortality was 4.57. After PSM, 444 pairs of score-matched patients were generated. Cox proportional hazard model showed that after adjusting for possible confounders, high SIRI level (≥4.57) was independently associated with the 90-day all-cause mortality in the cohort before PSM (HR = 1.56, 95% CI: 1.30-1.89, p < 0.001) and the PSM subset (HR = 1.47, 95% CI: 1.16-1.86, p = 0.001). The survival curves showed that patients with SIRI ≥4.57 had a significantly lower 90-day survival rate in the cohort before PSM (56.7 vs. 77.3%, p < 0.001) and the PSM subset (61.0 vs. 71.8%, p = 0.001). Consistently, AIS patients with high SIRI levels (≥4.57) presented a significantly high risk of 30-day and 1-year all-cause mortality before and after PSM. Conclusion A higher SIRI (≥4.57) was associated with a higher risk of 90-day, 30-day, and 1-year mortality and was an independent risk factor of mortality in patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Hui Dang
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Urumqi, China
| | - Wenjuan Mao
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Urumqi, China
| | - Shanshan Wang
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Urumqi, China
| | - Jing Sha
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Urumqi, China
| | - Mingjia Lu
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Urumqi, China
| | - Li Cong
- Department of Respiratory and Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuegang Meng
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Urumqi, China
| | - Hongyan Li
- Department of Neurology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China,Xinjiang Clinical Research Center for Stroke and Neurological Rare Disease, Urumqi, China,*Correspondence: Hongyan Li ✉
| |
Collapse
|
10
|
Shen Z, Pu S, Cao X, Tang M, Wang S, Bai D, Jiang G. Bioinformatics and network pharmacology analysis of drug targets and mechanisms related to the comorbidity of epilepsy and migraine. Epilepsy Res 2023; 189:107066. [PMID: 36571905 DOI: 10.1016/j.eplepsyres.2022.107066] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The present study aimed to explore the mechanisms underlying the comorbidity of epilepsy and migraine, identify potential common targets for drug intervention, and provide insight into new avenues for disease prevention and treatment using an integrated bioinformatic and network pharmacology approach. METHODS Disease targets in epilepsy and migraine were screened using the DisGeNET database to identify intersecting gene targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEEG) enrichment analyses were then performed using the WebGestalt database. Furthermore, the STRING database was used to construct a protein-protein interaction (PPI) network, and Cytoscape software was used to analyze the protein molecular signals at the intersection of epilepsy and migraine. The Drugbank database was used to identify common targets for antiepileptic drugs in epilepsy and migraine to further analyze the disease-gene-target-drug interaction network. Finally, molecular docking simulations were performed to verify the hypothesis that migraine and epilepsy share common diseases and drug targets. RESULTS A total of 178 common targets for epilepsy and migraine were identified using the DisGeNET database, and the 24 genes most related to the diseases were screened using the Score_gda gene scoring system. GO enrichment analysis indicated that common targets were mainly enriched in biological processes and molecular functions, including membrane potential regulation, inorganic ion transmembrane transport, axonal signaling, and ion channel activity. KEGG pathway enrichment analysis indicated that the mechanism of action might be related to neuroactive ligand receptors, AGE-RAGE, cAMP, and VEGF signaling pathways. The PPI network construction and analysis results showed that the PPI grid had 23 central nodes and 24 connected edges, with an average node degree of 2.09 and an average clustering coefficient of 0.384. The 10 genes with potentially important roles in epilepsy and migraine were CACNA1A, KCNQ2, KCNA1, SCN1A, PRRT2, SCN8A, KCNQ3, SCN2A, GRIN2A, and GABRG2. Drugbank database results indicated that antiepileptic drugs, including lamotrigine, topiramate, valproic acid, carbamazepine, gabapentin, and perampanel, also had common targets with migraine. The three most important targets exhibited strong binding affinity with drugs in the molecular docking simulations. CONCLUSION Our systematic and comprehensive analyses of disease-gene-target-drug interaction networks identified several biological processes and molecular functions common to migraine and epilepsy, most of which were related to neuroactive ligand-receptor interactions. These data provide a new theoretical basis and reference for the clinical treatment of comorbid epilepsy and migraine and may aid in the development of novel pharmacological strategies.
Collapse
Affiliation(s)
- Ziyi Shen
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong 637000, China
| | - Shengxiong Pu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong 637000, China
| | - Xing Cao
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong 637000, China
| | - Ming Tang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong 637000, China
| | - Shenglin Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong 637000, China
| | - Dazhang Bai
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong 637000, China.
| | - Guohui Jiang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College; Institute of Neurological Diseases, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
11
|
Sharma K, Zhang Y, Paudel KR, Kachelmeier A, Hansbro PM, Shi X. The Emerging Role of Pericyte-Derived Extracellular Vesicles in Vascular and Neurological Health. Cells 2022; 11:cells11193108. [PMID: 36231071 PMCID: PMC9563036 DOI: 10.3390/cells11193108] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Pericytes (PCs), as a central component of the neurovascular unit, contribute to the regenerative potential of the central nervous system (CNS) and peripheral nervous system (PNS) by virtue of their role in blood flow regulation, angiogenesis, maintenance of the BBB, neurogenesis, and neuroprotection. Emerging evidence indicates that PCs also have a role in mediating cell-to-cell communication through the secretion of extracellular vesicles (EVs). Extracellular vesicles are cell-derived, micro- to nano-sized vesicles that transport cell constituents such as proteins, nucleic acids, and lipids from a parent originating cell to a recipient cell. PC-derived EVs (PC-EVs) play a crucial homeostatic role in neurovascular disease, as they promote angiogenesis, maintain the integrity of the blood-tissue barrier, and provide neuroprotection. The cargo carried by PC-EVs includes growth factors such as endothelial growth factor (VEGF), connecting tissue growth factors (CTGFs), fibroblast growth factors, angiopoietin 1, and neurotrophic growth factors such as brain-derived neurotrophic growth factor (BDNF), neuron growth factor (NGF), and glial-derived neurotrophic factor (GDNF), as well as cytokines such as interleukin (IL)-6, IL-8, IL-10, and MCP-1. The PC-EVs also carry miRNA and circular RNA linked to neurovascular health and the progression of several vascular and neuronal diseases. Therapeutic strategies employing PC-EVs have potential in the treatment of vascular and neurodegenerative diseases. This review discusses current research on the characteristic features of EVs secreted by PCs and their role in neuronal and vascular health and disease.
Collapse
Affiliation(s)
- Kushal Sharma
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yunpei Zhang
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Allan Kachelmeier
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Xiaorui Shi
- Oregon Hearing Research Center, Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Correspondence: ; Tel.: +1-503-494-2997
| |
Collapse
|
12
|
Zhu L, Huang L, Le A, Wang TJ, Zhang J, Chen X, Wang J, Wang J, Jiang C. Interactions between the Autonomic Nervous System and the Immune System after Stroke. Compr Physiol 2022; 12:3665-3704. [PMID: 35766834 DOI: 10.1002/cphy.c210047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute stroke is one of the leading causes of morbidity and mortality worldwide. Stroke-induced immune-inflammatory response occurs in the perilesion areas and the periphery. Although stroke-induced immunosuppression may alleviate brain injury, it hinders brain repair as the immune-inflammatory response plays a bidirectional role after acute stroke. Furthermore, suppression of the systemic immune-inflammatory response increases the risk of life-threatening systemic bacterial infections after acute stroke. Therefore, it is essential to explore the mechanisms that underlie the stroke-induced immune-inflammatory response. Autonomic nervous system (ANS) activation is critical for regulating the local and systemic immune-inflammatory responses and may influence the prognosis of acute stroke. We review the changes in the sympathetic and parasympathetic nervous systems and their influence on the immune-inflammatory response after stroke. Importantly, this article summarizes the mechanisms on how ANS regulates the immune-inflammatory response through neurotransmitters and their receptors in immunocytes and immune organs after stroke. To facilitate translational research, we also discuss the promising therapeutic approaches modulating the activation of the ANS or the immune-inflammatory response to promote neurologic recovery after stroke. © 2022 American Physiological Society. Compr Physiol 12:3665-3704, 2022.
Collapse
Affiliation(s)
- Li Zhu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Anh Le
- Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Tom J Wang
- Winston Churchill High School, Potomac, Maryland, USA
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuemei Chen
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Junmin Wang
- Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.,Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, PR China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
13
|
The Role of CCL2/CCR2 Axis in Cerebral Ischemia-Reperfusion Injury and Treatment: From Animal Experiments to Clinical Trials. Int J Mol Sci 2022; 23:ijms23073485. [PMID: 35408846 PMCID: PMC8998625 DOI: 10.3390/ijms23073485] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/19/2022] Open
Abstract
C-C motif chemokine ligand 2 (CCL2) is a member of the monocyte chemokine protein family, which binds to its receptor CCR2 to induce monocyte infiltration and mediate inflammation. The CCL2/CCR2 signaling pathway participates in the transduction of neuroinflammatory information between all types of cells in the central nervous system. Animal studies and clinical trials have shown that CCL2/CCR2 mediate the pathological process of ischemic stroke, and a higher CCL2 level in serum is associated with a higher risk of any form of stroke. In the acute phase of cerebral ischemia-reperfusion, the expression of CCL2/CCR2 is increased in the ischemic penumbra, which promotes neuroinflammation and enhances brain injury. In the later phase, it participates in the migration of neuroblasts to the ischemic area and promotes the recovery of neurological function. CCL2/CCR2 gene knockout or activity inhibition can reduce the nerve inflammation and brain injury induced by cerebral ischemia-reperfusion, suggesting that the development of drugs regulating the activity of the CCL2/CCR2 signaling pathway could be used to prevent and treat the cell injury in the acute phase and promote the recovery of neurological function in the chronic phase in ischemic stroke patients.
Collapse
|
14
|
Li Y, Chen D, Sun L, Chen Z, Quan W. Monocyte/High-Density Lipoprotein Ratio Predicts the Prognosis of Large Artery Atherosclerosis Ischemic Stroke. Front Neurol 2021; 12:769217. [PMID: 34912287 PMCID: PMC8666448 DOI: 10.3389/fneur.2021.769217] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Objective: Monocyte to high-density lipoprotein ratio is considered as a new inflammatory marker and has been used to predict the severity of coronary heart disease and the incidence of adverse cardiovascular events (ACEs). However, there is a lack of data relative to large artery atherosclerosis (LAA) ischemic stroke. We investigated whether the monocyte to high-density lipoprotein (HDL) ratio (MHR) is related to the 3-month functional prognosis of LAA ischemic stroke. Materials and Methods: A retrospective analysis was conducted on 316 LAA ischemic stroke patients. The 3-month functional outcome was divided into good and poor according to the modified Rankin Scale (mRS) score. Multivariate logistic regression analysis was performed to evaluate the correlation between MHR and prognosis of ischemic stroke. Results: The MHR level of poor functional outcome group was higher than that of the good functional outcome group [0.44 (0.3, 0.55) vs. 0.38 (0.27, 0.5), P = 0.025]. Logistic stepwise multiple regression revealed that MHR [odds ratio (OR) 9.464, 95%CI 2.257–39.678, P = 0.002] was an independent risk factor for the 3-month poor outcome of LAA ischemic stroke. Compared to the lower MHR tertile, the upper MHR tertile had a 3.03-fold increase (95% CI 1.475–6.225, P = 0.003) in the odds of poor functional outcome after adjustment for potential confounders. Moreover, a multivariable-adjusted restricted cubic spline (RCS) showed a positive close to a linear pattern of this association. Conclusion: Elevated MHR was independently associated with an increased risk of poor 3-month functional outcome of patients with LAA ischemic stroke.
Collapse
Affiliation(s)
- Youyu Li
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Daqing Chen
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Laifang Sun
- Department of Emergency Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhibo Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiwei Quan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Singh S, Anshita D, Ravichandiran V. MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol 2021; 101:107598. [PMID: 34233864 PMCID: PMC8135227 DOI: 10.1016/j.intimp.2021.107598] [Citation(s) in RCA: 368] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
MCP-1 (Monocyte chemoattractant protein-1), also known as Chemokine (CC-motif) ligand 2 (CCL2), is from family of CC chemokines. It has a vital role in the process of inflammation, where it attracts or enhances the expression of other inflammatory factors/cells. It leads to the advancement of many disorders by this main mechanism of migration and infiltration of inflammatory cells like monocytes/macrophages and other cytokines at the site of inflammation. MCP-1 has been inculpated in the pathogenesis of numerous disease conditions either directly or indirectly like novel corona virus, cancers, neuroinflammatory diseases, rheumatoid arthritis, cardiovascular diseases. The elevated MCP-1 level has been observed in COVID-19 patients and proven to be a biomarker associated with the extremity of disease along with IP-10. This review will focus on involvement and role of MCP-1 in various pathological conditions.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India.
| | - D Anshita
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| |
Collapse
|
16
|
Shi J, Li W, Zhang F, Park JH, An H, Guo S, Duan Y, Wu D, Hayakawa K, Lo EH, Ji X. CCL2 (C-C Motif Chemokine Ligand 2) Biomarker Responses in Central Versus Peripheral Compartments After Focal Cerebral Ischemia. Stroke 2021; 52:3670-3679. [PMID: 34587791 PMCID: PMC8545911 DOI: 10.1161/strokeaha.120.032782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background and Purpose Inflammatory mediators in blood have been proposed as potential biomarkers in stroke. However, a direct relationship between these circulating factors and brain-specific ischemic injury remains to be fully defined. Methods An unbiased screen in a nonhuman primate model of stroke was used to find out the most responsive circulating biomarker flowing ischemic stroke. Then this phenomenon was checked in human beings and mice. Finally, we observed the temporospatial responsive characteristics of this biomarker after ischemic brain injury in mice to evaluate the direct relationship between this circulating factor and central nervous system–specific ischemic injury. Results In a nonhuman primate model, an unbiased screen revealed CCL2 (C-C motif chemokine ligand 2) as a major response factor in plasma after stroke. In mouse models of focal cerebral ischemia, plasma levels of CCL2 showed a transient response, that is, rapidly elevated by 2 to 3 hours postischemia but then renormalized back to baseline levels by 24 hours. However, a different CCL2 temporal profile was observed in whole brain homogenate, cerebrospinal fluid, and isolated brain microvessels, with a progressive increase over 24 hours, demonstrating a mismatch between brain versus plasma responses. In contrast to the lack of correlation with central nervous system responses, 2 peripheral compartments showed transient profiles that matched circulating plasma signatures. CCL2 protein in lymph nodes and adipose tissue was significantly increased at 2 hours and renormalized by 24 hours. Conclusions These findings may provide a cautionary tale for biomarker pursuits in plasma. Besides a direct central nervous system response, peripheral organs may also contribute to blood signatures in complex and indirect ways.
Collapse
Affiliation(s)
- Jingfei Shi
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Wenlu Li
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fang Zhang
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ji Hyun Park
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong An
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuzhen Guo
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yunxia Duan
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eng H. Lo
- Neuroprotection Research Laboratories, Departments of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xunming Ji
- Cerebrovascular and Neuroscience Research Institute, Xuanwu Hospital, Capital Medical University, Beijing, China.,Departments of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Biomarkers Predictive of Long-Term Outcome After Ischemic Stroke: A Meta-Analysis. World Neurosurg 2021; 163:e1-e42. [PMID: 34728391 DOI: 10.1016/j.wneu.2021.10.157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE The goal of this study was to systematically review the utility of serum biomarkers in the setting of ischemic stroke (IS) to predict long-term outcome. METHODS A systematic literature review was performed using the PubMed and MEDLINE databases for studies published between 1986-2018. All studies assessing long-term functional outcome (defined as 30 days or greater) following IS with respect to serum biomarkers were included. Data were extracted and pooled using a meta-analysis of odds ratios. RESULTS Of the total 2928 articles in the original literature search, 183 studies were ultimately selected. A total of 127 serum biomarkers were included. Biomarkers were grouped into several categories: inflammatory (32), peptide/enzymatic (30), oxidative/metabolic (28), hormone/steroid based (23), and hematologic/vascular (14). The most commonly studied biomarkers in each category were found to be CRP, S100β, albumin, copeptin, and D-dimer. With the exception of S100β, all were found to be statistically associated with >30-day outcome after ischemic stroke. CONCLUSIONS Serum-based biomarkers have the potential to predict functional outcome in IS patients. This meta-analysis has identified CRP, albumin, copeptin, and D-dimer to be significantly associated with long-term outcome after IS. These biomarkers have the potential to serve as a platform for prognosticating stroke outcomes after 30 days. These serum biomarkers, some of which are routinely ordered, can be combined with imaging biomarkers and used in artificial intelligence algorithms to provide refined predictive outcomes after injury. Ultimately these tools will assist physicians in providing guidance to families with regards to long-term independence of patients.
Collapse
|
18
|
Zafar A, Farooqui M, Ikram A, Suriya S, Kempuraj D, Khan M, Tasneem N, Qaryouti D, Quadri S, Adams HP, Ortega-Gutierrez S, Leira E, Zaheer A. Cytokines, brain proteins, and growth factors in acute stroke patients: A pilot study. Surg Neurol Int 2021; 12:366. [PMID: 34513133 PMCID: PMC8422456 DOI: 10.25259/sni_569_2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immunomodulation and cell signaling involve several cytokines, proteins, and other mediators released in response to the trauma, inflammation, or other insults to the central nervous system. This pilot study is part of the registry designed to evaluate the temporal trends among these molecules after an acute ischemic stroke (AIS) in patients. METHODS Twelve AIS patients were enrolled within 24 hours of the symptoms onset. Two sets of plasma samples were collected: First at admission and second at 24 hours after admission. Cytokines/chemokines and other inflammatory molecules were measured using multiplex assay kit. RESULTS An increased trend in IL-6 (22 vs. 34 pg/ml), IL-8/CXCL8 (87 vs. 98 pg/ml), MMP-9 (16225 vs. 18450 pg/ml), and GMF-β (999 vs. 3739 pg/ml) levels was observed overtime after an AIS. Patients ≤60 years had lower levels of plasma MCP-1/CCL2 (50-647 vs. 150-1159 pg/ml), IL-6 (9-25 vs. 20-68 pg/ml), and IL-8 (30- 143 vs. 72-630 pg/ml), when compared with patients >60 years old. CONCLUSION Cytokines/chemokines and other inflammatory mediators play an important role in the pathogenesis of stroke in addition to mediating poststroke inflammation. Further research is needed to evaluate and characterize the cumulative trends of these mediators for the clinical prognosis or as surrogate biomarkers.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Neurology, University of Toronto, Toronto, Canada
| | | | - Asad Ikram
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico
| | - Sajid Suriya
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico
| | | | - Mohammad Khan
- Department of Neurology, University of Tennessee, Memphis, Tennessee
| | - Nudrat Tasneem
- Department of Neurology, University of Iowa, Iowa City, Iowa
| | - Dania Qaryouti
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico
| | - Syed Quadri
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Harold P. Adams
- Department of Neurology, University of Iowa, Iowa City, Iowa
| | | | - Enrique Leira
- Department of Neurology, University of Iowa, Iowa City, Iowa
| | - Asgar Zaheer
- Department of Neurology, University of Missouri, Columbia, Missouri
| |
Collapse
|
19
|
Wang A, Quan K, Tian X, Zuo Y, Meng X, Chen P, Li H, Wang Y. Leukocyte subtypes and adverse clinical outcomes in patients with acute ischemic cerebrovascular events. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:748. [PMID: 34268361 PMCID: PMC8246222 DOI: 10.21037/atm-20-7931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/10/2021] [Indexed: 11/06/2022]
Abstract
Background Our study aimed to evaluate whether the effects on adverse clinical outcomes, defined as death, recurrent stroke, and poor functional outcomes, differed by leukocyte subtype in patients with acute ischemic cerebrovascular events, including both ischemic stroke and transient ischemic attack (TIA). Methods We derived data from the Third China National Stroke Registry (CNSR-III). The counts and percentages of each leukocyte subtype were collected within the first 24 hours after admission. Enrolled patients were classified into four groups by the quartiles of each leukocyte subtype count or percentage. Hazard ratios (HRs) or odds ratios (ORs) and their 95% confidence intervals (CIs) of adverse clinical outcomes were calculated, with the lowest quartile group as the reference category. We used C statistics, integrated discrimination improvement (IDI), and the net reclassification index (NRI) to evaluate each leukocyte subtype's incremental predictive value beyond conventional risk factors. Results A total of 14,174 patients were enrolled. Higher counts of leukocytes, neutrophils, and monocytes were associated with elevated risks of adverse clinical outcomes. In contrast, higher counts of lymphocytes and eosinophils were related to reduced risks of adverse clinical outcomes. Meanwhile, basophil counts seemed to not correlate with adverse clinical outcomes. Furthermore, there were also significant associations between the percentages of leukocyte subtypes and adverse clinical outcomes. Conclusions Leukocyte subtypes had different relationships with adverse clinical outcomes at 3-month and 1-year follow-up in patients with acute ischemic cerebrovascular events and could slightly increase the predictive value compared with the conventional model.
Collapse
Affiliation(s)
- Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Kehua Quan
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xue Tian
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingting Zuo
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xia Meng
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Pan Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Stone NL, England TJ, O'Sullivan SE. Protective Effects of Cannabidivarin and Cannabigerol on Cells of the Blood-Brain Barrier Under Ischemic Conditions. Cannabis Cannabinoid Res 2021; 6:315-326. [PMID: 33998890 PMCID: PMC8380798 DOI: 10.1089/can.2020.0159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background and Objectives: Preclinical studies have shown cannabidiol is protective in models of ischemic stroke. Based on results from our recent systematic review, we investigated the effects of two promising neuroprotective phytocannabinoids, cannabigerol (CBG) and cannabidivarin (CBDV), on cells of the blood-brain barrier (BBB), namely human brain microvascular endothelial cells (HBMECs), pericytes, and astrocytes. Experimental Approach: Cultures were subjected to oxygen-glucose deprivation (OGD) protocol to model ischemic stroke and cell culture medium was assessed for cytokines and adhesion molecules post-OGD. Astrocyte cell lysates were also analyzed for DNA damage markers. Antagonist studies were conducted where appropriate to study receptor mechanisms. Results: In astrocytes CBG and CBDV attenuated levels of interleukin-6 (IL-6) and lactate dehydrogenase (LDH), whereas CBDV (10 nM-10 μM) also decreased vascular endothelial growth factor (VEGF) secretion. CBDV (300 nM-10 μM) attenuated levels of monocyte chemoattractant protein (MCP)-1 in HBMECs. In astrocytes, CBG decreased levels of DNA damage proteins, including p53, whereas CBDV increased levels of DNA damage markers. Antagonists for CB1, CB2, PPAR-γ, PPAR-α, 5-HT1A, and TRPV1 had no effect on CBG (3 μM) or CBDV (1 μM)-mediated decreases in LDH in astrocytes. GPR55 and GPR18 were partially implicated in the effects of CBDV, but no molecular target was identified for CBG. Conclusions: We show that CBG and CBDV were protective against OG mediated injury in three different cells that constitute the BBB, modulating different hallmarks of ischemic stroke pathophysiology. These data enhance our understanding of the protective effects of CBG and CBDV and warrant further investigation into these compounds in ischemic stroke. Future studies should identify other possible neuroprotective effects of CBG and CBDV and their corresponding mechanisms of action.
Collapse
Affiliation(s)
- Nicole L Stone
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Timothy J England
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom.,University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Derby, United Kingdom
| | - Saoirse E O'Sullivan
- University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Derby, United Kingdom.,CanPharmaConsulting, Nottingham, United Kingdom
| |
Collapse
|
21
|
Zhang SR, Phan TG, Sobey CG. Targeting the Immune System for Ischemic Stroke. Trends Pharmacol Sci 2020; 42:96-105. [PMID: 33341247 DOI: 10.1016/j.tips.2020.11.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022]
Abstract
Stroke is responsible for almost 6 million deaths and more than 10% of all mortalities each year, and two-thirds of stroke survivors remain disabled. With treatments for ischemic stroke still limited to clot lysis and/or mechanical removal, new therapeutic targets are desperately needed. In this review, we provide an overview of the complex mechanisms of innate and adaptive immune cell-mediated inflammatory injury, that exacerbates infarct development for several days after stroke. We also highlight the features of poststroke systemic immunodepression that commonly leads to infections and some mortalities, and argue that safe and effective therapies will need to balance pro- and anti-inflammatory mechanisms in a time-sensitive manner, to maximize the likelihood of an improved long-term outcome.
Collapse
Affiliation(s)
- Shenpeng R Zhang
- Department of Physiology, Anatomy, and Microbiology, and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thanh G Phan
- Clinical Trials, Imaging, and Informatics (CTI) Division, Stroke and Ageing Research (STARC), Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy, and Microbiology, and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| |
Collapse
|
22
|
Yang Y, Sun G, Diao S, Yang L, Dong W. Diagnostic performances of neutrophil to lymphocyte ratio and lymphocyte to monocyte ratio in acute ischemic stroke caused by cervicocranial arterial dissection. J Clin Lab Anal 2020; 34:e23515. [PMID: 32893925 PMCID: PMC7755785 DOI: 10.1002/jcla.23515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammation plays an important role in the initiation and progression of cervicocranial arterial dissection (CCAD). New inflammatory indices derived from full cell blood count may be associated with increased risk of acute ischemic stroke (AIS) caused by CCAD. The goal of this study is to evaluate the diagnostic performances of neutrophil to lymphocyte ratio (NLR) and lymphocyte to monocyte ratio (LMR) in CCAD. METHOD We retrospectively analyzed 52 patients with AIS caused by CCAD from emergency room (group I), 51 patients with CCAD from emergency room or clinic(group II) and 52 controls (group III), age and sex matched. Data were collected on the admission including NLR and LMR. RESULTS Neutrophil to lymphocyte ratio and LMR have significant differences among three groups, especially in group I vs both groups II and III (P < .001). There was a negative correlation between admission NLR and LMR. Low LMR level and high NLR level may be associated with severity of AIS caused by CCAD and significantly predict AIS in CCAD. The area under the curve of NLR and LMR were 0.77 and 0.71, respectively, on receiver operating characteristic curve analysis. The optimal cutoff values of NLR and LMR that best discriminated AIS were 2.35 (81% sensitivity and 63% specificity) and 3.67 (64% sensitivity and 77% specificity). CONCLUSIONS Neutrophil to lymphocyte ratio neutrophil to lymphocyte ratio and LMR may contribute to the diagnostic evaluation and prompt immediate therapy in patients with CCAD.
Collapse
Affiliation(s)
- Yi Yang
- Departments of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Guangbi Sun
- Departments of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Shanshan Diao
- Departments of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Le Yang
- School of Public HealthFujian Medical UniversityFuzhouChina
| | - Wanli Dong
- Departments of NeurologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
23
|
Luo X, Gao ZX, Lin SW, Tong ML, Liu LL, Lin LR, Ke WJ, Yang TC. Recombinant Treponema pallidum protein Tp0136 promotes fibroblast migration by modulating MCP-1/CCR2 through TLR4. J Eur Acad Dermatol Venereol 2020; 34:862-872. [PMID: 31856347 DOI: 10.1111/jdv.16162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/12/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Chancre self-healing is an important clinical feature in the early stages of syphilis infection. Wound healing may involve an important mechanism by the migration of fibroblasts filling the injured lesion. However, the specific mechanism underlying this process is still unknown. OBJECTIVES We aimed to analyse the role of Tp0136 in the migration of fibroblasts and the related mechanism. METHODS The migration ability of fibroblasts was detected by a wound-healing assay. RT-PCR and ELISA detected the expression of MCP-1, IL-6 and MMP-9. TLR4 expression was detected by RT-PCR. The protein levels of CCR2 and relevant signalling pathway molecules were measured by Western blotting. RESULTS Tp0136 significantly promoted fibroblast migration. Subsequently, the levels of MCP-1 and its receptor CCR2 were increased in this process. The migration of fibroblasts was significantly inhibited by an anti-MCP-1 neutralizing antibody or CCR2 inhibitors. Furthermore, studies demonstrated that Tp0136 could activate the ERK/JNK/PI3K/NF-κB signalling pathways through TLR4 activity and that signalling pathways inhibitors could weaken MCP-1 secretion and fibroblast migration. CONCLUSIONS These findings demonstrate that Tp0136 promotes the migration of fibroblasts by inducing MCP-1/CCR2 expression through signalling involving the TLR4, ERK, JNK, PI3K and NF-κB signalling pathways, which could contribute to the mechanism of chancre self-healing in syphilis.
Collapse
Affiliation(s)
- X Luo
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Z-X Gao
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - S-W Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - M-L Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L-L Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - L-R Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - W-J Ke
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - T-C Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
24
|
Baba N, Wang F, Iizuka M, Shen Y, Yamashita T, Takaishi K, Tsuru E, Matsushima S, Miyamura M, Fujieda M, Tsuda M, Sagara Y, Maeda N. Induction of regional chemokine expression in response to human umbilical cord blood cell infusion in the neonatal mouse ischemia-reperfusion brain injury model. PLoS One 2019; 14:e0221111. [PMID: 31483787 PMCID: PMC6726228 DOI: 10.1371/journal.pone.0221111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Regenerative medicine using umbilical cord blood (UCB) cells shows promise for the treatment of cerebral palsy. Although the efficacy of this therapy has been seen in the clinic, the mechanisms by which UCB cells interact and aid in the improvement of symptoms are not clear. We explored the chemokine expression profile in damaged brain tissue in the neonatal mouse ischemia-reperfusion (IR) brain injury model that was infused with human UCB (hUCB) cells. IR brain injury was induced in 9-day-old NOD/SCID mice. hUCB cells were administered 3 weeks post brain injury. Chemokine expression profiles in the brain extract were determined at various time points. Inflammatory chemokines such as CCL1, CCL17, and CXCL12 were transiently upregulated by 24 hours post brain injury. Upregulation of other chemokines, including CCL5, CCL9, and CXCL1 were prolonged up to 3 weeks post brain injury, but most chemokines dissipated over time. There were marked increases in levels of CCL2, CCL12, CCL20, and CX3CL1 in response to hUCB cell treatment, which might be related to the new recruitment and differentiation of neural stem cells, leading to the induction of tissue regeneration. We propose that the chemokine expression profile in the brain shifted from responding to tissue damage to inducing tissue regeneration. hUCB cell administration further enhanced the production of chemokines, and chemokine networks may play an active role in tissue regeneration in neonatal hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Nobuyasu Baba
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- * E-mail:
| | - Feifei Wang
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Michiro Iizuka
- Department of Pharmacy, Kochi Medical School Hospital, Kochi, Japan
| | - Yuan Shen
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tatsuyuki Yamashita
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Kimiko Takaishi
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Emi Tsuru
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- Institute for Laboratory Animal Research, Science Research Center, Kochi University, Kochi, Japan
| | - Sachio Matsushima
- Department of Obstetrics and Gynecology, Kochi Medical School, Kochi University, Kochi, Japan
| | | | - Mikiya Fujieda
- Department of Pediatrics, Kochi Medical School, Kochi University, Kochi, Japan
| | - Masayuki Tsuda
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- Institute for Laboratory Animal Research, Science Research Center, Kochi University, Kochi, Japan
| | - Yusuke Sagara
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
| | - Nagamasa Maeda
- Center for Innovative and Translational Medicine, Kochi Medical School, Kochi University, Kochi, Japan
- Department of Obstetrics and Gynecology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
25
|
Landreneau MJ, Mullen MT, Messé SR, Cucchiara B, Sheth KN, McCullough LD, Kasner SE, Sansing LH. CCL2 and CXCL10 are associated with poor outcome after intracerebral hemorrhage. Ann Clin Transl Neurol 2018; 5:962-970. [PMID: 30128320 PMCID: PMC6093844 DOI: 10.1002/acn3.595] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/02/2018] [Accepted: 05/22/2018] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Intracerebral hemorrhage carries a high mortality and survivors are frequently left with significant disability. Immunological mechanisms may play an important role in hemorrhage-induced brain injury, however, research linking these mechanisms with clinical outcome remains limited. We aim to identify serum inflammatory mediators that are associated with outcome after intracerebral hemorrhage in order to translate data from experimental models to a patient cohort and identify potential targets worthy of reverse translation. METHODS A prospective cohort study at two comprehensive stroke centers enrolled patients with spontaneous intracerebral hemorrhage. Peripheral blood was collected at 6, 24, and 72 h from onset. Functional outcome was assessed at 90 days using the modified Rankin Scale (mRS). Serum inflammatory mediators were measured using multiplex ELISA. Multivariable modeling identified serum biomarkers independently associated with functional outcome at 90 days. RESULTS 115 patients completed the study. At 6 h after onset, patients with elevated CCL2 had worse mRS score at day 90 (OR 4.07, 95% CI 1.27-13.10, P = 0.02) after adjusting for age, gender, ICH volume, IVH, infratentorial location and NIHSS score. At 24 and 72 h after onset, elevation in CXCL10 was independently associated with worse 90 days mRS score (24 h: OR 8.08, 95% CI 2.69-24.30, P < 0.001; 72 h: OR 3.89, 95% CI 1.12-13.49, P = 0.03). INTERPRETATION Acute and subacute elevations in specific immune factors are associated with poor outcome, highlighting potential pathways that may contribute to ongoing brain injury in patients with intracerebral hemorrhage.
Collapse
Affiliation(s)
| | - Michael T. Mullen
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Steven R. Messé
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Brett Cucchiara
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Kevin N. Sheth
- Department of NeurologyYale University School of MedicineNew HavenConnecticut
- Center for Neuroepidemiology and Clinical Neurological ResearchYale School of MedicineNew HavenConnecticut
| | - Louise D. McCullough
- Department of NeurologyUniversity of Texas Health Sciences Center at HoustonHoustonTexas
| | - Scott E. Kasner
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvania
| | - Lauren H. Sansing
- Department of NeurologyYale University School of MedicineNew HavenConnecticut
- Center for Neuroepidemiology and Clinical Neurological ResearchYale School of MedicineNew HavenConnecticut
| | | |
Collapse
|
26
|
Li X. The association between MCP-1, VEGF polymorphisms and their serum levels in patients with diabetic foot ulcer. Medicine (Baltimore) 2018; 97:e10959. [PMID: 29901584 PMCID: PMC6024659 DOI: 10.1097/md.0000000000010959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/06/2018] [Indexed: 12/16/2022] Open
Abstract
The purpose of the present study was to investigate distribution of monocyte chemoattractant protein-1 (MCP-1) -2518A/G and vascular endothelial growth factor (VEGF) -634G/C polymorphisms in type 2 diabetes melitus patients (T2DM) presenting diabetic foot ulcer (DFU). Additionally, we evaluated the effects of these 2 polymorphisms on serum levels of MCP-1 and VEGF in the study population.Patients diagnosed with T2DM without or with DFU were recruited in the study. The distribution of MCP-1 -2518A/G and VEGF -634G/C polymorphisms was investigated by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Enzyme-linked immunosorbent assay (ELISA) was applied to detect the protein levels of MCP-1 and VEGF. The comparisons of protein levels in DFU patients were performed by student t test according to their genotypes.The frequencies of GG genotype and G allele of MCP-1 -2518A/G was increased in DFU patients, compared with T2DM patients (odds ratio [OR] = 2.60, 95% confidence interval [CI] = 1.23-5.50, P = .011 and OR = 1.72, 95% CI = 1.18-2.50, P = .005, respectively). Moreover, the increased frequency of GG was significantly associated with up-regulated MCP-1 level in DFU patients (P < .001). Analysis for VEGF -634G/C polymorphisms indicated that the prevalence of CC genotype and C allele of the polymorphisms was decreased in DFU patients, compared with T2DM patients (OR = 0.36, 95% CI = 0.17-0.77, P = .008 and OR = 0.63, 95% CI = 0.43-0.91, P = .015, respectively). DFU patients carrying CC genotype had a higher level of VEGF than those with other genotypes (P = .007).MCP-1 -2518A/G and VEGF -634G/C polymorphisms may involve in occurrence and progress of DFU through regulating transcription activity of the genes.
Collapse
|
27
|
Persic V, Bastiancic AL, Rosovic I, Raljevic D, Samsa DT, Bastiancic L, Miskulin R, Boban M, Laskarin G. Correlation between immunological-inflammatory markers and endothelial disfunction in the early stage of coronary heart disease. Med Hypotheses 2018; 115:72-76. [PMID: 29685202 DOI: 10.1016/j.mehy.2018.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/08/2018] [Indexed: 01/06/2023]
Abstract
Classical risk factors for endothelial dysfunction (ED), such as age, gender, total cholesterol, high-density lipoprotein cholesterol, systolic blood pressure, and smoking history are utilised for the Framingham score and Systemic Coronary Risk Estimation (SCORE) for evaluation of the 10-year cardiovascular risk in routine practice. Nonetheless, pro-inflammatory mediators are deeply involved in the initiation and the progression of ED and coronary artery disease (CAD), and act additionally or independently of metabolic factors before clinical manifestations of the disease appear. C-reactive protein, a marker of intimal thickening of the myeloid-related protein 8/14 heterodimer, monocyte chemotactic protein 1, interleukin-15, the cytotoxic mediator, granulysin, and the matrix metalloproteinase 9 could be valuable, single, fast, and non-invasive laboratory tools for ED deterioration degree assessment. We propose to investigate the impact of pro-inflammatory biomarkers on ED, measured by previously established clinical methods in patients with yet undiagnosed CAD and at medium risk for an acute coronary event. It could be useful to measure and correlate the concentration of particular inflammatory markers in peripheral blood samples and the results of the Framingham and SCORE charts, multi-slice computed tomography coronary angiography, echocardiography, brachial artery flow-mediated dilatation, carotid-femoral pulse wave velocity, ankle-brachial index, carotid wall thickening, myocardial perfusion scintigraphy, and particularly, cardiac magnetic resonance imaging. The goal would be that the degree of correlation between particular inflammatory markers and the results of some methods for the assessment of ED or cardiac ischaemic imaging could be emphasised and pro-inflammatory markers positioned in the pathogenetic algorithm of CAD.
Collapse
Affiliation(s)
- Viktor Persic
- Division of Cardiology, Special Hospital for Medical Rehabilitation of Heart, Lungs and Rheumatic diseases "Thalassotherapia-Opatija", 51410 Opatija, M. Tita 188, Croatia; Department of Medical Rehabilitation, Medical Faculty, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia.
| | - Ana Lanca Bastiancic
- Division of Cardiology, Special Hospital for Medical Rehabilitation of Heart, Lungs and Rheumatic diseases "Thalassotherapia-Opatija", 51410 Opatija, M. Tita 188, Croatia.
| | - Ivan Rosovic
- Division of Cardiology, Special Hospital for Medical Rehabilitation of Heart, Lungs and Rheumatic diseases "Thalassotherapia-Opatija", 51410 Opatija, M. Tita 188, Croatia
| | - Damir Raljevic
- Division of Cardiology, Special Hospital for Medical Rehabilitation of Heart, Lungs and Rheumatic diseases "Thalassotherapia-Opatija", 51410 Opatija, M. Tita 188, Croatia
| | - Dijana Travica Samsa
- Division of Cardiology, Special Hospital for Medical Rehabilitation of Heart, Lungs and Rheumatic diseases "Thalassotherapia-Opatija", 51410 Opatija, M. Tita 188, Croatia
| | - Luka Bastiancic
- Department of Cardiology, Clinical Hospital Rijeka, Kresimirova 42, 51000 Rijeka, Croatia
| | - Rajko Miskulin
- Division of Cardiology, Special Hospital for Medical Rehabilitation of Heart, Lungs and Rheumatic diseases "Thalassotherapia-Opatija", 51410 Opatija, M. Tita 188, Croatia
| | - Marko Boban
- Division of Cardiology, Special Hospital for Medical Rehabilitation of Heart, Lungs and Rheumatic diseases "Thalassotherapia-Opatija", 51410 Opatija, M. Tita 188, Croatia; Department of Medical Rehabilitation, Medical Faculty, University of Rijeka, 51000 Rijeka, B. Branchetta 20, Croatia
| | - Gordana Laskarin
- Department of Rheumatology, Rehabilitation, and Physical Medicine, Special Hospital for Medical Rehabilitation of Heart, Lungs and Rheumatic diseases "Thalassotherapia-Opatija", 51410 Opatija, M. Tita 188, Croatia; Department of Physiology and Immunology, Medical Faculty, University of Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia.
| |
Collapse
|
28
|
Chen C, Chu SF, Liu DD, Zhang Z, Kong LL, Zhou X, Chen NH. Chemokines play complex roles in cerebral ischemia. Neurochem Int 2018. [DOI: 10.1016/j.neuint.2017.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Cerebrovascular Gene Expression in Spontaneously Hypertensive Rats After Transient Middle Cerebral Artery Occlusion. Neuroscience 2017; 367:219-232. [PMID: 29102661 DOI: 10.1016/j.neuroscience.2017.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022]
Abstract
Hypertension is a major risk factor for stroke, which is one of the leading global causes of death. In the search for new and effective therapeutic targets in stroke research, we need to understand the influence of hypertension in the vasculature following stroke. We used Affymetrix whole-transcriptome expression profiling as a tool to address gene expression differences between the occluded and non-occluded middle cerebral arteries (MCAs) from spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats after transient middle cerebral artery occlusion (tMCAO), to provide clues about the pathological mechanisms set in play after stroke. Verified by quantitative PCR, expression of Ccl2, Edn1, Tgfβ2, Olr1 and Serpine1 was significantly increased in the occluded compared to non-occluded MCAs from both SHRs and WKY rats. Additionally, expression of Mmp9, Icam1, Hif1α and Timp1 was increased in the occluded compared to non-occluded MCAs isolated from WKY rats. In comparison between occluded MCAs from SHRs versus occluded MCAs from WKY rats, expression of Ccl2, Olr1 and Serpine1 was significantly increased in SHR MCAs. However, the opposite was observed regarding expression of Edn1. Thus these data suggest that Ccl2, Edn1, Tgfβ2, Olr1 and Serpine1 may be possible mediators of the vascular changes in the occluded MCAs from both SHRs and WKY rats after tMCAO. The aforementioned genes possess biological functions that are consistent with early stroke injuries. In conclusion, these genes may be potential targets in future strategies for acute stroke treatments that can be used in patients with and without hypertension.
Collapse
|
30
|
Komiyama M, Takanabe R, Ono K, Shimada S, Wada H, Yamakage H, Satoh-Asahara N, Morimoto T, Shimatsu A, Takahashi Y, Hasegawa K. Association between monocyte chemoattractant protein-1 and blood pressure in smokers. J Int Med Res 2017; 46:965-974. [PMID: 29098933 PMCID: PMC5972233 DOI: 10.1177/0300060517723415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective The expression level of monocyte chemoattractant protein-1 (MCP-1) is increased in atherosclerotic regions, inducing monocyte migration to the blood vessel wall. Although the serum MCP-1 concentration is higher in patients with than without cardiovascular disease, the precise correlations between the serum MCP-1 concentration and factors associated with smoking and atherosclerosis are unknown. Methods The serum MCP-1 concentration was measured using an enzyme-linked immunosorbent assay in 207 consecutive smokers who visited our smoking cessation clinic. Results Sex-adjusted analysis of smokers revealed that the MCP-1 concentration was positively correlated with age (β = 0.311), smoking duration (β = 0.342), systolic blood pressure (β = 0.225), and diastolic blood pressure (β = 0.137) but not with the body mass index. Multivariate regression analysis showed that smoking duration and systolic blood pressure were independent determinants of the MCP-1 concentration. Conclusions The MCP-1 concentration was positively correlated with blood pressure among smokers. Long-term smokers with high blood pressure may be more susceptible to plaque rupture at atherosclerotic lesion sites.
Collapse
Affiliation(s)
- Maki Komiyama
- 1 Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Rieko Takanabe
- 1 Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Koh Ono
- 2 Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sayaka Shimada
- 1 Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hiromichi Wada
- 1 Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Hajime Yamakage
- 1 Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Noriko Satoh-Asahara
- 1 Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Tatsuya Morimoto
- 3 Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Akira Shimatsu
- 1 Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Yuko Takahashi
- 1 Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Koji Hasegawa
- 1 Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| |
Collapse
|
31
|
Ren H, Liu X, Wang L, Gao Y. Lymphocyte-to-Monocyte Ratio: A Novel Predictor of the Prognosis of Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2017; 26:2595-2602. [PMID: 28847530 DOI: 10.1016/j.jstrokecerebrovasdis.2017.06.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Lymphocyte-to-monocyte ratio (LMR) is associated with diverse malignancies and cardiovascular diseases. However, it has not yet been identified whether LMR is correlated with stroke severity and prognosis. We aimed to explore the relationship between LMR and stroke severity, prognosis, and the predictive value of LMR on a 3-month functional outcome in patients with acute ischemic stroke (AIS). MATERIALS AND METHODS A total of 512 patients were enrolled in this study. Baseline demographic and clinical data of all patients were collected. Based on the LMR value on admission (>4.83, 2.97-4.83, <2.97), patients were divided into 3 groups. Moderate to severe stroke was defined as a National Institutes of Health Stroke Scale score of 6 or higher. Poor outcome was defined as a modified Rankin Scale score of 3 or higher. We used the Spearman rank correlation to evaluate the relationship between LMR and stroke severity. Binary logistic regression analysis was used to assess risk factors of stroke severity and prognosis. The receiver operating characteristic (ROC) curve was used to estimate the predictive value of LMR on prognosis. RESULTS LMR was inversely correlated with stroke severity (r = -.014, P = .019). Moreover, LMR was an independent protective factor of stroke severity (odds ratio [OR] .891, 95% confidence interval [CI] .815-.973, P = .010) and prognosis (OR .507, 95% CI .437-.590, P < .001). ROC indicated that an LMR lower than 2.99 predicted a poor outcome, with a sensitivity of 69.3% and a specificity of 86.6%. CONCLUSION A lower LMR on admission was independently associated with severe stroke and 3-month poor outcome in patients with AIS.
Collapse
Affiliation(s)
- Hao Ren
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Xiao Liu
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Lin Wang
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yanjun Gao
- Department of Neurology, The Affiliated Hospital of Chengde Medical University, Chengde, China.
| |
Collapse
|