1
|
Kushwaha A, Goswami L, Kim BS, Lee SS, Pandey SK, Kim KH. Constructed wetlands for the removal of organic micropollutants from wastewater: Current status, progress, and challenges. CHEMOSPHERE 2024; 360:142364. [PMID: 38768790 DOI: 10.1016/j.chemosphere.2024.142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
In this work, the practical utility of constructed wetlands (CWs) is described as a promising treatment option for micropollutants (MPs) in wastewater with the aid of their eco-friendly, low-energy, economically feasible, and ecologically sustainable nature. This paper offers a comprehensive review on CW technology with respect to the key strategies for MP removal such as phytoremediation, substrate adsorption, and microbial degradation. It explores the important factors controlling the performance of CWs (e.g., in terms of configurations, substrates, plant-microbe interactions, temperature, pH, oxygen levels, hydraulic loading rate, and retention time) along with the discussions on the pivotal role of microbial populations in CWs and plant-microbe cooperative remediation dynamics, particularly in relation to diverse organic MP patterns in CWs. As such, this review aims to provide valuable insights into the key strategies for optimizing MP treatment and for enhancing the efficacy of CW systems. In addition, the process-based models of constructed wetlands along with the numerical simulations based on the artificial neural network (ANN) method are also described in association with the data exploratory techniques. This work is thus expected to help open up new possibilities for the application of plant-microbe cooperative remediation approaches against diverse patterns of organic MPs present in CWs.
Collapse
Affiliation(s)
- Anamika Kushwaha
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Lalit Goswami
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sang Soo Lee
- Department of Environmental & Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Sudhir Kumar Pandey
- Department of Botany, Guru Ghasidas Vishwavidyalaya (a central University) Bilaspur, Chhattisgarh, 495009, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
2
|
Ważny R, Jędrzejczyk RJ, Rozpądek P, Domka A, Tokarz KM, Janicka M, Turnau K. Bacteria Associated with Spores of Arbuscular Mycorrhizal Fungi Improve the Effectiveness of Fungal Inocula for Red Raspberry Biotization. MICROBIAL ECOLOGY 2024; 87:50. [PMID: 38466433 DOI: 10.1007/s00248-024-02364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024]
Abstract
Intensive crop production leads to the disruption of the symbiosis between plants and their associated microorganisms, resulting in suboptimal plant productivity and lower yield quality. Therefore, it is necessary to improve existing methods and explore modern, environmentally friendly approaches to crop production. One of these methods is biotization, which involves the inoculation of plants with appropriately selected symbiotic microorganisms which play a beneficial role in plant adaptation to the environment. In this study, we tested the possibility of using a multi-microorganismal inoculum composed of arbuscular mycorrhizal fungi (AMF) and AMF spore-associated bacteria for biotization of the red raspberry. Bacteria were isolated from the spores of AMF, and their plant growth-promoting properties were tested. AMF inocula were supplemented with selected bacterial strains to investigate their effect on the growth and vitality of the raspberry. The investigations were carried out in the laboratory and on a semi-industrial scale in a polytunnel where commercial production of seedlings is carried out. In the semi-industrial experiment, we tested the growth parameters of plants and physiological response of the plant to temporary water shortage. We isolated over fifty strains of bacteria associated with spores of AMF. Only part of them showed plant growth-promoting properties, and six of these (belonging to the Paenibacillus genus) were used for the inoculum. AMF inoculation and co-inoculation of AMF and bacteria isolated from AMF spores improved plant growth and vitality in both experimental setups. Plant dry weight was improved by 70%, and selected chlorophyll fluorescence parameters (the contribution of light to primary photochemistry and fraction of reaction centre chlorophyll per chlorophyll of the antennae) were increased. The inoculum improved carbon assimilation, photosynthetic rate, stomatal conductance and transpiration after temporary water shortage. Raspberry biotization with AMF and bacteria associated with spores has potential applications in horticulture where ecological methods based on plant microorganism interaction are in demand.
Collapse
Affiliation(s)
- Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387, Kraków, Poland.
| | - Roman J Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387, Kraków, Poland
| | - Piotr Rozpądek
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387, Kraków, Poland
| | - Agnieszka Domka
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387, Kraków, Poland
- W. Szafer Institute of Botany Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland
| | - Krzysztof M Tokarz
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Krakow, Aleja Mickiewicza 21, 31-120, Kraków, Poland
| | - Martyna Janicka
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163, Warsaw, Poland
- Division of Microbiology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
3
|
Tian Z, Wang X, Li Y, Xi Y, He M, Guo Y. Co-inoculation of Soybean Seedling with Trichoderma asperellum and Irpex laceratus Promotes the Absorption of Nitrogen and Phosphorus. Curr Microbiol 2024; 81:87. [PMID: 38311653 DOI: 10.1007/s00284-023-03571-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 11/22/2023] [Indexed: 02/06/2024]
Abstract
Soybean are one of the main oil crops in the world. The study demonstrated that co-inoculation with Trichoderma asperellum (Sordariomycetes, Hypocreomycetidae) and Irpex laceratus (Basidiomycota, Polyporales) isolated from Kosteletzkya virginica can promote the growth of soybean seedlings. The two fungi were found to produce various enzymes, including cellulase, amylase, laccase, protease, and urease. Upon inoculation, T. asperellum mainly colonized within the phloem of the roots in soybean seedlings, while I. laceratus mainly in the xylem and phloem of the roots. Physiological parameters, such as plant height, root length, and fresh weight, were significantly increased in soybean seedlings co-inoculated with T. asperellum and I. laceratus. Moreover, the expression of key genes related to N and P absorption and metabolism was also increased, leading to improved N and P utilization efficiency in soybean seedlings. These results indicate that the two fungi may have complementary roles in promoting plant growth, co-inoculation with T. asperellum and I. laceratus can enhance the growth and nutrient uptake of soybean. These findings suggest that T. asperellum and I. laceratus have the potential to be used as bio-fertilizers to improve soybean growth and yield.
Collapse
Affiliation(s)
- Zengyuan Tian
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaomin Wang
- School of Life Sciences, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| | - Yanyi Li
- School of Life Sciences, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| | - Yu Xi
- School of Life Sciences, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China
| | - Mengting He
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuqi Guo
- School of Life Sciences, Zhengzhou University, Kexue Road 100, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Shan J, Peng F, Yu J, Li Q. Identification and Characterization of a Plant Endophytic Fungus Paraphaosphaeria sp. JRF11 and Its Growth-Promoting Effects. J Fungi (Basel) 2024; 10:120. [PMID: 38392792 PMCID: PMC10890554 DOI: 10.3390/jof10020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
Endophytic fungi establish mutualistic relationships with host plants and can promote the growth and development of plants. In this study, the endophytic fungus JRF11 was isolated from Carya illinoinensis. Sequence analysis of the internal transcribed spacer (ITS) region and 18S rRNA gene combined with colonial and conidial morphology identified JRF11 as a Paraphaosphaeria strain. Plant-fungus interaction assays revealed that JRF11 showed significant growth-promoting effects on plants. In particular, JRF11 significantly increased the root biomass and soluble sugar content of plants. Furthermore, transcriptome analysis demonstrated that JRF11 treatment reprogrammed a variety of genes involved in plant mitogen-activated protein kinase (MAPK) signaling and starch and sucrose metabolism pathways through Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Our research indicates that beneficial endophytic fungi are able to interact with plants and exhibit outstanding plant growth-promoting activities.
Collapse
Affiliation(s)
- Jie Shan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fangren Peng
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Qi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
5
|
Miszalski Z, Kaszycki P, Śliwa-Cebula M, Kaczmarczyk A, Gieniec M, Supel P, Kornaś A. Plasticity of Plantago lanceolata L. in Adaptation to Extreme Environmental Conditions. Int J Mol Sci 2023; 24:13605. [PMID: 37686411 PMCID: PMC10487448 DOI: 10.3390/ijms241713605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
This study aimed at characterizing some adaptive changes in Plantago lanceolata L. exposed to harsh conditions of a desert-like environment generating physiological stress of limited water availability and exposure to strong light. It was clearly shown that the plants were capable of adapting their root system and vascular tissues to enable efficient vegetative performance. Soil analyses, as well as nitrogen isotope discrimination data show that P. lanceolata leaves in a desert-like environment had better access to nitrogen (nitrite/nitrate) and were able to fix it efficiently, as compared to the plants growing in the surrounding forest. The arbuscular mycorrhiza was also shown to be well-developed, and this was accompanied by higher bacterial frequency in the root zone, which might further stimulate plant growth. A closer look at the nitrogen content and leaf veins with a higher number of vessels and a greater vessel diameter made it possible to define the changes developed by the plants populating sandy habitats as compared with the vegetation sites located in the nearby forest. A determination of the photosynthesis parameters indicates that the photochemical apparatus in P. lanceolata inhabiting the desert areas adapted slightly to the desert-like environment and the time of day, with some changes of the reaction center (RC) size (photosystem II, PSII), while the plants' photochemical activity was at a similar level. No differences between the two groups of plants were observed in the dissipation of light energy. The exposure of plants to harsh conditions of a desert-like environment increased the water use efficiency (WUE) value in parallel with possible stimulation of the β-carboxylation pathway.
Collapse
Affiliation(s)
- Zbigniew Miszalski
- The W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; (Z.M.); (A.K.); (M.G.)
| | - Paweł Kaszycki
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (P.K.); (M.Ś.-C.); (P.S.)
| | - Marta Śliwa-Cebula
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (P.K.); (M.Ś.-C.); (P.S.)
| | - Adriana Kaczmarczyk
- The W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; (Z.M.); (A.K.); (M.G.)
| | - Miron Gieniec
- The W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland; (Z.M.); (A.K.); (M.G.)
| | - Paulina Supel
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland; (P.K.); (M.Ś.-C.); (P.S.)
| | - Andrzej Kornaś
- Institute of Biology and Earth Sciences, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland
| |
Collapse
|
6
|
Gong M, Bai N, Wang P, Su J, Chang Q, Zhang Q. Co-Inoculation with Arbuscular Mycorrhizal Fungi and Dark Septate Endophytes under Drought Stress: Synergistic or Competitive Effects on Maize Growth, Photosynthesis, Root Hydraulic Properties and Aquaporins? PLANTS (BASEL, SWITZERLAND) 2023; 12:2596. [PMID: 37514211 PMCID: PMC10383269 DOI: 10.3390/plants12142596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) and dark septate fungi (DSE) were simultaneously colonized in the root cells of maize. Single AMF and DSE symbiosis have been proven to improve the drought tolerance of maize. However, the effects of both fungi coexisting in maize roots under drought stress are not yet known. In this study, pot experiments of maize seedlings were conducted through four inoculation treatments (single AMF inoculation of Rhizophagus irregularis, single DSE inoculation of Exophiala pisciphila, co-inoculation of AMF + DSE and non-mycorrhizal inoculation) under well-watered (WW) and drought-stressed (DS) conditions. AMF and DSE colonization status, maize physiology and aquaporin gene expression in maize roots were investigated. The objective of this paper was to evaluate whether AMF and DSE had competitive, independent or synergistic effects on regulating the drought tolerance of maize. When maize seedlings of three inoculation treatments were subjected to drought stress, single AMF inoculation had the highest shoot and root dry weight, plant height, root length, osmotic root hydraulic conductivity and hydrostatic root hydraulic conductivity in maize seedlings. However, co-inoculation of AMF + DSE induced the highest stomatal conductance in maize leaves and the lowest H2O2 and O2•- concentration, membrane electrolyte leakage, intercellular CO2 concentration and gene expression level of ZmPIP1;1, ZmPIP1;2, ZmPIP2;1, ZmPIP2;5 and ZmPIP2;6. In addition, co-inoculation of AMF + DSE also obviously down-regulated the GintAQPF1 and GintAQPF2 expression in R. irregularis compared with single AMF inoculation treatment. Under DS stress, there were competitive relationships between AMF and DSE with regard to regulating mycorrhizal colonization, maize growth, root hydraulic conductivity and the gene expression of aquaporins in R. irregularis, but there were synergistic relationships with regard to regulating membrane electrolyte leakage, oxidative damage, photosynthesis and the aquaporin gene expression of maize seedlings. The obtained results improve our knowledge about how the mechanisms of AMF and DSE coexist, promoting the drought tolerance of host plants.
Collapse
Affiliation(s)
- Minggui Gong
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Na Bai
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Pengfei Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiajie Su
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Qingshan Chang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Qiaoming Zhang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
7
|
Jędrzejczyk RJ, Gustab M, Ważny R, Domka A, Jodłowski PJ, Sitarz M, Bezkosty P, Kowalski M, Pawcenis D, Jarosz K, Sebastian V, Łabaj PP, Rozpądek P. Iron inactivation by Sporobolomyces ruberrimus and its potential role in plant metal stress protection. An in vitro study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161887. [PMID: 36731550 DOI: 10.1016/j.scitotenv.2023.161887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The endophytic Basidiomycete Sporobolomyces ruberrimus protects its host Arabidopsis arenosa against metal toxicity. Plants inoculated with the fungus yielded more biomass and exhibited significantly fewer stress symptoms in medium mimicking mine dump conditions (medium supplemented with excess of Fe, Zn and Cd). Aside from fine-tuning plant metal homeostasis, the fungus was capable of precipitating Fe in the medium, most likely limiting host exposure to metal toxicity. The precipitated residue was identified by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-Ray Diffraction (XRD) and electron microscopy (SEM/TEM) with energy dispersive X-Ray analysis (EDX/SAED) techniques. The performed analyses revealed that the fungus transforms iron into amorphous (oxy)hydroxides and phosphates and immobilizes them in the form of a precipitate changing Fe behaviour in the MSR medium. Moreover, the complexation of free Fe ions by fungi could be obtained by biomolecules such as lipids, proteins, or biosynthesized redox-active molecules.
Collapse
Affiliation(s)
- Roman J Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Maciej Gustab
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Agnieszka Domka
- W. Szafer Institute of Botany Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland.
| | - Przemysław J Jodłowski
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 30-155 Kraków, Poland.
| | - Maciej Sitarz
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland.
| | - Patryk Bezkosty
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland.
| | - Michał Kowalski
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Dominika Pawcenis
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Kinga Jarosz
- Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland.
| | - Victor Sebastian
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain; Department of Chemical and Environmental Engineering, Universidad de Zaragoza, Campus Rio Ebro, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Paweł P Łabaj
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| | - Piotr Rozpądek
- Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland.
| |
Collapse
|
8
|
Razak NA, Gange AC. Multitrophic Interactions Between Arbuscular Mycorrhizal Fungi, Foliar Endophytic Fungi and Aphids. MICROBIAL ECOLOGY 2023; 85:146-156. [PMID: 34904179 PMCID: PMC9849307 DOI: 10.1007/s00248-021-01937-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Almost all living plants can be simultaneously colonised by arbuscular mycorrhizal fungi in the roots and endophytes in the shoots, while also being attacked by insect herbivores. However, to date, no study has ever examined the multitrophic interactions between these two different fungal groups and insects on any species of forb. Here, we examined the effects of two commercial species mixtures of arbuscular mycorrhizal fungi (AMF) and two foliar endophytes (Colletotrichum acutatum and Cladosporium oxysporum) on the growth of an invasive weed, Impatiens glandulifera, and the aphids that attack it. AMF reduced plant biomass, which was most evident when C. oxysporum was inoculated. Mycorrhizal fungi had few effects on aphids, and these depended on the identity of the endophytes present. Meanwhile, endophytes tended to increase aphid numbers, but this depended on the identity of the AMF inoculum. Throughout, there were differences in the responses of the plant to the two mycorrhizal mixtures, demonstrating clear AMF specificity in this plant. These specific effects were also strongly affected by the endophytes, with a greater number of interactions found between the AMF and endophytes than between the endophytes themselves. In particular, AMF reduced infection levels by the endophytes, while some endophyte inoculations reduced mycorrhizal colonisation. We suggest that both AMF and endophytes could play an important part in future biological control programmes of weeds, but further multitrophic experiments are required to unravel the complexity of interactions between spatially separated parts of the plant microbiome.
Collapse
Affiliation(s)
- Nadia Ab Razak
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX Surrey UK
| | - Alan C. Gange
- Department of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX Surrey UK
| |
Collapse
|
9
|
Interaction between growth environment and host progeny shape fungal endophytic assemblages in transplanted Fagus sylvatica. FUNGAL ECOL 2022. [DOI: 10.1016/j.funeco.2022.101175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Zuo YL, Hu QN, Qin L, Liu JQ, He XL. Species identity and combinations differ in their overall benefits to Astragalus adsurgens plants inoculated with single or multiple endophytic fungi under drought conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:933738. [PMID: 36160950 PMCID: PMC9490189 DOI: 10.3389/fpls.2022.933738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Although desert plants often establish multiple simultaneous symbiotic associations with various endophytic fungi in their roots, most studies focus on single fungus inoculation. Therefore, combined inoculation of multiple fungi should be applied to simulate natural habitats with the presence of a local microbiome. Here, a pot experiment was conducted to test the synergistic effects between three extremely arid habitat-adapted root endophytes (Alternaria chlamydospora, Sarocladium kiliense, and Monosporascus sp.). For that, we compared the effects of single fungus vs. combined fungi inoculation, on plant morphology and rhizospheric soil microhabitat of desert plant Astragalus adsurgens grown under drought and non-sterile soil conditions. The results indicated that fungal inoculation mainly influenced root biomass of A. adsurgens, but did not affect the shoot biomass. Both single fungus and combined inoculation decreased plant height (7-17%), but increased stem branching numbers (13-34%). However, fungal inoculation influenced the root length and surface area depending on their species and combinations, with the greatest benefits occurring on S. kiliense inoculation alone and its co-inoculation with Monosporascus sp. (109% and 61%; 54% and 42%). Although A. chlamydospora and co-inoculations with S. kiliense and Monosporascus sp. also appeared to promote root growth, these inoculations resulted in obvious soil acidification. Despite no observed root growth promotion, Monosporascus sp. associated with its combined inoculations maximally facilitated soil organic carbon accumulation. However, noticeably, combined inoculation of the three species had no significant effects on root length, surface area, and biomass, but promoted rhizospheric fungal diversity and abundance most, with Sordariomycetes being the dominant fungal group. This indicates the response of plant growth to fungal inoculation may be different from that of the rhizospheric fungal community. Structural equation modeling also demonstrated that fungal inoculation significantly influenced the interactions among the growth of A. adsurgens, soil factors, and rhizospheric fungal groups. Our findings suggest that, based on species-specific and combinatorial effects, endophytic fungi enhanced the plant root growth, altered soil nutrients, and facilitated rhizospheric fungal community, possibly contributing to desert plant performance and ecological adaptability. These results will provide the basis for evaluating the potential application of fungal inoculants for developing sustainable management for desert ecosystems.
Collapse
Affiliation(s)
- Yi-Ling Zuo
- School of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| | - Qian-Nan Hu
- School of Life Sciences, Hebei University, Baoding, China
| | - Le Qin
- School of Life Sciences, Hebei University, Baoding, China
| | - Jia-Qiang Liu
- School of Life Sciences, Hebei University, Baoding, China
| | - Xue-Li He
- School of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, China
| |
Collapse
|
11
|
Ważny R, Jędrzejczyk RJ, Rozpądek P, Domka A, Turnau K. Biotization of highbush blueberry with ericoid mycorrhizal and endophytic fungi improves plant growth and vitality. Appl Microbiol Biotechnol 2022; 106:4775-4786. [PMID: 35729273 DOI: 10.1007/s00253-022-12019-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Ecological methods are becoming increasingly popular. One of these methods is plant biotization. In our paper, we focus on selection of Vaccinium corymbosum hairy root-inhabiting fungi for plant growth promotion in a single microorganism inoculation setup and then composed a multiorganismal inoculum enriched with a representative of another group of fungi, leaf endophytes. The hairy roots of V. corymbosum hosted 13 fungal taxa. In single inoculation of the plant with fungal strains, the most beneficial for plant growth were Oidiodendron maius and Phialocephala fortinii. Additional inoculation of the plants with three root symbiotic fungi (O. maius, Hymenoscyphus sp. and P. fortinii) and with the endophytic fungus Xylaria sp. increased plant height in laboratory experiments. On a semi-industrial scale, inoculation improved plant biomass and vitality. Therefore, the amendment of root-associated fungal communities with a mixture of ericoid mycorrhizal and endophytic fungi may represent an alternative to conventional fertilization and pesticide application in large-scale blueberry production. KEY POINTS: • O. maius and P. fortinii significantly stimulated V. corymbosum growth in a single inoculation. • Multimicroorganismal inoculum increased plant biomass and vitality. • Blueberry biotization with ericoid and endophytic fungi is recommended.
Collapse
Affiliation(s)
- Rafał Ważny
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387, Kraków, Poland.
| | - Roman J Jędrzejczyk
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387, Kraków, Poland
| | - Piotr Rozpądek
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387, Kraków, Poland
| | - Agnieszka Domka
- Małopolska Centre of Biotechnology, Jagiellonian University in Kraków, Gronostajowa 7a, 30-387, Kraków, Poland
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University in Kraków, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
12
|
The Interactions between Arbuscular Mycorrhizal Fungi and Trichoderma longibrachiatum Enhance Maize Growth and Modulate Root Metabolome under Increasing Soil Salinity. Microorganisms 2022; 10:microorganisms10051042. [PMID: 35630484 PMCID: PMC9142908 DOI: 10.3390/microorganisms10051042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Trichoderma longibrachiatum sp. are free-living filamentous fungi which are common in agro-ecosystems. However, few studies thus far have examined the interaction between Trichoderma longibrachiatum and arbuscular mycorrhizal (AM) fungi in saline soil and their potential for improving plant stress tolerance. Here, single, dual-inoculated (T. longibrachiatum MF, AM fungal community or Glomus sp.), and non-inoculated maize (Zea may L.) were subjected to different salinity levels (0, 75, 150, and 225 mM NaCl) to test the synergistic effects of dual inoculants on maize plants in different salt stress conditions. Plant performance and metabolic profiles were compared to find the molecular mechanisms underlying plant protection against salt stress. The first experiment revealed that dual inoculation of an AM fungal community and T. longibrachiatum MF improved the biomass and K+/Na+ ratio in maize under non-saline conditions, and generally enhanced AM fungal growth in root and soil under all but the 225 mM NaCl conditions. However, MF inoculant did not influence the structure of AM fungal communities in maize roots. In the second experiment, dual inoculation of Glomus sp. and T. longibrachiatum MF increased maize plant biomass, K+/Na+ ratio, and AM fungal growth in root and soil significantly at both 0 and 75 mM NaCl conditions. We identified metabolic compounds differentially accumulated in dual-inoculated maize that may underline their enhanced maize plant tolerance to increasing soil salinity. Our data suggested that the combination of Glomus sp. and T.longibrachiatum leads to interactions, which may play a potential role in alleviating the stress and improve crop productivity in salt-affected soils.
Collapse
|
13
|
Cantabella D, Dolcet-Sanjuan R, Teixidó N. Using plant growth-promoting microorganisms (PGPMs) to improve plant development under in vitro culture conditions. PLANTA 2022; 255:117. [PMID: 35513731 DOI: 10.1007/s00425-022-03897-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
The use of beneficial microorganisms improves the performance of in vitro - cultured plants through the improvement of plant nutrition, the biological control of microbial pathogens or the production of phytohormones that promote plant growth and development. Plant in vitro culture techniques are highly useful to obtain significant amounts of true-to-type and disease-free plant materials. One of these techniques is clonal micropropagation which consists on the establishment of shoot tip cultures, shoot multiplication, in vitro rooting and acclimatization to ex vitro conditions. However, in some cases, the existence of recalcitrant genotypes, with a compromised multiplication and rooting ability, or the difficulties to overcome the overgrowth of endophytic contaminations might seriously limit its efficiency. In this sense, the establishment of beneficial interactions between plants and plant growth-promoting microorganisms (PGPMs) under in vitro culture conditions might represent a valuable approach to efficiently solve those restrictions. During the last years, significant evidence reporting the use of beneficial microorganisms to improve the yield of in vitro multiplication or rooting as well as their acclimatization to greenhouse or soil conditions have been provided. Most of these positive effects are strongly linked to the ability of these microorganisms to provide in vitro plants with nutrients such as nitrogen or phosphorous, to produce plant growth regulators, to control the growth of pathogens or to mitigate stress conditions. The culture of A. thaliana under aseptic conditions has provided high-quality knowledge on the root development signaling pathways, involving hormones, triggered in the presence of PGPMs. Overall, the present article offers a brief overview of the use of microorganisms to improve in vitro plant performance during the in vitro micropropagation stages, as well as the main mechanisms of plant growth promotion associated with these microorganisms.
Collapse
Affiliation(s)
- Daniel Cantabella
- IRTA Plant In Vitro Culture Laboratory, Fruticulture Programme, Lleida, Catalonia, Spain
- Postharvest Programme, IRTA Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, 25003, Lleida, Catalonia, Spain
| | - Ramon Dolcet-Sanjuan
- IRTA Plant In Vitro Culture Laboratory, Fruticulture Programme, Lleida, Catalonia, Spain
| | - Neus Teixidó
- Postharvest Programme, IRTA Edifici Fruitcentre, Parc Científic I Tecnològic Agroalimentari de Lleida, 25003, Lleida, Catalonia, Spain.
| |
Collapse
|
14
|
He C, Liu C, Liu H, Wang W, Hou J, Li X. Dual inoculation of dark septate endophytes and Trichoderma viride drives plant performance and rhizosphere microbiome adaptations of Astragalus mongholicus to drought. Environ Microbiol 2022; 24:324-340. [PMID: 35001476 PMCID: PMC9306861 DOI: 10.1111/1462-2920.15878] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/02/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022]
Abstract
Rhizosphere microbiome adapts their structural compositions to water scarcity and have the potential to mitigate drought stress of plants. To unlock this potential, it is crucial to understand community responses to drought in the interplay between soil properties, water management and exogenous microbes interference. Inoculation with dark septate endophytes (DSE) (Acrocalymma vagum, Paraboeremia putaminum) and Trichoderma viride on Astragalus mongholicus grown in the non-sterile soil was exposed to drought. Rhizosphere microbiome were assessed by Illumina MiSeq sequencing of the 16S and ITS2 rRNA genes. Inoculation positively affected plant growth depending on DSE species and water regime. Ascomycota, Proteobacteria, Actinobacteria, Chloroflexi and Firmicutes were the dominant phyla. The effects of dual inoculation on bacterial community were greater than those on fungal community, and combination of P. putaminum and T. viride exerted a stronger impact on the microbiome under drought stress. The observed changes in soil factors caused by inoculation could be explained by the variations in microbiome composition. Rhizosphere microbiome mediated by inoculation exhibited distinct preferences for various growth parameters. These findings suggest that dual inoculation of DSE and T. viride enriched beneficial microbiota, altered soil nutrient status and might contribute to enhance the cultivation of medicinal plants in dryland agriculture.
Collapse
Affiliation(s)
- Chao He
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Chang Liu
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Haifan Liu
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| | - Wenquan Wang
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
- School of Chinese PharmacyBeijing University of Chinese MedicineBeijing100029China
| | - Junling Hou
- School of Chinese PharmacyBeijing University of Chinese MedicineBeijing100029China
| | - Xianen Li
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing100193China
| |
Collapse
|
15
|
Hori Y, Fujita H, Hiruma K, Narisawa K, Toju H. Synergistic and Offset Effects of Fungal Species Combinations on Plant Performance. Front Microbiol 2021; 12:713180. [PMID: 34594312 PMCID: PMC8478078 DOI: 10.3389/fmicb.2021.713180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
In natural and agricultural ecosystems, survival and growth of plants depend substantially on residing microbes in the endosphere and rhizosphere. Although numerous studies have reported the presence of plant-growth promoting bacteria and fungi in below-ground biomes, it remains a major challenge to understand how sets of microbial species positively or negatively affect plants' performance. By conducting a series of single- and dual-inoculation experiments of 13 plant-associated fungi targeting a Brassicaceae plant species (Brassica rapa var. perviridis), we here systematically evaluated how microbial effects on plants depend on presence/absence of co-occurring microbes. The comparison of single- and dual-inoculation experiments showed that combinations of the fungal isolates with the highest plant-growth promoting effects in single inoculations did not have highly positive impacts on plant performance traits (e.g., shoot dry weight). In contrast, pairs of fungi with small/moderate contributions to plant growth in single-inoculation contexts showed the greatest effects on plants among the 78 fungal pairs examined. These results on the offset and synergistic effects of pairs of microbes suggest that inoculation experiments of single microbial species/isolates can result in the overestimation or underestimation of microbial functions in multi-species contexts. Because keeping single-microbe systems under outdoor conditions is impractical, designing sets of microbes that can maximize performance of crop plants is an important step for the use of microbial functions in sustainable agriculture.
Collapse
Affiliation(s)
- Yoshie Hori
- Center for Ecological Research, Kyoto University, Kyoto, Japan
| | - Hiroaki Fujita
- Center for Ecological Research, Kyoto University, Kyoto, Japan
| | - Kei Hiruma
- Graduate School of Arts and Sciences, Multi-Disciplinary Sciences Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Hirokazu Toju
- Center for Ecological Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Saia S, Corrado G, Vitaglione P, Colla G, Bonini P, Giordano M, Stasio ED, Raimondi G, Sacchi R, Rouphael Y. An Endophytic Fungi-Based Biostimulant Modulates Volatile and Non-Volatile Secondary Metabolites and Yield of Greenhouse Basil ( Ocimum basilicum L.) through Variable Mechanisms Dependent on Salinity Stress Level. Pathogens 2021; 10:797. [PMID: 34201640 PMCID: PMC8308794 DOI: 10.3390/pathogens10070797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 01/12/2023] Open
Abstract
Salinity in water and soil is one of the major environmental factors limiting the productivity of agronomic and horticultural crops. In basil (Ocimum basilicum L., Lamiaceae) and other Ocimum species, information on the plant response to mild salinity levels, often induced by the irrigation or fertigation systems, is scarce. In the present work, we tested the effectiveness of a microbial-based biostimulant containing two strains of arbuscular mycorrhiza fungi (AMF) and Trichoderma koningii in sustaining greenhouse basil yield traits, subjected to two mild salinity stresses (25 mM [low] and 50 mM [high] modulated by augmenting the fertigation osmotic potential with NaCl) compared to a non-stressed control. The impact of salinity stress was further appraised in terms of plant physiology, morphological ontogenesis and composition in polyphenols and volatile organic compounds (VOC). As expected, increasing the salinity of the solution strongly depressed the plant yield, nutrient uptake and concentration, reduced photosynthetic activity and leaf water potential, increased the Na and Cl and induced the accumulation of polyphenols. In addition, it decreased the concentration of Eucalyptol and β-Linalool, two of its main essential oil constituents. Irrespective of the salinity stress level, the multispecies inoculum strongly benefited plant growth, leaf number and area, and the accumulation of Ca, Mg, B, p-coumaric and chicoric acids, while it reduced nitrate and Cl concentrations in the shoots and affected the concentration of some minor VOC constituents. The benefits derived from the inoculum in term of yield and quality harnessed different mechanisms depending on the degree of stress. under low-stress conditions, the inoculum directly stimulated the photosynthetic activity after an increase of the Fe and Mn availability for the plants and induced the accumulation of caffeic and rosmarinic acids. under high stress conditions, the inoculum mostly acted directly on the sequestration of Na and the increase of P availability for the plant, moreover it stimulated the accumulation of polyphenols, especially of ferulic and chicoric acids and quercetin-rutinoside in the shoots. Notably, the inoculum did not affect the VOC composition, thus suggesting that its activity did not interact with the essential oil biosynthesis. These results clearly indicate that beneficial inocula constitute a valuable tool for sustaining yield and improving or sustaining quality under suboptimal water quality conditions imposing low salinity stress on horticultural crops.
Collapse
Affiliation(s)
- Sergio Saia
- Department Veterinary Sciences, University of Pisa, via delle Piagge 2, 56129 Pisa, Italy
| | - Giandomenico Corrado
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Paola Vitaglione
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Paolo Bonini
- NGAlab, La Riera de Gaia, 43762 Tarragona, Spain
| | - Maria Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Emilio Di Stasio
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Giampaolo Raimondi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Raffaele Sacchi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
17
|
Mastan A, Rane D, Dastager SG, Vivek Babu CS. Molecular insights of fungal endophyte co-inoculation with Trichoderma viride for the augmentation of forskolin biosynthesis in Coleus forskohlii. PHYTOCHEMISTRY 2021; 184:112654. [PMID: 33461046 DOI: 10.1016/j.phytochem.2021.112654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
To understand the compatibility of three native endophytic fungi Phialemoniopsis cornearis (SF1), Macrophomina pseudophaseolina (SF2) and Fusarium redolens (RF1) with Trichoderma viride (TV1) on Coleus forskohlii in enhancing plant growth and forskolin content, field experiments were conducted. Co-inoculation of RF1+TV1 showed significant improvement in plant growth (52%), root biomass (67%), and in-planta forskolin content (94%), followed by treatment with SF2+TV1 and SF1+TV1. qRT-PCR was carried out to quantify expression of five key forskolin biosynthetic pathway genes (CfTPS2, CfTPS3, CfTPS4, CfCYP76AH15, and CfACT1-8) in RF1+TV1 treated C. forskohlii plants. Elevated expression of CfTPS2, CfTPS4, CfCYP76AH15 and CfACT1-8 genes was observed with RF1+TV1 combination as compared to uninoculated C. forskohlii plants. Besides, RF1+TV1 treatment considerably reduced the severity of nematode infection of C. forskohlii plants under field conditions. Thus, congruent properties of F. redolens (RF1) were witnessed with co-inoculation of T. viride (TV1) under field conditions which resulted in enhanced forskolin content, root biomass, and reduced nematode infections in C. forskohlii. Overall, this approach could be an economical and sustainable step towards cultivation of commercially important medicinal plants.
Collapse
Affiliation(s)
- Anthati Mastan
- Microbial Technology Laboratory, CSIR- Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India; Academy of Scientific and Innovative Research, CSIR-CIMAP Campus, Lucknow, Uttar Pradesh, 226015, India
| | - Digeshwar Rane
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Syed G Dastager
- NCIM Resource Center, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - C S Vivek Babu
- Microbial Technology Laboratory, CSIR- Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India; Academy of Scientific and Innovative Research, CSIR-CIMAP Campus, Lucknow, Uttar Pradesh, 226015, India; Present address: Food Protectants & Infestation Control (FPIC) Department, CSIR-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru, 570 020, Karnataka, India.
| |
Collapse
|
18
|
Ke T, Zhang J, Tao Y, Zhang C, Zhang Y, Xu Y, Chen L. Individual and combined application of Cu-tolerant Bacillus spp. enhance the Cu phytoextraction efficiency of perennial ryegrass. CHEMOSPHERE 2021; 263:127952. [PMID: 32828058 DOI: 10.1016/j.chemosphere.2020.127952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/30/2020] [Accepted: 08/08/2020] [Indexed: 05/27/2023]
Abstract
Forage grasses have recently received a remarkable amount of attention as promising candidates for decontaminating metal-polluted soils, but this strategy is time-consuming and inefficient. The present study aimed to address the beneficial effects of screened plant growth-promoting rhizobacteria (PGPR) strains Bacillus sp. EhS5 and EhS7 on perennial ryegrass and tall fescue. Single or combined inoculation considerably increased the biomass yield and Cu content of inoculated ryegrass compared with uninoculated plants, thereby enhancing the extraction efficiency at different Cu contamination levels. Bioaugmentation did not show a positive impact on the improvement of fescue's phytoextraction efficiency. Principal component analysis (PCA) and Pearson correlation coefficient results identified root development and photosynthesis as the key variables influencing ryegrass biomass. Antioxidant activities and Cu bioavailability are the key variables influencing Cu accumulation. The inoculated ryegrass showed improved photosynthetic status as the photosystem II system efficiency parameters increased and energy dissipation in the form of heat (DIo/RC) decreased with the help of PGPR. The root length, diameter, surface area, and forks of inoculated ryegrass increased remarkably. The levels of scavengers of reactive oxygen species were enhanced in these plants. Moreover, PGPR significantly increased soil Cu bioavailability by secreting siderophores and organic acid and by increasing soil organic carbon content. Dual inoculation showed better results than individual inoculation in improving ryegrass growth and Cu translocation under high Cu contamination level according to PCA. This study systematically explored the effects and mechanisms of the Bacillus-ryegrass combined remediation and provided a novel method for cleaning Cu-contaminated sites.
Collapse
Affiliation(s)
- Tan Ke
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Jin Zhang
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Yue Tao
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Chao Zhang
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Yurui Zhang
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China
| | - Yanhong Xu
- National Central City Research Institute, Zhengzhou Normal University, Zhengzhou, 450044, PR China
| | - Lanzhou Chen
- School of Resource & Environmental Sciences, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei Research Center of Environment Remediation Technology, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
19
|
Liu S, Liu M, Liao QG, Lü FB, Zhao XL. Effects of inoculated mycorrhizal fungi and non-mycorrhizal beneficial micro-organisms on plant traits, nutrient uptake and root-associated fungal community composition of the Cymbidium hybridum in greenhouse. J Appl Microbiol 2020; 131:413-424. [PMID: 33320986 DOI: 10.1111/jam.14967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022]
Abstract
AIMS The aim of this study was to assess the effects of beneficial micro-organisms on the growth, nutrient accumulation and root-associated fungal species composition of pot orchids grown in the greenhouse. METHODS AND RESULTS A greenhouse pot experiment was conducted to investigate the beneficial effects of a mycorrhizal fungus, Epulorhiza repens isolate ML01, an endophytic fungus, Umbelopsis nana isolate ZH3A-3 and a mixed commercial inoculum Rem, alone or in combination. Nested PCR assays showed that both isolates ML01 and ZH3A-3 can successfully establish in inoculated soil. All the inoculants significantly increased the plant total dry weight of Cymbidium hybridum 'Golden Boy', whereas only co-inoculation with the endophytic fungus ZH3A-3 and the Rem enhanced the fresh weight and height of host plants. The mycorrhizal fungus positively affected P, K, Ca, Mg content in shoots and Zn content in roots, while the endophytic fungus improved N, P, Ca accumulation in shoots and roots. Co-inoculation with the Rem and ML01 improved root to shoot translocation of Fe and Zn. In addition, inoculation with ZH3A-3, ML01+Rem and ZH3A-3+Rem decreased the relative frequency of Fusarium sp. on orchid roots. Trichoderma sp. were isolated from the roots treated with ML01, ML01+Rem and ZH3A-3+Rem. CONCLUSIONS Both mycorrhizal and endophytic fungi had the potential to create favourable microflora in the orchid roots and stimulate the growth of transplanted plantlets under greenhouse condition. SIGNIFICANCE AND IMPACT OF THE STUDY The newly isolated endophytic strain ZH3A-3 showed significant application value in orchid production.
Collapse
Affiliation(s)
- S Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, P.R. China.,Huizhou University, Huizhou, Guangdong, P.R. China
| | - M Liu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, P.R. China.,Crop research institute, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
| | - Q-G Liao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, P.R. China.,Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, P.R. China
| | - F-B Lü
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
| | - X-L Zhao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, P.R. China
| |
Collapse
|
20
|
Barberis L, Michalet S, Piola F, Binet P. Root fungal endophytes: identity, phylogeny and roles in plant tolerance to metal stress. Fungal Biol 2020; 125:326-345. [PMID: 33766311 DOI: 10.1016/j.funbio.2020.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/12/2020] [Accepted: 11/29/2020] [Indexed: 12/27/2022]
Abstract
Metal trace elements accumulate in soils mainly because of anthropic activities, leading living organisms to develop strategies to handle metal toxicity. Plants often associate with root endophytic fungi, including nonmycorrhizal fungi, and some of these organisms are associated with metal tolerance. The lack of synthetic analyses of plant-endophyte-metal tripartite systems and the scant consideration for taxonomy led to this review aiming (1) to inventory non-mycorrhizal root fungal endophytes described with respect to their taxonomic diversity and (2) to determine the mutualistic roles of these plant-fungus associations under metal stress. More than 1500 species in 100 orders (mainly Hypocreales and Pleosporales) were reported from a wide variety of environments and hosts. Most reported endophytes had a positive effect on their host under metal stress, but with various effects on metal uptake or translocation and no clear taxonomic consistency. Future research considering the functional patterns and dynamics of these associations is thus encouraged.
Collapse
Affiliation(s)
- Louise Barberis
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Serge Michalet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5557 Écologie microbienne, Villeurbanne, France
| | - Florence Piola
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, Villeurbanne, France
| | - Philippe Binet
- Université de Bourgogne-Franche-Comté, CNRS-UFC, UMR6249 Chrono-environnement, Montbéliard, France.
| |
Collapse
|
21
|
Beharav A, Malarz J, Michalska K, Ben-David R, Stojakowska A. Variation of sesquiterpene lactone contents in Lactuca altaica natural populations from Armenia. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Al-Thani RF, Yasseen BT. Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113694. [PMID: 31887591 DOI: 10.1016/j.envpol.2019.113694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/31/2019] [Accepted: 11/28/2019] [Indexed: 05/19/2023]
Abstract
Because pollution is predicted to worsen and sources of quality water for agriculture and other human activities are limited, many countries have been motivated to seek novel water sources. Qatar relies on groundwater and water desalinization to meet its water needs, and additional water resources will be needed to avoid unexpected crises in the future. Industrial wastewater (IWW) is an alternative water source, and much research activities should be focused on developing innovative and contemporary approaches to removing pollutants from IWW. Phytoremediation methods, shown to be efficient methods of removing and degrading contaminants of various kinds from polluted waters and soils, require knowledge of the native plants and associated microorganisms. In Qatar, many native plants (monocot and dicot, indigenous or introduced) have been shown to be greatly effective in remediating polluted areas. This article is a guide for Qatari scientists aiming to identify promising native plants and associated microbes for IWW phytoremediation. In it, we review the basic components of bioremediation and summarize the principle phytoremediation approaches and preferred recycling options. The multiple mechanisms and methods of phytoremediation for cleansing polluted soils and waters are also discussed as are details of the metabolic reactions degrading the organic components of oil and gas. Finally, heavy metal accumulation is addressed. Wastewater from industrial and domestic activities is currently being used to create green areas around Doha, Qatar, and such areas could be at risk of contamination. Many native Qatari plants and soil-dwelling microbes are efficient at removing organic and inorganic contaminants from polluted soils and waters, and some are promising candidates for achieving a clean environment free of contaminants.
Collapse
Affiliation(s)
- R F Al-Thani
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - B T Yasseen
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
23
|
Ryszka P, Lichtscheidl I, Tylko G, Turnau K. Symbiotic microbes of Saxifraga stellaris ssp. alpigena from the copper creek of Schwarzwand (Austrian Alps) enhance plant tolerance to copper. CHEMOSPHERE 2019; 228:183-194. [PMID: 31029964 DOI: 10.1016/j.chemosphere.2019.04.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/31/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Saxifraga stellaris var. alpigena grows as one of the very few higher plants in the copper rich area of the "blue creek" in Austria. Two endophytes were isolated from it: Mortierella sp. (fungus), and Stenotrophomonas maltophilia (bacterium). Both microbes were practically inseparable due to resistance of the bacteria to the antibiotics tested. On PDA media, the fungus showed higher tolerance to copper than the bacterium, which disappeared from both the media and the surface of the fungus in the presence of 150 μM of Cu. However, at this Cu concentration, the bacteria were still detectable inside the mycelium and reappeared on the outside when transferred to media of lower Cu concentration. Microscopic studies of in vitro cultivated plants showed that the fungus was present in both, the roots and shoots of the plant. The effects of endophytes on plant performance were assessed in rhizoboxes filled with Cu-rich substratum; plants inoculated with both microbes showed better growth, survival and photosynthesis performance than the non-inoculated controls. The results of this study prove the beneficial influence of the isolated endophytes on the Cu tolerance of S. stellaris, and indicate the ecological potential of applying microbial consortia to plants under extreme environmental conditions.
Collapse
Affiliation(s)
- Przemysław Ryszka
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland.
| | - Irene Lichtscheidl
- Core Facility Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Grzegorz Tylko
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
24
|
Rozpądek P, Nosek M, Domka A, Ważny R, Jędrzejczyk R, Tokarz K, Pilarska M, Niewiadomska E, Turnau K. Acclimation of the photosynthetic apparatus and alterations in sugar metabolism in response to inoculation with endophytic fungi. PLANT, CELL & ENVIRONMENT 2019; 42:1408-1423. [PMID: 30516827 DOI: 10.1111/pce.13485] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/20/2018] [Indexed: 05/11/2023]
Abstract
The role of an endophytic Zygomycete Mucor sp. in growth promotion and adaptation of the photosynthetic apparatus to increased energy demands of its hosts Arabidopsis arenosa and Arabidopsis thaliana was evaluated. Inoculation with the fungus improved the water use efficiency of the plants and allowed for them to utilize incident light for photochemistry more effectively by upregulating the expression of several photosystem I- and II-related genes and their respective proteins, proteins involved in light harvesting in PSII and PSI and carbon assimilation. This effect was independent of the ability of the plants to acquire nutrients from the soil. We hypothesize that the accelerated growth of the symbiotic plants resulted from an increase in their demand for carbohydrates and carbohydrate turnover (sink strength) that triggered a simultaneous upregulation of carbon assimilation. Arabidopsis plants inoculated with Mucor sp. exhibited upregulated expression in several genes encoding proteins involved in carbohydrate catabolism, sugar transport, and smaller starch grains that indicate a significant upregulation of carbohydrate metabolism.
Collapse
Affiliation(s)
- Piotr Rozpądek
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, 30-387, Poland
| | - Michał Nosek
- Institute of Biology, Pedagogical University, Kraków, 30-084, Poland
| | - Agnieszka Domka
- Institute of Environmental Sciences, Jagiellonian University, Kraków, 30-387, Poland
| | - Rafał Ważny
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, 30-387, Poland
| | - Roman Jędrzejczyk
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, 30-387, Poland
| | - Krzysztof Tokarz
- Institute of Plant Biology and Biotechnology, University of Agriculture, Kraków, 31-425, Poland
| | - Maria Pilarska
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Ewa Niewiadomska
- The F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University, Kraków, 30-387, Poland
| |
Collapse
|
25
|
Domka AM, Rozpaądek P, Turnau K. Are Fungal Endophytes Merely Mycorrhizal Copycats? The Role of Fungal Endophytes in the Adaptation of Plants to Metal Toxicity. Front Microbiol 2019; 10:371. [PMID: 30930857 PMCID: PMC6428775 DOI: 10.3389/fmicb.2019.00371] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/12/2019] [Indexed: 12/04/2022] Open
Abstract
The contamination of soil with toxic metals is a worldwide problem, resulting in the disruption of plant vegetation and subsequent crop production. Thus, remediation techniques for contaminated soil and water remain a constant interest of researchers. Phytoremediation, which utilizes plants to remove or stabilize contaminants, is perceived to be a promising strategy. However, phytoremediation's use to date is limited because of constraints associated with such factors as slow plant growth rates or metal toxicity. Microbial-assisted phytoremediation serves as an alternative solution, since the impact of the microbial symbionts on plant growth and stress tolerance has frequently been described. Endophytic fungi occur in almost every plant in the natural environment and contribute to plant growth and tolerance to environmental stress conditions. Although this group of symbiotic fungi was found to form association with a wide range of hosts, including the non-mycorrhizal Brassicaceae metallophytes, their role in the response of plants to metal toxicity has not been thoroughly elucidated to date. This review summarizes the current knowledge regarding the role of endophytic fungi in the tolerance of plants to toxic metals and highlights the similarities and differences between this group of symbiotic fungi and mycorrhizal associations in terms of the survival of the plant during heavy metal stress.
Collapse
Affiliation(s)
| | - Piotr Rozpaądek
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| |
Collapse
|
26
|
Liu T, Xu S, Lu S, Qin P, Bi B, Ding H, Liu Y, Guo X, Liu X. A review on removal of organophosphorus pesticides in constructed wetland: Performance, mechanism and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2247-2268. [PMID: 30332661 DOI: 10.1016/j.scitotenv.2018.10.087] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/07/2018] [Accepted: 10/07/2018] [Indexed: 05/12/2023]
Abstract
The residues of organophosphorus pesticides (OPPs) have been widely detected in rivers, the gulf, and even groundwater and drinking water, which may pose a serious threat to aquatic ecosystems and human health. Compared to other treatments, constructed wetlands (CWs) have been demonstrated to be a cost-effective alternative risk mitigation strategy for non-point-source pesticide pollution. This review summarizes 32 studies related to the remediation of OPPs in 117 CWs during 2001-2017 worldwide. The performances, mechanisms and influencing factors in the studies are comprehensively and critically reviewed in this paper. Overall, the OPPs were efficiently removed with an efficiency up to 87.22 ± 16.61%. The removal efficiency, differences and related reasons among different types of CWs in developed and developing countries and the different types of OPPs in CWs are well-evaluated in detail. In addition, the main processes for OPPs removal in CWs involve phytoremediation (plant uptake, phytoaccumulation, phytovolatilization and phytodegradation), substrate adsorption or sedimentation, and biodegradation. Based on the quantitative analysis by mass balance, for water-soluble pesticides, the dominant removal process was via microbiological degradation. This result was in contrast to findings obtained with hydrophobic OPPs, for which the dominant processes were biodegradation and sorption by substrate. Therefore, the behavior of microbial transformation prevails. Additionally, the presence of plants can facilitate the elimination of OPPs in CWs, promoting the process by an average percentage of approximately 6.19 ± 9.46%. Statistical analysis shows that loading of inlet OPPs is the largest limiting factor and that the HRT and T are the most significant parameters that influence the efficiency of trapping OPPs in CWs. Simultaneously, we can also obtain suitable parameters for the design and operation of CWs. This review promotes further research on plant-microbe joint combined remediation and examines the different behaviors of water-soluble and hydrophobic OPPs in CWs.
Collapse
Affiliation(s)
- Tao Liu
- College of Civil Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Shirong Xu
- College of Civil Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China.
| | - Pan Qin
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - Bin Bi
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - Haodong Ding
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - Ying Liu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China
| | - Xiaochun Guo
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China.
| | - Xiaohui Liu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, Chinese Research Academy of Environmental Sciences, Beijing 100012, People's Republic of China; School of Environment, Tsinghua University, Beijing 100084, People's Republic of China.
| |
Collapse
|
27
|
Kothe E, Turnau K. Editorial: Mycorrhizosphere Communication: Mycorrhizal Fungi and Endophytic Fungus-Plant Interactions. Front Microbiol 2018; 9:3015. [PMID: 30568649 PMCID: PMC6290029 DOI: 10.3389/fmicb.2018.03015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/22/2018] [Indexed: 11/20/2022] Open
Affiliation(s)
- Erika Kothe
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University in Krakow, Kraków, Poland
| |
Collapse
|
28
|
Sabra M, Aboulnasr A, Franken P, Perreca E, Wright LP, Camehl I. Beneficial Root Endophytic Fungi Increase Growth and Quality Parameters of Sweet Basil in Heavy Metal Contaminated Soil. FRONTIERS IN PLANT SCIENCE 2018; 9:1726. [PMID: 30538713 PMCID: PMC6277477 DOI: 10.3389/fpls.2018.01726] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/06/2018] [Indexed: 05/18/2023]
Abstract
How interactions between plants, the rhizosphere, and contaminated soil affect environmental sustainability is still under research. We tested the effects of two root endophytic fungi, the arbuscular mycorrhiza fungus (AMF) Rhizophagus irregularis and the beneficial endophyte Serendipita indica, on sweet basil (Ocimum basilicum) growing on soil contaminated with lead and copper in a pot experiment under defined greenhouse conditions. Both fungi caused an increase in shoot and root dry weight of sweet basil plants under all conditions and decreased the amount of lead in shoots. The amount of copper was reduced by S. indica, while the AM fungus showed this effect only when the soil is contaminated with both copper and lead. Furthermore the AMF, but not the endophyte S. indica caused a strong increase on the concentrations of the essential oils linalool and eucalyptol even on sweet basil growing on contaminated soils. Hence, cultivating sweet basil in combination with beneficial fungi in case of difficult environmental conditions could be of interest for industry located in countries with widespread land pollution, because quantity and quality of plants are increased while the amount of heavy metals is generally reduced.
Collapse
Affiliation(s)
- Mayada Sabra
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
- Agriculture Botany Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Amal Aboulnasr
- Agriculture Botany Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Philipp Franken
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Erica Perreca
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Iris Camehl
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| |
Collapse
|