1
|
Sheemar A, Bellala K, Sharma SV, Sharma S, Kaur I, Rani P, Sivaprasad S, Narayan KV, Das T, Takkar B. Metabolic memory and diabetic retinopathy: Legacy of glycemia and possible steps into future. Indian J Ophthalmol 2024; 72:796-808. [PMID: 38804800 PMCID: PMC11232859 DOI: 10.4103/ijo.ijo_2563_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 05/29/2024] Open
Abstract
The response of retinal pathology to interventions in diabetic retinopathy (DR) is often independent of the glycated hemoglobin (HbA1c) values at the point of care. This is despite glucose control being one of the strongest risk factors for the development and progression of DR. Previous preclinical and clinical research has indicated metabolic memory, whereby past cumulative glucose exposure may continue to impact DR for a prolonged period. Preclinical studies have evaluated punitive metabolic memory through poor initial control of DM, whereas clinical studies have evaluated protective metabolic memory through good initial control of DM. In this narrative review, we evaluate the preclinical and clinical evidence regarding metabolic memory and discuss how this may form the basis of preventive care for DR by inducing "metabolic amnesia" in people with a history of uncontrolled diabetes in the past. While our review suggested mitochondrial biology may be one such target, research is still far from a possible clinical trial. We discuss the challenges in such research.
Collapse
Affiliation(s)
| | - Keerthi Bellala
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vishakhapatnam, Andhra Pradesh, India
| | | | - Sarmeela Sharma
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Padmaja Rani
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sobha Sivaprasad
- NIHR Moorfields Clinical Research Facility, Moorfields Eye Hospital, London, UK
| | - Km Venkat Narayan
- Emory Global Diabetes Research Center, Emory University, Atlanta, USA
| | - Taraprasad Das
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Brijesh Takkar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Indian Health Outcomes, Public Health and Health Economics Research Centre (IHOPE), LVPEI, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Hu Y, Wei T, Gao S, Gao N, Chen L, Cheng Q. CD200R promotes high glucose-induced oxidative stress and damage in human retinal pigment epithelial cells by activating the mTOR signaling pathway. Tissue Cell 2024; 88:102381. [PMID: 38692160 DOI: 10.1016/j.tice.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
Diabetic retinopathy (DR) is established as the primary cause of visual impairment and preventable blindness, posing significant social and economic burdens on healthcare systems worldwide. Oxidative stress has been identified as a major contributor to DR, yet the precise role of the transmembrane glycoprotein CD200R in this context remains elusive. We studied human retinal pigment epithelia ARPE-19 cells to investigate the role of CD200R in high-glucose (HG) induced oxidative stress. Under HG conditions, we found a significant increase in CD200R expression in a time-dependent pattern. Conversely, knockdown of CD200R effectively alleviated oxidative stress and restored cell viability in HG-treated ARPE-19 cells, a phenomenon corroborated by the addition of a reactive oxygen species (ROS) scavenger. Exploration of the AKT/mTOR signaling pathway confirmed its mediating role regarding CD200R knockdown suppression of the expression of key proteins induced by HG conditions. Additionally, we found that the inhibition of mTOR signaling with Rapamycin effectively countered HG-induced oxidative stress in ARPE-19 cells, suggesting a promising therapeutic target against oxidative stress in the context of DR. This study establishes the crucial role of CD200R in HG-induced oxidative stress and identifies potential therapeutic avenues for the treatment of DR.
Collapse
Affiliation(s)
- Yaguang Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi Province 710061, PR China
| | - Ting Wei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi Province 710061, PR China
| | - Shan Gao
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi Province 710061, PR China
| | - Ning Gao
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi Province 710061, PR China
| | - Li Chen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi Province 710061, PR China
| | - Qiaochu Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi Province 710061, PR China.
| |
Collapse
|
3
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Assis SISD, Amendola LS, Okamoto MM, Ferreira GDS, Iborra RT, Santos DR, Santana MDFM, Santana KG, Correa-Giannella ML, Barbeiro DF, Soriano FG, Machado UF, Passarelli M. The Prolonged Activation of the p65 Subunit of the NF-Kappa-B Nuclear Factor Sustains the Persistent Effect of Advanced Glycation End Products on Inflammatory Sensitization in Macrophages. Int J Mol Sci 2024; 25:2713. [PMID: 38473959 DOI: 10.3390/ijms25052713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Advanced glycation end products (AGEs) prime macrophages for lipopolysaccharide (LPS)-induced inflammation. We investigated the persistence of cellular AGE-sensitization to LPS, considering the nuclear content of p50 and p65 nuclear factor kappa B (NFKB) subunits and the expression of inflammatory genes. Macrophages treated with control (C) or AGE-albumin were rested for varying intervals in medium alone before being incubated with LPS. Comparisons were made using one-way ANOVA or Student t-test (n = 6). AGE-albumin primed macrophages for increased responsiveness to LPS, resulting in elevated levels of TNF, IL-6, and IL-1beta (1.5%, 9.4%, and 5.6%, respectively), compared to C-albumin. TNF, IL-6, and IL-1 beta secretion persisted for up to 24 h even after the removal of AGE-albumin (area under the curve greater by 1.6, 16, and 5.2 times, respectively). The expressions of Il6 and RelA were higher 8 h after albumin removal, and Il6 and Abca1 were higher 24 h after albumin removal. The nuclear content of p50 remained similar, but p65 showed a sustained increase (2.9 times) for up to 24 h in AGE-albumin-treated cells. The prolonged activation of the p65 subunit of NFKB contributes to the persistent effect of AGEs on macrophage inflammatory priming, which could be targeted for therapies to prevent complications based on the AGE-RAGE-NFKB axis.
Collapse
Affiliation(s)
- Sayonara Ivana Santos de Assis
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Leonardo Szalo Amendola
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Maristela Mitiko Okamoto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Guilherme da Silva Ferreira
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Rodrigo Tallada Iborra
- Ciências Biológicas e da Saúde, Campos Mooca, Universidade São Judas Tadeu, São Paulo 03408-050, Brazil
| | - Danielle Ribeiro Santos
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Monique de Fátima Mello Santana
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Kelly Gomes Santana
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Maria Lucia Correa-Giannella
- Laboratório de Carboidratos e Radioimunoensaio (LIM 18), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Denise Frediani Barbeiro
- Laboratório de Emergências Clínicas (LIM 51), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Francisco Garcia Soriano
- Laboratório de Emergências Clínicas (LIM 51), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marisa Passarelli
- Laboratório de Lípides (LIM 10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil
- Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo 01525-000, Brazil
| |
Collapse
|
5
|
Sunilkumar S, VanCleave AM, McCurry CM, Toro AL, Stevens SA, Kimball SR, Dennis MD. REDD1-dependent GSK3β dephosphorylation promotes NF-κB activation and macrophage infiltration in the retina of diabetic mice. J Biol Chem 2023; 299:104991. [PMID: 37392853 PMCID: PMC10407432 DOI: 10.1016/j.jbc.2023.104991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023] Open
Abstract
Increasing evidence supports a role for inflammation in the early development and progression of retinal complications caused by diabetes. We recently demonstrated that the stress response protein regulated in development and DNA damage response 1 (REDD1) promotes diabetes-induced retinal inflammation by sustaining canonical activation of nuclear transcription factor, NF-κB. The studies here were designed to identify signaling events whereby REDD1 promotes NF-κB activation in the retina of diabetic mice. We observed increased REDD1 expression in the retina of mice after 16 weeks of streptozotocin (STZ)-induced diabetes and found that REDD1 was essential for diabetes to suppress inhibitory phosphorylation of glycogen synthase kinase 3β (GSK3β) at S9. In human retinal MIO-M1 Müller cell cultures, REDD1 deletion prevented dephosphorylation of GSK3β and increased NF-κB activation in response to hyperglycemic conditions. Expression of a constitutively active GSK3β variant restored NF-κB activation in cells deficient for REDD1. In cells exposed to hyperglycemic conditions, GSK3β knockdown inhibited NF-κB activation and proinflammatory cytokine expression by preventing inhibitor of κB kinase complex autophosphorylation and inhibitor of κB degradation. In both the retina of STZ-diabetic mice and in Müller cells exposed to hyperglycemic conditions, GSK3 inhibition reduced NF-κB activity and prevented an increase in proinflammatory cytokine expression. In contrast with STZ-diabetic mice receiving a vehicle control, macrophage infiltration was not observed in the retina of STZ-diabetic mice treated with GSK3 inhibitor. Collectively, the findings support a model wherein diabetes enhances REDD1-dependent activation of GSK3β to promote canonical NF-κB signaling and the development of retinal inflammation.
Collapse
Affiliation(s)
- Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Ashley M VanCleave
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Christopher M McCurry
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Allyson L Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Shaunaci A Stevens
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
6
|
Georgiou M, Prokopiou E. Diabetic retinopathy and the role of Omega-3 PUFAs: A narrative review. Exp Eye Res 2023; 231:109494. [PMID: 37149278 DOI: 10.1016/j.exer.2023.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/07/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Diabetes mellitus has been a major cause of concern for the past few decades. As the number of diabetic patients increases, so too does the occurrence of its complications. Diabetic retinopathy (DR) is one of these and constitutes the most common cause of blindness amongst working-age individuals. Chronic exposure to a hyperglycaemic environment remains the driving force of a cascade of molecular events that disrupt the microvasculature of the retina and if left untreated can lead to blindness. In this review, we identify oxidative stress as a major implication in the pathway to the development of DR and speculate that it plays a central role especially in the early stages of the disease. Cells lose their antioxidant capacity under a hyperglycaemic state, free radicals are formed and eventually apoptosis ensues. The polyol pathway; advanced glycation end-product formation; the protein kinase C pathway, and the hexosamine pathway are found to contribute to the increase in oxidative stress observed in diabetic patients. We also investigate the use of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in DR. These molecules possess antioxidant and anti-inflammatory properties and have been previously investigated for use in other ocular pathologies with promising results. In this review we present the latest findings in pre-clinical and clinical studies for the use of ω-3 PUFAs in DR. We hypothesise that ω-3 PUFAs could be beneficial for DR in ways of reducing the oxidative stress and limiting the progression of the disease that threatens the eyesight of the patient, in conjunction with conventional therapy.
Collapse
Affiliation(s)
- Maria Georgiou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414, Nicosia, Cyprus
| | - Ekatherine Prokopiou
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, 2414, Nicosia, Cyprus; Ophthalmos Research and Educational Institute, 2417, Nicosia, Cyprus.
| |
Collapse
|
7
|
Sunilkumar S, Toro AL, McCurry CM, VanCleave AM, Stevens SA, Miller WP, Kimball SR, Dennis MD. Stress response protein REDD1 promotes diabetes-induced retinal inflammation by sustaining canonical NF-κB signaling. J Biol Chem 2022; 298:102638. [PMID: 36309088 PMCID: PMC9694114 DOI: 10.1016/j.jbc.2022.102638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/24/2022] Open
Abstract
Inflammation contributes to the progression of retinal pathology caused by diabetes. Here, we investigated a role for the stress response protein regulated in development and DNA damage response 1 (REDD1) in the development of retinal inflammation. Increased REDD1 expression was observed in the retina of mice after 16-weeks of streptozotocin (STZ)-induced diabetes, and REDD1 was essential for diabetes-induced pro-inflammatory cytokine expression. In human retinal MIO-M1 Müller cell cultures, REDD1 deletion prevented increased pro-inflammatory cytokine expression in response to hyperglycemic conditions. REDD1 deletion promoted nuclear factor erythroid-2-related factor 2 (Nrf2) hyperactivation; however, Nrf2 was not required for reduced inflammatory cytokine expression in REDD1-deficient cells. Rather, REDD1 enhanced inflammatory cytokine expression by promoting activation of nuclear transcription factor κB (NF-κB). In WT cells exposed to tumor necrosis factor α (TNFα), inflammatory cytokine expression was increased in coordination with activating transcription factor 4 (ATF4)-dependent REDD1 expression and sustained activation of NF-κB. In both Müller cell cultures exposed to TNFα and in the retina of STZ-diabetic mice, REDD1 deletion promoted inhibitor of κB (IκB) expression and reduced NF-κB DNA-binding activity. We found that REDD1 acted upstream of IκB by enhancing both K63-ubiquitination and auto-phosphorylation of IκB kinase complex. In contrast with STZ-diabetic REDD1+/+ mice, IκB kinase complex autophosphorylation and macrophage infiltration were not observed in the retina of STZ-diabetic REDD1-/- mice. The findings provide new insight into how diabetes promotes retinal inflammation and support a model wherein REDD1 sustains activation of canonical NF-κB signaling.
Collapse
Affiliation(s)
- Siddharth Sunilkumar
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Allyson L. Toro
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Christopher M. McCurry
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Ashley M. VanCleave
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Shaunaci A. Stevens
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - William P. Miller
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Michael D. Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, USA,Department of Ophthalmology, Penn State College of Medicine, Hershey, Pennsylvania, USA,For correspondence: Michael D. Dennis
| |
Collapse
|
8
|
Chang GR, Hou PH, Wang CM, Lin JW, Lin WL, Lin TC, Liao HJ, Chan CH, Wang YC. Imipramine Accelerates Nonalcoholic Fatty Liver Disease, Renal Impairment, Diabetic Retinopathy, Insulin Resistance, and Urinary Chromium Loss in Obese Mice. Vet Sci 2021; 8:189. [PMID: 34564583 PMCID: PMC8473438 DOI: 10.3390/vetsci8090189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Imipramine is a tricyclic antidepressant that has been approved for treating depression and anxiety in patients and animals and that has relatively mild side effects. However, the mechanisms of imipramine-associated disruption to metabolism and negative hepatic, renal, and retinal effects are not well defined. In this study, we evaluated C57BL6/J mice subjected to a high-fat diet (HFD) to study imipramine's influences on obesity, fatty liver scores, glucose homeostasis, hepatic damage, distribution of chromium, and retinal/renal impairments. Obese mice receiving imipramine treatment had higher body, epididymal fat pad, and liver weights; higher serum triglyceride, aspartate and alanine aminotransferase, creatinine, blood urea nitrogen, renal antioxidant enzyme, and hepatic triglyceride levels; higher daily food efficiency; and higher expression levels of a marker of fatty acid regulation in the liver compared with the controls also fed an HFD. Furthermore, the obese mice that received imipramine treatment exhibited insulin resistance, worse glucose intolerance, decreased glucose transporter 4 expression and Akt phosphorylation levels, and increased chromium loss through urine. In addition, the treatment group exhibited considerably greater liver damage and higher fatty liver scores, paralleling the increases in patatin-like phospholipid domain containing protein 3 and the mRNA levels of sterol regulatory element-binding protein 1 and fatty acid-binding protein 4. Retinal injury worsened in imipramine-treated mice; decreases in retinal cell layer organization and retinal thickness and increases in nuclear factor κB and inducible nitric oxide synthase levels were observed. We conclude that administration of imipramine may result in the exacerbation of nonalcoholic fatty liver disease, diabetes, diabetic retinopathy, and kidney injury.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (G.-R.C.); (C.-M.W.); (T.-C.L.); (H.-J.L.)
| | - Po-Hsun Hou
- Department of Psychiatry, Taichung Veterans General Hospital, 4 Section, 1650 Taiwan Boulevard, Taichung 40705, Taiwan;
- Faculty of Medicine, National Yang-Ming University, 2 Section, 155 Linong Street, Beitou District, Taipei 11221, Taiwan
- College of Medicine, National Chung Hsing University, 145 Xingda Road, South District, Taichung 40227, Taiwan
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (G.-R.C.); (C.-M.W.); (T.-C.L.); (H.-J.L.)
| | - Jen-Wei Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (J.-W.L.); (W.-L.L.)
| | - Wei-Li Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (J.-W.L.); (W.-L.L.)
- General Education Center, Chaoyang University of Technology, 168 Jifeng Eastern Road, Taichung 413310, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (G.-R.C.); (C.-M.W.); (T.-C.L.); (H.-J.L.)
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 60054, Taiwan; (G.-R.C.); (C.-M.W.); (T.-C.L.); (H.-J.L.)
| | - Chee-Hong Chan
- Division of Nephrology, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Lukang Township, Changhua 50544, Taiwan
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital, 222 Fuxin Road, Wufeng District, Taichung 41354, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng District, Taichung 41354, Taiwan
- Division of Cardiovascular Medicine, China Medical University Hospital, 2 Yude Road, North District, Taichung 404332, Taiwan
- College of Medicine, China Medical University, 91 Hsueh-Shih Road, North District, Taichung 404333, Taiwan
| |
Collapse
|
9
|
Chang GR, Liu HY, Yang WC, Wang CM, Wu CF, Lin JW, Lin WL, Wang YC, Lin TC, Liao HJ, Hou PH, Chan CH, Lin CF. Clozapine Worsens Glucose Intolerance, Nonalcoholic Fatty Liver Disease, Kidney Damage, and Retinal Injury and Increases Renal Reactive Oxygen Species Production and Chromium Loss in Obese Mice. Int J Mol Sci 2021; 22:ijms22136680. [PMID: 34206460 PMCID: PMC8268139 DOI: 10.3390/ijms22136680] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
Clozapine is widely employed in the treatment of schizophrenia. Compared with that of atypical first-generation antipsychotics, atypical second-generation antipsychotics such as clozapine have less severe side effects and may positively affect obesity and blood glucose level. However, no systematic study of clozapine’s adverse metabolic effects—such as changes in kidney and liver function, body weight, glucose and triglyceride levels, and retinopathy—was conducted. This research investigated how clozapine affects weight, the bodily distribution of chromium, liver damage, fatty liver scores, glucose homeostasis, renal impairment, and retinopathy in mice fed a high fat diet (HFD). We discovered that obese mice treated with clozapine gained more weight and had greater kidney, liver, and retroperitoneal and epididymal fat pad masses; higher daily food efficiency; higher serum or hepatic triglyceride, aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, and creatinine levels; and higher hepatic lipid regulation marker expression than did the HFD-fed control mice. Furthermore, the clozapine group mice exhibited insulin resistance, poorer insulin sensitivity, greater glucose intolerance, and less Akt phosphorylation; their GLUT4 expression was lower, they had renal damage, more reactive oxygen species, and IL-1 expression, and, finally, their levels of antioxidative enzymes (superoxide dismutase, glutathione peroxidase, and catalase) were lower. Moreover, clozapine reduced the thickness of retinal cell layers and increased iNOS and NF-κB expression; a net negative chromium balance occurred because more chromium was excreted through urine, and this influenced chromium mobilization, which did not help overcome the hyperglycemia. Our clozapine group had considerably higher fatty liver scores, which was supported by the findings of lowered adiponectin protein levels and increased FASN protein, PNPLA3 protein, FABP4 mRNA, and SREBP1 mRNA levels. We conclude that clozapine can worsen nonalcoholic fatty liver disease, diabetes, and kidney and retinal injury. Therefore, long-term administration of clozapine warrants higher attention.
Collapse
Affiliation(s)
- Geng-Ruei Chang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Hsien-Yueh Liu
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
| | - Wei-Cheng Yang
- School of Veterinary Medicine, National Taiwan University, 4 Section, 1 Roosevelt Road, Taipei 100046, Taiwan;
| | - Chao-Min Wang
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Ching-Fen Wu
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Jen-Wei Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
| | - Wei-Li Lin
- Bachelor Degree Program in Animal Healthcare, Hungkuang University, 6 Section, 1018 Taiwan Boulevard, Shalu District, Taichung 433304, Taiwan; (H.-Y.L.); (J.-W.L.); (W.-L.L.)
- General Education Center, Chaoyang University of Technology, 168 Jifeng Eastern Road, Taichung 413310, Taiwan
| | - Yu-Chen Wang
- Division of Cardiology, Asia University Hospital, 222 Fuxin Road, Wufeng District, Taichung 413505, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, Asia University, 500 Lioufeng Road, Wufeng District, Taichung 413305, Taiwan
- Division of Cardiovascular Medicine, China Medical University Hospital, 2 Yude Road, North District, Taichung 404332, Taiwan
- College of Medicine, China Medical University, 91 Hsueh-Shih Road, North District, Taichung 404333, Taiwan
| | - Tzu-Chun Lin
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Huei-Jyuan Liao
- Department of Veterinary Medicine, National Chiayi University, 580 Xinmin Road, Chiayi 600023, Taiwan; (G.-R.C.); (C.-M.W.); (C.-F.W.); (T.-C.L.); (H.-J.L.)
| | - Po-Hsun Hou
- Department of Psychiatry, Taichung Veterans General Hospital, 4 Section, 1650 Taiwan Boulevard, Taichung 407219, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, 2 Section, 155 Linong Street, Beitou District, Taipei 112304, Taiwan
- Correspondence: (P.-H.H.); (C.-H.C.); (C.-F.L.); Tel.: +886-4-23592525 (P.-H.H.); +886-975-617071 (C.-H.C.); +886-8-7703202 (C.-F.L.)
| | - Chee-Hong Chan
- Division of Nephrology, Chang Bing Show Chwan Memorial Hospital, 6 Lugong Road, Lukang Township, Changhua 505029, Taiwan
- Correspondence: (P.-H.H.); (C.-H.C.); (C.-F.L.); Tel.: +886-4-23592525 (P.-H.H.); +886-975-617071 (C.-H.C.); +886-8-7703202 (C.-F.L.)
| | - Chuen-Fu Lin
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1 Shuefu Road, Neipu, Pingtung 912301, Taiwan
- Correspondence: (P.-H.H.); (C.-H.C.); (C.-F.L.); Tel.: +886-4-23592525 (P.-H.H.); +886-975-617071 (C.-H.C.); +886-8-7703202 (C.-F.L.)
| |
Collapse
|
10
|
Maugeri G, Bucolo C, Drago F, Rossi S, Di Rosa M, Imbesi R, D'Agata V, Giunta S. Attenuation of High Glucose-Induced Damage in RPE Cells through p38 MAPK Signaling Pathway Inhibition. Front Pharmacol 2021; 12:684680. [PMID: 34025440 PMCID: PMC8138305 DOI: 10.3389/fphar.2021.684680] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate the high glucose damage on human retinal pigment epithelial (RPE) cells, the role of p38 MAPK signaling pathway and how dimethyl fumarate can regulate that. We carried out in vitro studies on ARPE-19 cells exposed to physiological and high glucose (HG) conditions, to evaluate the effects of DMF on cell viability, apoptosis, and expression of inflammatory and angiogenic biomarkers such as COX-2, iNOS, IL-1β, and VEGF. Our data have demonstrated that DMF treatment attenuated HG-induced apoptosis, as confirmed by reduction of BAX/Bcl-2 ratio. Furthermore, in RPE cells exposed to HG we observed a significant increase of iNOS, COX-2, and IL-1β expression, that was reverted by DMF treatment. Moreover, DMF reduced the VEGF levels elicited by HG, inhibiting p38 MAPK signaling pathway. The present study demonstrated that DMF provides a remarkable protection against high glucose-induced damage in RPE cells through p38 MAPK inhibition and the subsequent down-regulation of VEGF levels, suggesting that DMF is a small molecule that represents a good candidate for diabetic retinopathy treatment and warrants further in vivo and clinical evaluation.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology (CERFO), University of Catania, Catania, Italy
| | - Filippo Drago
- Pharmacology Section, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Center for Research in Ocular Pharmacology (CERFO), University of Catania, Catania, Italy
| | - Settimio Rossi
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Michelino Di Rosa
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosa Imbesi
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Velia D'Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Giunta
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Fiorello ML, Treweeke AT, Macfarlane DP, Megson IL. The impact of glucose exposure on bioenergetics and function in a cultured endothelial cell model and the implications for cardiovascular health in diabetes. Sci Rep 2020; 10:19547. [PMID: 33177612 PMCID: PMC7659000 DOI: 10.1038/s41598-020-76505-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular disease is the primary driver of morbidity and mortality associated with diabetes. Hyperglycaemia is implicated in driving endothelial dysfunction that might underpin the link between diabetes and cardiovascular disease. This study was designed to determine the impact of chronic preconditioning of cells to hyperglycaemia and transient switching of cultured endothelial cells between hyper- and normo-glycaemic conditions on bioenergetic and functional parameters. Immortalised EA.hy926 endothelial cells were cultured through multiple passages under normoglycaemic (5.5 mM) or hyperglycaemic (25 mM) conditions. Cells were subsequently subjected (48 h) to continued normo- or hyperglycaemic exposure, or were switched to the alternative glycaemic condition, or to an intermediate glucose concentration (12.5 mM) and metabolic activity, together with key markers of function were measured. Cells habituated to hyperglycaemia were energetically quiescent. Functional activity, characterised by the measurement of nitric oxide, endothelin-1, tissue plasminogen activator and plasminogen activator inhibitor-1, was depressed by exposure to high glucose, with the reduction in nitric oxide production being the most notable. Function was more responsive to acute changes in extracellular glucose than were bioenergetic changes. We conclude that glucose is a key determinant of endothelial function. The study highlights the importance of chronic glucose exposure on cell phenotype and emphasises the need to pay close attention to glucose preconditioning in interpreting results under culture conditions.
Collapse
Affiliation(s)
- Maria Luisa Fiorello
- Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Inverness, IV2 4JH, UK
| | - Andrew T Treweeke
- Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Inverness, IV2 4JH, UK
| | | | - Ian L Megson
- Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Inverness, IV2 4JH, UK.
| |
Collapse
|
12
|
Jiang T, Gu J, Chen W, Chang Q. Resveratrol inhibits high-glucose-induced inflammatory "metabolic memory" in human retinal vascular endothelial cells through SIRT1-dependent signaling. Can J Physiol Pharmacol 2019; 97:1141-1151. [PMID: 31638409 DOI: 10.1139/cjpp-2019-0201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diabetes induces vascular endothelial damage and this study investigated high-glucose-induced inflammation "metabolic memory" of human retinal vascular endothelial cells (HRVECs), the effects of resveratrol on HRVECs, and the underlying signaling. HRVECs were grown under various conditions and assayed for levels of sirtuin 1 (SIRT1); acetylated nuclear factor κB (Ac-NF-κB); NOD-like receptor family, pyrin domain containing 3 (NLRP3); and other inflammatory cytokines; and cell viability. A high glucose concentration induced HRVEC inflammation metabolic memory by decreasing SIRT1 and increasing Ac-NF-κB, NLRP3, caspase 1, interleukin-1β, inducible nitric oxide synthase, and tumor necrosis factor α, whereas exposure of HRVECs to a high glucose medium for 4 days, followed by a normal glucose concentration for an additional 4 days, failed to reverse these changes. A high glucose concentration also significantly reduced HRVEC viability. In contrast, resveratrol, a selective SIRT1 activator, markedly enhanced HRVEC viability and reduced the inflammatory cytokines expressions. In addition, high glucose reduced AMP-activated protein kinase (AMPK) phosphorylation and retained during the 4 days of the reversal period of culture. The effects of resveratrol were abrogated after co-treatment with the SIRT1 inhibitor nicotinamide and the AMPK inhibitor compound C. In conclusion, resveratrol was able to reverse high-glucose-induced inflammation "metabolic memory" of HRVECs by activation of the SIRT1/AMPK/NF-κB pathway.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.,Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai 200000, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200000, China
| | - Junxiang Gu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.,Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai 200000, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200000, China
| | - Wenwen Chen
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.,Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai 200000, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200000, China
| | - Qing Chang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai 200031, China.,Key Laboratory of Myopia of National Health Commission, Fudan University, Shanghai 200000, China.,Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai 200000, China
| |
Collapse
|
13
|
Liu P, Peng QH, Tong P, Li WJ. Astragalus polysaccharides suppresses high glucose-induced metabolic memory in retinal pigment epithelial cells through inhibiting mitochondrial dysfunction-induced apoptosis by regulating miR-195. Mol Med 2019; 25:21. [PMID: 31117931 PMCID: PMC6530096 DOI: 10.1186/s10020-019-0088-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Metabolic memory contributes to the development of diabetic retinopathy (DR), which is the complication of diabetes. But it's still unknown how to prevent the metabolic memory to treat the DR. In our study, we want to examine the function of Astragalus polysaccharides (APS) in the metabolic memory of retinal pigment epithelium (RPE) pretreated with high glucose (HG). METHODS ARPE-19 and PRPE cells were exposed to HG followed by normal glucose (NG) treatment with or without APS. QPCR was used to examine the levels of miR-195 and Bcl-2. MDA and SOD detection assays were used to examine the oxidative stress level. Western blotting and immunostaining were applied to detect the protein level of mitochondrial damage and apoptotic signaling pathway. Flow cytometry and TUNEL staining were used to analyze cell apoptosis. Luciferase assay was used to examine the direct target of miR-195. RESULTS APS treatment significantly decreased the expression of miR-195, while increased the expression of Bcl-2 with optimized dosages which were induced by HG treatment, even after replacing the HG with NG. And we found Bcl-2 was the direct target of miR-195. APS alleviated the oxidative stress, mitochondrial damage and cell apoptosis induced by HG and HG + NG treatments in RPE cells via regulating miR-195. Furthermore, we found overexpression of miR-195 abolished the alleviated effects of APS on the HG-treated RPE cells. CONCLUSIONS APS suppressed high glucose-induced metabolic memory in retinal pigment epithelial cells through inhibiting mitochondrial dysfunction-induced apoptosis by regulating miR-195.
Collapse
Affiliation(s)
- Ping Liu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Qing-Hua Peng
- Hunan Provincial Key Laboratory of Ophthalmology and Otorhinolaryngology of Chinese Medicine, Changsha, 410007, People's Republic of China
| | - Ping Tong
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, 410011, People's Republic of China
| | - Wen-Jie Li
- Department of Ophthalmology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.
| |
Collapse
|
14
|
Zeng W, Qi W, Mu J, Wei Y, Yang LL, Zhang Q, Wu Q, Tang JY, Feng B. MG132 protects against renal dysfunction by regulating Akt-mediated inflammation in diabetic nephropathy. Sci Rep 2019; 9:2049. [PMID: 30765727 PMCID: PMC6375942 DOI: 10.1038/s41598-018-38425-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 12/21/2018] [Indexed: 12/25/2022] Open
Abstract
Diabetic nephropathy (DN), the leading cause of end-stage renal disease (ESRD). To date, mounting evidence has shown that inflammation may contribute to the pathogenesis of DN. Recent reports have shown that proteasome inhibitors display cytoprotection by reducing the phosphorylation of Akt, a serine/threonine kinase, plays a critical role in cellular survival and metabolism and can crosstalk with inflammation. Therefore, we hypothesized that MG132, specific proteasome inhibitor, could provide renoprotection by suppressing Akt-mediated inflammation in DN. In vivo, male Sprague-Dawley rats were divided into normal control group (NC), diabetic nephropathy group (DN), DN model plus MG132 treatment group (MG132), and DN model plus deguelin treatment group (Deguelin)(deguelin, a specific inhibitor of Akt). In vitro, a human glomerular mesangial cell lines (HMCs) was exposed to 5.5 mmol/L glucose (CON), 30 mmol/L glucose (HG), 30 mmol/L glucose with 0.5 umol/L MG132 (MG132) and 30 mmol/L glucose with 5 umol/L deguelin (Deguelin). Compared with NC, DN showed a significant increase in the urinary protein excretion rate and inflammatory cytokines, as well as p-Akt. Compared with CON, HMCs co-cultured with HG was notably proliferated, which is in accord with α-smooth muscle actin (α-SMA) expression. These alterations were inhibited by administration of MG132 or deguelin. In conclusion, MG132 significantly inhibits the development of DN by regulating Akt phosphorylation-mediated inflammatory activation.
Collapse
Affiliation(s)
- Wei Zeng
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Wei Qi
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jiao Mu
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Yi Wei
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Li-Ling Yang
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Qian Zhang
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Qiong Wu
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jian-Ying Tang
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Bing Feng
- Department of Nephrology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
15
|
Enninga EAL, Egan AM, Alrahmani L, Leontovich AA, Ruano R, Sarras MP. Frequency of Gestational Diabetes Mellitus Reappearance or Absence during the Second Pregnancy of Women Treated at Mayo Clinic between 2013 and 2018. J Diabetes Res 2019; 2019:9583927. [PMID: 31886293 PMCID: PMC6893262 DOI: 10.1155/2019/9583927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022] Open
Abstract
The Center for Disease Control and Prevention ranks diabetes mellitus (DM) as the seventh leading cause of death in the USA. The most prevalent forms of DM include Type 2 DM, Type 1 DM, and gestational diabetes mellitus (GDM). While the acute problem of diabetic hyperglycemia can be clinically managed through dietary control and lifestyle changes or pharmacological intervention with oral medications or insulin, long-term complications of the disease are associated with significant morbidity and mortality. These long-term complications involve nearly all organ systems of the body and share common pathologies associated with endothelial cell abnormalities. To better understand the molecular mechanisms underlying DM as related to future long-term complications following hyperglycemia, we have undertaken a study to determine the frequency that GDM did or did not occur in the second pregnancy of women who experienced GDM in their first pregnancy between 2013 and 2018 at Mayo Clinic, Rochester, MN. Within the five-year period of the study, the results indicate that 7,330 women received obstetrical care for pregnancy during the study period. Of these, 150 developed GDM in their first pregnancy and of these, 42 (28%) had a second pregnancy. Of these 42 women, 20 again developed GDM and 22 did not develop GDM in their second pregnancy within the study period. Following the occurrence of GDM in the first pregnancy, the study (1) established the number of women with and without GDM in the second pregnancy and (2) confirmed the feasibility to study diabetic metabolic memory using maternal placental tissue from GDM women. These studies represent Phase I of a larger research project whose goal is to analyze epigenetic mechanisms underlying true diabetic metabolic memory using endothelial cells isolated from the maternal placenta of women with and without GDM as described in this article.
Collapse
Affiliation(s)
| | - Aoife M. Egan
- Department of Endocrinology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Layan Alrahmani
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Alexey A. Leontovich
- Department of Health Science Research, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Rodrigo Ruano
- Department of Obstetrics and Gynecology, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Michael P. Sarras
- Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, N. Chicago, IL, USA
| |
Collapse
|
16
|
Van Dyken P, Lacoste B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. Front Neurosci 2018; 12:930. [PMID: 30618559 PMCID: PMC6297847 DOI: 10.3389/fnins.2018.00930] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic syndrome, which includes diabetes and obesity, is one of the most widespread medical conditions. It induces systemic inflammation, causing far reaching effects on the body that are still being uncovered. Neuropathologies triggered by metabolic syndrome often result from increased permeability of the blood-brain-barrier (BBB). The BBB, a system designed to restrict entry of toxins, immune cells, and pathogens to the brain, is vital for proper neuronal function. Local and systemic inflammation induced by obesity or type 2 diabetes mellitus can cause BBB breakdown, decreased removal of waste, and increased infiltration of immune cells. This leads to disruption of glial and neuronal cells, causing hormonal dysregulation, increased immune sensitivity, or cognitive impairment depending on the affected brain region. Inflammatory effects of metabolic syndrome have been linked to neurodegenerative diseases. In this review, we discuss the effects of obesity and diabetes-induced inflammation on the BBB, the roles played by leptin and insulin resistance, as well as BBB changes occurring at the molecular level. We explore signaling pathways including VEGF, HIFs, PKC, Rho/ROCK, eNOS, and miRNAs. Finally, we discuss the broader implications of neural inflammation, including its connection to Alzheimer's disease, multiple sclerosis, and the gut microbiome.
Collapse
Affiliation(s)
- Peter Van Dyken
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
17
|
Shafabakhsh R, Aghadavod E, Mobini M, Heidari-Soureshjani R, Asemi Z. Association between microRNAs expression and signaling pathways of inflammatory markers in diabetic retinopathy. J Cell Physiol 2018; 234:7781-7787. [PMID: 30478931 DOI: 10.1002/jcp.27685] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/17/2022]
Abstract
Diabetic retinopathy is one of the common and serious microvascular complications of diabetes mellitus, as hyperglycemia has metabolic effects on the retina. Hyperglycemia induces increased oxidative stress, which stimulates inflammation pathways and promotes vascular dysfunction of the retina that leads to increased capillary permeability and vascular leakage. One of the main factors involving diabetic retinopathy is the inflammation signaling pathways. In contemporary times, microRNAs (miRNAs) are identified as functional biomarkers for early detection and treatment of numerous diseases specifically diabetic retinopathy. MiRNAs can modulate gene expression through regulation of transcriptional and posttranscriptional of target genes. With that, miRNAs can regulate almost every cellular and developmental process, including the regulation of instinct immune responses and inflammation. The aim of this study is to investigate the role of miRNAs in inflammation pathways and the pathogenesis of diabetic retinopathy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Mobini
- Department of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
18
|
Sodium valproate ameliorates memory impairment and reduces the elevated levels of apoptotic caspases in the hippocampus of diabetic mice. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1085-1092. [PMID: 29971457 DOI: 10.1007/s00210-018-1531-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/20/2018] [Indexed: 01/12/2023]
Abstract
Learning and memory deficits appear in chronic diabetes and valproic acid has been proved to be beneficial in neurodegenerative diseases. Hence, the current study investigated the effectiveness of chronic valproate treatment for diabetes-induced memory impairment and increased levels of hippocampal apoptotic caspases. This study was conducted in adult male C57B15/J mice. Diabetes, which was induced by alloxan (150 mg/kg; i.p.), was confirmed when fasting blood sugar (FBS) was > 200 mg/dl. Sodium valproate (100 mg/kg; i.p.) was administrated to the diabetic and non-diabetic groups, every 72 h for 2 months. Next, all groups were evaluated for memory performance using the radial maze and shuttle box. After FBS measurement, animals were killed and the hippocampus was extracted and prepared for ELISA to assess caspase levels. Diabetic animals had significantly high FBS and memory impairment 2 months after the alloxan injection. Hippocampal levels of caspases 3, 6, and 8 were significantly higher in the diabetic group than in the control group. However, valproate treatment of diabetic animals significantly improved memory performance in both the radial maze and shuttle box and reduced the elevated levels of hippocampal apoptotic caspases, in comparison with diabetic animals. Chronic administration of valproate seems to have beneficial effects on diabetic neuropathy.
Collapse
|
19
|
Kowluru RA. Diabetic retinopathy, metabolic memory and epigenetic modifications. Vision Res 2017; 139:30-38. [PMID: 28700951 DOI: 10.1016/j.visres.2017.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
Retinopathy, a sight-threatening disease, remains one of the most feared complications of diabetes. Although hyperglycemia is the main initiator, progression of diabetic retinopathy continues even after re-institution of normal glycemic control in diabetic patients, and the deleterious effects of prior hyperglycemic insult depend on the duration and the severity of this insult, suggesting a 'metabolic memory' phenomenon. Metabolic memory phenomenon is successfully duplicated in the experimental models of diabetic retinopathy. Hyperglycemia, in addition to initiating many other biochemical and functional abnormalities and altering expression of genes associated with them, also increases oxidative stress. Increased production of cytosolic reactive oxygen species dysfunctions the mitochondria, and a compromised antioxidant defense system becomes overwhelmed to neutralize free radicals. With the duration of diabetes extending, mitochondrial DNA (mtDNA) is also damaged, and transcription of mtDNA-encoded genes, important for function of the electron transport chain, is compromised. This fuels into a 'self-propagating' vicious cycle of free radicals, and retinopathy continues to progress. Hyperglycemic insult also affects the enzymatic machinery responsible for epigenetic modifications; these modifications alter gene expression without affecting the DNA sequence. Histones and/or DNA modifications of many enzymes, important in mitochondrial homeostasis, affect their activities and disturb mitochondrial homeostasis. Experimental models have shown that these epigenetic modifications have potential to halt only if normal glycemia is maintained from the day of induction of diabetes (streptozotocin) in rats, but if hyperglycemia is allowed to proceed even for couple months before initiation of normal glycemia, these epigenetic modification resist reversal. Supplementation of a therapy targeted to prevent increased oxidative stress or epigenetic modifications, during the normal glucose phase, which has followed high glucose insult, however, helps ameliorate these abnormalities and prevents the progression of diabetic retinopathy. Thus, without undermining the importance of tight glycemic control for a diabetic patient, supplementation of their 'best possible' glycemic control with such targeted therapies has potential to retard further progression of this blinding disease.
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
20
|
Elevated Glucose and Interleukin-1 β Differentially Affect Retinal Microglial Cell Proliferation. Mediators Inflamm 2017; 2017:4316316. [PMID: 28588350 PMCID: PMC5447273 DOI: 10.1155/2017/4316316] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 04/04/2017] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy is considered a neurovascular disorder, hyperglycemia being considered the main risk factor for this pathology. Diabetic retinopathy also presents features of a low-grade chronic inflammatory disease, including increased levels of cytokines in the retina, such as interleukin-1 beta (IL-1β). However, how high glucose and IL-1β affect the different retinal cell types remains to be clarified. In retinal neural cell cultures, we found that IL-1β and IL-1RI are present in microglia, macroglia, and neurons. Exposure of retinal neural cell cultures to high glucose upregulated both mRNA and protein levels of IL-1β. High glucose decreased microglial and macroglial cell proliferation, whereas IL-1β increased their proliferation. Interestingly, under high glucose condition, although the number of microglial cells decreased, they showed a less ramified morphology, suggesting a more activated state, as supported by the upregulation of the levels of ED-1, a marker of microglia activation. In conclusion, IL-1β might play a key role in diabetic retinopathy, affecting microglial and macroglial cells and ultimately contributing to neural changes observed in diabetic patients. Particularly, since IL-1β has an important role in retinal microglia activation and proliferation under diabetes, limiting IL-1β-triggered inflammatory processes may provide a new therapeutic strategy to prevent the progression of diabetic retinopathy.
Collapse
|
21
|
Voronova V, Zhudenkov K, Helmlinger G, Peskov K. Interpretation of metabolic memory phenomenon using a physiological systems model: What drives oxidative stress following glucose normalization? PLoS One 2017; 12:e0171781. [PMID: 28178319 PMCID: PMC5298285 DOI: 10.1371/journal.pone.0171781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/25/2017] [Indexed: 02/07/2023] Open
Abstract
Hyperglycemia is generally associated with oxidative stress, which plays a key role in diabetes-related complications. A complex, quantitative relationship has been established between glucose levels and oxidative stress, both in vitro and in vivo. For example, oxidative stress is known to persist after glucose normalization, a phenomenon described as metabolic memory. Also, uncontrolled glucose levels appear to be more detrimental to patients with diabetes (non-constant glucose levels) vs. patients with high, constant glucose levels. The objective of the current study was to delineate the mechanisms underlying such behaviors, using a mechanistic physiological systems modeling approach that captures and integrates essential underlying pathophysiological processes. The proposed model was based on a system of ordinary differential equations. It describes the interplay between reactive oxygen species production potential (ROS), ROS-induced cell alterations, and subsequent adaptation mechanisms. Model parameters were calibrated using different sources of experimental information, including ROS production in cell cultures exposed to various concentration profiles of constant and oscillating glucose levels. The model adequately reproduced the ROS excess generation after glucose normalization. Such behavior appeared to be driven by positive feedback regulations between ROS and ROS-induced cell alterations. The further oxidative stress-related detrimental effect as induced by unstable glucose levels can be explained by inability of cells to adapt to dynamic environment. Cell adaptation to instable high glucose declines during glucose normalization phases, and further glucose increase promotes similar or higher oxidative stress. In contrast, gradual ROS production potential decrease, driven by adaptation, is observed in cells exposed to constant high glucose.
Collapse
Affiliation(s)
| | | | - Gabriel Helmlinger
- Quantitative Clinical Pharmacology, Early Clinical Development, Innovative Medicines, AstraZeneca Pharmaceuticals, Boston, Massachusetts, United States of America
| | | |
Collapse
|
22
|
Ola MS, Ahmed MM, Shams S, Al-Rejaie SS. Neuroprotective effects of quercetin in diabetic rat retina. Saudi J Biol Sci 2016; 24:1186-1194. [PMID: 28855811 PMCID: PMC5562465 DOI: 10.1016/j.sjbs.2016.11.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 01/09/2023] Open
Abstract
Diabetic retinopathy (DR) is a severe complication of diabetes and the leading cause of blindness among working adults worldwide. DR is being widely recognized as a neurodegenerative disease of the retina, since, retinal neurons are damaged soon after diabetes onset. Diabetes-induced oxidative stress is considered as central factor that dysregulates neurotrophic factors and activates apoptosis, thereby damages neurons in the diabetic retina. Flavonoids being a powerful antioxidant have been considered to protect neurons in diabetic retina. The purpose of this study was to analyze the beneficial effects of flavonoid, quercetin to protect neurons in the diabetic rat retina. We quantitated the expression levels of BDNF, NGF, TrkB, synaptophysin, Akt, Bcl-2, cytochrome c and caspase-3 using Western blotting techniques in the diabetic retina with and without quercetin treatments and compared with non-diabetic rats. In addition, we employed ELISA techniques to determine the level of BDNF. Caspase-3 activity and the level of glutathione were analyzed by biochemical methods. Our results indicate that quercetin treatment to diabetic rats caused a significant increase in the level of neurotrophic factors and inhibited the level of cytochrome c and caspase-3 activity in the diabetic retina. Furthermore, the level of an anti-apoptotic protein Bcl-2 was augmented in quercetin treated diabetic retina. Thus, quercetin, may protect the neuronal damage in diabetic retina by ameliorating the levels of neurotrophic factors and also by inhibiting the apoptosis of neurons. Therefore, this study suggests that quercetin can be a suitable therapeutic agent to prevent neurodegeneration in diabetic retinopathy.
Collapse
Affiliation(s)
- Mohammad S Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - M M Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shakeeb Shams
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Zhao S, Li T, Li J, Lu Q, Han C, Wang N, Qiu Q, Cao H, Xu X, Chen H, Zheng Z. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Diabetologia 2016; 59:644-54. [PMID: 26687158 DOI: 10.1007/s00125-015-3832-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 11/17/2015] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS The mechanisms underlying the cellular metabolic memory induced by high glucose remain unclear. Here, we sought to determine the effects of microRNAs (miRNAs) on metabolic memory in diabetic retinopathy. METHODS The miRNA microarray was used to examine human retinal endothelial cells (HRECs) following exposure to normal glucose (N) or high glucose (H) for 1 week or transient H for 2 days followed by N for another 5 days (H→N). Levels of sirtuin 1 (SIRT1) and acetylated-nuclear factor κB (Ac-NF-κB) were examined following transfection with miR-23b-3p inhibitor or with SIRT1 small interfering (si)RNA in the H→N group, and the apoptotic HRECs were determined by flow cytometry. Retinal tissues from diabetic rats were similarly studied following intravitreal injection of miR-23b-3p inhibitor. Chromatin immunoprecipitation (ChIP) analysis was performed to detect binding of NF-κB p65 to the potential binding site of the miR-23b-27b-24-1 gene promoter in HRECs. RESULTS High glucose increased miR-23b-3p expression, even after the return to normal glucose. Luciferase assays identified SIRT1 as a target mRNA of miR-23b-3p. Reduced miR-23b-3p expression inhibited Ac-NF-κB expression by rescuing SIRT1 expression and also relieved the effect of metabolic memory induced by high glucose in HRECs. The results were confirmed in the retina using a diabetic rat model of metabolic memory. High glucose facilitated the recruitment of NF-κB p65 and promoted transcription of the miR-23b-27b-24-1 gene, which can be suppressed by decreasing miR-23b-3p expression. CONCLUSIONS/INTERPRETATION These studies identify a novel mechanism whereby miR-23b-3p regulates high-glucose-induced cellular metabolic memory in diabetic retinopathy through a SIRT1-dependent signalling pathway.
Collapse
Affiliation(s)
- Shuzhi Zhao
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Tao Li
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Jun Li
- Department of Ophthalmology, Lishui City Center Hospital, Lishui, People's Republic of China
| | - Qianyi Lu
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Changjing Han
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Na Wang
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Hui Cao
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Xun Xu
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China
| | - Haibing Chen
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Yishan Road 301, Shanghai, 200233, People's Republic of China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Haining Road 100, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
24
|
Kumar S, Pamulapati H, Tikoo K. Fatty acid induced metabolic memory involves alterations in renal histone H3K36me2 and H3K27me3. Mol Cell Endocrinol 2016; 422:233-242. [PMID: 26747726 DOI: 10.1016/j.mce.2015.12.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/19/2015] [Accepted: 12/25/2015] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggest that diabetic complications persist even after the maintenance of normal glucose levels. However, the molecular mechanisms involved are still unclear. In the present study, we have investigated the molecular mechanism behind the presence of insulin resistance (IR) condition even after normalization of circulating lipids levels both in vivo and in vitro. Persistent inhibition of insulin signalling in absence of elevated circulating lipids level confirms the presence of metabolic memory in our model of IR. IR in human urine derived podocyte-like epithelial cells (HUPECs) was developed by incubating cells with palmitate (750 μM) for 24 h and in SD rats by feeding high fat diet for 16 weeks. Inhibition of insulin induced FOXO1 (regulator of gluconeogenic genes) degradation persisted even after 48 h of palmitate removal from the culture media. Metabolic memory by palmitate was found to be associated with increased FOXO1 activity as evident from increased expression of FOXO1 target genes such as PDK4, p21, G6Pc and IGFBP1. To understand the reason for prolonged activation of FOXO1 and its target genes, chromatin immuno-precipitation (ChIP) was performed with histone H3K36me2 and H3K27me3 antibodies. ChIP assay shows persistent increase in abundance of histone H3K36me2 on promoter region of FOXO1. We also show decreased abundance of histone H3K27me3 on promoter region of FOXO1, in the kidneys of HFD fed rats, which persisted even after 8 weeks of diet reversal. Taken together, we provide first evidence that circulating lipids generate metabolic memory possibly by altering the abundance of histone H3K36me2 and H3K27me3 on FOXO1 promoter.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| | - Himani Pamulapati
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| | - Kulbhushan Tikoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India.
| |
Collapse
|
25
|
Leontovich AA, Intine RV, Sarras MP. Epigenetic Studies Point to DNA Replication/Repair Genes as a Basis for the Heritable Nature of Long Term Complications in Diabetes. J Diabetes Res 2016; 2016:2860780. [PMID: 26981540 PMCID: PMC4769771 DOI: 10.1155/2016/2860780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/14/2016] [Indexed: 01/17/2023] Open
Abstract
Metabolic memory (MM) is defined as the persistence of diabetic (DM) complications even after glycemic control is pharmacologically achieved. Using a zebrafish diabetic model that induces a MM state, we previously reported that, in this model, tissue dysfunction was of a heritable nature based on cell proliferation studies in limb tissue and this correlated with epigenetic DNA methylation changes that paralleled alterations in gene expression. In the current study, control, DM, and MM excised fin tissues were further analyzed by MeDIP sequencing and microarray techniques. Bioinformatics analysis of the data found that genes of the DNA replication/DNA metabolism process group (with upregulation of the apex1, mcm2, mcm4, orc3, lig1, and dnmt1 genes) were altered in the DM state and these molecular changes continued into MM. Interestingly, DNA methylation changes could be found as far as 6-13 kb upstream of the transcription start site for these genes suggesting potential higher levels of epigenetic control. In conclusion, DNA methylation changes in members of the DNA replication/repair process group best explain the heritable nature of cell proliferation impairment found in the zebrafish DM/MM model. These results are consistent with human diabetic epigenetic studies and provide one explanation for the persistence of long term tissue complications as seen in diabetes.
Collapse
Affiliation(s)
- Alexey A. Leontovich
- Division of Biomedical Statistics and Informatics, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Robert V. Intine
- Department of Biomedical Sciences, Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Michael P. Sarras
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
- *Michael P. Sarras Jr.:
| |
Collapse
|
26
|
Challenges and issues with streptozotocin-induced diabetes - A clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem Biol Interact 2015; 244:49-63. [PMID: 26656244 DOI: 10.1016/j.cbi.2015.11.032] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 11/18/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023]
Abstract
Streptozotocin (STZ) has been extensively used over the last three decades to induce diabetes in various animal species and to help screen for hypoglycemic drugs. STZ induces clinical features in animals that resemble those associated with diabetes in humans. For this reason STZ treated animals have been used to study diabetogenic mechanisms and for preclinical evaluation of novel antidiabetic therapies. However, the physiochemical characteristics and associated toxicities of STZ are still major obstacles for researchers using STZ treated animals to investigate diabetes. Another major challenges in STZ-induced diabetes are sustaining uniformity, suitability, reproducibility and induction of diabetes with minimal animal lethality. Lack of appropriate use of STZ was found to be associated with increased mortality and animal suffering. During STZ use in animals, attention should be paid to several factors such as method of preparation of STZ, stability, suitable dose, route of administration, diet regimen, animal species with respect to age, body weight, gender and the target blood glucose level used to represent hyperglycemia. Therefore, protocol for STZ-induced diabetes in experimental animals must be meticulously planned. This review highlights specific skills and strategies involved in the execution of STZ-induced diabetes model. The present review aims to provide insight into diabetogenic mechanisms of STZ, specific toxicity of STZ with its significance and factors responsible for variations in diabetogenic effects of STZ. Further this review also addresses ways to minimize STZ-induced mortality, suggests methods to improve STZ-based experimental models and best utilize them for experimental studies purported to understand diabetes pathogenesis and preclinical evaluation of drugs.
Collapse
|
27
|
Sarras MP, Leontovich AA, Intine RV. Use of zebrafish as a model to investigate the role of epigenetics in propagating the secondary complications observed in diabetes mellitus. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:3-7. [PMID: 26165618 PMCID: PMC4662881 DOI: 10.1016/j.cbpc.2015.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/27/2022]
Abstract
Diabetes mellitus (DM) is classified as a disease of metabolic dysregulation predicted to affect over 400 million individuals world-wide by 2030. The debilitating aspects of this disease are the long term complications involving microvascular and macrovascular pathologies. These long term complications are related to the clinical phenomenon of metabolic memory (MM) that is defined as the persistence of diabetic complications even after glycemic control has been pharmacologically achieved. The persistent nature of MM has invoked involvement of epigenetic processes. Current research with the DM/MM zebrafish model as described in this review as well as human and mammalian studies has established that changes in DNA methylation patterns appear to contribute to tissue dysfunctions associated with DM. This review will describe studies on an adult zebrafish model of type I diabetes mellitus that allows analysis of both the hyperglycemic (HG or DM) phase and MM phase of the disease. The review will discuss the model in regards to: 1) its hyperglycemic phase, 2) its MM phase, 3) biochemical õpathways underlying changes in DNA methylation patterns observed in the model, 4) loci specific changes in DNA methylation patterns, and 5) strengths of the adult zebrafish model as compared to other MM animal models.
Collapse
Affiliation(s)
- Michael P Sarras
- Department of Cell Biology and Anatomy, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - Alexey A Leontovich
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA.
| | - Robert V Intine
- Department of Biomedical Sciences, Dr. William M. School College of Podiatric Medicine at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
28
|
ZHAO SHUZHI, LI JUN, WANG NA, ZHENG BINGQING, LI TAO, GU QING, XU XUN, ZHENG ZHI. Fenofibrate suppresses cellular metabolic memory of high glucose in diabetic retinopathy via a sirtuin 1-dependent signalling pathway. Mol Med Rep 2015; 12:6112-8. [DOI: 10.3892/mmr.2015.4164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 06/22/2015] [Indexed: 11/06/2022] Open
|
29
|
Sarras MP, Mason S, McAllister G, Intine RV. Inhibition of poly-ADP ribose polymerase enzyme activity prevents hyperglycemia-induced impairment of angiogenesis during wound healing. Wound Repair Regen 2015; 22:666-70. [PMID: 25066843 DOI: 10.1111/wrr.12216] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/14/2014] [Indexed: 01/28/2023]
Abstract
We previously reported a zebrafish model of type I diabetes mellitus (DM) that can be used to study the hyperglycemic (HG) and metabolic memory (MM) states within the same fish. Clinically, MM is defined as the persistence of diabetic complications even after glycemic control is pharmacologically achieved. In our zebrafish model, MM occurs following β-cell regeneration, which returns fish to euglycemia. During HG, fish acquire tissue deficits reflective of the complications seen in patients with DM and these deficits persist after fish return to euglycemia (MM). The unifying mechanism for the induction of diabetic complications involves a cascade of events that is initiated by the HG stimulation of poly-ADP ribose polymerase enzyme (Parp) activity. Additionally, recent evidence shows that the HG induction of Parp activity stimulates changes in epigenetic mechanisms that correlate with the MM state and the persistence of complications. Here we report that wound-induced angiogenesis is impaired in DM and remains impaired when fish return to a euglycemic state. Additionally, inhibition of Parp activity prevented the HG-induced wound angiogenesis deficiency observed. This approach can identify molecular targets that will provide potential new avenues for therapeutic discovery as angiogenesis imbalances are associated with all HG-damaged tissues.
Collapse
Affiliation(s)
- Michael P Sarras
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | | | | | | |
Collapse
|
30
|
Ola MS, Ahmed MM, Ahmad R, Abuohashish HM, Al-Rejaie SS, Alhomida AS. Neuroprotective Effects of Rutin in Streptozotocin-Induced Diabetic Rat Retina. J Mol Neurosci 2015; 56:440-8. [PMID: 25929832 DOI: 10.1007/s12031-015-0561-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Diabetic retinopathy is widely recognized as a neurodegenerative disease of the eye. Increased oxidative stress has been considered the central factor in damaging neural retina in diabetes. Flavonoids, being powerful antioxidants, play protective roles in several oxidative stress-mediated neurodegenerative diseases. In this study, we analyzed the neuroprotective effects of a potential flavonoid, rutin, in the diabetic rat retina. Diabetes was induced in male Wistar rats by single injection of streptozotocin (65 mg/kg). In age-matched control (non-diabetic) and 1 week of diabetic rats, rutin (100 mg/kg/day) was orally administered and continued for 5 weeks. In another group of diabetic rats, only saline was supplemented. After treatments, retinas from all the groups were isolated and analyzed for potential neurotrophic factors and apoptotic and oxidative stress markers using biochemical and immunoblotting techniques. Our results indicate that rutin possesses antidiabetic activity, as blood glucose level decreased and insulin level increased in diabetic rats. In the diabetic retina, rutin supplementation enhanced the reduced levels of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and glutathione (GSH) (P < 0.05), and reduced the level of thiobarbituric acid-reactive substances (TBARS) (P < 0.05). In addition, rutin treatment showed antiapoptotic activity by decreasing the level of caspase-3 and increasing the level of Bcl-2 in the diabetic retina. These results suggest the effectiveness of rutin in ameliorating the levels of neuroprotective factors in diabetic retina. Therefore, rutin might be a potential flavonoid that can prevent the retinal damage and subsequently the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11415, Saudi Arabia,
| | | | | | | | | | | |
Collapse
|
31
|
Mishra M, Zhong Q, Kowluru RA. Epigenetic modifications of Keap1 regulate its interaction with the protective factor Nrf2 in the development of diabetic retinopathy. Invest Ophthalmol Vis Sci 2014; 55:7256-65. [PMID: 25301875 DOI: 10.1167/iovs.14-15193] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Diabetes induces oxidative imbalance in the retina and impairs Nrf2-mediated antioxidant response, and elevates Keap1, the cytoplasmic repressor of Nrf2. The goal of this study was to understand the role of epigenetic modifications at Keap1 promoter in regulation of Nrf2 function. METHODS The effect of high glucose on the binding of transcriptional factor Sp1 at Keap1 promoter and histone methylation status of the promoter was investigated in retinal endothelial cells. Role of histone methylation was confirmed in cells transfected with siRNA of methyltransferase enzyme Set7/9 (SetD7). In vitro results were confirmed in the retina from streptozotocin-induced diabetic rats. The role of epigenetic modifications of Keap1 promoter in the metabolic memory was examined in rats maintained in poor control for 3 months followed by good control for 3 months. RESULTS Hyperglycemia increased the binding of Sp1 at Keap1 promoter, and enriched H3K4me1 and activated SetD7. SetD7-siRNA prevented increase in Sp1 binding at Keap1 promoter and Keap1 expression, and ameliorated decrease in Nrf2-regulated antioxidant genes. Cessation of hyperglycemia failed to attenuate increased binding of Sp1 at Keap1, and the promoter continued to be methylated with increased expression of Keap1 and decreased expression of Nrf2-regulated genes. CONCLUSIONS Epigenetic modifications at Keap1 promoter by SetD7 facilitate its binding with Sp1, increasing its expression. Keap1 restrains Nrf2 in the cytosol, impairing its transcriptional activity. Reversal of hyperglycemia fails to provide any benefit to epigenetic modifications of Keap1 promoter, suggesting their role in both the development of diabetic retinopathy and the metabolic memory phenomenon.
Collapse
Affiliation(s)
- Manish Mishra
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | - Qing Zhong
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
32
|
Dhliwayo N, Sarras MP, Luczkowski E, Mason SM, Intine RV. Parp inhibition prevents ten-eleven translocase enzyme activation and hyperglycemia-induced DNA demethylation. Diabetes 2014; 63:3069-76. [PMID: 24722243 PMCID: PMC4141369 DOI: 10.2337/db13-1916] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/01/2014] [Indexed: 01/24/2023]
Abstract
Studies from human cells, rats, and zebrafish have documented that hyperglycemia (HG) induces the demethylation of specific cytosines throughout the genome. We previously documented that a subset of these changes become permanent and may provide, in part, a mechanism for the persistence of complications referred to as the metabolic memory phenomenon. In this report, we present studies aimed at elucidating the molecular machinery that is responsible for the HG-induced DNA demethylation observed. To this end, RNA expression and enzymatic activity assays indicate that the ten-eleven translocation (Tet) family of enzymes are activated by HG. Furthermore, through the detection of intermediates generated via conversion of 5-methyl-cytosine back to the unmethylated form, the data were consistent with the use of the Tet-dependent iterative oxidation pathway. In addition, evidence is provided that the activity of the poly(ADP-ribose) polymerase (Parp) enzyme is required for activation of Tet activity because the use of a Parp inhibitor prevented demethylation of specific loci and the accumulation of Tet-induced intermediates. Remarkably, this inhibition was accompanied by a complete restoration of the tissue regeneration deficit that is also induced by HG. The ultimate goal of this work is to provide potential new avenues for therapeutic discovery.
Collapse
Affiliation(s)
- Nyembezi Dhliwayo
- Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Michael P Sarras
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Ernest Luczkowski
- Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Samantha M Mason
- Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Robert V Intine
- Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL
| |
Collapse
|
33
|
Retinal neuroprotective effects of quercetin in streptozotocin-induced diabetic rats. Exp Eye Res 2014; 125:193-202. [PMID: 24952278 DOI: 10.1016/j.exer.2014.06.009] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 12/18/2022]
Abstract
The aim of the present study was to evaluate the effects of Quercetin (Qctn), a plant based flavonol, on retinal oxidative stress, neuroinflammation and apoptosis in streptozotocin-induced diabetic rats. Qctn treatment (25- and 50 mg/kg body weight) was given orally for six months in diabetic rats. Retinal glutathione (GSH) and antioxidant enzymes [superoxide dismutase (SOD) and catalase (CAT)] were estimated using commercially available assays, and inflammatory cytokines levels [tumor necrosis factor-α (TNF-α), Interleukin-1β (IL-1β)] were estimated by ELISA method. Immunofluorescence and western blot studies were performed for nuclear factor kappa B (NF-kB), caspase-3, glial fibrillary acidic protein (GFAP) and aquaporin-4 (AQP4) expressions. Structural changes were evaluated by light microscopy. In the present study, retinal GSH levels and antioxidant enzyme (SOD and CAT) activities were significantly decreased in diabetic group as compared to normal group. However, in Qctn-treated rats, retinal GSH levels were restored close to normal levels and positive modulation of antioxidant enzyme activities was observed. Diabetic retinas showed significantly increased expression of pro-inflammatory cytokines (TNF-α and IL-1β) as compared to that in normal retinas, while Qctn-treated retinas showed significantly lower levels of cytokines as compared to diabetic retinas. Light microscopy showed significantly increased number of ganglion cell death and decreased retinal thickness in diabetic group compared to those in normal retina; however, protective effect of Qctn was seen. Increased apoptosis in diabetic retina is proposed to be mediated by overexpression of NF-kB and caspase-3. However, Qctn showed inhibitory effects on NF-kB and caspase-3 expression. Microglia showed upregulated GFAP expression, and inflammation of Müller cells resulted in edema in their endfeet and around perivascular space in nerve fiber layer in diabetic retina, as observed through AQP4 expression. However, Qctn treatments inhibited diabetes-induced increases in GFAP and AQP4 expression. Based on these findings, it can be concluded that bioflavonoids, such as Qctn can be effective for protection of diabetes induced retinal neurodegeneration and oxidative stress.
Collapse
|
34
|
Davunetide (NAP) protects the retina against early diabetic injury by reducing apoptotic death. J Mol Neurosci 2014; 54:395-404. [PMID: 24488575 DOI: 10.1007/s12031-014-0244-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/20/2014] [Indexed: 01/18/2023]
Abstract
Davunetide (NAP) is an eight amino acid peptide that has been shown to provide potent neuroprotection. In the present study, we investigated the neuroprotective effect of NAP in diabetic retinopathy using an in vivo streptozotocin (STZ)-induced diabetic model. A single intraocular injection of NAP (100 μg/mL) or vehicle was administered 1 week after STZ injection. Three weeks after diabetes induction, we assessed the retinal expression and distribution of apoptosis markers, cleaved caspase-3, and Bcl2, by Western blot and immunofluorescent analysis. Furthermore, we evaluated the activation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase (MAPK/ERK) and/or phosphatidylinositol-3 kinase/Akt pathways by measuring the protein levels of p-ERK and p-AKT with or without NAP treatment. Results demonstrated that NAP treatment reduced apoptotic event in diabetic retina, and it restored cleaved caspase-3 expression levels in the retina of STZ-injected rats as well as the decreased Bcl2. NAP treatment improved cellular survival through the activation of the MAPK/ERK pathway. Taken together, these findings suggested that NAP might be useful to treat retinal degenerative diseases.
Collapse
|
35
|
Abstract
Prevention of long-term complications remains the main challenge in the treatment of diabetes. A strong relationship between glucose control and development of complications is apparent in all epidemiologic studies. Yet, intervention trials have yielded questionable results, particularly when intensive treatment was introduced in patients with long-standing diabetes. It has been postulated that in these subjects, prior exposure to chronic hyperglycemia may have generated a negative "metabolic memory," preventing full exertion of the beneficial effects of any subsequent improvement of glucose control. This phenomenon has been replicated in animal models and it recognizes a molecular basis in the role of oxidative stress, advanced glycation processes, and epigenetic mechanisms accounting for self-perpetuating modifications of gene expression. Conversely, early intervention in both type 1 and type 2 diabetes has proven that good glycemic control reduces the risk of development and progression of complications with a beneficial effect that extends well beyond the duration of near-normoglycemia. This has brought up the concept of "metabolic legacy," an advantage handed down by early and effective implementation of treatments designed to reduce blood glucose levels as safely as possible along with multifactorial intervention of all cardiovascular risk factors. The evidence, nature, and clinical implication of these concepts are reviewed.
Collapse
Affiliation(s)
- Cristina Bianchi
- Department of Clinical and Experimental Medicine, Section of Diabetes and Metabolic Diseases, Nuovo Ospedale Santa Chiara, Via Paradisa, 2, 56124 Pisa, Italy
| | | | | |
Collapse
|
36
|
Intine RV, Olsen AS, Sarras MP. A zebrafish model of diabetes mellitus and metabolic memory. J Vis Exp 2013:e50232. [PMID: 23485929 DOI: 10.3791/50232] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Diabetes mellitus currently affects 346 million individuals and this is projected to increase to 400 million by 2030. Evidence from both the laboratory and large scale clinical trials has revealed that diabetic complications progress unimpeded via the phenomenon of metabolic memory even when glycemic control is pharmaceutically achieved. Gene expression can be stably altered through epigenetic changes which not only allow cells and organisms to quickly respond to changing environmental stimuli but also confer the ability of the cell to "memorize" these encounters once the stimulus is removed. As such, the roles that these mechanisms play in the metabolic memory phenomenon are currently being examined. We have recently reported the development of a zebrafish model of type I diabetes mellitus and characterized this model to show that diabetic zebrafish not only display the known secondary complications including the changes associated with diabetic retinopathy, diabetic nephropathy and impaired wound healing but also exhibit impaired caudal fin regeneration. This model is unique in that the zebrafish is capable to regenerate its damaged pancreas and restore a euglycemic state similar to what would be expected in post-transplant human patients. Moreover, multiple rounds of caudal fin amputation allow for the separation and study of pure epigenetic effects in an in vivo system without potential complicating factors from the previous diabetic state. Although euglycemia is achieved following pancreatic regeneration, the diabetic secondary complication of fin regeneration and skin wound healing persists indefinitely. In the case of impaired fin regeneration, this pathology is retained even after multiple rounds of fin regeneration in the daughter fin tissues. These observations point to an underlying epigenetic process existing in the metabolic memory state. Here we present the methods needed to successfully generate the diabetic and metabolic memory groups of fish and discuss the advantages of this model.
Collapse
Affiliation(s)
- Robert V Intine
- Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, USA.
| | | | | |
Collapse
|
37
|
Sarras MP, Leontovich AA, Olsen AS, Intine RV. Impaired tissue regeneration corresponds with altered expression of developmental genes that persists in the metabolic memory state of diabetic zebrafish. Wound Repair Regen 2013; 21:320-8. [PMID: 23438205 DOI: 10.1111/wrr.12027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/07/2012] [Indexed: 01/29/2023]
Abstract
As previously reported by our laboratory, streptozocin-induced diabetes mellitus (DM) in adult zebrafish results in an impairment of tissue regeneration as monitored by caudal fin regeneration. Following streptozocin withdrawal, a recovery phase occurs to reestablish euglycemia, via pancreatic beta-cell regeneration. However, DM-associated impaired fin regeneration continues indefinitely in the metabolic memory (MM) state, allowing for subsequent molecular analysis of the underlying mechanisms of MM. This study focuses on elucidating the molecular basis that explains the DM-associated impaired fin regeneration and why it persists into the MM state with the aim of better understanding MM. Using a combination of microarray analysis and bioinformatics approaches, our study found that of the 14,900 transcripts analyzed, aberrant expression of 71 genes relating to tissue developmental and regeneration processes were identified in DM fish and the altered expression of these 71 genes persisted in MM fish. Key regulatory genes of major development and signal transduction pathways were identified among this group of 71. The aberrant expression of key regulatory genes in the DM state that persist into the MM state provides a plausible explanation on how hyperglycemia induced impaired fin regeneration in the adult zebrafish DM/MM model.
Collapse
Affiliation(s)
- Michael P Sarras
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Recent estimates indicate that diabetes mellitus currently affects more than 10 % of the world's population. Evidence from both the laboratory and large scale clinical trials has revealed that prolonged hyperglycemia induces chronic complications which persist and progress unimpeded even when glycemic control is pharmaceutically achieved via the phenomenon of metabolic memory. The epigenome is comprised of all chromatin modifications including post translational histone modification, expression control via miRNAs and the methylation of cytosine within DNA. Modifications of these epigenetic marks not only allow cells and organisms to quickly respond to changing environmental stimuli but also confer the ability of the cell to "memorize" these encounters. As such, these processes have gained much attention as potential molecular mechanisms underlying metabolic memory and chronic diabetic complications. Here we present a review of the very recent literature published pertaining to this subject.
Collapse
Affiliation(s)
- Robert V Intine
- Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, Chicago, IL 60064, USA.
| | | |
Collapse
|
39
|
Giunta S, Castorina A, Bucolo C, Magro G, Drago F, D'Agata V. Early changes in pituitary adenylate cyclase-activating peptide, vasoactive intestinal peptide and related receptors expression in retina of streptozotocin-induced diabetic rats. Peptides 2012; 37:32-9. [PMID: 22721946 DOI: 10.1016/j.peptides.2012.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/11/2012] [Accepted: 06/11/2012] [Indexed: 11/26/2022]
Abstract
The retinal expression and distribution of pituitary adenylate cyclase-activating peptide (PACAP) and vasoactive intestinal peptide (VIP) and their receptors was investigated in early streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in rats by STZ injection (60 mg/kg i.p.). PACAP, VIP and their receptors in nondiabetic control and diabetic retinas were assayed by quantitative real-time PCR and Western blot 1 and 3 weeks after STZ injection. Effects of intravitreal treatment with PACAP38 on the expression of the two apoptotic-related genes Bcl-2 and p53 were also evaluated. PACAP and VIP, as well as VPAC1 and VPAC2 receptors, but not PAC1 mRNA levels, were transiently induced in retinas 1 week following STZ. These findings were confirmed by immunoblot analyses. Three weeks after the induction of diabetes, significant decreases in the expression of peptides and their receptors were observed, Bcl-2 expression decreased and p53 expression increased. Intravitreal injection of PACAP38 restored STZ-induced changes in retinal Bcl-2 and p53 expression to nondiabetic levels. The initial upregulation of PACAP, VIP and related receptors and the subsequent downregulation in retina of diabetic rats along with the protective effects of PACAP38 treatment, suggest a role for both peptides in the pathogenesis of diabetic retinopathy.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blood Glucose
- DNA Primers/genetics
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/metabolism
- Gene Expression/drug effects
- Intravitreal Injections
- Male
- Pituitary Adenylate Cyclase-Activating Polypeptide/administration & dosage
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Pituitary Adenylate Cyclase-Activating Polypeptide/pharmacology
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Rats, Sprague-Dawley
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Retina/metabolism
- Streptozocin
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Vasoactive Intestinal Peptide/metabolism
Collapse
|
40
|
Zhang L, Chen B, Tang L. Metabolic memory: mechanisms and implications for diabetic retinopathy. Diabetes Res Clin Pract 2012; 96:286-93. [PMID: 22209677 DOI: 10.1016/j.diabres.2011.12.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/25/2011] [Accepted: 12/05/2011] [Indexed: 11/19/2022]
Abstract
Chronic hyperglycemia of diabetes leads to microvascular complications that severely impact quality of life. Diabetic retinopathy (DR) may be the most common of these and is a leading cause of visual impairment and blindness among working age adults in developed nations. Many large-scale type 1 and type 2 diabetes clinical trials have demonstrated that early intensive glycemic control can reduce the incidence and progression of micro and macrovascular complications. On the other hand, epidemiological and prospective data have revealed that the stressors of diabetic vasculature persist beyond the point when glycemic control has been achieved. These kinds of persistent adverse effects of hyperglycemia on the development and progression of complications has been defined as "metabolic memory", and oxidative stress, advanced glycation end products and epigenetic changes have been implicated in the process. Recent studies have indicated that such "hyperglycemic memory" may also influence DR, suggesting that manipulation of hyperglycemic memory may prove a beneficial approach to prevention and treatment. This review summarizes the evidence from DR-related clinical trials and mechanistic studies to investigate the significance of metabolic memory in DR and understand its potential as a target of molecular therapeutics aimed at reversing hyperglycemic memory.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | | | | |
Collapse
|
41
|
Abstract
Although the terms "metabolic memory" and "legacy effect" have been used to describe the prolonged benefits of good blood glucose control, the former is now recognized as a phenomenon related to the prolonged harm produced mainly by hyperglycemia. At least three randomized clinical trials (Diabetes Control and Complications Trial in type 1 diabetes, United Kingdom Prospective Diabetes Study and Steno-2 in type 2 diabetes) have demonstrated that patients treated intensively for a period of time have a lower risk of micro- and macrovascular complications that persists during subsequent follow-up, even after their tight control has relented and the levels of glycated hemoglobin in the conventionally treated group improve. The mechanisms are not fully understood but most probably relate to the physiopathology of vascular complications of diabetes, and in recent years a unifying theory has been emerging to understand them. The excess superoxide anion produced by the mitochondria in response to hyperglycemia leads through disturbances at the nuclear level to the accumulation of potentially harmful substances such as advanced glycated end-products, protein kinase C, and nuclear factor κB, which are directly implicated in the development of vascular complications in diabetes. These adverse effects are not reversed when the high blood glucose is corrected, and some may be permanent because of epigenetic changes. Some antidiabetes drugs and antioxidant substances have produced partial reversibility of the mechanisms involved in the metabolic memory at the experimental level, but probably the best strategy is to optimize the metabolic control as early as possible, even before diabetes is diagnosed.
Collapse
Affiliation(s)
- Pablo J Aschner
- Javeriana Pontificia University, San Ignacio University Hospital, Bogota, Colombia.
| | | |
Collapse
|
42
|
Ceriello A. The emerging challenge in diabetes: the "metabolic memory". Vascul Pharmacol 2012; 57:133-8. [PMID: 22609133 DOI: 10.1016/j.vph.2012.05.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 04/21/2012] [Accepted: 05/08/2012] [Indexed: 12/28/2022]
Abstract
Large randomized studies have established that early intensive glycemic control reduces the risk of diabetic complications, both micro and macrovascular. However, epidemiological and prospective data support a long-term influence of early metabolic control on clinical outcomes. This phenomenon has recently been defined as "metabolic memory." Potential mechanisms for propagating this "memory" may be the production of reactive species unrelated to the presence of hyperglycemia, depending on the previous production of AGEs which can maintain RAGE over-expression, on the level of glycation of mitochondrial proteins and on the amount of mtDNA produced, all conditions able to induce an altered gene expression which may be persistent even when glycemia is normalized. Clinically, the emergence of this "metabolic memory" suggests the need for a very early aggressive treatment aiming to "normalize" the metabolic control and the addition of agents which reduce cellular reactive species and glycation in addition to normalizing glucose levels in diabetic patients in order to minimize long-term diabetic complications.
Collapse
Affiliation(s)
- Antonio Ceriello
- Insititut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
43
|
Kassab A, Piwowar A. Cell oxidant stress delivery and cell dysfunction onset in type 2 diabetes. Biochimie 2012; 94:1837-48. [PMID: 22333037 DOI: 10.1016/j.biochi.2012.01.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/25/2012] [Indexed: 01/18/2023]
Abstract
Most known pathways of diabetic complications involve oxidative stress. The mitochondria electron transport chain is a significant source of reactive oxygen species (ROS) in insulin secretory cells, insulin peripheral sensitive cells and endothelial cells. Elevated intracellular glucose level induces tricarboxylic acid cycle electron donor overproduction and mitochondrial proton gradient increase leading to an increase in electron transporter lifetime. Subsequently, the electrons leaked combine with respiratory oxygen (O(2)) resulting in superoxide anion ((•)O(2)(-)) production. Advanced glycation end products derive ROS via interaction with their receptors. Elevated diacylglycerol and ROS activate the protein kinase C pathway which, in turn, activates NADPH oxidases. A vicious circle of pathway derived ROS installs. Pathologic pathways induced ROS are activated and persistent though glycemia returns to normal due to hyperglycemia memory. Endothelial nitric oxide synthase may produce both superoxide anion ((•)O(2)(-)) and nitric oxide (NO) leading to peroxynitrite ((•)ONOO(-)) generation. Homocysteine is also implicated in oxidative stress pathogenesis. In this paper we have highlighted the pathologic mechanisms of ROS on atherosclerosis, renal dysfunction, retina dysfunction and nerve dysfunction in type 2 diabetes. Cell oxidant stress delivery have pivotal role in cell dysfunction onset and progression of angiopathies but an early introduction of good glycemic control may protect cells more efficiently than antioxidants.
Collapse
Affiliation(s)
- Asma Kassab
- Biochemistry Laboratory, CHU Farhat Hached, Sousse, Tunisia.
| | | |
Collapse
|
44
|
Olsen AS, Sarras MP, Leontovich A, Intine RV. Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression. Diabetes 2012; 61:485-91. [PMID: 22228713 PMCID: PMC3266410 DOI: 10.2337/db11-0588] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metabolic memory (MM) is the phenomenon whereby diabetes complications persist and progress after glycemic recovery is achieved. Here, we present data showing that MM is heritable and that the transmission correlates with hyperglycemia-induced DNA hypomethylation and aberrant gene expression. Streptozocin was used to induce hyperglycemia in adult zebrafish, and then, following streptozocin withdrawal, a recovery phase was allowed to reestablish a euglycemic state. Blood glucose and serum insulin returned to physiological levels during the first 2 weeks of the recovery phase as a result of pancreatic β-cell regeneration. In contrast, caudal fin regeneration and skin wound healing remained impaired to the same extent as in diabetic fish, and this impairment was transmissible to daughter cell tissue. Daughter tissue that was never exposed to hyperglycemia, but was derived from tissue that was, did not accumulate AGEs or exhibit increased levels of oxidative stress. However, CpG island methylation and genome-wide microarray expression analyses revealed the persistence of hyperglycemia-induced global DNA hypomethylation that correlated with aberrant gene expression for a subset of loci in this daughter tissue. Collectively, the data presented here implicate the epigenetic mechanism of DNA methylation as a potential contributor to the MM phenomenon.
Collapse
Affiliation(s)
- Ansgar S. Olsen
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
- Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Michael P. Sarras
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Alexey Leontovich
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Robert V. Intine
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
- Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
- Corresponding author: Robert V. Intine,
| |
Collapse
|
45
|
Bixler GV, Vanguilder HD, Brucklacher RM, Kimball SR, Bronson SK, Freeman WM. Chronic insulin treatment of diabetes does not fully normalize alterations in the retinal transcriptome. BMC Med Genomics 2011; 4:40. [PMID: 21575160 PMCID: PMC3113923 DOI: 10.1186/1755-8794-4-40] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 05/15/2011] [Indexed: 01/19/2023] Open
Abstract
Background Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. Approximately 95% of patients with Type 1 diabetes develop some degree of retinopathy within 25 years of diagnosis despite normalization of blood glucose by insulin therapy. The goal of this study was to identify molecular changes in the rodent retina induced by diabetes that are not normalized by insulin replacement and restoration of euglycemia. Methods The retina transcriptome (22,523 genes and transcript variants) was examined after three months of streptozotocin-induced diabetes in male Sprague Dawley rats with and without insulin replacement for the later one and a half months of diabetes. Selected gene expression changes were confirmed by qPCR, and also examined in independent control and diabetic rats at a one month time-point. Results Transcriptomic alterations in response to diabetes (1376 probes) were clustered according to insulin responsiveness. More than half (57%) of diabetes-induced mRNA changes (789 probes) observed at three months were fully normalized to control levels with insulin therapy, while 37% of probes (514) were only partially normalized. A small set of genes (5%, 65 probes) was significantly dysregulated in the insulin-treated diabetic rats. qPCR confirmation of findings and examination of a one month time point allowed genes to be further categorized as prevented or rescued with insulin therapy. A subset of genes (Ccr5, Jak3, Litaf) was confirmed at the level of protein expression, with protein levels recapitulating changes in mRNA expression. Conclusions These results provide the first genome-wide examination of the effects of insulin therapy on retinal gene expression changes with diabetes. While insulin clearly normalizes the majority of genes dysregulated in response to diabetes, a number of genes related to inflammatory processes, microvascular integrity, and neuronal function are still altered in expression in euglycemic diabetic rats. Gene expression changes not rescued or prevented by insulin treatment may be critical to the pathogenesis of diabetic retinopathy, as it occurs in diabetic patients receiving insulin replacement, and are prototypical of metabolic memory.
Collapse
Affiliation(s)
- Georgina V Bixler
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | | | | | | | | | | |
Collapse
|
46
|
Zhong Q, Kowluru RA. Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy. Diabetes 2011; 60:1304-13. [PMID: 21357467 PMCID: PMC3064104 DOI: 10.2337/db10-0133] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate the role of epigenetic regulation of the manganese superoxide dismutase gene (sod2) in the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression after hyperglycemia is terminated. RESEARCH DESIGN AND METHODS Streptozotocin-induced diabetic rats were maintained in poor glycemic control (PC, GHb ∼12%) or in good glycemic control (GC, GHb ~7.0%) for 4 months, or were allowed to maintain PC for 2 months, followed by GC for 2 additional months (PC-Rev). For experimental galactosemia, a group of normal rats were fed a 30% galactose diet for 4 months or for 2 months, followed by a normal diet for 2 additional months. Trimethyl histone H4 lysine 20 (H4K20me3), acetyl histone H3 lysine 9 (H3K9), and nuclear transcriptional factor NF-κB p65 and p50 at the retinal sod2 promoter and enhancer were examined by chromatin immunoprecipitation. RESULTS Hyperglycemia (diabetes or galactosemia) increased H4K20me3, acetyl H3K9, and NF-κB p65 at the promoter and enhancer of retinal sod2, upregulated protein and gene expression of SUV420h2, and increased the interactions of acetyl H3K9 and NF-κB p65 to H4K20me3. Reversal of hyperglycemia failed to prevent increases in H4K20me3, acetyl H3K9, and NF-κB p65 at sod2, and sod2 and SUV420h2 continued to be abnormal. Silencing SUV420h2 by its small interfering RNA in retinal endothelial cells prevented a glucose-induced increase in H4K20me3 at the sod2 enhancer and a decrease in sod2 transcripts. CONCLUSIONS Increased H4K20me3 at sod2 contributes to its downregulation and is important in the development of diabetic retinopathy and in the metabolic memory phenomenon. Targeting epigenetic changes may serve as potential therapeutic targets to retard the development and progression of diabetic retinopathy.
Collapse
|
47
|
Santos JM, Mohammad G, Zhong Q, Kowluru RA. Diabetic retinopathy, superoxide damage and antioxidants. Curr Pharm Biotechnol 2011; 12:352-61. [PMID: 20939803 PMCID: PMC3214730 DOI: 10.2174/138920111794480507] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 05/31/2010] [Indexed: 01/01/2023]
Abstract
Retinopathy, the leading cause of acquired blindness in young adults, is one of the most feared complications of diabetes, and hyperglycemia is considered as the major trigger for its development. The microvasculature of the retina is constantly bombarded by high glucose, and this insult results in many metabolic, structural and functional changes. Retinal mitochondria become dysfunctional, its DNA is damaged and proteins encoded by its DNA are decreased. The electron transport chain system becomes compromised, further producing superoxide and providing no relief to the retina from a continuous cycle of damage. Although the retina attempts to initiate repair mechanisms by inducing gene expressions of the repair enzymes, their mitochondrial accumulation remains deficient. Understanding the molecular mechanism of mitochondrial damage should help identify therapies to treat/retard this sight threatening complication of diabetes. Our hope is that if the retinal mitochondria are maintained healthy with adjunct therapies, the development and progression of diabetic retinopathy can be inhibited.
Collapse
Affiliation(s)
- Julia M Santos
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | | | | | | |
Collapse
|
48
|
Testa R, Bonfigli AR, Marra M, Testa I. In the Light of the Metabolic Memory Theory, Should Not All Aged People with Dysglycemia Be Treated? Rejuvenation Res 2010; 13:599-605. [DOI: 10.1089/rej.2010.1024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Roberto Testa
- Metabolic and Nutrition Research Centre on Diabetes, INRCA-IRCCS, Ancona, Italy
| | - Anna Rita Bonfigli
- Metabolic and Nutrition Research Centre on Diabetes, INRCA-IRCCS, Ancona, Italy
| | - Maurizio Marra
- Metabolic and Nutrition Research Centre on Diabetes, INRCA-IRCCS, Ancona, Italy
| | - Ivano Testa
- Metabolic and Nutrition Research Centre on Diabetes, INRCA-IRCCS, Ancona, Italy
| |
Collapse
|
49
|
Madsen-Bouterse SA, Mohammad G, Kanwar M, Kowluru RA. Role of mitochondrial DNA damage in the development of diabetic retinopathy, and the metabolic memory phenomenon associated with its progression. Antioxid Redox Signal 2010; 13:797-805. [PMID: 20088705 PMCID: PMC2935337 DOI: 10.1089/ars.2009.2932] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetic retinopathy does not halt after hyperglycemia is terminated; the retina continues to experience increased oxidative stress, suggesting a memory phenomenon. Mitochondrial DNA (mtDNA) is highly sensitive to oxidative damage. The goal is to investigate the role of mtDNA damage in the development of diabetic retinopathy, and in the metabolic memory. mtDNA damage and its functional consequences on electron transport chain (ETC) were analyzed in the retina from streptozotocin-diabetic rats maintained in poor control (PC, glycated hemoglobin >11%) for 12 months or PC for 6 months followed by good control (GC, GHb < 6.5%) for 6 months. Diabetes damaged retinal mtDNA and elevated DNA repair enzymes (glycosylase). ETC proteins that were encoded by the mitochondrial genome and the glycosylases were compromised in the mitochondria. Re-institution of GC after 6 months of PC failed to protect mtDNA damage, and ETC proteins remained subnormal. Thus, mtDNA continues to be damaged even after PC is terminated. Although the retina tries to overcome mtDNA damage by inducing glycosylase, they remain deficient in the mitochondria with a compromised ETC system. The process is further exacerbated by subsequent increased mtDNA damage providing no relief to the retina from a continuous cycle of damage, and termination of hyperglycemia fails to arrest the progression of retinopathy.
Collapse
|
50
|
Zhong Q, Kowluru RA. Role of histone acetylation in the development of diabetic retinopathy and the metabolic memory phenomenon. J Cell Biochem 2010; 110:1306-13. [PMID: 20564224 PMCID: PMC2907436 DOI: 10.1002/jcb.22644] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hyperglycemia is considered as one of the major determinants in the development of diabetic retinopathy, but the progression of retinopathy resists arrest after hyperglycemia is terminated, suggesting a metabolic memory phenomenon. Diabetes alters the expression of retinal genes, and this continues even after good glycemic control is re-instituted. Since the expression of genes is affected by chromatin structure that is modulated by post-translational modifications of histones, our objective is to investigate the role of histone acetylation in the development of diabetic retinopathy, and in the metabolic memory phenomenon. Streptozotocin-induced rats were maintained either in poor glycemic control (PC, glycated hemoglobin, GHb >11%) or good glycemic control (GC, GHb <6%) for 12 months, or allowed to be in PC for 6 months followed by in GC for 6 months (PC-GC). On a cellular level, retinal endothelial cells, the target of histopathology of diabetic retinopathy, were incubated in 5 or 20 mM glucose for 4 days. Activities of histone deacetylase (HDAC) and histone acetyltransferase (HAT), and histone acetylation were quantified. Hyperglycemia activated HDAC and increased HDAC1, 2, and 8 gene expressions in the retina and its capillary cells. The activity HAT was compromised and the acetylation of histone H3 was decreased. Termination of hyperglycemia failed to provide any benefits to diabetes-induced changes in retinal HDAC and HAT, and histone H3 remained subnormal. This suggests "in principle" the role of global acetylation of retinal histone H3 in the development of diabetic retinopathy and in the metabolic memory phenomenon associated with its continued progression.
Collapse
Affiliation(s)
- Qing Zhong
- Department of Ophthalmology, Wayne State University, Detroit
| | - Renu A. Kowluru
- Department of Ophthalmology, Wayne State University, Detroit
| |
Collapse
|