1
|
Yan M, Man S, Ma L, Guo L, Huang L, Gao W. Immunological mechanisms in steatotic liver diseases: An overview and clinical perspectives. Clin Mol Hepatol 2024; 30:620-648. [PMID: 38988278 PMCID: PMC11540396 DOI: 10.3350/cmh.2024.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/12/2024] Open
Abstract
Steatotic liver diseases (SLD) are the principal worldwide cause of cirrhosis and end-stage liver cancer, affecting nearly a quarter of the global population. SLD includes metabolic dysfunction-associated alcoholic liver disease (MetALD) and metabolic dysfunction-associated steatotic liver disease (MASLD), resulting in asymptomatic liver steatosis, fibrosis, cirrhosis and associated complications. The immune processes include gut dysbiosis, adiposeliver organ crosstalk, hepatocyte death and immune cell-mediated inflammatory processes. Notably, various immune cells such as B cells, plasma cells, dendritic cells, conventional CD4+ and CD8+ T cells, innate-like T cells, platelets, neutrophils and macrophages play vital roles in the development of MetALD and MASLD. Immunological modulations targeting hepatocyte death, inflammatory reactions and gut microbiome include N-acetylcysteine, selonsertib, F-652, prednisone, pentoxifylline, anakinra, JKB-121, HA35, obeticholic acid, probiotics, prebiotics, antibiotics and fecal microbiota transplantation. Understanding the immunological mechanisms underlying SLD is crucial for advancing clinical therapeutic strategies.
Collapse
Affiliation(s)
- Mengyao Yan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Weijin Road, Tianjin, China
| |
Collapse
|
2
|
Kütük T, Onbaşilar İ, Oskay-Halaçli S, Babaoğlu B, Ayhan S, Yalçin SS. Investigation of the Hepatitis-B Vaccine's Immune Response in a Non-Alcoholic Fatty Liver Disease Mouse Model. Vaccines (Basel) 2024; 12:934. [PMID: 39204057 PMCID: PMC11359425 DOI: 10.3390/vaccines12080934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
This study aimed to investigate the immunogenicity of the hepatitis B virus (HBV) vaccine by applying a normal and high-dose hepatitis B virus vaccination program in the mice modeling of non-alcoholic fatty liver disease (NAFLD). NAFLD was induced in mouse livers via diet. At the 10-week mark, both groups were divided into 3 subgroups. While the standard dose vaccination program was applied on days 0, 7, and 21, two high-dose programs were applied: one was applied on days 0 and 7, and the other was applied on days 0, 7, and 21. All mice were euthanized. Blood samples from anti-HB titers; T follicular helper, T follicular regulatory, CD27+, and CD38+ cells; and the liver, spleen, and thymus were taken for histopathologic evaluation. NAFLD subgroups receiving high doses showed higher hepatocyte ballooning scores than normal-dose subgroup. There were differences in CD27+ and CD27+CD38+ cells in animals fed on different diets, without any differences or interactions in terms of vaccine protocols. In the NAFLD group, a negative correlation was observed between anti-HB titers and T helper and CD27+ cells, while a positive correlation was observed with CD38+ cells. NAFLD induced changes in immune parameters in mice, but there was no difference in vaccine efficacy among the applied vaccine protocols. Based on this study's results, high-dose vaccination protocols are not recommended in cases of NAFLD, as they do not enhance efficacy and may lead to increased liver damage.
Collapse
Affiliation(s)
- Tuğba Kütük
- Vaccinology Department, Institute of Vaccinology, Hacettepe University, Ankara 06430, Türkiye; (T.K.); (S.S.Y.)
- Turkish Medicines and Medical Devices Agency, Ankara 06500, Türkiye
| | - İlyas Onbaşilar
- Vaccinology Department, Institute of Vaccinology, Hacettepe University, Ankara 06430, Türkiye; (T.K.); (S.S.Y.)
- Health Science Institute, Hacettepe University, Ankara 06430, Türkiye
- Transgenic Animal Technologies Research and Application Center, Hacettepe University, Ankara 06430, Türkiye
| | - Sevil Oskay-Halaçli
- Department of Basic Sciences of Pediatrics, Institute of Child Health, Hacettepe University, Ankara 06430, Türkiye; (S.O.-H.); (S.A.)
| | - Berrin Babaoğlu
- Department of Pathology, Hacettepe University, Ankara 06430, Türkiye;
| | - Selda Ayhan
- Department of Basic Sciences of Pediatrics, Institute of Child Health, Hacettepe University, Ankara 06430, Türkiye; (S.O.-H.); (S.A.)
| | - Sıddika Songül Yalçin
- Vaccinology Department, Institute of Vaccinology, Hacettepe University, Ankara 06430, Türkiye; (T.K.); (S.S.Y.)
- Department of Social Pediatrics, Institute of Child Health, Hacettepe University, Ankara 06430, Türkiye
| |
Collapse
|
3
|
Li Z, Ouyang H, Zhu J. Traditional Chinese medicines and natural products targeting immune cells in the treatment of metabolic-related fatty liver disease. Front Pharmacol 2023; 14:1195146. [PMID: 37361209 PMCID: PMC10289001 DOI: 10.3389/fphar.2023.1195146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
MAFLD stands for metabolic-related fatty liver disease, which is a prevalent liver disease affecting one-third of adults worldwide, and is strongly associated with obesity, hyperlipidemia, and type 2 diabetes. It encompasses a broad spectrum of conditions ranging from simple liver fat accumulation to advanced stages like chronic inflammation, tissue damage, fibrosis, cirrhosis, and even hepatocellular carcinoma. With limited approved drugs for MAFLD, identifying promising drug targets and developing effective treatment strategies is essential. The liver plays a critical role in regulating human immunity, and enriching innate and adaptive immune cells in the liver can significantly improve the pathological state of MAFLD. In the modern era of drug discovery, there is increasing evidence that traditional Chinese medicine prescriptions, natural products and herb components can effectively treat MAFLD. Our study aims to review the current evidence supporting the potential benefits of such treatments, specifically targeting immune cells that are responsible for the pathogenesis of MAFLD. By providing new insights into the development of traditional drugs for the treatment of MAFLD, our findings may pave the way for more effective and targeted therapeutic approaches.
Collapse
|
4
|
Kanemitsu-Okada K, Abe M, Nakamura Y, Miyake T, Watanabe T, Yoshida O, Koizumi Y, Hirooka M, Tokumoto Y, Matsuura B, Koizumi M, Hiasa Y. Role of B Cell-Activating Factor in Fibrosis Progression in a Murine Model of Non-Alcoholic Steatohepatitis. Int J Mol Sci 2023; 24:ijms24032509. [PMID: 36768854 PMCID: PMC9916461 DOI: 10.3390/ijms24032509] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease all over the world. Therapeutic strategies targeting its multidirectional pathways are required. Particularly, fibrosis is closely associated with its prognosis. We previously found that B cell-activating factor (BAFF) is associated with severity of NAFLD. Here, we determined the direct in vivo role of BAFF in the development of liver fibrosis. Histological and biochemical analyses were performed using wild-type and BAFF-deficient mice. We established a murine model of non-alcoholic steatohepatitis (NASH) using carbon tetrachloride injection accompanied by high-fat/high-cholesterol diet feeding. Additionally, in vitro analysis using mouse macrophage-like cell line RAW264.7 and primary hepatic stellate cells was performed. Hepatic steatosis and inflammation, and most importantly, the progression of liver fibrosis, were ameliorated in BAFF-deficient mice compared to those wild-type mice in our model. Additionally, BAFF deficiency reduced the number of CD11c+ M1-type macrophages in the liver. Moreover, BAFF stimulated RAW264.7 cells to secrete nitric oxide and tumor necrosis factor α, which drove the activation of hepatic stellate cells. This indicates that BAFF plays a crucial role in NASH development and may be a promising therapeutic target for NASH.
Collapse
|
5
|
Tourkochristou E, Assimakopoulos SF, Thomopoulos K, Marangos M, Triantos C. NAFLD and HBV interplay - related mechanisms underlying liver disease progression. Front Immunol 2022; 13:965548. [PMID: 36544761 PMCID: PMC9760931 DOI: 10.3389/fimmu.2022.965548] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 12/08/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and Hepatitis B virus infection (HBV) constitute common chronic liver diseases with worldwide distribution. NAFLD burden is expected to grow in the coming decade, especially in western countries, considering the increased incidence of diabetes and obesity. Despite the organized HBV vaccinations and use of anti-viral therapies globally, HBV infection remains endemic and challenging public health issue. As both NAFLD and HBV have been associated with the development of progressive fibrosis, cirrhosis and hepatocellular carcinoma (HCC), the co-occurrence of both diseases has gained great research and clinical interest. The causative relationship between NAFLD and HBV infection has not been elucidated so far. Dysregulated fatty acid metabolism and lipotoxicity in NAFLD disease seems to initiate activation of signaling pathways that enhance pro-inflammatory responses and disrupt hepatocyte cell homeostasis, promoting progression of NAFLD disease to NASH, fibrosis and HCC and can affect HBV replication and immune encountering of HBV virus, which may further have impact on liver disease progression. Chronic HBV infection is suggested to have an influence on metabolic changes, which could lead to NAFLD development and the HBV-induced inflammatory responses and molecular pathways may constitute an aggravating factor in hepatic steatosis development. The observed altered immune homeostasis in both HBV infection and NAFLD could be associated with progression to HCC development. Elucidation of the possible mechanisms beyond HBV chronic infection and NAFLD diseases, which could lead to advanced liver disease or increase the risk for severe complications, in the case of HBV-NAFLD co-existence is of high clinical significance in the context of designing effective therapeutic targets.
Collapse
Affiliation(s)
- Evanthia Tourkochristou
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Stelios F. Assimakopoulos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece,*Correspondence: Stelios F. Assimakopoulos,
| | - Konstantinos Thomopoulos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Markos Marangos
- Division of Infectious Diseases, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
6
|
Lamadrid P, Alonso-Peña M, San Segundo D, Arias-Loste M, Crespo J, Lopez-Hoyos M. Innate and Adaptive Immunity Alterations in Metabolic Associated Fatty Liver Disease and Its Implication in COVID-19 Severity. Front Immunol 2021; 12:651728. [PMID: 33859644 PMCID: PMC8042647 DOI: 10.3389/fimmu.2021.651728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
The coronavirus infectious disease 2019 (COVID-19) pandemic has hit the world, affecting health, medical care, economies and our society as a whole. Furthermore, COVID-19 pandemic joins the increasing prevalence of metabolic syndrome in western countries. Patients suffering from obesity, type II diabetes mellitus, cardiac involvement and metabolic associated fatty liver disease (MAFLD) have enhanced risk of suffering severe COVID-19 and mortality. Importantly, up to 25% of the population in western countries is susceptible of suffering from both MAFLD and COVID-19, while none approved treatment is currently available for any of them. Moreover, it is well known that exacerbated innate immune responses are key in the development of the most severe stages of MAFLD and COVID-19. In this review, we focus on the role of the immune system in the establishment and progression of MAFLD and discuss its potential implication in the development of severe COVID-19 in MAFLD patients. As a result, we hope to clarify their common pathology, but also uncover new potential therapeutic targets and prognostic biomarkers for further research.
Collapse
Affiliation(s)
- Patricia Lamadrid
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - Marta Alonso-Peña
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - David San Segundo
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Mayte Arias-Loste
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Javier Crespo
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Marcos Lopez-Hoyos
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| |
Collapse
|
7
|
Joshi SS, Davis RP, Ma MM, Tam E, Cooper CL, Ramji A, Kelly EM, Jayakumar S, Swain MG, Jenne CN, Coffin CS. Reduced immune responses to hepatitis B primary vaccination in obese individuals with nonalcoholic fatty liver disease (NAFLD). NPJ Vaccines 2021; 6:9. [PMID: 33431890 PMCID: PMC7801497 DOI: 10.1038/s41541-020-00266-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity and cirrhosis are associated with poor hepatitis B virus (HBV) vaccine responses, but vaccine efficacy has not been assessed in nonalcoholic fatty liver disease (NAFLD). Sixty-eight HBV-naïve adults with NAFLD were enrolled through the Canadian HBV network and completed three-dose HBV or HBV/HAV vaccine (Engerix-B®, or Twinrix®, GlaxoSmithKline). Anti-HBs titers were measured at 1-3 months post third dose. In 31/68 subjects enrolled at the coordinating-site, T-cell proliferation and follicular T-helper cells (pTFH) were assessed using PBMC. Immune response was also studied in NAFLD mice. NAFLD patients were stratified as low-risk-obesity, BMI < 35 (N = 40) vs. medium-high-risk obesity, BMI > 35 (N = 28). Anti-HBs titers were lower in medium/high-risk obesity, 385 IU/L ± 79 vs. low-risk obesity class, 642 IU/L ± 68.2, p = 0.02. High-risk obesity cases, N = 14 showed lower vaccine-specific-CD3+ CD4+ T-cell response compared to low-risk obesity patients, N = 17, p = 0.02. Low vaccine responders showed dysfunctional pTFH. NAFLD mice showed lower anti-HBs levels and T-cell response vs. controls. In conclusion, we report here that obese individuals with NAFLD exhibit decreased HBV vaccine-specific immune responses.
Collapse
Affiliation(s)
- Shivali S Joshi
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Rachelle P Davis
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mang M Ma
- University of Alberta, Edmonton, AB, Canada
| | - Edward Tam
- Pacific Gastroenterology Associates, Vancouver, BC, Canada
| | | | - Alnoor Ramji
- Division of Gastroenterology, University of British Columbia, Vancouver, BC, Canada
| | - Erin M Kelly
- Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Saumya Jayakumar
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- University of British Columbia, Vancouver, BC, Canada
| | - Mark G Swain
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Craig N Jenne
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Carla S Coffin
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
8
|
Jaiswal AK, Makhija S, Stahr N, Sandey M, Suryawanshi A, Saxena A, Dagur PK, McCoy JP, Levine SJ, Mishra A. Dendritic Cell-Restricted Progenitors Contribute to Obesity-Associated Airway Inflammation via Adam17-p38 MAPK-Dependent Pathway. Front Immunol 2020; 11:363. [PMID: 32184787 PMCID: PMC7058657 DOI: 10.3389/fimmu.2020.00363] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/14/2020] [Indexed: 01/08/2023] Open
Abstract
Proliferation of dendritic cell (DC)—restricted progenitor cells in bone marrow compartment is tightly regulated at steady state and responds to multiple tissue-specific triggers during disturbed homeostasis such as obesity. DCs in the lung stem from a rapidly dividing DC-restricted progenitor cells and are effective at generating adaptive immune responses in allergic airway inflammation. Precisely, how DC-restricted progenitor expansion and differentiation are influenced by airway inflammation to maintain constant supply of myeloid DCs is poorly understood. Here we show that a high fat diet (HFD) induces oxidative stress and accelerates the expansion of DC- restricted progenitor cells in bone marrow and correlates with persistent induction of p38 mitogen activated protein kinase (MAPK), which is blocked with a selective p38α/β MAPK inhibitor. Mice fed a HFD and sensitized to inhaled allergen house dust mite (HDM) led to alterations of DC- restricted progenitor cells that were characterized by increased expansion and seeding of lung DCs in airway inflammation. Mechanistically, we establish that the expansion induced by HFD dysregulates the expression of a disintegrin and metallopeptidase domain 17 (Adam17) and is required for p38 MAPK activation in DC-restricted progenitors. These results demonstrates that obesity produces persistent changes in DC precursors and that elevation of Adam17 expression is tightly coupled to p38 MAPK and is a key driver of proliferation. Altogether, these data provide phenotypic and mechanistic insight into dendritic cell supply chain in obesity-associated airway inflammation.
Collapse
Affiliation(s)
- Anil Kumar Jaiswal
- Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Sangeet Makhija
- Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Natalie Stahr
- Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Ankit Saxena
- Flow Cytometry Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Pradeep K Dagur
- Flow Cytometry Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - J Philip McCoy
- Flow Cytometry Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Amarjit Mishra
- Laboratory of Lung Inflammation, College of Veterinary Medicine, Auburn University, Auburn, AL, United States.,Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
9
|
Brombacher EC, Everts B. Shaping of Dendritic Cell Function by the Metabolic Micro-Environment. Front Endocrinol (Lausanne) 2020; 11:555. [PMID: 33013685 PMCID: PMC7493661 DOI: 10.3389/fendo.2020.00555] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Nutrients are required for growth and survival of all cells, but are also crucially involved in cell fate determination of many cell types, including immune cells. There is a growing appreciation that the metabolic micro-environment also plays a major role in shaping the functional properties of dendritic cells (DCs). Under pathological conditions nutrient availability can range from a very restricted supply, such as seen in a tumor micro-environment, to an overabundance of nutrients found in for example obese adipose tissue. In this review we will discuss what is currently known about the metabolic requirements for DC differentiation and immunogenicity and compare that to how function and fate of DCs under pathological conditions can be affected by alterations in environmental levels of carbohydrates, lipids and amino acids as well as by other metabolic cues, including availability of oxygen, redox homeostasis and lactate levels. Many of these insights have been generated using in vitro model systems, which have revealed highly diverse effects of different metabolic cues on DC function. However, they also stress the importance of shifting toward more physiologically relevant experimental settings to be able to fully delineate the role of the metabolic surroundings in its full complexity in shaping the functional properties of DCs in health and disease.
Collapse
|
10
|
Expression and detection of anti-HBs antibodies after hepatitis B virus infection or vaccination in the context of protective immunity. Arch Virol 2019; 164:2645-2658. [DOI: 10.1007/s00705-019-04369-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022]
|
11
|
Liu R, Nikolajczyk BS. Tissue Immune Cells Fuel Obesity-Associated Inflammation in Adipose Tissue and Beyond. Front Immunol 2019; 10:1587. [PMID: 31379820 PMCID: PMC6653202 DOI: 10.3389/fimmu.2019.01587] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
Obesity-associated inflammation stems from a combination of cell-intrinsic changes of individual immune cell subsets and the dynamic crosstalk amongst a broad array of immune cells. Although much of the focus of immune cell contributions to metabolic disease has focused on adipose tissue-associated cells, these potent sources of inflammation inhabit other metabolic regulatory tissues, including liver and gut, and recirculate to promote systemic inflammation and thus obesity comorbidities. Tissue-associated immune cells, especially T cell subpopulations, have become a hotspot of inquiry based on their contributions to obesity, type 2 diabetes, non-alcoholic fatty liver diseases and certain types of cancers. The cell-cell interactions that take place under the stress of obesity are mediated by intracellular contact and cytokine production, and constitute a complicated network that drives the phenotypic alterations of immune cells and perpetuates a feed-forward loop of metabolic decline. Herein we discuss immune cell functions in various tissues and obesity-associated cancers from the viewpoint of inflammation. We also emphasize recent advances in the understanding of crosstalk amongst immune cell subsets under obese conditions, and suggest future directions for focused investigations with clinical relevance.
Collapse
Affiliation(s)
- Rui Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Barbara S. Nikolajczyk
- Department of Pharmacology and Nutritional Sciences, Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
12
|
Ou R, Liu J, Lv M, Wang J, Wang J, Zhu L, Zhao L, Xu Y. Neutrophil depletion improves diet-induced non-alcoholic fatty liver disease in mice. Endocrine 2017; 57:72-82. [PMID: 28508193 DOI: 10.1007/s12020-017-1323-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE Non-alcoholic fatty liver disease is highly associated with morbidity and mortality in population. Although studies have already demonstrated that the immune response plays a pivotal role in the development of non-alcoholic fatty liver disease, the comprehensive regulation is unclear. Therefore, present study was carried out to investigate the non-alcoholic fatty liver disease development under neutrophil depletion. METHODS To achieve the aim of the study, C57BL/6 J mice were fed with high fat diet for 6 weeks before treated with neutrophil deplete antibody 1A8 or isotype control (200 μg/ mouse every week) for another 4 weeks. RESULTS Treated with 1A8 antibody, obese mice exhibited better whole body metabolic parameters, including reduction of body weight gain and fasting blood glucose levels. Neutrophil depletion also effectively reduced hepatic structural disorders, dysfunction and lipid accumulation. Lipid β-oxidative markers, phosphorylated-AMP-activated protein kinase α and phosphorylated-acetyl-CoA carboxylase levels were increased in 1A8 antibody-treated obese mouse group. The mitochondrial number and function were also reversed after 1A8 antibody treatment, including increased mitochondrial number, reduced lipid oxidative damage and enhanced mitochondrial activity. Furthermore, the expression of inflammatory cytokines, tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1 were obviously reduced after neutrophil depletion, accompanied with decreased F4/80 mRNA level and macrophage percentage in liver. The decreased NF-κB signaling activity was also involved in the beneficial effect of neutrophil depletion. CONCLUSION Taken together, neutrophil depletion could attenuate metabolic syndromes and hepatic dysfunction.
Collapse
Affiliation(s)
- Rongying Ou
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jia Liu
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mingfen Lv
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingying Wang
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinmeng Wang
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Zhu
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Zhao
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Division of PET/CT, Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Yunsheng Xu
- Laboratory for Advanced Interdisciplinary Research, Institutes of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Department of Dermatovenereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
13
|
Liu F, Guo Z, Dong C. Influences of obesity on the immunogenicity of Hepatitis B vaccine. Hum Vaccin Immunother 2017; 13:1014-1017. [PMID: 28059607 DOI: 10.1080/21645515.2016.1274475] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Hepatitis B vaccine is regarded as the most effective method for the prevention of hepatitis B virus (HBV) infection. However, several factors such as age, body mass index and immunocompetent state have been reported to be associated with reduced immunization responses. The present commentary was aimed to discuss the influences of obesity on the immunogenicity of hepatitis B vaccines. DATA SOURCES Available peer-reviewed literatures, practice guidelines, and statistics published on hepatitis B vaccine in obesity between 1973 and 2015. CONCLUSIONS Obesity was significantly associated with non-response to hepatitis B vaccine immunization. The risk of nonresponsiveness of hepatitis B vaccine among obese people increased with BMI. Moreover, the obesity might lead to an increased risk of HBV vaccine-escape mutations. The mechanism responsible for decreased immunization responses in obesity included leptin-induced systemic and B cell intrinsic inflammation, impaired T cell responses and lymphocyte division and proliferation. Therefore, more studies should be performed to analyze the influences of obesity on the immunogenicity of hepatitis B vaccines to improve the immunoprotecive effect of hepatitis B vaccines in future.
Collapse
Affiliation(s)
- Fang Liu
- a Suzhou Center for Disease Control and Prevention , Suzhou , China
| | - Zhirong Guo
- b Department of Epidemiology and Statistics , School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou , Jiangsu , China
| | - Chen Dong
- b Department of Epidemiology and Statistics , School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University , Suzhou , Jiangsu , China
| |
Collapse
|
14
|
Narayanan S, Surette FA, Hahn YS. The Immune Landscape in Nonalcoholic Steatohepatitis. Immune Netw 2016; 16:147-58. [PMID: 27340383 PMCID: PMC4917398 DOI: 10.4110/in.2016.16.3.147] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 02/08/2023] Open
Abstract
The liver lies at the intersection of multiple metabolic pathways and consequently plays a central role in lipid metabolism. Pathological disturbances in hepatic lipid metabolism are characteristic of chronic metabolic diseases, such as obesity-mediated insulin resistance, which can result in nonalcoholic fatty liver disease (NAFLD). Tissue damage induced in NAFLD activates and recruits liver-resident and non-resident immune cells, resulting in nonalcoholic steatohepatitis (NASH). Importantly, NASH is associated with an increased risk of significant clinical sequelae such as cirrhosis, cardiovascular diseases, and malignancies. In this review, we describe the immunopathogenesis of NASH by defining the known functions of immune cells in the progression and resolution of disease.
Collapse
Affiliation(s)
- Sowmya Narayanan
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908, USA.; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Fionna A Surette
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Young S Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia 22908, USA.; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
15
|
Nati M, Haddad D, Birkenfeld AL, Koch CA, Chavakis T, Chatzigeorgiou A. The role of immune cells in metabolism-related liver inflammation and development of non-alcoholic steatohepatitis (NASH). Rev Endocr Metab Disord 2016; 17:29-39. [PMID: 26847547 DOI: 10.1007/s11154-016-9339-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The low grade inflammatory state present in obesity promotes the progression of Non-Alcoholic Fatty Liver Disease (NAFLD). In Non-Alcoholic Steatohepatitis (NASH), augmented hepatic steatosis is accompanied by aberrant intrahepatic inflammation and exacerbated hepatocellular injury. NASH is an important disorder and can lead to fibrosis, cirrhosis and even neoplasia. The pathology of NASH involves a complex network of mechanisms, including increased infiltration of different subsets of immune cells, such as monocytes, T-lymphocytes and neutrophils, to the liver, as well as activation and in situ expansion of liver resident cells such as Kupffer cells or stellate cells. In this review, we summarize recent advances regarding understanding the role of the various cells of the innate and adaptive immunity in NASH development and progression, and discuss possible future therapeutic options and tools to interfere with disease progression.
Collapse
Affiliation(s)
- Marina Nati
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, MTZ, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - David Haddad
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, MTZ, Fiedlerstrasse 42, 01307, Dresden, Germany
| | - Andreas L Birkenfeld
- Section of Metabolic Vascular Medicine, Medical Clinic III, Faculty of Medicine, TU Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Division of Diabetes and Nutritional Sciences, Rayne Institute, King's College London, London, UK
| | - Christian A Koch
- Division of Endocrinology, Endocrine Tumor Program, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, MTZ, Fiedlerstrasse 42, 01307, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Faculty of Medicine, Technische Universität Dresden, MTZ, Fiedlerstrasse 42, 01307, Dresden, Germany.
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
16
|
Abstract
Low-grade inflammation in the obese AT (AT) and the liver is a critical player in the development of obesity-related metabolic dysregulation, including insulin resistance, type 2 diabetes and non-alcoholic steatohepatitis (NASH). Myeloid as well as lymphoid cells infiltrate the AT and the liver and expand within these metabolic organs as a result of excessive nutrient intake, thereby exacerbating tissue inflammation. Macrophages are the paramount cell population in the field of metabolism-related inflammation; as obesity progresses, a switch takes place within the AT environment from an M2-alternatively activated macrophage state to an M1-inflammatory macrophage-dominated milieu. M1-polarized macrophages secrete inflammatory cytokines like TNF in the obese AT; such cytokines contribute to insulin resistance in adipocytes. Besides macrophages, also CD8+ T cells promote inflammation in the AT and the liver and thereby the deterioration of the metabolic balance in adipocytes and hepatocytes. Other cells of the innate immunity, such as neutrophils or mast cells, interfere with metabolic homeostasis as well. On the other hand, eosinophils or T-regulatory cells, the number of which in the AT decreases in the course of obesity, function to maintain metabolic balance by ameliorating inflammatory processes. In addition, eosinophils and M2-polarized macrophages may contribute to "beige" adipogenesis under lean conditions; beige adipocytes are located predominantly in the subcutaneous AT and have thermogenic and optimal energy-dispensing properties like brown adipocytes. This chapter will summarize the different aspects of the regulation of homeostasis of metabolic tissues by immune cells.
Collapse
Affiliation(s)
- Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany.
- Paul Langerhans Institute Dresden, German Center for Diabetes Research, Dresden, Germany.
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden, German Center for Diabetes Research, Dresden, Germany
| |
Collapse
|
17
|
Ohira H. Spleen and Liver. THE LIVER IN SYSTEMIC DISEASES 2016. [PMCID: PMC7122130 DOI: 10.1007/978-4-431-55790-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In liver cirrhosis, the spleen is a source of nitric oxide which affects a hyperdynamic state typical of portal hypertension. It is generally accepted that pancytopenia results predominantly from the increased phagocytosis and destruction of hemocytes in splenic macrophages. In addition, liver fibrosis is amplified by migrated Th2 lymphocytes and transforming growth factor beta from the spleen. There is a possibility that increase of the spleen stiffness is the primary factor of idiopathic portal hypertension. Spleen stiffness is caused by bleeding, fibrosis, and calcareous deposits after increase in red pulp pressure due to venous congestion. In nonalcoholic steatohepatitis, macrophage activity in the spleen is upregulated. In addition, high levels of inflammatory cytokines are produced and T cell shows increased proliferation in the spleen. In autoimmune hepatitis model, CD4+ T cells are differentiated into follicular helper T cells (TFH) in the spleen. TFH cells promoted hypergammaglobulinemia and antinuclear antibodies production. TFH cells migrate from the spleen to the liver, triggering induction of autoimmune hepatitis in this model. IgM-positive B cells localize in the CD21-positive lymph follicle in the spleen of primary biliary cholangitis. These findings prove that the spleen influences on the pathogenesis and severity of several kinds of liver disease.
Collapse
Affiliation(s)
- Hiromasa Ohira
- Dept. Gastroenterology & Rheumatogy, Fukushima Med. Univ. School of Med., Fukushima, Fukushima Japan
| |
Collapse
|
18
|
Arain SQ, Talpur FN, Channa NA. A comparative study of serum lipid contents in pre and post IFN-alpha treated acute hepatitis C patients. Lipids Health Dis 2015; 14:117. [PMID: 26403989 PMCID: PMC4582939 DOI: 10.1186/s12944-015-0119-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/14/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND To study the effect of Interferon (INF) alpha-2b therapy on the serum lipids and fatty acid (FA) level in pre and post treated hepatitis C (HCV) patients. METHODS Fifty samples were collected from pre and post treated patients along with age and gender matched controls. After separating serum, lipid contents were analyzed by microlab and gas chromatography. RESULTS The hepatitis C infection results in hypolipidemia with reduced level of triglyceride (113 mg/dl), high density lipoprotein (37.1 mg/dl), low density lipoprotein (74.3 mg/dl), cholesterol (149.9 mg/dl) that increase the infection resolution and after the IFN treatment, the lipid profile of the patients were increased. The myristic (2.8 g/100 g) and palmitic acids (26.6 g/100 g) were significantly higher while linoleic acid (20.94 g/100 g) was significantly lower in HCV patients. The higher oleic: stearic (1.4) and palmitoleic: palmitic acid (0.2) ratios were detected in HCV patients, showing enhanced stearoyl-CoA desaturase activity. The levels of serum saturated (44.9 g/100 g) and monounsaturated FA's (26.98 g/100 g) were higher while polyunsaturated FA's (25.9 g/100 g) were found lower in HCV patients in comparison of controls (40.1; 25.01; 33.44 g/100 g respectively). An inverse correlation was found HCV RNA viral load and PUFA (R(2) = 0.4555). Elevated levels of serum saturated free FA (45.7 g/100 g) in HCV patients indicates stimulated lipoapoptosis. CONCLUSION The present study conclude that serum PUFA level was lower in HCV patients, hence PUFA may provide synergistic antiviral effects when given as a food supplement during the INF based anti- HCV therapy.
Collapse
Affiliation(s)
- Sadia Qamar Arain
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.,Institute of Biochemistry University of Sindh, Jamshoro, Pakistan
| | - Farah Naz Talpur
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | | |
Collapse
|
19
|
Chen S, Akbar SMF, Miyake T, Abe M, Al-Mahtab M, Furukawa S, Bunzo M, Hiasa Y, Onji M. Diminished immune response to vaccinations in obesity: role of myeloid-derived suppressor and other myeloid cells. Obes Res Clin Pract 2015; 9:35-44. [PMID: 25660173 DOI: 10.1016/j.orcp.2013.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 02/05/2023]
Abstract
Obesity is a chronic inflammatory condition associated with an increased production of cytokines and exacerbated immune response. However, obese subjects are susceptible to infections and respond poorly to vaccines. This study evaluated the immune responses of obese mice and the underlying mechanisms by exploring the roles of myeloid cells. Diet-induced obese (DIO) mice were prepared from C57BL/6J mice fed a high-calorie and high-fat diet for 12 weeks. Humoral and cellular immune responses of DIO mice to a hepatitis B vaccine containing the hepatitis B surface antigen (HBsAg) were assessed in sera and via a lymphoproliferative assay, respectively. The effects of CD11b(+)GR1(+) myeloid-derived suppressor cells (MDSC) and CD11b(+)GR1(-) non-MDSC on T cell proliferation and cytokine production were compared via a cell culture system. The production of cytokines, expression of activation and exhaustion markers, and proportions of apoptotic T cells were estimated with flow cytometry. Increased T and B lymphocyte proliferation and higher interferon-γ and tumor necrosis factor-α levels were detected in spleen cells and liver non-parenchymal cell cultures of DIO mice compared to controls (p<0.05). However, antibody to HBsAg (anti-HBs) levels and HBsAg-specific T cell proliferation were significantly lower in DIO mice compared to controls (p<0.05). The addition of MDSC, but not non-MDSC, induced a decrease in HBsAg-specific T cell proliferation, lower cytokine production, decrease in T cell activation, and increase in T cell exhaustion and apoptosis (p<0.05). MDSC play an important role in mediating impaired antigen-specific immunity.
Collapse
Affiliation(s)
- Shiyi Chen
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan; Department of Endocrinology and Rheumatology, The Second Affiliated Hospital of Shantou University Medical College, Guangdong, China
| | | | - Teruki Miyake
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Masanori Abe
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Mamun Al-Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Shinya Furukawa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Matsuura Bunzo
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Morikazu Onji
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| |
Collapse
|
20
|
Ivanovic N, Minic R, Dimitrijevic L, Radojevic Skodric S, Zivkovic I, Djordjevic B. Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influence metabolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis. Food Funct 2015; 6:558-65. [DOI: 10.1039/c4fo00843j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TwoLactobacillusstrains were evaluated for their effects on high fat diet induced pathology in mice.
Collapse
Affiliation(s)
- Nevena Ivanovic
- Department of Bromatology
- Faculty of Pharmacy
- University of Belgrade
- Belgrade
- Serbia
| | - Rajna Minic
- Department of Research and Development
- Institute of Virology
- Belgrade
- Serbia
| | | | | | - Irena Zivkovic
- Department of Research and Development
- Institute of Virology
- Belgrade
- Serbia
| | - Brizita Djordjevic
- Department of Bromatology
- Faculty of Pharmacy
- University of Belgrade
- Belgrade
- Serbia
| |
Collapse
|
21
|
Al-Mahtab M, Akbar SMF, Aguilar JC, Uddin MH, Khan MSI, Rahman S. Therapeutic potential of a combined hepatitis B virus surface and core antigen vaccine in patients with chronic hepatitis B. Hepatol Int 2013. [PMID: 26202028 DOI: 10.1007/s12072-013-9486-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The safety and clinical efficacy of a vaccine containing both hepatitis B surface antigen (HBsAg) and hepatitis B core antigen (HBcAg) (HBsAg/HBcAg) were evaluated in patients with chronic hepatitis B (CHB). METHODS Eighteen patients with CHB were administered a vaccine containing 100 μg of HBsAg and 100 μg of HBcAg. The vaccine was administered ten times at 2-weekly intervals, the first five times via the nasal route only and the subsequent five times via both nasal and subcutaneous routes. The safety and efficacy of this therapeutic approach were assessed by periodic assessment of the patients' general condition, viral kinetics, and biochemical parameters during treatment and 24 and 48 weeks after therapy. The production of cytokines by peripheral blood mononuclear cells (PBMC) and antigen-pulsed dendritic cells (DC) was evaluated to assess the immunomodulatory effects of the HBsAg/HBcAg vaccine in CHB patients. RESULTS The HBsAg/HBcAg vaccine was safe in all patients. No flare of HBV DNA or alanine aminotransferase (ALT) was recorded in any patient. Sustained HBV DNA negativity and persistently normalized ALT were detected in 9 (50 %) and 18 (100 %) patients with CHB, respectively. PBMC and HBsAg/HBcAg-pulsed DCs from HBsAg/HBcAg-vaccinated CHB patients produced significantly higher levels of various cytokines [interleukin 1β (IL-1β), IL-6, IL-8, IL-12, and tumor necrosis factor α (TNF-α)] than those from control unvaccinated CHB patients (p < 0.05) after stimulation with HBsAg/HBcAg in vitro. CONCLUSION HBsAg/HBcAg vaccine seems a safe and efficient therapeutic approach for patients with CHB.
Collapse
Affiliation(s)
- Mamun Al-Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh.
| | | | | | | | | | - Salimur Rahman
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh.
| |
Collapse
|
22
|
Tacke F, Yoneyama H. From NAFLD to NASH to fibrosis to HCC: role of dendritic cell populations in the liver. Hepatology 2013; 58:494-6. [PMID: 23519833 DOI: 10.1002/hep.26405] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 03/15/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Frank Tacke
- Department of Medicine III; University Hospital Aachen; Aachen Germany
| | | |
Collapse
|
23
|
Tarantino G, Scalera A, Finelli C. Liver-spleen axis: Intersection between immunity, infections and metabolism. World J Gastroenterol 2013; 19:3534-3542. [PMID: 23801854 PMCID: PMC3691032 DOI: 10.3748/wjg.v19.i23.3534] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/19/2013] [Indexed: 02/06/2023] Open
Abstract
Spleen has been considered a neglected organ so far, even though is strictly linked to liver. The spleen plays an important role in the modulation of the immune system and in the maintenance of peripheral tolerance via the clearance of circulating apoptotic cells, the differentiation and activation of T and B cells and production of antibodies in the white pulp. Moreover, splenic macrophages are able to remove bacteria from the blood and protect from sepsis during systemic infections. We review the spleen function and its assessment in humans starting from the description of spleen diseases, ranging from the congenital asplenia to secondary hyposplenism. From the literature data it is clear that obesity in humans affects different compartments of immune system, even thought there are still few data available on the implicated mechamisms. The intent is to enable clinicians to evaluate the newly recognized role of metabolic and endocrine functions of the spleen with special emphasis to obesity and nonalcoholic fatty liver disease in the context of the available literature. Moreover, understanding the spleen function could be important to develop appropriate prevention strategies in order to counteract the pandemia of obesity. In this direction, we suggest spleen longitudinal diameter at ultrasonography, as simple, cheap and largely available tool, be used as new marker for assessing splenic function, in the context of the so-called liver-spleen axis.
Collapse
|
24
|
Tada F, Abe M, Kawasaki K, Miyake T, Shiyi C, Hiasa Y, Matsuura B, Onji M. B cell activating factor in obesity is regulated by oxidative stress in adipocytes. J Clin Biochem Nutr 2013; 52:120-7. [PMID: 23525857 PMCID: PMC3593128 DOI: 10.3164/jcbn.12-115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/06/2012] [Indexed: 12/19/2022] Open
Abstract
Adipose tissue functions as a key endocrine organ by releasing multiple bioactive substances, and plays a key role in the integration of systemic metabolism. We have previously shown that B cell activating factor is produced mainly in visceral adipose tissue and affects insulin sensitivity in obese individuals. In this study, we identified the signals that lead to production of B cell activating factor in adipocytes. 3T3-L1 and C3H/10T 1/2-clone 8 cells showed increased B cell activating factor expression upon exposure to hydrogen peroxide, and these changes were inhibited by treatment with the antioxidant N-acetyl-cysteine. B cell activating factor levels in both serum and visceral adipose tissue were increased in high fat diet-fed mice, and these increases were correlated with oxidative stress. In addition, serum BAFF levels in high fat diet-fed mice were reduced by N-acetyl-cysteine treatment. We also found that oxidative stress-induced B cell activating factor expression in adipocytes was regulated by NF-κB activation. These data indicate that control of the redox state in visceral adipose tissue is a potentially useful target for treating metabolic syndromes through regulation of adipokine production.
Collapse
Affiliation(s)
- Fujimasa Tada
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shitsukawa, To-on, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Miyake T, Hiasa Y, Hirooka M, Tokumoto Y, Watanabe T, Furukawa S, Ueda T, Yamamoto S, Kumagi T, Miyaoka H, Abe M, Matsuura B, Onji M. High serum palmitic acid is associated with low antiviral effects of interferon-based therapy for hepatitis C virus. Lipids 2012; 47:1053-62. [PMID: 22983804 DOI: 10.1007/s11745-012-3716-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 08/27/2012] [Indexed: 01/01/2023]
Abstract
Hepatitis C virus (HCV) infection alters fatty acid synthesis and metabolism in association with HCV replication. The present study examined the effect of serum fatty acid composition on interferon (IFN)-based therapy. Fifty-five patients with HCV were enrolled and received IFN-based therapy. Patient characteristics, laboratory data (including fatty acids), and viral factors that could be associated with the anti-HCV effects of IFN-based therapy were evaluated. The effects of individual fatty acids on viral replication and IFN-based therapy were also examined in an in-vitro system. Multivariate logistic regression analysis showed that the level of serum palmitic acid before treatment and HCV genotype were significant predictors for rapid virological response (RVR), early virological response (EVR), and sustained virological response (SVR). High levels of palmitic acid inhibited the anti-HCV effects of IFN-based therapy. HCV replication assays confirmed the inhibitory effects of palmitic acid on anti-HCV therapy. The concentration of serum palmitic acid is an independent predictive factor for RVR, EVR, and SVR in IFN-based antiviral therapy. These results suggest that the effect of IFN-based antiviral therapy in patients with HCV infection might be enhanced by treatment that modulates palmitic acid levels.
Collapse
Affiliation(s)
- Teruki Miyake
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Fukada H, Yamashina S, Izumi K, Komatsu M, Tanaka K, Ikejima K, Watanabe S. Suppression of autophagy sensitizes Kupffer cells to endotoxin. Hepatol Res 2012; 42:1112-8. [PMID: 22583683 DOI: 10.1111/j.1872-034x.2012.01024.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Recent evidence suggests that protein degradation system autophagy is implicated in a component of innate immunity. We report here that suppression of autophagy in Kupffer cells due to hepatic steatosis enhances an inflammatory response to endotoxin. METHODS Kupffer cells were isolated from C57BL/6J mice fed chow diet (control) or high-fat diet (HFD) for 12 weeks, liver-specific autophagy-deficient mice (Atg7(F/F) :Mx1-Cre) and wild-type mice (Atg7(F/F) ). Kupffer cells were incubated with 100 ng/mL lipopolysaccharide (LPS). The concentration of tumor necrosis factor (TNF)-α in media was measured by enzyme-linked immunoassay. Expression of Toll-like receptor (TLR)4, IκB kinase (IKK)-α/β, p38, p62 and LC3 in Kupffer cells was evaluated by western blot analysis. RESULTS Incubation with LPS increased LC3-II expression of Kupffer cells from control mice; however, an increase in LC3-II expression due to LPS was suppressed in Kupffer cells from HFD mice. Moreover, both p62 expression and TNF-α production in Kupffer cells from HFD mice was higher than control mice. On the other hand, LPS exposure increased TNF-α production from autophagy-deficient Kupffer cells more than wild type. There was no significant difference in expression of TLR4 between wild and autophagy-deficient Kupffer cells. Nevertheless, activation of p38 or IKK in Kupffer cells due to LPS was augmented by autophagy deficiency. The addition of the p38 inhibitor SB203580 attenuated TNF-α production in both wild and autophagy-deficient Kupffer cells. CONCLUSION These results suggest that suppression of autophagy observed in Kupffer cells from steatotic liver sensitizes to endotoxin. In conclusion, suppression of autophagy may play a pivotal role on progression of NAFLD.
Collapse
Affiliation(s)
- Hiroo Fukada
- Department of Gastroenterology, Juntendo University School of Medicine Protein Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Schmidt SV, Nino-Castro AC, Schultze JL. Regulatory dendritic cells: there is more than just immune activation. Front Immunol 2012; 3:274. [PMID: 22969767 PMCID: PMC3432880 DOI: 10.3389/fimmu.2012.00274] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/10/2012] [Indexed: 12/11/2022] Open
Abstract
The immune system exists in a delicate equilibrium between inflammatory responses and tolerance. This unique feature allows the immune system to recognize and respond to potential threats in a controlled but normally limited fashion thereby preventing a destructive overreaction against healthy tissues. While the adaptive immune system was the major research focus concerning activation vs. tolerance in the immune system more recent findings suggest that cells of the innate immune system are important players in the decision between effective immunity and induction of tolerance or immune inhibition. Among immune cells of the innate immune system dendritic cells (DCs) have a special function linking innate immune functions with the induction of adaptive immunity. DCs are the primary professional antigen presenting cells (APCs) initiating adaptive immune responses. They belong to the hematopoietic system and arise from CD34(+) stem cells in the bone marrow. Particularly in the murine system two major subgroups of DCs, namely myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) can be distinguished. DCs are important mediators of innate and adaptive immunity mostly due to their remarkable capacity to present processed antigens via major histocompatibility complexes (MHC) to T cells and B cells in secondary lymphoid organs. A large body of literature has been accumulated during the last two decades describing which role DCs play during activation of T cell responses but also during the establishment and maintenance of central tolerance (Steinman et al., 2003). While the concept of peripheral tolerance has been clearly established during the last years, the role of different sets of DCs and their particular molecular mechanisms of immune deviation has not yet fully been appreciated. In this review we summarize accumulating evidence about the role of regulatory DCs in situations where the balance between tolerance and immunogenicity has been altered leading to pathologic conditions such as chronic inflammation or malignancies.
Collapse
Affiliation(s)
- Susanne V Schmidt
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn Bonn, Germany
| | | | | |
Collapse
|
28
|
Akbar SMF, Chen S, Al-Mahtab M, Abe M, Hiasa Y, Onji M. Strong and multi-antigen specific immunity by hepatitis B core antigen (HBcAg)-based vaccines in a murine model of chronic hepatitis B: HBcAg is a candidate for a therapeutic vaccine against hepatitis B virus. Antiviral Res 2012; 96:59-64. [PMID: 22884884 DOI: 10.1016/j.antiviral.2012.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/24/2012] [Accepted: 07/24/2012] [Indexed: 12/13/2022]
Abstract
Experimental evidence suggests that hepatitis B core antigen (HBcAg)-specific cytotoxic T lymphocytes (CTL) are essential for the control of hepatitis B virus (HBV) replication and prevention of liver damage in patients with chronic hepatitis B (CHB). However, most immune therapeutic approaches in CHB patients have been accomplished with hepatitis B surface antigen (HBsAg)-based prophylactic vaccines with unsatisfactory clinical outcomes. In this study, we prepared HBsAg-pulsed dendritic cells (DC) and HBcAg-pulsed DC by culturing spleen DC from HBV transgenic mice (HBV TM) and evaluated the immunomodulatory capabilities of these antigens, which may serve as a better therapy for CHB. The kinetics of HBsAg, antibody levels against HBsAg (anti-HBs), proliferation of HBsAg- and HBcAg-specific lymphocytes, production of antigen-specific CTL, and activation of endogenous DC were compared between HBV TM vaccinated with either HBsAg- or HBcAg-pulsed DC. Vaccination with HBsAg-pulsed DC induced HBsAg-specific immunity, but failed to induce HBcAg-specific immunity in HBV TM. However, immunization of HBV TM with HBcAg-pulsed DC resulted in: (1) HBsAg negativity, (2) production of anti-HBs, and (3) development of HBsAg- and HBcAg-specific T cells and CTL in the spleen and the liver. Additionally, significantly higher levels of activated endogenous DC were detected in HBV TM immunized with HBcAg-pulsed DC compared to HBsAg-pulsed DC (p<0.05). The capacity of HBcAg to modulate both HBsAg- and HBcAg-specific immunity in HBV TM, and activation of endogenous DC in HBV TM without inducing liver damage suggests that HBcAg should be an integral component of the therapeutic vaccine against CHB.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Medical Sciences, Toshiba General Hospital, Higashi Oi 6-3-22, Shinagawa, Tokyo 140-8522, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Rana D, Duseja A, Dhiman RK, Chawla Y, Arora SK. Maturation defective myeloid dendritic cells in nonalcoholic fatty liver disease patients release inflammatory cytokines in response to endotoxin. Hepatol Int 2012. [DOI: 10.1007/s12072-012-9371-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
30
|
Abstract
PURPOSE B cell-activating factor (BAFF) is expressed in adipocytes and affects lipogenesis and insulin sensitivity. In addition, the BAFF receptor is expressed in visceral adipose tissue and liver. The aim of this study was to analyze serum BAFF levels in patients with nonalcoholic steatohepatitis (NASH) and simple steatosis (SS) and to compare their respective clinical and histological findings. METHODS A total of 96 patients with nonalcoholic fatty liver disease (20 with SS and 76 with NASH) were enrolled and their serum BAFF levels were analyzed. Comprehensive blood chemistry analysis and histological examination of liver samples were also conducted. RESULTS Serum BAFF levels were higher in patients with NASH than in those with SS (p = 0.016). NASH patients with ballooning hepatocytes and advanced fibrosis had higher levels of BAFF in sera (p = 0.016 and p = 0.006, respectively). In addition, the prevalence of NASH increased significantly as the serum BAFF level increased (p = 0.004). Higher serum BAFF levels were found to be an independent risk factor for development of NASH (OR 1.003, 95% CI 1.0003-1.006; p = 0.047). CONCLUSIONS Nonalcoholic steatohepatitis patients had higher levels of serum BAFF than patients with SS, and higher levels were associated with the presence of hepatocyte ballooning and advanced fibrosis. The serum BAFF level may be a useful tool for distinguishing NASH from SS.
Collapse
|
31
|
Kim YH, Kim JK, Kim DJ, Nam JH, Shim SM, Choi YK, Lee CH, Poo H. Diet-induced obesity dramatically reduces the efficacy of a 2009 pandemic H1N1 vaccine in a mouse model. J Infect Dis 2011; 205:244-51. [PMID: 22147801 DOI: 10.1093/infdis/jir731] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Obesity, a risk factor for increased severity of diverse diseases, is believed to have negative impact on vaccine efficacy. Recently, mortality has emerged as an outcome of pandemic influenza A virus subtype H1N1, necessitating development of effective vaccine strategies. Here we investigated effects of diet-induced obesity on vaccine-induced immune responses and protective efficacy against pandemic H1N1 influenza virus. METHODS Diet-induced obese and lean C57BL/6J mice were immunized with commercial monovalent 2009 H1N1 vaccine, and antigen-specific antibody responses and neutralizing activities were observed. Following vaccination, mice were challenged with homologous H1N1 virus, and pathogenesis and mortality were examined. RESULTS Vaccine-induced H1N1-specific antibody responses and neutralizing activities were markedly reduced in obese mice. Consistent with antibody responses, lung virus titers were significantly higher in obese mice than in lean controls after challenge. In addition, obese group showed greatly increased expression of proinflammatory cytokines and chemokines in lung tissue, severe lung inflammation, and higher eventual mortality rate (100%) compared with that among lean control mice (14%). CONCLUSIONS Our results show that prophylactic immune responses and protectiveness induced by 2009 H1N1 vaccine could be extremely compromised in diet-induced obesity. These results suggest that novel vaccination strategies for high-risk groups, including the obese population, are required.
Collapse
|
32
|
Hamada M, Abe M, Miyake T, Kawasaki K, Tada F, Furukawa S, Matsuura B, Hiasa Y, Onji M. B cell-activating factor controls the production of adipokines and induces insulin resistance. Obesity (Silver Spring) 2011; 19:1915-22. [PMID: 21701571 DOI: 10.1038/oby.2011.165] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Visceral adipose tissue (VAT) inflammation has been linked to the pathogenesis of insulin resistance and metabolic syndrome. VAT has recently been established as a new component of the immune system and is involved in the production of various adipokines and cytokines. These molecules contribute to inducing and accelerating systemic insulin resistance. In this report, we investigated the role of B cell-activating factor (BAFF) in the induction of insulin resistance. We investigated BAFF levels in the sera and VAT of obese mice. In obese mice, the BAFF levels were preferentially increased in VAT and sera compared to these levels in normal control mice. Next, we treated mice with BAFF to analyze its influence on insulin sensitivity. BAFF impaired insulin sensitivity in normal mice. Finally, we investigated the mechanisms underlying insulin resistance induced by BAFF in adipocytes. BAFF also induced alterations in the expression levels of genes related to insulin resistance in adipocytes. In addition, BAFF directly affected the glucose uptake and phosphorylation of insulin receptor substrate-1 in adipocytes. We propose that autocrine or paracrine BAFF and BAFF-receptor (BAFF-R) interaction in VAT leads to impaired insulin sensitivity via inhibition of insulin signaling pathways and alterations in adipokine production.
Collapse
Affiliation(s)
- Maho Hamada
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tarantino G, Savastano S, Capone D, Colao A. Spleen: A new role for an old player? World J Gastroenterol 2011; 17:3776-84. [PMID: 21987619 PMCID: PMC3181438 DOI: 10.3748/wjg.v17.i33.3776] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/13/2010] [Accepted: 12/20/2010] [Indexed: 02/06/2023] Open
Abstract
The spleen could be considered a neglected organ. To date, it has been deemed an ancillary organ in portal hypertension or an organ localization in lymphoproliferative diseases, even though it has had significant attention in infectious diseases for some time. Now, it is thought to be central in regulating the immune system, a metabolic asset and involved in endocrine function with regard to nonalcoholic fatty liver disease. The main mechanisms involved in this complex network will be critically discussed in this article.
Collapse
|
34
|
Chen S, Akbar SMF, Abe M, Hiasa Y, Onji M. Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus. Clin Exp Immunol 2011; 166:134-42. [PMID: 21762128 DOI: 10.1111/j.1365-2249.2011.04445.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The immunosuppressive state of tumour-bearing hosts is attributable, at least in part, to myeloid-derived suppressor cells (MDSC). However, the role of MDSC in physiological conditions and diseases other than cancer has not been addressed. As the liver is a tolerogenic organ, the present study attempted to localize and assess functions of hepatic MDSC in a normal liver and in a murine model of chronic hepatitis B virus (HBV) infection. MDSC was identified in the liver of normal mice and HBV transgenic mice (TM) as CD11b(+) Gr1(+) cells by dual-colour flow cytometry. Highly purified populations of MDSC and their subtypes were isolated by fluorescence-activated cell sorting. The functions of MDSC and their subtypes were evaluated in allogenic mixed lymphocyte reaction (MLR) and hepatitis B surface antigen (HBsAg)-specific T cell proliferation assays. Normal mice-derived liver MDSC, but not other myeloid cells (CD11b(+) Gr1(-) ), suppressed T cell proliferation in allogenic MLR in a dose-dependent manner. Alteration of T cell antigens and impaired interferon-γ production seems to be related to MDSC-induced immunosuppression. In HBV TM, the frequencies of liver MDSC were about twice those of normal mice liver (13·6±3·2% versus 6·05±1·21%, n=5, P<0·05). Liver-derived MDSC from HBV TM also suppressed proliferative capacities of allogenic T cells and HBsAg-specific lymphocytes. Liver MDSC may have a critical role in maintaining homeostasis during physiological conditions. As liver MDSC had immunosuppressive functions in HBV TM, they may be a target of immune therapy in chronic HBV infection.
Collapse
Affiliation(s)
- S Chen
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon City, Ehime, Japan
| | | | | | | | | |
Collapse
|