1
|
Sasaki-Hamada S, Hara A, Tainaka Y, Satoh S, Oka JI, Ishibashi H. Isoform-specific distribution of 14-3-3 proteins in the hippocampus of streptozotocin-induced diabetic rats. Neurosci Lett 2024; 843:138027. [PMID: 39471885 DOI: 10.1016/j.neulet.2024.138027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
Diabetes mellitus is associated with cognitive deficits in humans and animal models. These deficits are paralleled by neurophysiological and structural changes in the central nervous system, particularly in the hippocampus, which plays an important role in memory formation. We previously reported that the magnitude of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses was significantly impaired in streptozotocin (STZ)-induced type 1 diabetic rats (STZ rats). The present study investigated the mechanisms underlying morphological changes in the hippocampus of STZ rats. We performed a proteomic analysis of the hippocampus of STZ rats using two-dimensional gel electrophoresis followed by mass spectrometry. The distribution of 14-3-3 proteins identified by the proteomic analysis was then examined using immunohistochemistry. The results obtained revealed that 14-3-3 η immunoreactivity in the dorsal hippocampus was weaker in STZ rats than in age-matched control rats. Moreover, the density of glial fibrillary acidic protein-immunoreactive astrocytes in the dorsal hippocampus of STZ rats was increased, whereas 14-3-3 η immunoreactivity in astrocytes and neurons in the dentate gyrus was significantly decreased. These results suggest that changes in 14-3-3 η expression are involved in hippocampal astrogliosis or/and neurogenesis in STZ rats.
Collapse
Affiliation(s)
- Sachie Sasaki-Hamada
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan; Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan; Regenerative Medicine and Cell Design Research Facility, Kitasato University, School of Allied Health Science, Sagamihara, Kanagawa 252-0373, Japan.
| | - Arisa Hara
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Yume Tainaka
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Sho Satoh
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Jun-Ichiro Oka
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba 278-8510, Japan
| | - Hitoshi Ishibashi
- Department of Physiology, School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan; Regenerative Medicine and Cell Design Research Facility, Kitasato University, School of Allied Health Science, Sagamihara, Kanagawa 252-0373, Japan
| |
Collapse
|
2
|
Lieberman OJ, Berkowitz AL. Diagnostic Approach to the Patient with Altered Mental Status. Semin Neurol 2024. [PMID: 39353612 DOI: 10.1055/s-0044-1791245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Acute encephalopathy is a common presenting symptom in the emergency room and complicates many hospital and intensive care unit admissions. The evaluation of patients with encephalopathy poses several challenges: limited history and examination due to the patient's mental status, broad differential diagnosis of systemic and neurologic etiologies, low yield of neurodiagnostic testing due to the high base rate of systemic causes, and the importance of identifying less common neurologic causes of encephalopathy that can be life-threatening if not identified and treated. This article discusses the differential diagnosis of acute encephalopathy, presents an approach to the history and examination in a patient with encephalopathy, reviews the literature on the yield of neurodiagnostic testing in this population, and provides a diagnostic framework for the evaluation of patients with altered mental status.
Collapse
|
3
|
Cheng X, Tan Y, Li H, Zhang Z, Hui S, Zhang Z, Peng W. Mechanistic Insights and Potential Therapeutic Implications of NRF2 in Diabetic Encephalopathy. Mol Neurobiol 2024; 61:8253-8278. [PMID: 38483656 DOI: 10.1007/s12035-024-04097-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/04/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a complication of diabetes, especially type 2 diabetes (T2D), characterized by damage in the central nervous system and cognitive impairment, which has gained global attention. Despite the extensive research aimed at enhancing our understanding of DE, the underlying mechanism of occurrence and development of DE has not been established. Mounting evidence has demonstrated a close correlation between DE and various factors, such as Alzheimer's disease-like pathological changes, insulin resistance, inflammation, and oxidative stress. Of interest, nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor with antioxidant properties that is crucial in maintaining redox homeostasis and regulating inflammatory responses. The activation and regulatory mechanisms of NRF2 are a relatively complex process. NRF2 is involved in the regulation of multiple metabolic pathways and confers neuroprotective functions. Multiple studies have provided evidence demonstrating the significant involvement of NRF2 as a critical transcription factor in the progression of DE. Additionally, various molecules capable of activating NRF2 expression have shown potential in ameliorating DE. Therefore, it is intriguing to consider NRF2 as a potential target for the treatment of DE. In this review, we aim to shed light on the role and the possible underlying mechanism of NRF2 in DE. Furthermore, we provide an overview of the current research landscape and address the challenges associated with using NRF2 activators as potential treatment options for DE.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Yejun Tan
- School of Mathematics, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Hongli Li
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China
| | - Zhen Zhang
- YangSheng College of Traditional Chinese Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, No.139 Middle Renmin Road, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Mental Disorder, Changsha, 410011, China.
| |
Collapse
|
4
|
Nagayach A, Bhaskar R, Ghosh S, Singh KK, Han SS, Sinha JK. Advancing the understanding of diabetic encephalopathy through unravelling pathogenesis and exploring future treatment perspectives. Ageing Res Rev 2024; 100:102450. [PMID: 39134179 DOI: 10.1016/j.arr.2024.102450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024]
Abstract
Diabetic encephalopathy (DE), a significant micro-complication of diabetes, manifests as neurochemical, structural, behavioral, and cognitive alterations. This condition is especially dangerous for the elderly because aging raises the risk of neurodegenerative disorders and cognitive impairment, both of which can be made worse by diabetes. Despite its severity, diagnosis of this disease is challenging, and there is a paucity of information on its pathogenesis. The pivotal roles of various cellular pathways, activated or influenced by hyperglycemia, insulin sensitivity, amyloid accumulation, tau hyperphosphorylation, brain vasculopathy, neuroinflammation, and oxidative stress, are widely recognized for contributing to the potential causes of diabetic encephalopathy. We also reviewed current pharmacological strategies for DE encompassing a comprehensive approach targeting metabolic dysregulations and neurological manifestations. Antioxidant-based therapies hold promise in mitigating oxidative stress-induced neuronal damage, while anti-diabetic drugs offer neuroprotective effects through diverse mechanisms, including modulation of insulin signaling pathways and neuroinflammation. Additionally, tissue engineering and nanomedicine-based approaches present innovative strategies for targeted drug delivery and regenerative therapies for DE. Despite significant progress, challenges remain in translating these therapeutic interventions into clinical practice, including long-term safety, scalability, and regulatory approval. Further research is warranted to optimize these approaches and address remaining gaps in the management of DE and associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Aarti Nagayach
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301 India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology, Symbiosis International (Deemed University), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, South Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, South Korea.
| | | |
Collapse
|
5
|
Farkhani S, Payab M, Sharifi F, Sharifi Y, Mohammadi S, Shadman Z, Fahimfar N, Heshmat R, Hadizadeh A, Shafiee G, Nabipour I, Tavakoli F, Larijani B, Ebrahimpur M, Ostovar A. Association between pre-diabetes or diabetes and cognitive impairment in a community-dwelling older population: Bushehr Elderly Health (BEH) program. J Diabetes Metab Disord 2024; 23:639-646. [PMID: 38932839 PMCID: PMC11196454 DOI: 10.1007/s40200-023-01325-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/27/2023] [Indexed: 06/28/2024]
Abstract
Background Persistent uncontrolled hyperglycemia is recognized as one of the risk factors for cognitive disorders. Accordingly, both type 1 and type 2 diabetes may predispose individuals to cognitive impairment, particularly in cases where glycemic control is insufficient. The objective of this comprehensive study is to separately assess cognitive dysfunctions in diabetic and non-diabetic older adults. Methods This cross-sectional study is part of phase 2 of the Bushehr elderly health program (BEHP). Cognitive function was evaluated using the Mini-cog and categorical verbal fluency tests (CFTs). Patients were classified as non-diabetics, pre-diabetics, or diabetics based on the diagnostic criteria for diabetes mellitus (DM). To compare the means of the two groups, we utilized the t-test or the Mann-Whitney test. Additionally Multivariable logistic regression models were used to determine the association between pre-diabetes or DM and cognitive impairment. Results Out of 1533 participants, 693 (45.2%) were identified as having cognitive impairment. The average hemoglobin A1C was higher in participants with cognitive impairment compared to those without cognitive impairment. (5.8 ± 1.6% vs. 5.5 ± 1.4%, P = 0.004). Furthermore, the mean blood glucose levels were found to be more elevated in cases of cognitive impairment (108.0 ± 47.4 mg/dL vs. 102.1 ± 0.35 mg/dL, P = 0.002). After adjusting for age, gender, body mass index (BMI), waist circumference, amount of physical activity, and smoking, the multivariable logistic regression model, declared an association between diabetes and cognitive impairment (OR = 1.48, P = 0.003). In addition, older patients, females, widows, and individuals with elevated LDL-Cs and those with high blood pressure were found to be more vulnerable to cognitive impairment. Conclusion The Bushehr Elderly Health Program (BEHP) study revealed that individuals affected with cognitive impairment may exhibit higher levels of HbA1c. This suggests a positive correlation between elevated HbA1c and cognitive impairment.
Collapse
Affiliation(s)
- Sara Farkhani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Sharifi
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Sharifi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sammy Mohammadi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhaleh Shadman
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Hadizadeh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farnaz Tavakoli
- Nephrology and Kidney Transplant Ward, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahbube Ebrahimpur
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Elderly Health Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Wang X, Zhang Y, Yang F, Bao S, Duan L, Jiang X. Further learning of clinical characteristics and imaging manifestations of nonketotic hyperglycemic hemichorea. J Diabetes 2024; 16:e13543. [PMID: 38584150 PMCID: PMC10999500 DOI: 10.1111/1753-0407.13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVE To summarize the clinical characteristics and imaging manifestations of patients with nonketotic hyperglycemic hemichorea (NH-HC) and to explore the possible pathogenesis, diagnosis. and treatment of the disease in order to improve the understanding of this disease and avoid misdiagnosis. METHODS Retrospective analysis was performed on the case data of five patients with NH-HC admitted to our hospital in recent years. The patients were treated in the department of endocrinology, department of neurology, and department of neurosurgery in our hospital, respectively. Meanwhile, relevant literatures were consulted for further learning. RESULTS NH-HC is usually presented as a triad of nonketotic hyperglycemia, lateral chorea, and typical imaging manifestations of head magnetic resonance imaging or computed tomography, but the clinical manifestations are not the same, and imaging features may also be different, presenting a diversified trend in clinical practice. All five patients were given glucose-lowering drugs and improved with or without combination of drugs to control symptoms of chorea. CONCLUSION NH-HC is a rare complication of diabetes, characterized by hyperglycemia and hemichorea. How to identify the extreme situation and make fast judgment is a top priority. Timely and correct control of blood glucose is the key to the treatment, and when necessary, application of dopamine receptor antagonists in patients with combination therapy can accelerate improvement of the clinical symptoms. The prognosis of NH-HC is good, the clinician should strengthen comprehensive understanding of this disease to avoid missed diagnosis or misdiagnosis and enable patients to get more timely and effective treatment.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Endocrinology and MetabolismTianjin First Central HospitalTianjinChina
| | - Yuting Zhang
- Department of NeurologyTianjin First Central HospitalTianjinChina
| | - Fan Yang
- Department of NeurosurgeryTianjin First Central HospitalTianjinChina
| | - Suqing Bao
- Department of Endocrinology and MetabolismTianjin First Central HospitalTianjinChina
| | - Lijun Duan
- Department of Endocrinology and MetabolismTianjin First Central HospitalTianjinChina
| | - Xia Jiang
- Department of Endocrinology and MetabolismTianjin First Central HospitalTianjinChina
| |
Collapse
|
7
|
Fan KQ, Huang T, Yu JS, Li YY, Jin J. The clinical features and potential mechanisms of cognitive disorders in peripheral autoimmune and inflammatory diseases. FUNDAMENTAL RESEARCH 2024; 4:226-236. [PMID: 38933510 PMCID: PMC11197673 DOI: 10.1016/j.fmre.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022] Open
Abstract
According to a study from World Health Organization's Global Burden of Disease, mental and neurological disorders have accounted for 13% of global diseases in recent years and are on the rise. Neuropsychiatric conditions or neuroinflammatory disorders are linked by the presence of an exaggerated immune response both peripherally and in the central nervous system (CNS). Cognitive dysfunction (CD) encompasses a complex group of diseases and has frequently been described in the field of autoimmune diseases, especially in multiple non-CNS-related autoimmune diseases. Recent studies have provided various hypotheses regarding the occurrence of cognitive impairment in autoimmune diseases, including that abnormally activated immune cells can disrupt the integrity of the blood-brain barrier (BBB) to trigger a central neuroinflammatory response. When the BBB is intact, autoantibodies and pro-inflammatory molecules in peripheral circulation can enter the brain to activate microglia, inducing CNS inflammation and CD. However, the mechanisms explaining the association between the immune system and neural function and their contribution to diseases are uncertain. In this review, we used clinical statistics to illustrate the correlation between CD and autoimmune diseases that do not directly affect the CNS, summarized the clinical features and mechanisms by which autoimmune diseases trigger cognitive impairment, and explored existing knowledge regarding the link between CD and autoimmune diseases from the perspective of the field of neuroimmunology.
Collapse
Affiliation(s)
- Ke-qi Fan
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Sir Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Tao Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Sir Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Jian-shuai Yu
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yi-yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Sir Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
8
|
Ghaderi S, Gholipour P, Komaki A, Shahidi S, Seif F, Bahrami-Tapehebur M, Salehi I, Zarei M, Sarihi A, Rashno M. Underlying mechanisms behind the neuroprotective effect of vanillic acid against diabetes-associated cognitive decline: An in vivo study in a rat model. Phytother Res 2024; 38:1262-1277. [PMID: 38185917 DOI: 10.1002/ptr.8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Hippocampal synaptic dysfunction, oxidative stress, neuroinflammation, and neuronal loss play critical roles in the pathophysiology of diabetes-associated cognitive decline (DACD). The study aimed to investigate the effects of vanillic acid (VA), a phenolic compound, against DACD and explore the potential underlying mechanisms. Following confirmation of diabetes, rats were treated with VA (50 mg/kg/day; P.O.) or insulin (6 IU/rat/day; S.C.) for 8 consecutive weeks. The cognitive performance of the rats was evaluated using passive-avoidance and water-maze tasks. Long-term potentiation (LTP) was induced at hippocampal dentate gyrus (DG) synapses in response to high-frequency stimulation (HFS) applied to the perforant pathway (PP) to evaluate synaptic plasticity. Oxidative stress factors, inflammatory markers, and histological changes were evaluated in the rat hippocampus. This study showed that streptozotocin (STZ)-induced diabetes caused cognitive decline that was associated with inhibition of LTP induction, suppression of enzymatic antioxidant activities, enhanced lipid peroxidation, elevated levels of inflammatory proteins, and neuronal loss. Interestingly, chronic treatment with VA alleviated blood glucose levels, improved cognitive decline, ameliorated LTP impairment, modulated oxidative-antioxidative status, inhibited inflammatory response, and prevented neuronal loss in diabetic rats at a level comparable to insulin therapy. The results suggest that the antihyperglycemic, antioxidative, anti-inflammatory, and neuroplastic properties of VA may be the mechanisms behind its neuroprotective effect against DACD.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parsa Gholipour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faezeh Seif
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Mohammad Bahrami-Tapehebur
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|
9
|
Dong H, Sun Y, Nie L, Cui A, Zhao P, Leung WK, Wang Q. Metabolic memory: mechanisms and diseases. Signal Transduct Target Ther 2024; 9:38. [PMID: 38413567 PMCID: PMC10899265 DOI: 10.1038/s41392-024-01755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024] Open
Abstract
Metabolic diseases and their complications impose health and economic burdens worldwide. Evidence from past experimental studies and clinical trials suggests our body may have the ability to remember the past metabolic environment, such as hyperglycemia or hyperlipidemia, thus leading to chronic inflammatory disorders and other diseases even after the elimination of these metabolic environments. The long-term effects of that aberrant metabolism on the body have been summarized as metabolic memory and are found to assume a crucial role in states of health and disease. Multiple molecular mechanisms collectively participate in metabolic memory management, resulting in different cellular alterations as well as tissue and organ dysfunctions, culminating in disease progression and even affecting offspring. The elucidation and expansion of the concept of metabolic memory provides more comprehensive insight into pathogenic mechanisms underlying metabolic diseases and complications and promises to be a new target in disease detection and management. Here, we retrace the history of relevant research on metabolic memory and summarize its salient characteristics. We provide a detailed discussion of the mechanisms by which metabolic memory may be involved in disease development at molecular, cellular, and organ levels, with emphasis on the impact of epigenetic modulations. Finally, we present some of the pivotal findings arguing in favor of targeting metabolic memory to develop therapeutic strategies for metabolic diseases and provide the latest reflections on the consequences of metabolic memory as well as their implications for human health and diseases.
Collapse
Affiliation(s)
- Hao Dong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuezhang Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lulingxiao Nie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aimin Cui
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pengfei Zhao
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wai Keung Leung
- Periodontology and Implant Dentistry Division, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Simon Machado R, Mathias K, Joaquim L, Willig de Quadros R, Petronilho F, Tezza Rezin G. From diabetic hyperglycemia to cerebrovascular Damage: A narrative review. Brain Res 2023; 1821:148611. [PMID: 37793604 DOI: 10.1016/j.brainres.2023.148611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023]
Abstract
Diabetes mellitus is a globally significant disease that can lead to systemic complications, particularly vascular damage, including cardiovascular and cerebrovascular diseases of relevance. The physiological changes resulting from the imbalance in blood glucose levels play a crucial role in initiating vascular endothelial damage. Elevated glucose levels can also penetrate the central nervous system, triggering diabetic encephalopathy characterized by oxidative damage to brain components and activation of alternative and neurotoxic pathways. This brain damage increases the risk of ischemic stroke, a leading cause of mortality worldwide and a major cause of disability among surviving patients. The aim of this review is to highlight important pathways related to hyperglycemic damage that extend to the brain and result in vascular dysfunction, ultimately leading to the occurrence of a stroke. Understanding how diabetes mellitus contributes to the development of ischemic stroke and its impact on patient outcomes is crucial for implementing therapeutic strategies that reduce the incidence of diabetes mellitus and its complications, ultimately decreasing morbidity and mortality associated with the disease.
Collapse
Affiliation(s)
- Richard Simon Machado
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil; Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil.
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Larissa Joaquim
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Rafaella Willig de Quadros
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Graduate Program in Health Sciences, Health Sciences Unit, University of South Santa Catarina, Tubarão, SC, Brazil
| |
Collapse
|
11
|
Wang XH, Zuo ZF, Meng L, Yang Q, Lv P, Zhao LP, Wang XB, Wang YF, Huang Y, Fu C, Liu WQ, Liu XZ, Zheng DY. Neuroprotective effect of salidroside on hippocampal neurons in diabetic mice via PI3K/Akt/GSK-3β signaling pathway. Psychopharmacology (Berl) 2023; 240:1865-1876. [PMID: 37490132 DOI: 10.1007/s00213-023-06373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/08/2022] [Indexed: 07/26/2023]
Abstract
BACKGROUND Diabetic encephalopathy is manifested by cognitive dysfunction. Salidroside, a nature compound isolated from Rhodiola rosea L, has the effects of anti-inflammatory and antioxidant, hypoglycemic and lipid-lowering, improving insulin resistance, inhibiting cell apoptosis, and protecting neurons. However, the mechanism by which salidroside alleviates neuronal degeneration and improves learning and memory impairment in diabetic mice remains unclear. OBJECTIVE To investigate the effects and mechanisms of salidroside on hippocampal neurons in streptozotocin-induced diabetic mice. MATERIALS AND METHODS C57BL/6 mice were randomly divided into 4 groups to receive either sham (control group (CON)), diabetes mellitus (diabetes group (DM)), diabetes mellitus + salidroside (salidroside group (DM + SAL)), and diabetes mellitus + salidroside + phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (diabetes mellitus + salidroside + LY294002 group (DM + SAL + LY294002)). After 12 weeks of diabetes onset, the cognitive behaviors were tested using Morris water maze. The number of hippocampal neurons was detected by Nissl staining. The expressions of PI3K, p-PI3K, Akt, p-Akt, GSK-3β, p-GSK-3β, cleaved caspase-3, caspase-3, Bax, Bcl-2, MAP2, and SYN in the hippocampus were detected by Western blot. Moreover, the expression of MAP2 and SYN in the hippocampus was further confirmed by immunofluorescence staining. RESULTS Salidroside increased the time of diabetic mice in the platform quadrant and reduced the escape latency of diabetic mice. Salidroside also increased the expression of p-PI3K, p-Akt, p-GSK-3β, MAP2, SYN, Bcl-2, while suppressed the expression of cleaved caspase-3, caspase3, and Bax in the DM + SAL group compared with the DM group (P < 0.05). The Nissl staining showed that the number of hippocampus neurons in the DM + SAL group was increased with the intact, compact, and regular arrangement, compared with the DM groups (P < 0.05). Interestingly, the protective effects of salidroside on diabetic cognitive dysfunction, hippocampal morphological alterations, and protein expressions were abolished by inhibition of PI3K with LY294002. CONCLUSIONS Salidroside exerts neuroprotective properties in diabetic cognitive dysfunction partly via activating the PI3K/Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Xue-Hua Wang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Zhong-Fu Zuo
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lu Meng
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Qi Yang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Pan Lv
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Li-Pan Zhao
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xiao-Bai Wang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Yu-Fei Wang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Ying Huang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Cong Fu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Wen-Qiang Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xue-Zheng Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - De-Yu Zheng
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
12
|
Cheng L, Chen Y, Guo D, Zhong Y, Li W, Lin Y, Miao Y. mTOR-dependent TFEB activation and TFEB overexpression enhance autophagy-lysosome pathway and ameliorate Alzheimer's disease-like pathology in diabetic encephalopathy. Cell Commun Signal 2023; 21:91. [PMID: 37143104 PMCID: PMC10158341 DOI: 10.1186/s12964-023-01097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Diabetic encephalopathy (DE) is a complication of type 2 diabetes mellitus (T2DM) that features Alzheimer's disease (AD)-like pathology, which can be degraded by the autophagy-lysosome pathway (ALP). Since transcription factor EB (TFEB) is a master regulator of ALP, TFEB-mediated ALP activation might have a therapeutic effect on DE, but this has yet to be investigated. METHODS We established T2DM mouse models and cultured HT22 cells under high-glucose (HG) conditions to confirm the role of ALP in DE. To further investigate this, both mice and HT22 cells were treated with 3-methyladenine (3-MA). We also analyzed the content of TFEB in the nucleus and cytoplasm to evaluate its role in ALP. To confirm the effect of TFEB activation at the post-translational level in DE, we used rapamycin to inhibit the mechanistic target of rapamycin (mTOR). We transduced both mice and cells with TFEB vector to evaluate the therapeutic effect of TFEB overexpression on DE. Conversely, we conducted TFEB knockdown to verify its role in DE in another direction. RESULTS We found that T2DM mice experienced compromised cognitive function, while HG-cultured HT22 cells exhibited increased cell apoptosis. Additionally, both T2DM mice and HG-cultured HT22 cells showed impaired ALP and heavier AD-like pathology. This pathology worsened after treatment with 3-MA. We also observed decreased TFEB nuclear translocation in both T2DM mice and HG-cultured HT22 cells. However, inhibiting mTOR with rapamycin or overexpressing TFEB increased TFEB nuclear translocation, enhancing the clearance of ALP-targeted AD-like pathology. This contributed to protection against neuronal apoptosis and alleviation of cognitive impairment. Conversely, TFEB knockdown lessened ALP-targeted AD-like pathology clearance and had a negative impact on DE. CONCLUSION Our findings suggest that impaired ALP is responsible for the aggravation of AD-like pathology in T2DM. We propose that mTOR-dependent TFEB activation and TFEB overexpression are promising therapeutic strategies for DE, as they enhance the clearance of ALP-targeted AD-like pathology and alleviate neuronal apoptosis. Our study provides insight into the underlying mechanisms of DE and offers potential avenues for the development of new treatments for this debilitating complication of T2DM. Video abstract.
Collapse
Affiliation(s)
- Lizhen Cheng
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Yixin Chen
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Donghao Guo
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
- Division of Cardiology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuan Zhong
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Wei Li
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Yijia Lin
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China
| | - Ya Miao
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
13
|
Wang X, Yu S, Liu W, Lv P, Zhao L, Wang Y, Fu C, Meng L, Yang Q, Wang X, Huang Y, Zuo Z, Liu X. Relationship between IL-22 and IL-22BP in diabetic cognitive dysfunction. Acta Diabetol 2023; 60:631-644. [PMID: 36717397 DOI: 10.1007/s00592-022-02024-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND CD4 + T helper (Th)22 cells play a regulatory role in autoimmune diseases such as type 1 diabetes mellitus. The Th22-related cytokine interleukin (IL)-22, the expression of which is increased in diabetes mellitus (DM), can act as a neurotrophic factor to protect neurons from apoptosis. Paradoxically, neuronal apoptosis and learning and memory decline occur in DM. In this study, we investigated the relationship between IL-22 and its receptors IL-22Rα1 and IL-22 binding protein (IL-22BP, a soluble inhibitor of IL-22) in diabetic encephalopathy (DE) and the effects of IL-22 on hippocampal neurons, learning and memory. METHODS A C57BL/6 mouse model of diabetes was constructed by intraperitoneal injection of streptozotocin. The mice were randomly divided into 4 groups: the control group, diabetes group, diabetes + recombinantIL-22 (rIL-22) group and diabetes + IL-22BP group. The Morris water maze test was used to evaluate learning and memory, the expression of IL-22 was measured by ELISA, and Evans Blue staining was used to evaluate blood-brain barrier permeability. Quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to measure the mRNA expression of IL-22 and IL-22Rα1 in the hippocampus. The morphology and number of hippocampal neurons were assessed by Nissl staining, and TUNEL staining was used to detect hippocampal neuronal apoptosis. Immunofluorescence was used to analyze IL-22Rα1 expression and localization in hippocampus, and Western blotting was used to evaluate the expression of IL-22, IL-22Rα1, IL-22BP, and the apoptosis related proteins Caspase-3 and C-caspase-3. RESULTS Compared with those in the control group, mice in the diabetes group showed cognitive decline; apoptosis of hippocampal neurons; increased expression of hippocampal Caspase-3, C-Caspase-3, IL-22, IL-22Rα1, and IL-22BP; and a decreased IL-22/IL-22BP ratio. Learning and memory were improved, neuronal apoptosis was attenuated, IL-22Rα1 expression and the IL-22/IL-22BP ratio were increased, and caspase-3 and C-caspase-3 expression was decreased in the rIL-22-treated group compared with the diabetes group. IL-22BP treatment aggravated diabetic cognitive dysfunction and pathological alterations in the hippocampus, decreased the IL-22/IL-22BP ratio, and increased the expression of caspase-3 and C-caspase-3 in mice with diabetes. CONCLUSION A decrease in the IL-22/IL-22BP ratio plays an important role in diabetic cognitive dysfunction, and rIL-22 can effectively alleviate DE. Herein, we shed light on the interaction between IL-22 and IL-22BP as therapeutic targets for DM.
Collapse
Affiliation(s)
- Xiaobai Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Shengxue Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Wenqiang Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Pan Lv
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Lipan Zhao
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Yufei Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Cong Fu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Lu Meng
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Qi Yang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Xuehua Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Ying Huang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Zhongfu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, China.
| | - Xuezheng Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
14
|
Zhang W, Chen S, Zhuang X. Research Progress on Lipocalin-2 in Diabetic Encephalopathy. Neuroscience 2023; 515:74-82. [PMID: 36805002 DOI: 10.1016/j.neuroscience.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Diabetic encephalopathy is a central nervous complication of diabetes mellitus which is characterized by cognitive impairment and structural and neurochemical abnormalities, which is easily neglected. Lipocalin-2 (LCN2) is a 25 kDa transporter in the lipocalin family that can transport small molecules, including fatty acids, iron, steroids, and lipopolysaccharides in the circulation. Recently, LCN2 has been found to be a significant regulator of insulin resistance and glucose homeostasis. Numerous studies have shown that LCN2 is connected to central nervous system abnormalities, including neuroinflammation and neurodegeneration, while the latest researches have found that LCN2 is closely related to the development of diabetic encephalopathy. Nevertheless, its precise role in the pathogenesis of diabetic encephalopathy remains to be determined. In this paper, we review recent evidence on the role of LCN2 in diabetic encephalopathy from multiple perspectives in order to decipher the impact of LCN2 in both the aetiology and treatment of diabetic encephalopathy.
Collapse
Affiliation(s)
- Wenjie Zhang
- Cheeloo College of Medicine, Shangdong University, Jinan 250000, China
| | - Shihong Chen
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan 250000, China.
| | - Xianghua Zhuang
- Department of Endocrinology, The Second Hospital of Shandong University, Jinan 250000, China.
| |
Collapse
|
15
|
Li J, Wang Z, Nan X, Yin M, Fang H. Hotspots and frontier trends of diabetic associated cognitive decline research based on rat and mouse models from 2012 to 2021: A bibliometric study. Front Neurol 2022; 13:1073224. [PMID: 36582609 PMCID: PMC9793002 DOI: 10.3389/fneur.2022.1073224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The establishment of rodent models, such as rat and mouse models, plays a critical role in the study of diabetic associated cognitive decline. With the continuous growth of relevant literature information, it is difficult for researchers to accurately and timely capture the topics in this field. Therefore, this study aims to explore the current status and frontier trends of diabetic associated cognitive decline research based on rat and mouse models through a bibliometric analysis. Methods We collected 701 original articles on this subject from the Science Citation Index Expanded of the Web of Science Core Collection from 2012 to 2021. Then we utilized CiteSpace and VOSviewer for plotting knowledge maps and evaluating hotpots and trends. Results During this decade, except for a slight decline in 2020, the number of annual outputs on diabetes associated cognitive decline research using rat and mouse models increased every year. China (country), China Pharmaceutical University (institution), Gao, Hongchang (the author from the School of Pharmacy of Wenzhou Medical University, China), and Metabolic Brain Disease (journal) published the most papers in this research field. The analysis results of co-cited references and co-occurrence keywords indicated that "mechanisms and prevention and treatment methods", especially "oxidative stress", "potential association with Alzheimer's disease" and "spatial memory" are research focuses in this subject area. The bursts detection of references and keywords implied that "cognitive impairment of type 1 diabetes" and "autophagy and diabetes associated cognitive decline" will be potential directions for future research in this subject area. Conclusion This study systematically assessed general information, current status and emerging trends of diabetic associated cognitive decline research using rat and mouse models in the past decade based on a bibliometric analysis. The number of publications was annually increasing although a slight decline was observed in 2020. Contributions from different countries/regions, institutions, authors, co-cited authors, journals and co-cited journals were evaluated, which may also be used to guide future research. Through the analysis of references and keywords, we predicted the future research hotspots and trends in this field.
Collapse
Affiliation(s)
- Jie Li
- Graduate School of Hebei Medical University, Shijiazhuang, China,Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, China
| | - Zhen Wang
- Department of Orthopedics, Handan First Hospital, Handan, China
| | - Xinyu Nan
- Graduate School of Hebei Medical University, Shijiazhuang, China,Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, China
| | - Mingjie Yin
- Graduate School of Hebei Medical University, Shijiazhuang, China,Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, China
| | - Hui Fang
- Graduate School of Hebei Medical University, Shijiazhuang, China,Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, China,*Correspondence: Hui Fang
| |
Collapse
|
16
|
Swain SK, Chandra Dash U, Sahoo AK. Hydrolea zeylanica improves cognitive impairment in high-fat diet fed-streptozotocin-induced diabetic encephalopathy in rats via regulating oxidative stress, neuroinflammation, and neurotransmission in brain. Heliyon 2022; 8:e11301. [DOI: 10.1016/j.heliyon.2022.e11301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/06/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
|
17
|
Tu Y, Chen Q, Guo W, Xiang P, Huang H, Fei H, Chen L, Yang Y, Peng Z, Gu C, Tan X, Liu X, Lu Y, Chen R, Wang H, Luo Y, Yang J. MiR-702-5p ameliorates diabetic encephalopathy in db/db mice by regulating 12/15-LOX. Exp Neurol 2022; 358:114212. [PMID: 36029808 DOI: 10.1016/j.expneurol.2022.114212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/08/2022] [Accepted: 08/20/2022] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to investigate the effect of miR-702-5p on diabetic encephalopathy (DE) and the interaction of miR-702-5p/12/15-LOX in the central nervous system (CNS). In this study, db/db mice were used as DE animal model and HT22 cells were treated with high-glucose (HG). Based on the bioinformatics prediction of possible binding sites between miR-702-5p and 12/15-LOX, we found that the expression of miR-702-5p was significantly down-regulated while 12/15-LOX up-regulated in vivo and in vitro, and the expression changes were inversely correlated. In vivo, diabetic mice with cognitive dysfunction and hippocampal neuronal damage had a concomitant increase in amyloid precursor protein (APP), amyloid beta(Aβ), tau, BAX protein expressions; by contrast, Bcl-2 protein expression was significantly decreased. Overexpression of miR-702-5p significantly reduced the histopathological damage of the hippocampus, improved the learning and memory function of db/db mice, down-regulated 12/15-LOX, APP, Aβ, tau, BAX protein expressions significantly and up-regulated the expression of Bcl-2. In vitro, miR-702-5p mimic reversed the decline in cell viability and the increase in cell apoptosis induced by HG. Simultaneously, reduced 12/15-LOX, APP, Aβ, BAX protein expressions, and increased Bcl-2 protein expression were detected in the miR-702-5p mimic group. Moreover, combined administration of miR-702-5p mimic and 12/15-LOX overexpression lentivirus significantly reversed the protective effect of up-regulation of miR-702-5p. In conclusion, miR-702-5p has a neuroprotective effect on DE, and this effect was achieved by inhibiting 12/15-LOX. However, miR-702-5p had an endogenous regulatory effect on 12/15-LOX rather than a direct targeting relationship.
Collapse
Affiliation(s)
- Yujun Tu
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Qi Chen
- Pharmacy Department of GuiZhou Provincial People's Hospital, Guiyang 550000, China
| | - Wenjia Guo
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Pu Xiang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China; Dianjiang People's Hospital of Chongqing, Dianjiang, Chongqing 408300, China
| | - Haifeng Huang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Huizhi Fei
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Lin Chen
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Yang Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Zhe Peng
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Chao Gu
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xiaodan Tan
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xia Liu
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Yi Lu
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Rongchun Chen
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Hong Wang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Ying Luo
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Junqing Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
18
|
Peng D, Qing X, Guan L, Li HY, Qiao L, Chen YB, Cai YF, Wang Q, Zhang SJ. Carnosine improves cognitive impairment through promoting SIRT6 expression and inhibiting ER stress in a diabetic encephalopathy model. Rejuvenation Res 2022; 25:79-88. [PMID: 35302398 DOI: 10.1089/rej.2022.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diabetic encephalopathy is one of complications of diabetes mellitus. Carnosine is a dipeptide composed of β-alanine and L-histidine. Study has shown that carnosine could ameliorate cognitive impairment in animal model with diabetes mellitus. However, the mechanism remains unclear. An animal model of type 2 diabetes (db/db mice) was used in this study. The animals were treated with 0.9 % saline or carnosine (100 mg/kg) for 8 weeks. Morris water maze was tested after drug administration. Oxidative stress-related factors malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX), and pro-inflammatory factors inducible nitric oxide synthase (iNOS) were measured. Synapse-related protein postsynapticdensity 95 (PSD95) and brain-derived neurotrophic factor (BDNF) were detected by western blot. Besides, the expressions of sirtuin 6 (SIRT6), binding immunoglobulin protein (BIP), protein kinase R-like endoplasmic reticulum kinase (PERK), phospho-protein kinase R-like endoplasmic reticulum kinase (P-PERK), inositol-requiring enzyme-1α (IRE1α), phospho-inositol-requiring enzyme-1α (P-IRE1α), activating transcription factor 6 (ATF6), C/EBP-homologous protein (CHOP) in the hippocampus of the brain were detected. The results showed that treatment with carnosine ameliorated cognitive impairment in db/db mice. Carnosine reduced neuronal oxidative stress damage and iNOS expression in db/db mice. Meanwhile, carnosine relieved neurodegeneration in the hippocampus of db/db mice. Furthermore, carnosine promoted the expression of SIRT6 and reduced the expressions of endoplasmic reticulum (ER) related factors (BIP, P-PERK, P-IRE1α, ATF6, CHOP). In conclusion, these data suggested that the protective effect of carnosine against diabetic encephalopathy might be related to SIRT6/ER stress pathway.
Collapse
Affiliation(s)
- Dong Peng
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Xia Qing
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Li Guan
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, China;
| | - Hong-Ying Li
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Lijun Qiao
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Yun-Bo Chen
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Ye-Feng Cai
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, Guangdong, China;
| | - Qi Wang
- Guangzhou University of Chinese Medicine, 47879, Guangzhou, China;
| | - Shi-Jie Zhang
- Guangzhou University of Chinese Medicine, 47879, Guangzhou University of Chinese Medicine, Guangzhou, China, 510006;
| |
Collapse
|
19
|
McGrath T, Baskerville R, Rogero M, Castell L. Emerging Evidence for the Widespread Role of Glutamatergic Dysfunction in Neuropsychiatric Diseases. Nutrients 2022; 14:nu14050917. [PMID: 35267893 PMCID: PMC8912368 DOI: 10.3390/nu14050917] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The monoamine model of depression has long formed the basis of drug development but fails to explain treatment resistance or associations with stress or inflammation. Recent animal research, clinical trials of ketamine (a glutamate receptor antagonist), neuroimaging research, and microbiome studies provide increasing evidence of glutamatergic dysfunction in depression and other disorders. Glutamatergic involvement across diverse neuropathologies including psychoses, neurodevelopmental, neurodegenerative conditions, and brain injury forms the rationale for this review. Glutamate is the brain's principal excitatory neurotransmitter (NT), a metabolic and synthesis substrate, and an immune mediator. These overlapping roles and multiple glutamate NT receptor types complicate research into glutamate neurotransmission. The glutamate microcircuit comprises excitatory glutamatergic neurons, astrocytes controlling synaptic space levels, through glutamate reuptake, and inhibitory GABA interneurons. Astroglia generate and respond to inflammatory mediators. Glutamatergic microcircuits also act at the brain/body interface via the microbiome, kynurenine pathway, and hypothalamus-pituitary-adrenal axis. Disruption of excitatory/inhibitory homeostasis causing neuro-excitotoxicity, with neuronal impairment, causes depression and cognition symptoms via limbic and prefrontal regions, respectively. Persistent dysfunction reduces neuronal plasticity and growth causing neuronal death and tissue atrophy in neurodegenerative diseases. A conceptual overview of brain glutamatergic activity and peripheral interfacing is presented, including the common mechanisms that diverse diseases share when glutamate homeostasis is disrupted.
Collapse
Affiliation(s)
- Thomas McGrath
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| | - Richard Baskerville
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Correspondence:
| | - Marcelo Rogero
- School of Public Health, University of Sao Paulo, Sao Paulo 01246-904, Brazil;
| | - Linda Castell
- Green Templeton College, University of Oxford, Oxford OX2 6HG, UK; (T.M.); (L.C.)
| |
Collapse
|
20
|
Bykov V, Gushchina E, Morozov S, Zhuravskaya N, Kryshen K, Makarov V, Matichin A, Zueva A. Ipidacrine (Axamon), A Reversible Cholinesterase Inhibitor, Improves Erectile Function in Male Rats With Diabetes Mellitus-Induced Erectile Dysfunction. Sex Med 2022; 10:100477. [PMID: 35007992 PMCID: PMC8847829 DOI: 10.1016/j.esxm.2021.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/04/2022] Open
Abstract
Background Management of diabetes mellitus-induced erectile dysfunction (DMED) is challenging because of its insufficient responses to phosphodiesterase type 5 inhibitors. Aim To compare the effects of ipidacrine, a reversible cholinesterase inhibitor, and sildenafil on DMED in a rat model of streptozotocin (STZ)-induced diabetes. Methods Erectile dysfunction (ED) caused by STZ-induced diabetes mellitus was modeled in adult male Wistar rats, which were randomized to 4 groups: untreated diabetic rats, sildenafil (5 mg/kg), ipidacrine (3.6 mg/kg) and ipidacrine (6.7 mg/kg). The test drug (ipidacrine), comparator (sildenafil) or control substance (1% starch solution) were administered orally for 5 days or 14 days. Erectile function was assessed by the change in the maximum intracavernous pressure (ICPmax) following cavernous nerve electrical stimulation. The mean arterial pressure (MAP) was recorded, and the ICPmax/MAP ratio was calculated. Sexual behavior, cholinesterase activity and blood testosterone level tests assessed. Main Outcome Measure The quantitative value of ICPmax/MAP 14 days after the start of administration of the test drug and the comparison drug. Results Animals with STZ-induced diabetes mellitus showed a significant decrease in ICPmax and ICPmax/MAP ratio compared to the intact control group. When ipidacrine was administered to rats with DMED for 14 days, an increase in these indicators was noted. It was proved that ipidacrine at a dose of 6.7 mg/kg has noninferiority compared to sildenafil on the DMED model. Significant increase in ICPmax compared to STZ-control after electrostimulation of the cavernous nerve was recorded following administration of ipidacrine at a dose of 6.7 mg/kg (P < .05) and sildenafil at a dose 5 mg/kg (P < .05). Neither the test drug, nor the comparator were associated with increase in testosterone levels in blood; as well both drugs did not promote activation of sexual behavior. Clinical Implications Ipidacrine may be considered as an effective therapy for DMED but needs to be verified in human investigations. Strengths & Limitations The role of ipidacrine, was firstly demonstrated in rats with DMED. However, the results were obtained in animal experiments, and will be further tested in the study of receptor interactions and the determination of cellular targets. Conclusion This is the first study to show that administration of ipidacrine, the reversible cholinesterase inhibitor, improved erectile function in diabetic rats and these results may be beneficial in further studies using ipidacrine for treatment of DMED, particularly in non-responders to PDE5 inhibitors. Bykov V, Gushchina E, Morozov S, et al. Ipidacrine (Axamon), A Reversible Cholinesterase Inhibitor, Improves Erectile Function in Male Rats With Diabetes Mellitus-Induced Erectile Dysfunction. Sex Med 2022;10:100477.
Collapse
Affiliation(s)
- Vladimir Bykov
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia.
| | | | | | | | - Kirill Kryshen
- Institute of Pre-clinical Research Ltd, Leningradskaya Region, Russia
| | - Valery Makarov
- Institute of Pre-clinical Research Ltd, Leningradskaya Region, Russia
| | | | - Alena Zueva
- Institute of Pre-clinical Research Ltd, Leningradskaya Region, Russia
| |
Collapse
|
21
|
Toward the Decipherment of Molecular Interactions in the Diabetic Brain. Biomedicines 2022; 10:biomedicines10010115. [PMID: 35052794 PMCID: PMC8773210 DOI: 10.3390/biomedicines10010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) has been associated with cognitive complications in the brain resulting from acute and chronic metabolic disturbances happening peripherally and centrally. Numerous studies have reported on the morphological, electrophysiological, biochemical, and cognitive changes in the brains of diabetic individuals. The detailed pathophysiological mechanisms implicated in the development of the diabetic cognitive phenotype remain unclear due to intricate molecular changes evolving over time and space. This review provides an insight into recent advances in understanding molecular events in the diabetic brain, focusing on cerebral glucose and insulin uptake, insulin action in the brain, and the role of the brain in the regulation of glucose homeostasis. Fully competent mitochondria are essential for energy metabolism and proper brain function; hence, the potential contribution of mitochondria to the DM-induced impairment of the brain is also discussed.
Collapse
|
22
|
Cacciatore M, Grasso EA, Tripodi R, Chiarelli F. Impact of glucose metabolism on the developing brain. Front Endocrinol (Lausanne) 2022; 13:1047545. [PMID: 36619556 PMCID: PMC9816389 DOI: 10.3389/fendo.2022.1047545] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Glucose is the most important substrate for proper brain functioning and development, with an increased glucose consumption in relation to the need of creating new brain structures and connections. Therefore, alterations in glucose homeostasis will inevitably be associated with changes in the development of the Nervous System. Several studies demonstrated how the alteration of glucose homeostasis - both hyper and hypoglycemia- may interfere with the development of brain structures and cognitivity, including deficits in intelligence quotient, anomalies in learning and memory, as well as differences in the executive functions. Importantly, differences in brain structure and functionality were found after a single episode of diabetic ketoacidosis suggesting the importance of glycemic control and stressing the need of screening programs for type 1 diabetes to protect children from this dramatic condition. The exciting progresses of the neuroimaging techniques such as diffusion tensor imaging, has helped to improve the understanding of the effects, outcomes and mechanisms underlying brain changes following dysglycemia, and will lead to more insights on the physio-pathological mechanisms and related neurological consequences about hyper and hypoglycemia.
Collapse
|
23
|
Liu J, Deng Z, Yu Z, Zhou W, Yuan Q. The circRNA circ-Nbea participates in regulating diabetic encephalopathy. Brain Res 2022; 1774:147702. [PMID: 34695392 DOI: 10.1016/j.brainres.2021.147702] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/02/2022]
Abstract
Circular RNAs (circRNAs) play key roles in various pathogenic and biological processes in human disease. However, the effect of circRNAs on the development of diabetic encephalopathy (DE) remains largely unknown. Therefore, the aim of this study was to investigate changes in the expression of circRNAs and their potential mechanism in DE formation. Compared with db/m mice, spatial learning/memory, dendritic spines, and synaptic plasticity were all impaired in the hippocampus of the db/db mice. In addition, the dendritic spine density of neurons was significantly decreased after treatment with advanced glycation end-products (AGEs). We used high-throughput RNA sequencing (RNA-Seq) to detect circRNA expression in DE, and the results revealed that 183 circRNAs were significantly altered in primary hippocampal neurons treated with AGEs. Three circRNAs were chosen for detection using quantitative real-time polymerase chain reaction (qRT-PCR), including circ-Smox (chr2: 131511984-131516443), circ-Nbea (mmu-chr3: 56079859-56091120), and circ-Setbp1 (chr18: 79086551-79087180), and circ-Nbea expression was significantly decreased. According to the bioinformatics prediction and detection using qRT-PCR and double luciferase assays, circ-Nbea sponges miR-128-3p. Based on these results, we speculated that a newly identified circRNA, circ-Nbea, may play an important role in the development of DE, and the mechanism is mediated by sponging miR-128-3p. This study provides new insight into the treatment of DE.
Collapse
Affiliation(s)
- Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science&Technology, Wuhan, Hubei, China.
| | - Zhifang Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science&Technology, Wuhan, Hubei, China
| | - Zhijun Yu
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Huangjiahu Road 2(#), Wuhan, Hubei, China
| | - Weipin Zhou
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Huangjiahu Road 2(#), Wuhan, Hubei, China
| | - Qiong Yuan
- Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Huangjiahu Road 2(#), Wuhan, Hubei, China.
| |
Collapse
|
24
|
Yang Y, Xiang P, Chen Q, Luo Y, Wang H, Li H, Yang L, Hu C, Zhang J, Li Y, Xia H, Chen Z, Yang J. The imbalance of PGD2-DPs pathway is involved in the type 2 diabetes brain injury by regulating autophagy. Int J Biol Sci 2021; 17:3993-4004. [PMID: 34671214 PMCID: PMC8495389 DOI: 10.7150/ijbs.60149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
Prostaglandin D2 (PGD2) is the most abundant prostaglandin in the brain, but its involvement in brain damage caused by type 2 diabetes (T2D) has not been reported. In the present study, we found that increased PGD2 content is related to the inhibition of autophagy, which aggravates brain damage in T2D, and may be involved in the imbalanced expression of the corresponding PGD2 receptors DP1 and DP2. We demonstrated that DP2 inhibited autophagy and promotedT2D-induced brain damage by activating the PI3K/AKT/mTOR pathway, whereas DP1enhanced autophagy and amelioratedT2D brain damage by activating the cAMP/PKA pathway. In a T2D rat model, DP1 expression was decreased, and DP2 expression was increased; therefore, the imbalance in PGD2-DPs may be involved in T2D brain damage through the regulation of autophagy. However, there have been no reports on whether PKA can directly inhibit mTOR. The PKA catalytic subunit (PKA-C) has three subtypes (α, β and γ), and γ is not expressed in the brain. Subsequently, we suggested that PKA could directly interact with mTOR through PKA-C(α) and PKA-C(β). Our results suggest that the imbalance in PGD2-DPs is related to changes in autophagy levels in T2D brain damage, and PGD2 is involved in T2D brain damage by promoting autophagy via DP1-PKA/mTOR and inhibiting autophagy via DP2-PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China.,Department of Pharmacology, Chongqing Health Center for Women and Children Chongqing 400016, China
| | - Pu Xiang
- Department of pharmacy,Dianjiang People's Hospital of Chongqing, Dianjiang, Chongqing 408300, China
| | - Qi Chen
- Pharmacy department of GuiZhou Provincial People,s Hospital, Guiyang 550000, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hong Wang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Huan Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Lu Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Congli Hu
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jiahua Zhang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yuke Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hui Xia
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Zhihao Chen
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| |
Collapse
|
25
|
Zhang YM, Zheng T, Huang TT, Gu PP, Gou LS, Ma TF, Liu YW. Sarsasapogenin attenuates Alzheimer-like encephalopathy in diabetes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153686. [PMID: 34333330 DOI: 10.1016/j.phymed.2021.153686] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND A crosstalk exists between diabetes and Alzheimer's disease (AD), and diabetic encephalopathy displays AD-like disorders. Sarsasapogenin (Sar) has strong anti-inflammatory efficacy, showing neuroprotection and memory-enhancement effects. PURPOSE This study aims to verify the ameliorative effects of Sar on diabetic encephalopathy in vivo and in vitro, and to clarify the mechanisms from attenuation of AD-like pathology. METHODS Streptozotocin-induced type 1 diabetic rats and high glucose-cultured SH-SY5Y cells were used in this study. After Sar treatment (20 and 60 mg/kg) for consecutive 9 weeks, Morris water maze and novel object recognition tasks were performed. Hematoxylin-eosin staining was used for examining loss of neurons in CA1 area and ki67 expression for reflecting neurogenesis in DG area of hippocampus. Aβ production pathway and tau phosphorylation kinase cascade were examined in these two models. RESULTS Sar improved learning and memory ability, loss of neurons and reduction of neurogenesis in the hippocampus of diabetic rats. Moreover, Sar suppressed Aβ overproduction due to up-regulation of BACE1 in protein and mRNA and tau hyperphosphorylation from inactivation of AKT/GSK-3β cascade in the hippocampus and cerebral cortex of diabetic rats and high glucose-cultured SH-SY5Y cells, and PPARγ antagonism abolished the effects of Sar on key molecules in the two pathways. Additionally, it was found that high glucose-stimulated Aβ overproduction was prior to tau hyperphosphorylation in neurons. CONCLUSION Sar alleviated diabetic encephalopathy, which was obtained through inhibitions of Aβ overproduction and tau hyperphosphorylation mediated by the activation of PPARγ signaling. Hence, Sar is a good candidate compound for AD-like disorders.
Collapse
Affiliation(s)
- Yu-Meng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ting Zheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ting-Ting Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Pan-Pan Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Ling-Shan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou 221009, Jiangsu, China
| | - Teng-Fei Ma
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China; Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
26
|
Luna R, Talanki Manjunatha R, Bollu B, Jhaveri S, Avanthika C, Reddy N, Saha T, Gandhi F. A Comprehensive Review of Neuronal Changes in Diabetics. Cureus 2021; 13:e19142. [PMID: 34868777 PMCID: PMC8628358 DOI: 10.7759/cureus.19142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 12/11/2022] Open
Abstract
There has been an exponential rise in diabetes mellitus (DM) cases on a global scale. Diabetes affects almost every system of the body, and the nervous system is no exception. Although the brain is dependent on glucose, providing it with the energy required for optimal functionality, glucose also plays a key role in the regulation of oxidative stress, cell death, among others, which furthermore contribute to the pathophysiology of neurological disorders. The variety of biochemical processes engaged in this process is only matched by the multitude of clinical consequences resulting from it. The wide-ranging effects on the central and peripheral nervous system include, but are not limited to axonopathies, neurodegenerative diseases, neurovascular diseases, and general cognitive impairment. All language search was conducted on MEDLINE, COCHRANE, EMBASE, and GOOGLE SCHOLAR till September 2021. The following search strings and Medical Subject Headings (MeSH terms) were used: "Diabetes Mellitus," "CNS," "Diabetic Neuropathy," and "Insulin." We explored the literature on diabetic neuropathy, covering its epidemiology, pathophysiology with the respective molecular pathways, clinical consequences with a special focus on the central nervous system and finally, measures to prevent and treat neuronal changes. Diabetes is slowly becoming an epidemic, rapidly increasing the clinical burden on account of its wide-ranging complications. This review focuses on the neuronal changes occurring in diabetes such as the impact of hyperglycemia on brain function and structure, its association with various neurological disorders, and a few diabetes-induced peripheral neuropathic changes. It is an attempt to summarize the relevant literature about neuronal consequences of DM as treatment options available today are mostly focused on achieving better glycemic control; further research on novel treatment options to prevent or delay the progression of neuronal changes is still needed.
Collapse
Affiliation(s)
- Rudy Luna
- Neurofisiología, Instituto Nacional de Neurologia y Neurocirugia, CDMX, MEX
| | | | | | | | - Chaithanya Avanthika
- Medicine and Surgery; Pediatrics, Karnataka Institute of Medical Sciences, Hubli, IND
| | - Nikhil Reddy
- Internal Medicine, Kamineni Academy of Medical Science and Research Centre, Hyderabad, IND
| | - Tias Saha
- Internal Medicine, Diabetic Association Medical College, Faridpur, BGD
| | - Fenil Gandhi
- Medicine, Shree Krishna Hospital, Anand, IND
- Research Project Associate, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
27
|
Guo Z, Jia J, Tu Y, Jin C, Guo C, Song F, Wu X, Bao H, Fan W. Altered Jagged1-Notch1 Signaling in Enhanced Dysfunctional Neovascularization and Delayed Angiogenesis After Ischemic Stroke in HFD/STZ Induced Type 2 Diabetes Rats. Front Physiol 2021; 12:687947. [PMID: 34305641 PMCID: PMC8297620 DOI: 10.3389/fphys.2021.687947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/14/2021] [Indexed: 11/17/2022] Open
Abstract
Diabetes exacerbates brain damage in cerebral ischemic stroke. Our previous study has demonstrated that after cerebral ischemia, type 2 diabetes rats displayed worse neurological outcomes, larger cerebral infarction and severer blood-brain barrier disruption. However, our knowledge of the mechanisms of how diabetes impacts the cerebrovascular repair process is limited. This study was aimed to characterize structural alterations and potential mechanisms in brain microvessels before and after ischemic stroke in type 2 diabetic rats treated with high-fat diet and streptozotocin (HFD/STZ). Furtherly, we tested our hypothesis that dysregulated intercellular Jagged1-Notch1 signaling was involved in the dysfunctional cerebral neovascularization both before and after ischemic stroke in HFD/STZ rats. In our study, we found increased yet dysfunctional neovascularization with activated Jagged1-Notch1 signaling in the cerebrovasculature before cerebral ischemia in HFD/STZ rats compared with non-diabetic rats. Furthermore, we observed delayed angiogenesis as well as suppressed Jagged1-Notch1 signaling after ischemic stroke. Our results elucidate the potential mechanisms underlying diabetes-related cerebral microvasculature dysfunction after ischemic stroke.
Collapse
Affiliation(s)
- Zhihui Guo
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia Jia
- Department of Neurology, Shanghai Xuhui District Central Hospital, Shanghai, China
| | - Yanling Tu
- Department of Neurology, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Chang Jin
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feifei Song
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuqing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haifeng Bao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Fan
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Naringin Ameliorates Cognitive Impairment in Streptozotocin/Nicotinamide Induced Type 2 Diabetes in Wistar Rats via inhibition of Inflammation and Acetylcholinesterase Activity. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Zhang D, Wang M, Gao J, Huang Y, Qi F, Lei Y, Ai K, Yan X, Cheng M, Su Y, Lei X, Zhang X. Altered Functional Connectivity of Insular Subregions in Type 2 Diabetes Mellitus. Front Neurosci 2021; 15:676624. [PMID: 34220433 PMCID: PMC8242202 DOI: 10.3389/fnins.2021.676624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/06/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes-related brain damage can lead to cognitive decline and increase the risk of depression, but the neuropathological mechanism of this phenomenon remains unclear. Different insular subregions have obvious functional heterogeneity, which is related to many aspects of type 2 diabetes mellitus (T2DM)-related brain damage. However, little is known about changes in functional connectivity (FC) in insular subregions in patients with T2DM. Therefore, we aimed to investigate FC between different insular subregions and clinical/cognitive variables in patients with T2DM. Fifty-seven patients with T2DM and 55 healthy controls (HCs) underwent a neuropsychological assessment and resting-state FC examination. We defined three insular subregions, including the bilateral dorsal anterior insula (dAI), bilateral ventral anterior insula (vAI), and bilateral posterior insula (PI). We examined differences in FC between insular subregions and the whole brain in patients with T2DM compared with HCs. A correlation analysis was performed to examine the relationship between FC and clinical/cognitive variables. Compared with HCs, patients with T2DM showed significantly decreased FC between the dAI and the right inferior frontal gyrus, right superior/middle temporal gyrus, right hippocampus, and right precentral gyrus. FC between the vAI and the right supramarginal gyrus, as well as the PI and the right precentral/postcentral gyrus, was reduced in the T2DM group compared with the control group. In the T2DM group, we showed a significant negative correlation between glycated hemoglobin concentration and FC in the dAI and right hippocampus (r = −0.428, P = 0.001) after Bonferroni correction. We conclude that different insular subregions present distinct FC patterns with functional regions and that abnormal FC in these insular subregions may affect cognitive, emotional, and sensorimotor functions in patients with T2DM.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Man Wang
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Jie Gao
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yang Huang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fei Qi
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Yumeng Lei
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Kai Ai
- Department of Clinical Science, Philips Healthcare, Xi'an, China
| | - Xuejiao Yan
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Miao Cheng
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yu Su
- Department of Graduate, Xi'an Medical University, Xi'an, China
| | - Xiaoyan Lei
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoling Zhang
- Department of MRI, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
30
|
Lei Y, Yang M, Li H, Xu R, Liu J. miR‑130b regulates PTEN to activate the PI3K/Akt signaling pathway and attenuate oxidative stress‑induced injury in diabetic encephalopathy. Int J Mol Med 2021; 48:141. [PMID: 34080640 PMCID: PMC8175068 DOI: 10.3892/ijmm.2021.4974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Diabetic encephalopathy (DE) is one of the main chronic complications of diabetes, and is characterized by cognitive defects. MicroRNAs (miRNAs/miRs) are widely involved in the development of diabetes-related complications. The present study evaluated the role of miR-130b in DE and investigated its mechanisms of action. PC12 cells and hippocampal cells were exposed to a high glucose environment to induce cell injuries to mimic the in vitro model of DE. Cells were transfected with miR-130b mimic, miR-130b inhibitor and small interfering RNA (si)-phosphatase and tensin homolog (PTEN) to evaluate the protective effect of the miR-130b/PTEN axis against oxidative stress in high glucose-stimulated cells involving Akt activity. Furthermore, the effect of agomir-130b was also assessed on rats with DE. The expression of miR-130b was reduced in the DE models in vivo and in vitro. The administration of miR-130b mimic increased the viability of high glucose-stimulated cells, prevented apoptosis, increased the activity of superoxide dismutase (SOD), decreased the malondialdehyde (MDA) content, activated Akt protein levels and inhibited the mitochondria-mediated apoptotic pathway. The administration of miR-130b inhibitor exerted opposite effects, while si-PTEN reversed the effects of miR-130b inhibitor. In vivo, the administration of agomir-130b attenuated cognitive disorders and neuronal damage, increased SOD activity, reduced the MDA content, activated Akt protein levels and inhibited the mitochondria-mediated apoptosis pathway in rats with DE. On the whole, these results suggest that miR-130b activates the PI3K/Akt signaling pathway to exert protective effects against oxidative stress injury via the regulation of PTEN in rats with DE.
Collapse
Affiliation(s)
- Yonghua Lei
- Department of Traditional Chinese Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Ming Yang
- Department of Traditional Chinese Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Hong Li
- Department of Endocrinology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Rongjuan Xu
- Department of Endocrinology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Junbao Liu
- Department of Traditional Chinese Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
31
|
Guo Y, Zhang C, Wang C, Huang Y, Liu J, Chu H, Ren X, Kong L, Ma H. Thioredoxin-1 Is a Target to Attenuate Alzheimer-Like Pathology in Diabetic Encephalopathy by Alleviating Endoplasmic Reticulum Stress and Oxidative Stress. Front Physiol 2021; 12:651105. [PMID: 34079471 PMCID: PMC8166324 DOI: 10.3389/fphys.2021.651105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Varying degrees of central nervous system neuropathy induced by diabetes mellitus (DM) contribute to a cognitive disorder known as diabetic encephalopathy (DE), which is also one of the independent risk factors for Alzheimer's disease (AD). Endoplasmic reticulum stress (ERS) plays a critical role in the occurrence and development of DE and AD. However, its molecular mechanism remains largely unknown. This study aims to investigate whether thioredoxin-1 (Trx-1) could alleviate DE and AD through ERS, oxidative stress (OS) and apoptosis signaling pathways. Mice were randomly divided into a wild-type group (WT-NC), a streptozotocin (STZ)-treated DM group (WT-DM), a Trx-1-TG group (TG-NC) and a Trx-1-TG DM group (TG-DM). Diabetic animals showed an increase in the time spent in the target quadrant and the number of platform crossings as well as AD-like behavior in the water maze experiment. The immunocontent of the AD-related protein Tau and the levels of cell apoptosis, β-amyloid (Aβ) plaque formation and neuronal degeneration in the hippocampus of the diabetic group were increased. Some key factors associated with ERS, such as protein disulfide isomerase (PDI), glucose-regulated protein 78 (GRP78), inositol-requiring enzyme 1α (IRE1α), tumor necrosis factor receptor-associated factor 2 (TRAF2), apoptosis signal-regulating kinase-1 (ASK1), c-Jun N-terminal kinase (JNK), protein kinase RNA (PKR)-like ER kinase (PERK), and C/EBP homologous protein (CHOP), were upregulated, and other factors related to anti-oxidant stress, such as nuclear factor erythroid 2-related factor (Nrf2), were downregulated in the DM group. Moreover, DM caused an increase in the immunocontents of caspase-3 and caspase-12. However, these changes were reversed in the Trx-1-tg DM group. Therefore, we conclude that Trx-1 might be a key factor in alleviating DE and AD by regulating ERS and oxidative stress response, thus preventing apoptosis.
Collapse
Affiliation(s)
- Yu Guo
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chenghong Zhang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chunyang Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufei Huang
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jingyun Liu
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haiying Chu
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiang Ren
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Haiying Ma
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Abstract
Diabetes is a complex disorder responsible for the mortality and morbidity of millions of individuals worldwide. Although many approaches have been used to understand and treat diabetes, the role of proteoglycans, in particular heparan sulfate proteoglycans (HSPGs), has only recently received attention. The HSPGs are heterogeneous, highly negatively charged, and are found in all cells primarily attached to the plasma membrane or present in the extracellular matrix (ECM). HSPGs are involved in development, cell migration, signal transduction, hemostasis, inflammation, and antiviral activity, and regulate cytokines, chemokines, growth factors, and enzymes. Hyperglycemia, accompanying diabetes, increases reactive oxygen species and upregulates the enzyme heparanase that degrades HSPGs or affects the synthesis of the HSPGs altering their structure. The modified HSPGs in the endothelium and ECM in the blood vessel wall contribute to the nephropathy, cardiovascular disease, and retinopathy seen in diabetes. Besides the blood vessel, other cells and tissues in the heart, kidney, and eye are affected by diabetes. Although not well understood, the adipose tissue, intestine, and brain also reveal HSPG changes associated with diabetes. Further, HSPGs are significantly involved in protecting the β cells of the pancreas from autoimmune destruction and could be a focus of prevention of type I diabetes. In some circumstances, HSPGs may contribute to the pathology of the disease. Understanding the role of HSPGs and how they are modified by diabetes may lead to new treatments as well as preventative measures to reduce the morbidity and mortality associated with this complex condition.
Collapse
Affiliation(s)
- Linda M Hiebert
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
33
|
Zhang Z, Zhou H, Zhou J. Neuritin inhibits astrogliosis to ameliorate diabetic cognitive dysfunction. J Mol Endocrinol 2021; 66:259-272. [PMID: 33729996 PMCID: PMC8111324 DOI: 10.1530/jme-20-0321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/16/2021] [Indexed: 11/29/2022]
Abstract
Earlier, it was shown that reversing the downregulation of neuritin expression in the brain improves central neuropathy in diabetic rats. We investigated the protective mechanism of neuritin in diabetic cognitive dysfunction via astrocytes. Further, the impact of the overexpression of neuritin in the cortex and the hippocampus on diabetic cognitive dysfunction and astrogliosis in type 2 diabetic (db/db) mice was assessed. Antagonists were used to inhibit the JAK2/STAT3 signaling pathway in U-118MG, an astrocyte cell line. Immunofluorescence, Western blotting, and real-time PCR were performed. Neuritin overexpression in the hippocampus of db/db mice significantly ameliorated cognitive dysfunction, hippocampal neuronal impairment, and synaptic plasticity deterioration, and inhibited astrogliosis and the JAK2/STAT3 signaling pathway in the hippocampus. Neuritin suppressed the JAK2/STAT3 signaling pathway to inhibit lipopolysaccharide-induced gliosis in U-118MG cells. It was observed that neuritin regulates the JAK2/STAT3 signaling pathway in astrocytes to inhibit astrogliosis and improve diabetic cognitive dysfunction.
Collapse
Affiliation(s)
- Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Hongli Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
- Correspondence should be addressed to J Zhou:
| |
Collapse
|
34
|
Li X, Yu P, Yu Y, Xu T, Liu J, Cheng Y, Yang X, Cui X, Yin C, Liu Y. Hydrogen sulfide ameliorates high glucose-induced pro-inflammation factors in HT-22 cells: Involvement of SIRT1-mTOR/NF-κB signaling pathway. Int Immunopharmacol 2021; 95:107545. [PMID: 33765609 DOI: 10.1016/j.intimp.2021.107545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Hyperglycemia-induced neuroinflammation promotes the progression of diabetic encephalopathy. Hydrogen sulfide (H2S) exerts anti-inflammatory and neuroprotective activities against neurodegenerative diseases. However, the effects of H2S on hyperglycemia-induced neuroinflammation has not been investigated in neurons. Herein, by using HT-22 neuronal cells, we found that high glucose decreased the levels of endogenous H2S and its catalytic enzyme, cystathionine-β-synthase (CBS). The administration of sodium hydrosulfide (NaHS, a H2S donor) or S-adenosylmethionine (SAMe, an allosteric activator of CBS) restored high glucose-induced downregulation of CBS and H2S levels. Importantly, H2S ameliorated high glucose-induced inflammation in HT-22 cells, evidenced by NaHS or SAMe inhibited the pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) expression in HT-22 cells exposed to high glucose. Furthermore, NaHS or SAMe restored the SIRT1 level and the phosphorylation of mTOR and NF-κB p65 disturbed by high glucose in HT-22 cells, suggesting H2S reversed high glucose-induced alteration of SIRT1-mTOR/NF-κB signaling pathway. Our results demonstrated that exogenous H2S treatment or enhancing endogenous H2S synthesis prevents the inflammatory processes in the neurons with the exposure of high glucose. Therefore, increasing the H2S level using NaHS or SAMe might shed light on the prophylactic treatment of diabetic encephalopathy.
Collapse
Affiliation(s)
- Xinrui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Peiquan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuan Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xia Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4113, Australia
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
35
|
Guo Z, Wu X, Fan W. Clarifying the effects of diabetes on the cerebral circulation: Implications for stroke recovery and beyond. Brain Res Bull 2021; 171:67-74. [PMID: 33662495 DOI: 10.1016/j.brainresbull.2021.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Given the sheer increased number of victims per year and the availability of only one effective treatment, acute ischemic stroke (AIS) remains to be one of the most under-treated serious diseases. Diabetes not only increases the incidence of ischemic stroke, but amplifies the ischemic damage, upon which if patients with diabetes suffer from stroke, he/she will confront increased risks of long-term functional deficits. The grim reality makes it a pressing need to intensify efforts at the basic science level to understand how diabetes impairs stroke recovery. This review retrospects the clinical and experimental studies in order to elucidate the detrimental effect of diabetes on cerebrovascular circulation including the major arteries/arterioles, collateral circulation, and neovascularization to shed light on further exploration of novel strategies for cerebral circulation protection before and after AIS in patients with diabetes.
Collapse
Affiliation(s)
- Zhihui Guo
- Department of Neurology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Xuqing Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Wei Fan
- Department of Neurology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
36
|
Abstract
Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the nervous system including post-translational modification of proteins by glucose and increased glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.
Collapse
|
37
|
Jin HY, Moon SS, Calcutt NA. Lost in Translation? Measuring Diabetic Neuropathy in Humans and Animals. Diabetes Metab J 2021; 45:27-42. [PMID: 33307618 PMCID: PMC7850880 DOI: 10.4093/dmj.2020.0216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
The worldwide diabetes epidemic is estimated to currently afflict almost 500 million persons. Long-term diabetes damages multiple organ systems with the blood vessels, eyes, kidneys and nervous systems being particularly vulnerable. These complications of diabetes reduce lifespan, impede quality of life and impose a huge social and economic burden on both the individual and society. Peripheral neuropathy is a debilitating complication that will impact over half of all persons with diabetes. There is no treatment for diabetic neuropathy and a disturbingly long history of therapeutic approaches showing promise in preclinical studies but failing to translate to the clinic. These failures have prompted re-examination of both the animal models and clinical trial design. This review focuses on the functional and structural parameters used as indices of peripheral neuropathy in preclinical and clinical studies and the extent to which they share a common pathogenesis and presentation. Nerve conduction studies in large myelinated fibers have long been the mainstay of preclinical efficacy screening programs and clinical trials, supplemented by quantitative sensory tests. However, a more refined approach is emerging that incorporates measures of small fiber density in the skin and cornea alongside these traditional assays at both preclinical and clinical phases.
Collapse
Affiliation(s)
- Heung Yong Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju,
USA
| | - Seong-Su Moon
- Department of Internal Medicine, Dongguk University College of Medicine, Gyeongju,
USA
- Division of Endocrinology, Department of Internal Medicine, Nazareth General Hospital, Daegu,
Korea,
USA
| | - Nigel A. Calcutt
- Department of Pathology, University of California San Diego, La Jolla, CA,
USA
| |
Collapse
|
38
|
Silva-Rodrigues T, de-Souza-Ferreira E, Machado CM, Cabral-Braga B, Rodrigues-Ferreira C, Galina A. Hyperglycemia in a type 1 Diabetes Mellitus model causes a shift in mitochondria coupled-glucose phosphorylation and redox metabolism in rat brain. Free Radic Biol Med 2020; 160:796-806. [PMID: 32949665 DOI: 10.1016/j.freeradbiomed.2020.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/26/2022]
Abstract
Hyperglycemia associated with Diabetes Mellitus type 1 (DM1) comorbidity may cause severe complications in several tissues that lead to premature death. These dysfunctions are related, among others, to redox imbalances caused by the uncontrolled cellular levels of reactive oxygen species (ROS). Brain is potentially prone to develop diabetes complications because of its great susceptibility to oxidative stress. In addition to antioxidant enzymes, mitochondria-coupled hexokinase (mt-HK) plays an essential role in maintaining high flux of oxygen and glucose to control the mitochondrial membrane and redox potential in brain. This redox control is critical for healthy conditions in brain and in the pathophysiological progression of DM1. The mitochondrial and mt-HK contribution in this process is essential to understand the relationship between DM1 complications and the management of the cellular redox balance. Using a rat model of one month of hyperglycemia induced by a single administration intraperitoneally of streptozotocin, we showed in the present work that, in rat brain mitochondria, there is a specifically reduction of the mitochondrial complex I (CI) activity and an increase in the activity of the antioxidant enzyme thioredoxin reductase, which are related to decreased hydrogen peroxide generation, oxygen consumption and mt-HK coupled-to-OxPhos activity via mitochondrial CI. Surprisingly, DM1 increases respiratory parameters and mt-HK activity via mitochondrial complex II (CII). This way, for the first time, we provide evidence that early progression of hyperglycemia, in brain tissue, changes the coupling of glucose phosphorylation at the level of mitochondria by rearranging the oxidative machinery of brain mitochondria towards CII dependent electron harvest. In addition, DM1 increased the production of H2O2 by α-ketoglutarate dehydrogenase without causing oxidative stress. Finally, DM1 increased the oxidation status of PTEN and decreased the activation of NF-kB in DM1. These results indicate that this reorganization of glucose-oxygen-ROS axis in mitochondria may impact turnover of glucose, brain amino acids, redox and inflammatory signaling. In addition, this reorganization may be involved in early protection mechanisms against the development of cognitive degeneration and neurodegenerative disease, widely associated to mitochondrial CI deficits.
Collapse
Affiliation(s)
- Thaia Silva-Rodrigues
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Laboratory of Bioenergetics and Mitochondrial Phisiology, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde (CCS), Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941902, Brazil.
| | - Eduardo de-Souza-Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Laboratory of Bioenergetics and Mitochondrial Phisiology, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde (CCS), Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941902, Brazil
| | - Caio Mota Machado
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Laboratory of Bioenergetics and Mitochondrial Phisiology, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde (CCS), Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941902, Brazil
| | - Bruno Cabral-Braga
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde (CCS)- Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941902, Brazil
| | - Clara Rodrigues-Ferreira
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde (CCS)- Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941902, Brazil
| | - Antonio Galina
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Laboratory of Bioenergetics and Mitochondrial Phisiology, Av. Carlos Chagas Filho 373, Centro de Ciências da Saúde (CCS), Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941902, Brazil.
| |
Collapse
|
39
|
A Pilot Study of Diabetes Mellitus Classification from rs-fMRI Data Using Convolutional Neural Networks. MATHEMATICAL PROBLEMS IN ENGINEERING 2020. [DOI: 10.1155/2020/1903734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background. As a chronic progressive disease, diabetes mellitus (DM) has a high incidence worldwide, and it impacts on cognitive and learning abilities in the lifetime even in the early stage, may degenerate memory in middle age, and perhaps increases the risk of Alzheimer’s disease. Method. In this work, we propose a convolutional neural network (CNN) based classification method to help classify diabetes by distinguishing the brains with abnormal functions from the normal ones on resting-state functional magnetic resonance imaging (rs-fMRI). The proposed classification model is based on the Inception-v4-Residual convolutional neural network architecture. In our workflow, the original rs-fMRI data are first mapped to generate amplitude of low-frequency fluctuation (ALFF) images and then fed into the CNN model to get the classification result to indicate the potential existence of DM. Result. We validate our method on a realistic clinical rs-fMRI dataset, and the achieved average accuracy is
% in fivefold cross-validation. Our model achieves a 0.8690 AUC with 77.50% and 77.51% sensitivity and specificity using our local dataset, respectively. Conclusion. It has the potential to become a novel clinical preliminary screening tool that provides help for the classification of different categories based on functional brain alteration caused by diabetes, benefiting from its accuracy and robustness, as well as efficiency and patient friendliness.
Collapse
|
40
|
Interaction of human IAPP and Aβ 1- 42 aggravated the AD-related pathology and impaired the cognition in mice. Exp Neurol 2020; 334:113490. [PMID: 33007295 DOI: 10.1016/j.expneurol.2020.113490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/06/2020] [Accepted: 09/28/2020] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) have a common pathology. Both diseases are characterized by local deposition of amyloid proteins in the brain or islet organ, but their phenotypes and clinical manifestation vary widely. Although the sources of islet amyloid polypeptide (IAPP) and amyloid beta (Aβ) are independent, their fibrillar sequences are highly homologous. The prevalence of AD in T2DM populations is considerably higher than that in the normal population, but a mechanistic linkage remains elusive. Therefore, the present study aimed to explore the effects of Aβ42 deposition in the brain on the persistently expression of human IAPP (hIAPP). Additionally, cognitive ability, synaptic plasticity, the state of neural stem cells and mitochondrial function were evaluated at 2 or 6 months after stereotaxically injected the oligomer Aβ1-42 into the dentate gyrus of hIAPP (-/+) mice or the wild-type littermates. We found that Aβ42 and amylin were co-located in hippocampus and Aβ42 levels increased when Aβ1-42 was injected in hIAPP transgenic mice compared with that of the wild-type littermates. Furthermore, at 6 months after Aβ1-42 injection in hIAPP (-/+) mice, it exhibits exacerbated AD-related pathologies including Aβ42 deposition, cognitive impairment, synapse reduction, neural stem cells exhaustion and mitochondrial dysfunction. Our present study suggested that hIAPP directly implicated the Aβ42 production and deposition as an important linkage between T2DM and AD.
Collapse
|
41
|
Thapak P, Bishnoi M, Sharma SS. Pharmacological Inhibition of Transient Receptor Potential Melastatin 2 (TRPM2) Channels Attenuates Diabetes-induced Cognitive Deficits in Rats: A Mechanistic Study. Curr Neurovasc Res 2020; 17:249-258. [DOI: 10.2174/1567202617666200415142211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 02/08/2023]
Abstract
Background:
Diabetes is a chronic metabolic disorder affecting the central nervous system.
A growing body of evidence has depicted that high glucose level leads to the activation of the
transient receptor potential melastatin 2 (TRPM2) channels. However, there are no studies targeting
TRPM2 channels in diabetes-induced cognitive decline using a pharmacological approach.
Objective:
The present study intended to investigate the effects of 2-aminoethoxydiphenyl borate
(2-APB), a TRPM2 inhibitor, in diabetes-induced cognitive impairment.
Methods:
Streptozotocin (STZ, 50 mg/kg, i.p.) was used to induce diabetes in rats. Animals were
randomly divided into the treatment group, model group and age-matched control and pre se
group. 2-APB treatment was given for three weeks to the animals. After 10 days of behavioural
treatment, parameters were performed. Animals were sacrificed at 10th week of diabetic induction
and the hippocampus and cortex were isolated. After that, protein and mRNA expression study
was performed in the hippocampus. Acetylcholinesterase (AchE) activity was done in the cortex.
Results: :
Our study showed the 10th week diabetic animals developed cognitive impairment, which
was evident from the behavioural parameters. Diabetic animals depicted an increase in the TRPM2
mRNA and protein expression in the hippocampus as well as increased AchE activity in the cortex.
However, memory associated proteins were down-regulated, namely Ca2+/calmodulin-dependent
protein kinase II (CaMKII-Thr286), glycogen synthase kinase 3 beta (GSK-3β-Ser9), cAMP
response element-binding protein (CREB-Ser133), and postsynaptic density protein 95 (PSD-95).
Gene expression of parvalbumin, calsequestrin and brain-derived neurotrophic factor (BDNF)
were down-regulated while mRNA level of calcineurin A/ protein phosphatase 3 catalytic subunit
alpha (PPP3CA) was upregulated in the hippocampus of diabetic animals. A three-week treatment
with 2-APB significantly ameliorated the alteration in behavioural cognitive parameters in diabetic
rats. Moreover, 2-APB also down-regulated the expression of TRPM2 mRNA and protein in the
hippocampus as well as AchE activity in the cortex of diabetic animals as compared to diabetic
animals. Moreover, the 2-APB treatment also upregulated the CaMKII (Thr-286), GSK-3β (Ser9),
CREB (Ser133), and PSD-95 expression and mRNA levels of parvalbumin, calsequestrin, and
BDNF while mRNA level of calcineurin A was down-regulated in the hippocampus of diabetic
animals.
Conclusion: :
This study confirms the ameliorative effect of TRPM2 channel inhibitor in the diabetes-
induced cognitive deficits. Inhibition of TRPM2 channels reduced the calcium associated
downstream signaling and showed a neuroprotective effect of TRPM2 channels in diabetesinduced
cognitive impairment.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar, Punjab, India
| | - Shyam S. Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| |
Collapse
|
42
|
Li JS, Huang D, Qiu HM, Jiang QS, Liu YH, Du TT, Jiang XH. A study on the determination of two related aminothiols in the brain of diabetes rats by HPLC-ECD. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1798248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Jian-Sha Li
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Dan Huang
- Pengzhou People’s Hospital, Sichuan Province, China
| | - Hong-Mei Qiu
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qing-Song Jiang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yong-Hong Liu
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Ting-Ting Du
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xin-Hui Jiang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
43
|
Chen G, Wang Y, Li Y, Zhang L, Dong M. A novel hippocampus metabolite signature in diabetes mellitus rat model of diabetic encephalopathy. Metab Brain Dis 2020; 35:895-904. [PMID: 32367268 DOI: 10.1007/s11011-020-00541-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/30/2020] [Indexed: 12/30/2022]
Abstract
Diabetic encephalopathy (DE) is one of the chronic complications of diabetes. Even then, the molecular mechanism underlying DE remains unexplored. In this study, we have made an attempt to investigate the metabolic changes associated with the streptozocin (STZ)-induced cognitive dysfunction in the hippocampus of the rat model, a classical rodent model for DE, with the help of Gas Chromatography-Mass Spectrometry-based method. The STZ injections led to the rise of mean blood glucose levels in the diabetes mellitus (DM) group of rats as compared to the control (CON) group of rats throughout the experiment. However, we did not find any significant difference between the blood glucose levels of the DM & the CON groups of rats before the STZ injection. The results indicated a behavioral and morphological cognitive dysfunction in the DM groups of rats. The metabolomic investigation of these DE rats demonstrated a lower level of N-acetylaspartate and dihydroxyacetone phosphate accompanied by a higher level of homocysteine and glutamate as against the CON group of rats. The outcome of this study may unravel the underlying pathophysiological mechanism of DE. Also, the metabolomic data from this study may provide a platform for the development of DE biomarkers.
Collapse
Affiliation(s)
- Guanghui Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430071, China
| | - Yizhong Wang
- Xiangyang No.1 People' Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Yang Li
- Department of Pharmacy, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430071, China
| | - Lujun Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, 430071, No.99, Zhang zhi dong Road, Wuchang District, Wuhan, Hubei Province, China
| | - Meixue Dong
- Department of Neurology, Renmin Hospital of Wuhan University, 430071, No.99, Zhang zhi dong Road, Wuchang District, Wuhan, Hubei Province, China.
| |
Collapse
|
44
|
Pratap AA, Holsinger RMD. Altered Brain Adiponectin Receptor Expression in the 5XFAD Mouse Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:E150. [PMID: 32664663 PMCID: PMC7407895 DOI: 10.3390/ph13070150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/25/2020] [Accepted: 07/08/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndromes share common pathologies with Alzheimer's disease (AD). Adiponectin, an adipocyte-derived protein, regulates energy metabolism via its receptors, AdipoR1 and AdipoR2. To investigate the distribution of adiponectin receptors (AdipoRs) in Alzheimer's, we examined their expression in the aged 5XFAD mouse model of AD. In age-matched wild-type mice, we observed neuronal expression of both ARs throughout the brain as well as endothelial expression of AdipoR1. The pattern of receptor expression in the aged 5XFAD brain was significantly perturbed. Here, we observed decreased neuronal expression of both ARs and decreased endothelial expression of AdipoR1, but robust expression of AdipoR2 in activated astrocytes. We also observed AdipoR2-expressing astrocytes in the dorsomedial hypothalamic and thalamic mediodorsal nuclei, suggesting the possibility that astrocytes utilise AdipoR2 signalling to fuel their activated state in the AD brain. These findings provide further evidence of a metabolic disturbance and demonstrate a potential shift in energy utilisation in the AD brain, supporting imaging studies performed in AD patients.
Collapse
Affiliation(s)
- Anishchal A. Pratap
- Laboratory of Molecular Neuroscience and Dementia, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia;
- Discipline of Pathology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
45
|
Javed M, Ahmad MI, Javed H, Naseem S. D-ribose and pathogenesis of Alzheimer's disease. Mol Biol Rep 2020; 47:2289-2299. [PMID: 31933261 DOI: 10.1007/s11033-020-05243-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 01/02/2020] [Indexed: 12/29/2022]
Abstract
It is estimated that the global prevalence of dementia will rise as high as 24 million and predicted to be double in every 20 years which is attributed to the fact that the ageing population is increasing and so more individuals are at risk of developing neurodegenerative diseases like Alzheimer's. Many scientists favored glycation of proteins such as tau, amyloid beta (Aβ) etc. as one of the important risk factor in Alzheimer's disease (AD). Since, D-ribose shows highest glycation ability among other sugars hence, produces advanced glycation end products (AGEs) rapidly. However, there are several other mechanisms suggested by researchers through which D-ribose may cause cognitive impairments. There is a concern related to diabetic patients since they also suffer from D-ribose metabolism, may be more prone to AD risk. Thus, it is imperative that the pathogenesis and the pathways involved in AD progression are explored in the light of ribosylation and AGEs formation for identifying suitable diagnostics marker for early diagnosis or finding promising therapeutic outcomes.
Collapse
Affiliation(s)
- Mehjbeen Javed
- Aquatic Toxicology Research Laboratory, Department of Zoology, Aligarh Muslim University, Aligarh, U.P., India
| | - Md Irshad Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, U.P., India.,Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Hina Javed
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P., India
| | - Sufia Naseem
- Department of Biochemistry, Faculty of Medicine, Aligarh Muslim University, Aligarh, U.P., India.
| |
Collapse
|
46
|
Jolivalt CG, Marquez A, Quach D, Navarro Diaz MC, Anaya C, Kifle B, Muttalib N, Sanchez G, Guernsey L, Hefferan M, Smith DR, Fernyhough P, Johe K, Calcutt NA. Amelioration of Both Central and Peripheral Neuropathy in Mouse Models of Type 1 and Type 2 Diabetes by the Neurogenic Molecule NSI-189. Diabetes 2019; 68:2143-2154. [PMID: 31492662 PMCID: PMC6804627 DOI: 10.2337/db19-0271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
While peripheral neuropathy is the most common complication of long-term diabetes, cognitive deficits associated with encephalopathy and myelopathy also occur. Diabetes is a risk factor for Alzheimer disease (AD) and increases the risk of progression from mild cognitive impairment to AD. The only current recommendation for preventing or slowing the progression of peripheral neuropathy is to maintain close glycemic control, while there is no recommendation for central nervous system disorders. NSI-189 is a new chemical entity that when orally administered promotes neurogenesis in the adult hippocampus, increases hippocampal volume, enhances synaptic plasticity, and reduces cognitive dysfunction. To establish the potential for impact on peripheral neuropathy, we first showed that NSI-189 enhances neurite outgrowth and mitochondrial functions in cultured adult rat primary sensory neurons. Oral delivery of NSI-189 to murine models of type 1 (female) and type 2 (male) diabetes prevented multiple functional and structural indices of small and large fiber peripheral neuropathy, increased hippocampal neurogenesis, synaptic markers and volume, and protected long-term memory. NSI-189 also halted progression of established peripheral and central neuropathy. NSI-189, which is currently in clinical trials for treatment of major depressive disorder, offers the opportunity for the development of a single therapeutic agent against multiple indices of central and peripheral neuropathy.
Collapse
Affiliation(s)
- Corinne G Jolivalt
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Alexandra Marquez
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | | | | | - Carlos Anaya
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Betelhem Kifle
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Nabeel Muttalib
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Gabriela Sanchez
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | - Lucy Guernsey
- Department of Pathology, University of California, San Diego, La Jolla, CA
| | | | - Darrel R Smith
- St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Paul Fernyhough
- St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Nigel A Calcutt
- Department of Pathology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
47
|
Nan F, Sun G, Xie W, Ye T, Sun X, Zhou P, Dong X, Sun J, Sun X, Zhang M. Ginsenoside Rb1 mitigates oxidative stress and apoptosis induced by methylglyoxal in SH-SY5Y cells via the PI3K/Akt pathway. Mol Cell Probes 2019; 48:101469. [PMID: 31629029 DOI: 10.1016/j.mcp.2019.101469] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/26/2019] [Accepted: 10/13/2019] [Indexed: 12/24/2022]
Abstract
Diabetic encephalopathy is a severe diabetic complication characterized by cognitive dysfunction and neuropsychiatric disability. Methylglyoxal (MGO), a highly reactive metabolite of hyperglycemia, serves as a major precursor of advanced glycation end products that play key roles in diabetic complications. Ginsenoside Rb1 (abbreviated as Rb1) has received extensive attention due to its potential therapeutic effects on diabetes and neurodegeneration. Therefore, this study aimed to investigate the effects of Rb1 on MGO-induced damage in SH-SY5Y cells and the related mechanism. SH-SY5Y cells were pretreated with Rb1 for 8 h and then exposed to MGO (0.5 mM) for 24 h. Cell survival was assessed by the MTT assay. Cell apoptosis was assessed using Hoechst 33342/propidium iodide (PI) staining and an Annexin-V/PI kit. The activities of oxidative stress markers were examined using commercial kits. Reactive oxygen species (ROS) staining and JC-1 staining were used to evaluate mitochondria injury. In addition, protein levels were measured by Western blot analysis. As a result, Rb1 alleviated the injury induced by MGO by increasing the activities of superoxide dismutase, catalase and total glutathione, decreasing the level of malondialdehyde, and alleviating mitochondrial damage and ROS production. Furthermore, Rb1 could enhance the Bcl-2/Bax ratio, inhibit the expression of cleaved caspase-3 and cleaved caspase-9, and enhance the levels of phosphorylated Akt. Moreover, the protective effects of Rb1 against MGO-induced apoptosis were partly abolished by LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K) phosphorylation. Our results demonstrated that Rb1 ameliorated MGO-induced oxidative stress and apoptosis in SH-SY5Y cells via activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Fengwei Nan
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Weijie Xie
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Tianyuan Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xiao Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Ping Zhou
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xi Dong
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Jiafu Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
48
|
Surkova EV, Tanashyan MM, Bespalov AI, Naminov AV. [Diabetes mellitus and cognitive impairment]. TERAPEVT ARKH 2019; 91:112-118. [PMID: 32598641 DOI: 10.26442/00403660.2019.10.000362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 11/22/2022]
Abstract
The review discusses literature data and the results of our own studies on the effect of diabetes on cognitive functions and cerebrovascular pathology, as well as possible ptogenetic mechanisms for the implementation of this effect. The results of studies on the effects of antidiabetic drugs on cognitive function are presented.
Collapse
|
49
|
Bhusal A, Rahman MH, Lee WH, Bae YC, Lee IK, Suk K. Paradoxical role of lipocalin-2 in metabolic disorders and neurological complications. Biochem Pharmacol 2019; 169:113626. [PMID: 31476294 DOI: 10.1016/j.bcp.2019.113626] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023]
Abstract
Lipocalin-2 (LCN2), also known as 24p3 and neutrophil gelatinase-associated lipocalin (NGAL), is a 25-kDa secreted protein implicated in various metabolic and inflammatory diseases. Early studies suggest the protective function of LCN2 in which it acts as a bacteriostatic agent that competes with bacteria for iron-bound siderophores. However, both detrimental and beneficial roles of LCN2 have recently been documented in metabolic and neuroinflammatory diseases. Metabolic inflammation, as observed in diabetes and obesity, has been closely associated with the upregulation of LCN2 in blood plasma and several tissues in both humans and rodents, suggesting its pro-diabetic and pro-obesogenic role. On the contrary, other studies imply an anti-diabetic and anti-obesogenic role of LCN2 whereby a deficiency in the Lcn2 gene results in the impairment of insulin sensitivity and enhances the high-fat-diet-induced expansion of fat. A similar dual role of LCN2 has also been reported in various animal models for neurological disorders. In the midst of these mixed findings, there is no experimental evidence to explain why LCN2 shows such a contrasting role in the various studies. This debate needs to be resolved (or reconciled) and an integrated view on the topic is desirable. Herein, we attempt to address this issue by reviewing the recent findings on LCN2 in metabolic disorders and assess the potential cellular or molecular mechanisms underlying the dual role of LCN2. We further discuss the possibilities and challenges of targeting LCN2 as a potential therapeutic strategy for metabolic disorders and neurological complications.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Biomedical Science, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Md Habibur Rahman
- Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Biomedical Science, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Biomedical Science, BK21 PLUS KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
50
|
Zhao J, Liu L, Zhang L, Lv J, Guo X, Li X, Zhao T. Sodium ferulate attenuates high-glucose-induced oxidative injury in HT22 hippocampal cells. Exp Ther Med 2019; 18:2015-2020. [PMID: 31452700 PMCID: PMC6704549 DOI: 10.3892/etm.2019.7822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 06/20/2019] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to investigate the protective effects of sodium ferulate (SF) on HT22 hippocampal cells under a high glucose concentration. Cells were cultured in normal glucose (25 mM D-glucose) or high glucose (50 mM D-glucose) with various concentrations of SF (50, 100, 250 or 500 µM) for 0, 48 and 72 h. Cell viability was tested using a Cell Counting Kit-8 assay. Reactive oxygen species (ROS) production was detected using flow cytometry. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and nuclear factor-κB (NF-κB) at the mRNA and protein levels were detected using a reverse transcription-quantitative polymerase chain reaction analysis and western blotting. HT22 hippocampal cell viability was revealed to be substantially decreased following culturing in high glucose medium (50 mM) for 48 and 72 h. The addition of 100 µM SF abrogated this high-glucose-induced toxicity, but higher concentrations of SF (250 and 500 µM) were harmful to the cells. Furthermore, a high glucose concentration increased the generation of ROS, downregulated the expression of Nrf2/HO-1 and upregulated the expression of NF-κB subsequent to culturing for 72 h, whereas the addition of the appropriate concentration of SF attenuated these effects. To the best of our knowledge, the present study is the first to report such results and provide evidence that SF protects HT22 cells from high glucose-induced toxicity by activating the Nrf2/HO-1 pathway and inhibiting the expression of NF-κB, which may be of therapeutic value in diabetic encephalopathy.
Collapse
Affiliation(s)
- Jiangpei Zhao
- Department of Neurology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Lerong Liu
- Department of Endocrinology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Lingxiao Zhang
- Department of Endocrinology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jing Lv
- Department of Geriatric Medicine, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Xueli Guo
- Department of Vascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Xia Li
- Department of Endocrinology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Tongfeng Zhao
- Department of Endocrinology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|