1
|
Voldstedlund CT, Sjøberg KA, Schlabs FL, Sigvardsen CM, Andersen NR, Holst JJ, Hartmann B, Wojtaszewski JFP, Kiens B, McConell GK, Richter EA. Exercise-induced increase in muscle insulin sensitivity in men is amplified when assessed using a meal test. Diabetologia 2024; 67:1386-1398. [PMID: 38662135 PMCID: PMC11153309 DOI: 10.1007/s00125-024-06148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024]
Abstract
AIMS/HYPOTHESIS Exercise has a profound effect on insulin sensitivity in skeletal muscle. The euglycaemic-hyperinsulinaemic clamp (EHC) is the gold standard for assessment of insulin sensitivity but it does not reflect the hyperglycaemia that occurs after eating a meal. In previous EHC investigations, it has been shown that the interstitial glucose concentration in muscle is decreased to a larger extent in previously exercised muscle than in rested muscle. This suggests that previously exercised muscle may increase its glucose uptake more than rested muscle if glucose supply is increased by hyperglycaemia. Therefore, we hypothesised that the exercise-induced increase in muscle insulin sensitivity would appear greater after eating a meal than previously observed with the EHC. METHODS Ten recreationally active men performed dynamic one-legged knee extensor exercise for 1 h. Following this, both femoral veins and one femoral artery were cannulated. Subsequently, 4 h after exercise, a solid meal followed by two liquid meals were ingested over 1 h and glucose uptake in the two legs was measured for 3 h. Muscle biopsies from both legs were obtained before the meal test and 90 min after the meal test was initiated. Data obtained in previous studies using the EHC (n=106 participants from 13 EHC studies) were used for comparison with the meal-test data obtained in this study. RESULTS Plasma glucose and insulin peaked 45 min after initiation of the meal test. Following the meal test, leg glucose uptake and glucose clearance increased twice as much in the exercised leg than in the rested leg; this difference is twice as big as that observed in previous investigations using EHCs. Glucose uptake in the rested leg plateaued after 15 min, alongside elevated muscle glucose 6-phosphate levels, suggestive of compromised muscle glucose metabolism. In contrast, glucose uptake in the exercised leg plateaued 45 min after initiation of the meal test and there were no signs of compromised glucose metabolism. Phosphorylation of the TBC1 domain family member 4 (TBC1D4; p-TBC1D4Ser704) and glycogen synthase activity were greater in the exercised leg compared with the rested leg. Muscle interstitial glucose concentration increased with ingestion of meals, although it was 16% lower in the exercised leg than in the rested leg. CONCLUSIONS/INTERPRETATION Hyperglycaemia after meal ingestion results in larger differences in muscle glucose uptake between rested and exercised muscle than previously observed during EHCs. These findings indicate that the ability of exercise to increase insulin-stimulated muscle glucose uptake is even greater when evaluated with a meal test than has previously been shown with EHCs.
Collapse
Affiliation(s)
- Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Farina L Schlabs
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Casper M Sigvardsen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline R Andersen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Glenn K McConell
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Li Q, Zhang W, Zhou E, Tao Y, Wang M, Qi S, Zhao L, Tan Y, Wu L. Integrated microbiomic and metabolomic analyses reveal the mechanisms by which bee pollen and royal jelly lipid extracts ameliorate colitis in mice. Food Res Int 2023; 171:113069. [PMID: 37330827 DOI: 10.1016/j.foodres.2023.113069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Bee pollen (BP) and royal jelly (RJ) have shown therapeutic effects against colitis, but the functional components contained therein remain elusive. Here, we used an integrated microbiomic-metabolomic strategy to clarify the mechanism by which bee pollen lipid extracts (BPL) and royal jelly lipid extracts (RJL) ameliorated dextran sulfate sodium (DSS)-induced colitis in mice. Lipidomic results showed that levels of ceramide (Cer), lysophosphatidylcholine (LPC), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) were significantly higher in BPL than in RJL. The anti-inflammatory efficacy of BPL surpassed that of RJL, although both BPL and RJL could attenuate DSS-induced colitis through several mechanisms: reducing the disease activity index (DAI); decreasing histopathological damage; inhibiting the expression of genes encoding proinflammatory cytokines; improving intestinal microbial community structure, and modulating host metabolism. These findings demonstrated that BPL and RJL have great potential as functional ingredients for the production of dietary supplements to prevent early colitis.
Collapse
Affiliation(s)
- Qiangqiang Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wenwen Zhang
- College of Life and Health Sciences, Anhui Science and Technology University, Bengbu 233100, China
| | - Enning Zhou
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuxiao Tao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Miao Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Liuwei Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yonggang Tan
- Oncology Center, Shengjing Hospital, China Medical University, Shenyang 110004, China.
| | - Liming Wu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
3
|
Xiu R, Sun Q, Li B, Wang Y. Mapping Research Trends and Hotspots in the Link between Alzheimer's Disease and Gut Microbes over the Past Decade: A Bibliometric Analysis. Nutrients 2023; 15:3203. [PMID: 37513621 PMCID: PMC10383611 DOI: 10.3390/nu15143203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is a globally prevalent neurodegenerative disorder, the underlying causes and mechanisms of which remain elusive. The emerging interest in the potential connection between gut microbes and AD prompted our study to investigate this field through bibliometric analysis. To examine research trends over the past decade, we collected relevant data using search terms associated with gut microbiota and AD from the Web of Science Core Collection. Our analysis involved various tools, including R (version 4.2.2), VOSviewer (version 1.6.18), CiteSpace software (version 6.2.R1), and an online bibliometric platform. Our findings identified a total of 1170 articles published between 2012 and 2022, indicating a consistent growth of research interest in this area. Notably, China significantly contributed with 40.7% (374) of the publications, signifying its prominent role in this field. Among the journals, the Journal of Alzheimer's Disease published the highest number of articles (57; 4.9%). In terms of author influence, Wang Y, with an H-index of 13, emerged as the most influential author. Additionally, Shanghai Jiaotong University was the most productive institution, accounting for 66 articles (5.6%). Through keyword analysis, we grouped high-frequency keywords into six clusters: gut microbiota, AD, neuroinflammation, gut-brain axis, oxidative stress, and chain fatty acids. Chain fatty acids, oxidative stress, and the gut-brain axis emerged as dominant research topics in the past five years. Recent studies have specifically focused on "nlrp3 inflammasome" and "clearance" (2020-2022), indicating shifting research interests within this field. This bibliometric analysis aims to provide insights into the evolving landscape of research on the gut microbiota and AD. Our results identify key research trends and themes while highlighting potential research gaps. The findings offer valuable perspectives for future investigations, advancing our understanding of AD and exploring potential therapeutic strategies.
Collapse
Affiliation(s)
- Ruipu Xiu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Qingyuan Sun
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Boya Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanqing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
4
|
Liu N, Sun Y, Wang Y, Ma L, Zhang S, Lin H. Composition of the intestinal microbiota and its variations between the second and third trimesters in women with gestational diabetes mellitus and without gestational diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1126572. [PMID: 37522117 PMCID: PMC10376686 DOI: 10.3389/fendo.2023.1126572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Objective This study was designed to explore the composition of the intestinal microbiota and its longitudinal variation between the second trimester (T2) and the third trimester (T3) in women with gestational diabetes mellitus (GDM) and pregnant women with normal glucose tolerance. Methods This observational study was conducted at Peking Union Medical College Hospital (PUMCH). Women with GDM and pregnant women with normal glucose tolerance were enrolled in the study, and fecal samples were collected during T2 (weeks 24~28) and T3 (weeks 34~38). Fecal samples were analyzed from 49 women with GDM and 42 pregnant women with normal glucose tolerance. The 16S rRNA gene amplicon libraries were sequenced to analyze the microbiota and QIIME2 was used to analyze microbiome bioinformatics. Results The four dominant phyla that Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria which accomplish about 99% of the total relative abundance did not significantly change between the T2 and T3 in the GDM and healthy groups. At the genus level, the relative abundance of Scardovia (0 vs. 0.25%, P = 0.041) and Propionibacterium (0 vs. 0.29%, P = 0.041) increased significantly in the control group, but not in the GDM group. At the phylum level, the relative abundance of Firmicutes and Actinobacteria was significantly different between women with GDM and pregnant women with normal glucose tolerance in both T2 and T3. In T2 and T3, the relative abundances of unidentified_Lachnospiraceae, Blautia, and Parabacteroides were significantly higher in the GDM group than in the control group (P<0.05). The relative abundance of Bifidobacterium in the GDM group was lower than in the control group in both T2 and T3. Conclusions The intestinal microbiota composition was stable from T2 to T3 in the GDM and control groups; however, the intestinal microbiota composition was different between the two groups.
Collapse
Affiliation(s)
| | - Yin Sun
- *Correspondence: Yin Sun, ; Liangkun Ma,
| | | | | | | | | |
Collapse
|
5
|
Kim JE, Nam H, Park JI, Cho H, Lee J, Kim HE, Kim DK, Joo KW, Kim YS, Kim BS, Park S, Lee H. Gut Microbial Genes and Metabolism for Methionine and Branched-Chain Amino Acids in Diabetic Nephropathy. Microbiol Spectr 2023; 11:e0234422. [PMID: 36877076 PMCID: PMC10100834 DOI: 10.1128/spectrum.02344-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/23/2023] [Indexed: 03/07/2023] Open
Abstract
Diabetic mellitus nephropathy (DMN) is a serious complication of diabetes and a major health concern. Although the pathophysiology of diabetes mellitus (DM) leading to DMN is uncertain, recent evidence suggests the involvement of the gut microbiome. This study aimed to determine the relationships among gut microbial species, genes, and metabolites in DMN through an integrated clinical, taxonomic, genomic, and metabolomic analysis. Whole-metagenome shotgun sequencing and nuclear magnetic resonance metabolomic analyses were performed on stool samples from 15 patients with DMN and 22 healthy controls. Six bacterial species were identified to be significantly elevated in the DMN patients after adjusting for age, sex, body mass index, and estimated glomerular filtration rate (eGFR). Multivariate analysis found 216 microbial genes and 6 metabolites (higher valine, isoleucine, methionine, valerate, and phenylacetate levels in the DMN group and higher acetate levels in the control group) that were differentially present between the DMN and control groups. Integrated analysis of all of these parameters and clinical data using the random-forest model showed that methionine and branched-chain amino acids (BCAAs) were among the most significant features, next to the eGFR and proteinuria, in differentiating the DMN group from the control group. Metabolic pathway gene analysis of BCAAs and methionine also revealed that many genes involved in the biosynthesis of these metabolites were elevated in the six species that were more abundant in the DMN group. The suggested correlation among taxonomic, genetic, and metabolic features of the gut microbiome would expand our understanding of gut microbial involvement in the pathogenesis of DMN and may provide potential therapeutic targets for DMN. IMPORTANCE Whole metagenomic sequencing uncovered specific members of the gut microbiota associated with DMN. The gene families derived from the discovered species are involved in the metabolic pathways of methionine and branched-chain amino acids. Metabolomic analysis using stool samples showed increased methionine and branched-chain amino acids in DMN. These integrative omics results provide evidence of the gut microbiota-associated pathophysiology of DMN, which can be further studied for disease-modulating effects via prebiotics or probiotics.
Collapse
Affiliation(s)
- Ji Eun Kim
- Department of Internal Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Hoonsik Nam
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, South Korea
| | - Ji In Park
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon, South Korea
| | - Hyunjeong Cho
- Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, South Korea
| | - Jangwook Lee
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Ilsan, South Korea
| | - Hyo-Eun Kim
- Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| | - Dong Ki Kim
- Kidney Research Institute, Seoul National University, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwon Wook Joo
- Kidney Research Institute, Seoul National University, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yon Su Kim
- Kidney Research Institute, Seoul National University, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea
| | - Sunghyouk Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, South Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
6
|
Functional and Taxonomic Traits of the Gut Microbiota in Type 1 Diabetes Children at the Onset: A Metaproteomic Study. Int J Mol Sci 2022; 23:ijms232415982. [PMID: 36555624 PMCID: PMC9787575 DOI: 10.3390/ijms232415982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune metabolic disorder with onset in pediatric/adolescent age, characterized by insufficient insulin production, due to a progressive destruction of pancreatic β-cells. Evidence on the correlation between the human gut microbiota (GM) composition and T1D insurgence has been recently reported. In particular, 16S rRNA-based metagenomics has been intensively employed in the last decade in a number of investigations focused on GM representation in relation to a pre-disease state or to a response to clinical treatments. On the other hand, few works have been published using alternative functional omics, which is more suitable to provide a different interpretation of such a relationship. In this work, we pursued a comprehensive metaproteomic investigation on T1D children compared with a group of siblings (SIBL) and a reference control group (CTRL) composed of aged matched healthy subjects, with the aim of finding features in the T1D patients' GM to be related with the onset of the disease. Modulated metaproteins were found either by comparing T1D with CTRL and SIBL or by stratifying T1D by insulin need (IN), as a proxy of β-cells damage, showing some functional and taxonomic traits of the GM, possibly related to the disease onset at different stages of severity.
Collapse
|
7
|
ROLE OF GUT MICROBIOTA IN DEPRESSION: UNDERSTANDING MOLECULAR PATHWAYS, RECENT RESEARCH, AND FUTURE DIRECTION. Behav Brain Res 2022; 436:114081. [PMID: 36037843 DOI: 10.1016/j.bbr.2022.114081] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Gut microbiota, also known as the "second brain" in humans because of the regulatory role it has on the central nervous system via neuronal, chemical and immune pathways. It has been proven that there exists a bidirectional communication between the gut and the brain. Increasing evidence supports that this crosstalk is linked to the etiology and treatment of depression. Reports suggest that the gut microbiota control the host epigenetic machinery in depression and gut dysbiosis causes negative epigenetic modifications via mechanisms like histone acetylation, DNA methylation and non-coding RNA mediated gene inhibition. The gut microbiome can be a promising approach for the management of depression. The diet and dietary metabolites like kynurenine, tryptophan, and propionic acid also greatly influence the microbiome composition and thereby, the physiological activities. This review gives a bird-eye view on the pathological updates and currently used treatment approaches targeting the gut microbiota in depression.
Collapse
|
8
|
de Mendonça ELSS, Fragoso MBT, de Oliveira JM, Xavier JA, Goulart MOF, de Oliveira ACM. Gestational Diabetes Mellitus: The Crosslink among Inflammation, Nitroxidative Stress, Intestinal Microbiota and Alternative Therapies. Antioxidants (Basel) 2022; 11:129. [PMID: 35052633 PMCID: PMC8773111 DOI: 10.3390/antiox11010129] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/09/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by a set of metabolic complications arising from adaptive failures to the pregnancy period. Estimates point to a prevalence of 3 to 15% of pregnancies. Its etiology includes intrinsic and extrinsic aspects of the progenitress, which may contribute to the pathophysiogenesis of GDM. Recently, researchers have identified that inflammation, oxidative stress, and the gut microbiota participate in the development of the disease, with potentially harmful effects on the health of the maternal-fetal binomial, in the short and long terms. In this context, alternative therapies were investigated from two perspectives: the modulation of the intestinal microbiota, with probiotics and prebiotics, and the use of natural products with antioxidant and anti-inflammatory properties, which may mitigate the endogenous processes of the GDM, favoring the health of the mother and her offspring, and in a future perspective, alleviating this critical public health problem.
Collapse
Affiliation(s)
- Elaine Luiza Santos Soares de Mendonça
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, Alagoas, Brazil; (E.L.S.S.d.M.); (M.B.T.F.); (J.M.d.O.); (J.A.X.)
| | - Marilene Brandão Tenório Fragoso
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, Alagoas, Brazil; (E.L.S.S.d.M.); (M.B.T.F.); (J.M.d.O.); (J.A.X.)
| | - Jerusa Maria de Oliveira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, Alagoas, Brazil; (E.L.S.S.d.M.); (M.B.T.F.); (J.M.d.O.); (J.A.X.)
| | - Jadriane Almeida Xavier
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, Alagoas, Brazil; (E.L.S.S.d.M.); (M.B.T.F.); (J.M.d.O.); (J.A.X.)
| | - Marília Oliveira Fonseca Goulart
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, Alagoas, Brazil; (E.L.S.S.d.M.); (M.B.T.F.); (J.M.d.O.); (J.A.X.)
| | | |
Collapse
|
9
|
Kunasegaran T, Balasubramaniam VRMT, Arasoo VJT, Palanisamy UD, Ramadas A. The Modulation of Gut Microbiota Composition in the Pathophysiology of Gestational Diabetes Mellitus: A Systematic Review. BIOLOGY 2021; 10:biology10101027. [PMID: 34681126 PMCID: PMC8533096 DOI: 10.3390/biology10101027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/08/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Simple Summary Recent studies have placed a great deal of emphasis on the importance of the microbiome, especially the link between the alteration of gut microbiota and multiple associated diseases. Gut microbiota changes in pregnancy have a significant impact on metabolic function and may contribute to gestational diabetes mellitus (GDM). Although GDM carries long-term health risks that affect women, there are also significant short- and severe long-term consequences for the offspring. Regardless, there is a notable lack of research focusing on the impact of prominent microorganisms involved in the development of GDM. A comprehensive review was conducted to gather relevant data on the types of microorganisms that have been associated with GDM. The review found that certain microorganisms impact the onset and progression of GDM during pregnancy. Several bacterial strains associated with GDM are influenced by a diet high in fat and low in fiber. Therefore, integrating the idea of a microbiome-based individualized dietary intervention into gestational diabetes management may be incredibly beneficial. Abstract General gut microbial dysbiosis in diabetes mellitus, including gestational diabetes mellitus (GDM), has been reported in a large body of literature. However, evidence investigating the association between specific taxonomic classes and GDM is lacking. Thus, we performed a systematic review of peer-reviewed observational studies and trials conducted among women with GDM within the last ten years using standard methodology. The National Institutes of Health (NIH) quality assessment tools were used to assess the quality of the included studies. Fourteen studies investigating microbial interactions with GDM were found to be relevant and included in this review. The synthesis of literature findings demonstrates that Bacteroidetes, Proteobacteria, Firmicutes, and Actinobacteria phyla, such as Desulfovibrio, Ruminococcaceae, P. distasonis, Enterobacteriaceae, Collinsella, and Prevotella, were positively associated with GDM. In contrast, Bifidobacterium and Faecalibacterium, which produce butyrate, are negatively associated with GDM. These bacteria were associated with inflammation, adiposity, and glucose intolerance in women with GDM. Lack of good diet management demonstrated the alteration of gut microbiota and its impact on GDM glucose homeostasis. The majority of the studies were of good quality. Therefore, there is great potential to incorporate personalized medicine targeting microbiome modulation through dietary intervention in the management of GDM.
Collapse
|
10
|
Protease Hydrolysates Ameliorates Inflammation and Intestinal Flora Imbalance in DSS-Induced Colitis Mice. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5536148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wheat germ and fish skin usually has not been completely utilized and sometimes may be discarded, thus causing a lot of waste. Here, we aim at exploring the therapeutic anti-inflammatory effects of protease hydrolysates of wheat germ and fish skin on the ulcerative colitis (UC) mice. In the current study, wheat germ protein hydrolysates (WGPH) and fish skin gelatin hydrolysates (FSGH) treated mice had a longer colon than the DSS-induced mice. Moreover, protease hydrolysates reversed DSS-induced gut dysbiosis. Protease hydrolysates were likely to shift the balance of the intestinal flora on inflammation. In summary, these findings suggested that protease hydrolysates might serve as a latent therapy for UC treatment.
Collapse
|
11
|
Ho-Plagaro A, Santiago-Fernandez C, Rodríguez-Díaz C, Lopez-Gómez C, Garcia-Serrano S, Rodríguez-Pacheco F, Valdes S, Rodríguez-Cañete A, Alcaín-Martínez G, Ruiz-Santana N, Vázquez-Pedreño L, García-Fuentes E. Different Expression of Duodenal Genes Related to Insulin Resistance Between Nonobese Women and Those with Severe Obesity. Obesity (Silver Spring) 2020; 28:1708-1717. [PMID: 32729246 DOI: 10.1002/oby.22902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/14/2020] [Accepted: 05/07/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The study aim was to identify changes in duodenal gene expression associated with the development of insulin resistance according to the BMI of women. METHODS Duodenal samples were assessed by microarray in four groups of women, nonobese women and women with severe obesity, with both low and high insulin resistance. RESULTS There was a group of shared downregulated differentially expressed genes (DEGs) related to tissue homeostasis and antimicrobial humoral response in women with higher insulin resistance both with severe obesity and without obesity. In the exclusive DEGs found in severe obesity, downregulated DEGs related to the regulation of the defense response to bacterium and cell adhesion, involving pathways related to the immune system, inflammation, and xenobiotic metabolism, were observed. In the exclusive DEGs from nonobese women with higher insulin resistance, upregulated DEGs mainly related to the regulation of lipoprotein lipase activity, very low-density lipoprotein particle remodeling, lipid metabolic process, antigen processing, and the presentation of peptide antigen were found. CONCLUSIONS Independent of BMI, higher insulin resistance was associated with a downregulation of duodenal DEGs mainly related to the immune system, inflammation, and xenobiotic metabolism. Also, intestinal lipoprotein metabolism may have a certain relevance in the regulation of insulin resistance in nonobese women.
Collapse
Affiliation(s)
- Ailec Ho-Plagaro
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Málaga, Spain
| | - Concepción Santiago-Fernandez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain
| | - Cristina Rodríguez-Díaz
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Carlos Lopez-Gómez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Sara Garcia-Serrano
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Málaga, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Málaga, Spain
| | - Francisca Rodríguez-Pacheco
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Sergio Valdes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Málaga, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas-CIBERDEM, Málaga, Spain
| | - Alberto Rodríguez-Cañete
- Unidad de Gestión Clínica de Cirugía General, Digestiva y Trasplantes, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Guillermo Alcaín-Martínez
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Natalia Ruiz-Santana
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Luis Vázquez-Pedreño
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Eduardo García-Fuentes
- Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain
- Unidad de Gestión Clínica de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| |
Collapse
|
12
|
Mustad VA, Huynh DT, López-Pedrosa JM, Campoy C, Rueda R. The Role of Dietary Carbohydrates in Gestational Diabetes. Nutrients 2020; 12:E385. [PMID: 32024026 PMCID: PMC7071246 DOI: 10.3390/nu12020385] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Gestational diabetes (GDM) is hyperglycemia that is recognized for the first time during pregnancy. GDM is associated with a wide range of short- and long-term adverse health consequences for both mother and offspring. It is a complex disease with a multifactorial etiology, with disturbances in glucose, lipid, inflammation and gut microbiota. Consequently, its management is complex, requiring patients to self-manage their diet, lifestyle and self-care behaviors in combination with use of insulin. In addition to nutritional recommendations for all pregnant women, special attention to dietary carbohydrate (CHO) amount and type on glucose levels is especially important in GDM. Dietary CHO are diverse, ranging from simple sugars to longer-chain oligo- and poly- saccharides which have diverse effects on blood glucose, microbial fermentation and bowel function. Studies have established that dietary CHO amount and type can impact maternal glucose and nutritional recommendations advise women with GDM to limit total intake or choose complex and low glycemic CHO. However, robust maternal and infant benefits are not consistently shown. Novel approaches which help women with GDM adhere to dietary recommendations such as diabetes-specific meal replacements (which provide a defined and complete nutritional composition with slowly-digested CHO) and continuous glucose monitors (which provide unlimited monitoring of maternal glycemic fluctuations) have shown benefits on both maternal and neonatal outcomes. Continued research is needed to understand and develop tools to facilitate patient adherence to treatment goals, individualize interventions and improve outcomes.
Collapse
Affiliation(s)
| | - Dieu T.T. Huynh
- R&D Department, Abbott Nutrition, Singapore 138668, Singapore;
| | | | - Cristina Campoy
- Department of Paediatrics, University of Granada, 18071 Granada, Spain;
- EURISTIKOS Excellence Centre for Paediatric Research, University of Granada, 18071 Granada, Spain
| | - Ricardo Rueda
- R&D Department, Abbott Nutrition, 18004 Granada, Spain;
| |
Collapse
|
13
|
Abstract
The last decade has been characterized by an intense research on the composition of the gut microbiome and the links with human health. While previous work was focused on the effects of prebiotics and probiotics, nowadays several laboratories are describing the gut microbiome and its metabolic functions. Gut microbiome interaction with nutrients allows the gut microbiome to survive and at the same time determines the production of metabolites that are either adsorbed by intestinal cell in a mutual relationship or promote detrimental effect. Metabolomics, a new method to approach identification of biomarkers has been used to identify small metabolites in blood and other biofluids. The study of metabolome revealed several microbial derived metabolites that are circulating in blood and potentially affect human health. In this review we describe the links between regulation of metabolism and microbial derived metabolites.
Collapse
Affiliation(s)
- Ben Arpad Kappel
- Department of Internal Medicine 1, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
14
|
Federici M. Our second genome and the impact on metabolic disorders: why gut microbiome is an important player in diabetes and associated abnormalities. Acta Diabetol 2019; 56:491-492. [PMID: 30906973 DOI: 10.1007/s00592-019-01315-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy.
| |
Collapse
|
15
|
Ponzo V, Fedele D, Goitre I, Leone F, Lezo A, Monzeglio C, Finocchiaro C, Ghigo E, Bo S. Diet-Gut Microbiota Interactions and Gestational Diabetes Mellitus (GDM). Nutrients 2019; 11:E330. [PMID: 30717458 PMCID: PMC6413040 DOI: 10.3390/nu11020330] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Medical nutritional therapy is the first-line approach in managing gestational diabetes mellitus (GDM). Diet is also a powerful modulator of the gut microbiota, whose impact on insulin resistance and the inflammatory response in the host are well known. Changes in the gut microbiota composition have been described in pregnancies either before the onset of GDM or after its diagnosis. The possible modulation of the gut microbiota by dietary interventions in pregnancy is a topic of emerging interest, in consideration of the potential effects on maternal and consequently neonatal health. To date, very few data from observational studies are available about the associations between diet and the gut microbiota in pregnancy complicated by GDM. In this review, we analyzed the available data and discussed the current knowledge about diet manipulation in order to shape the gut microbiota in pregnancy.
Collapse
Affiliation(s)
- Valentina Ponzo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Debora Fedele
- Dietetic and Clinical Nutrition Unit, S. Giovanni Battista Hospital, Città della Salute e della Scienza, 10126 Turin, Italy.
| | - Ilaria Goitre
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Filomena Leone
- Clinical Nutrition Unit, S. Anna Hospital, Città della Salute e della Scienza, 10126 Turin, Italy.
| | - Antonela Lezo
- Clinical Nutrition Unit, S. Anna Hospital, Città della Salute e della Scienza, 10126 Turin, Italy.
| | - Clara Monzeglio
- Gynecology and Obstetrics Unit, S. Anna Hospital, Città della Salute e della Scienza, 10126 Turin, Italy.
| | - Concetta Finocchiaro
- Dietetic and Clinical Nutrition Unit, S. Giovanni Battista Hospital, Città della Salute e della Scienza, 10126 Turin, Italy.
| | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Simona Bo
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
16
|
Li F, Sun G, Wang Z, Wu W, Guo H, Peng L, Wu L, Guo X, Yang Y. Characteristics of fecal microbiota in non-alcoholic fatty liver disease patients. SCIENCE CHINA-LIFE SCIENCES 2018; 61:770-778. [PMID: 29948900 DOI: 10.1007/s11427-017-9303-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022]
Abstract
This study was designed to investigate the gut microbiota of patients with non-alcoholic fatty liver disease. The inclusive and exclusive criteria for NAFLD patients and healthy subjects were formulated, and detailed clinical data were collected. The genomic DNA of stool samples were extracted for 16S rDNA sequencing, and the amplified V4-region was sequenced on the Illumina Miseq platform. Metastats analysis was performed to identify the differential taxa between the groups. Redundancy analysis was used to evaluate the association between gut microbial structure and clinical variables. Thirty NAFLD patients and 37 healthy controls were involved. The 16S rDNA sequencing showed that there was a dramatic variability of the fecal microbiota among all the individuals. Metastats analysis identified eight families and 12 genera with significant differences between the two groups. When some clinical parameters, such as waist-to-hip ratio (WHR) and homeostasis model assessment of insulin resistance (HOMA-IR), were enrolled in Redundancy analysis, the distribution of the two group of samples was obviously changed. The compositional shifts in fecal bacterial communities of NAFLD patients from the healthy controls were mainly at family or genus levels. According to our Redundancy analysis, insulin resistance and obesity might be closely related to both NAFLD phenotype and intestinal microecology.
Collapse
Affiliation(s)
- Fan Li
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Liver Disease, PLA Army General Hospital, Beijing, 100700, China
| | - Gang Sun
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zikai Wang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenming Wu
- Department of Gastroenterology, General Hospital of Jinan Military Region, Jinan, 250012, China
| | - He Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lihua Peng
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lili Wu
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xu Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yunsheng Yang
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
17
|
Taddei CR, Cortez RV, Mattar R, Torloni MR, Daher S. Microbiome in normal and pathological pregnancies: A literature overview. Am J Reprod Immunol 2018; 80:e12993. [DOI: 10.1111/aji.12993] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/16/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Carla R. Taddei
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; Universidade de São Paulo; São Paulo Brazil
| | - Ramon V. Cortez
- Department of Clinical and Toxicological Analyses; School of Pharmaceutical Sciences; Universidade de São Paulo; São Paulo Brazil
| | - Rosiane Mattar
- Department of Obstetrics; Universidade Federal de São Paulo; São Paulo Brazil
| | | | - Silvia Daher
- Department of Obstetrics; Universidade Federal de São Paulo; São Paulo Brazil
| |
Collapse
|
18
|
Nihei N, Okamoto H, Furune T, Ikuta N, Sasaki K, Rimbach G, Yoshikawa Y, Terao K. Dietary α-cyclodextrin modifies gut microbiota and reduces fat accumulation in high-fat-diet-fed obese mice. Biofactors 2018; 44:336-347. [PMID: 29733482 DOI: 10.1002/biof.1429] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
We investigated the effect of α-cyclodextrin (α-CD) on the bacterial populations of gut microbiota, production of organic acids, and short-chain fatty acids (SCFAs), and lipid metabolism in obese mice induced by feeding a high-fat diet (HFD). Male C57BL/6J mice were assigned to three diet groups: normal diet (ND) (5% [w/w] fat), HFD (35% [w/w] fat), and HFD (35% [w/w] fat) + 5.5% (w/w) α-CD for 16 weeks. Increases in body and epididymal adipose tissue weights were observed in the HFD group compared with the ND group, which were attenuated in the HFD+α-CD group. The supplementation of α-CD increased the total number of bacteria, Bacteroides, Bifidobacterium, and Lactobacillus that were decreased in gut microbiota of mice by feeding the HFD. Importantly, α-CD administration increased the concentrations of lactic acid and SCFAs, such as acetic, propionic, and butyric acids, and decreased glucose concentrations in cecal contents. Furthermore, supplementation of α-CD upregulated the gene expression of peroxisome proliferator-activated receptor (PPAR)γ involved in adipocyte differentiation and PPARα involved in energy expenditure and downregulated that of sterol regulatory element-binding protein-1c (SREBP-1c) and fatty acid synthase involved in fatty acid and triglyceride synthesis in adipose tissue. This study revealed that the alteration in gut microbiota and increased production of lactic acid and SCFAs by supplementation of α-CD have beneficial antiobesity effects via modulating the expression of genes related to lipid metabolism, indicating a prebiotic property of α-CD. © 2018 BioFactors, 2018.
Collapse
Affiliation(s)
- Nanako Nihei
- CycloChem Bio Co., Ltd, Chuo-ku, Kobe, Hyogo, Japan
| | - Hinako Okamoto
- CycloChem Bio Co., Ltd, Chuo-ku, Kobe, Hyogo, Japan
- Division of Food and Drug Evaluation Science, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe, Hyogo, Japan
| | | | - Naoko Ikuta
- Division of Food and Drug Evaluation Science, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe, Hyogo, Japan
| | - Kengo Sasaki
- Graduate School of Science, Technology and Innovation, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Gerald Rimbach
- Division of Food Science, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Yutaka Yoshikawa
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, Chuo-ku, Kobe, Hyogo, Japan
| | - Keiji Terao
- CycloChem Bio Co., Ltd, Chuo-ku, Kobe, Hyogo, Japan
- Division of Food and Drug Evaluation Science, Graduate School of Medicine, Kobe University, Chuo-ku, Kobe, Hyogo, Japan
| |
Collapse
|
19
|
Blasco-Baque V, Garidou L, Pomié C, Escoula Q, Loubieres P, Le Gall-David S, Lemaitre M, Nicolas S, Klopp P, Waget A, Azalbert V, Colom A, Bonnaure-Mallet M, Kemoun P, Serino M, Burcelin R. Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response. Gut 2017; 66:872-885. [PMID: 26838600 PMCID: PMC5531227 DOI: 10.1136/gutjnl-2015-309897] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 12/18/2015] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. DESIGN We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3 months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. RESULTS Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. CONCLUSIONS We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosis.
Collapse
Affiliation(s)
- Vincent Blasco-Baque
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France,Faculté de Chirurgie-Dentaire de Toulouse, Technical platform of Research in Odontology, Toulouse Cedex 09, France
| | - Lucile Garidou
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Céline Pomié
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Quentin Escoula
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Pascale Loubieres
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France,Faculté de Chirurgie-Dentaire de Toulouse, Technical platform of Research in Odontology, Toulouse Cedex 09, France
| | | | - Mathieu Lemaitre
- Faculté de Chirurgie-Dentaire de Toulouse, Technical platform of Research in Odontology, Toulouse Cedex 09, France
| | - Simon Nicolas
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Pascale Klopp
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Aurélie Waget
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Vincent Azalbert
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - André Colom
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | | | - Philippe Kemoun
- Faculté de Chirurgie-Dentaire de Toulouse, Technical platform of Research in Odontology, Toulouse Cedex 09, France
| | - Matteo Serino
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| | - Rémy Burcelin
- INSERM U1048, Toulouse, France,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France,Université Paul Sabatier (UPS), Toulouse, France
| |
Collapse
|
20
|
The Life Course Implications of Ready to Use Therapeutic Food for Children in Low-Income Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14040403. [PMID: 28398257 PMCID: PMC5409604 DOI: 10.3390/ijerph14040403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/22/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
The development of ready-to-use therapeutic food (RUTF) for the treatment of uncomplicated cases of severe acute malnutrition in young children from 6 months to 5 years old has greatly improved survival through the ability to treat large numbers of malnourished children in the community setting rather than at health facilities during emergencies. This success has led to a surge in demand for RUTF in low income countries that are frequently food insecure due to environmental factors such as cyclical drought. Worldwide production capacity for the supply of RUTF has increased dramatically through the expansion and development of new manufacturing facilities in both low and high income countries, and new business ventures dedicated to ready-to-use foods have emerged not only for emergencies, but increasingly, for supplementing caloric intake of pregnant women and young children not experiencing acute undernutrition. Due to the lack of evidence on the long term health impact these products may have, in the midst of global nutrition transitions toward obesity and metabolic dysfunction, the increased use of manufactured, commercial products for treatment and prevention of undernutrition is of great concern. Using a framework built on the life course health development perspective, the current research presents several drawbacks and limitations of RUTF for nutrition of mothers and young children, especially in non-emergency situations. Recommendations follow for potential strategies to limit the use of these products to the treatment of acute undernutrition only, study the longer term health impacts of RUTF, prevent conflict of interests arising for social enterprises, and where possible, ensure that whole foods are supported for life-long health and nutrition, as well as environmental sustainability.
Collapse
|
21
|
Blasco-Baque V, Coupé B, Fabre A, Handgraaf S, Gourdy P, Arnal JF, Courtney M, Schuster-Klein C, Guardiola B, Tercé F, Burcelin R, Serino M. Associations between hepatic miRNA expression, liver triacylglycerols and gut microbiota during metabolic adaptation to high-fat diet in mice. Diabetologia 2017; 60:690-700. [PMID: 28105518 PMCID: PMC6518927 DOI: 10.1007/s00125-017-4209-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/14/2016] [Indexed: 01/30/2023]
Abstract
AIMS/HYPOTHESIS Despite the current pandemic of metabolic diseases, our understanding of the diverse nature of the development of metabolic alterations in people who eat a high-fat diet (HFD) is still poor. We recently demonstrated a cardio-metabolic adaptation in mice fed an HFD, which was characterised by a specific gut and periodontal microbiota profile. Since the severity of hepatic disease is characterised by specific microRNA (miRNA) signatures and the gut microbiota is a key driver of both hepatic disease and miRNA expression, we analysed the expression of three hepatic miRNA and studied their correlation with hepatic triacylglycerol content and gut microbiota. METHODS Two cohorts of C57BL/6 4-week-old wild-type (WT) male mice (n = 62 and n = 96) were fed an HFD for 3 months to provide a model of metabolic adaptation. Additionally 8-week-old C57BL/6 mice, either WT or of different genotypes, with diverse gut microbiota (ob/ob, Nod1, Cd14 knockout [Cd14KO] and Nod2) or without gut microbiota (axenic mice) were fed a normal chow diet. Following which, glycaemic index, body weight, blood glucose levels and hepatic triacylglycerol levels were measured. Gut (caecum) microbiota taxa were analysed by pyrosequencing. To analyse hepatic miRNA expression, real-time PCR was performed on total extracted miRNA samples. Data were analysed using two-way ANOVA followed by the Dunnett's post hoc test, or by the unpaired Student's t test. A cluster analysis and multivariate analyses were also performed. RESULTS Our results demonstrated that the expression of miR-181a, miR-666 and miR-21 in primary murine hepatocytes is controlled by lipopolysaccharide in a dose-dependent manner. Of the gut microbiota, Firmicutes were positively correlated and Proteobacteria and Bacteroides acidifaciens were negatively correlated with liver triacylglycerol levels. Furthermore, the relative abundance of Firmicutes was negatively correlated with hepatic expression of miR-666 and miR-21. In contrast, the relative abundance of B. acidifaciens was positively correlated with miR-21. CONCLUSIONS/INTERPRETATION We propose the involvement of hepatic miRNA, liver triacylglycerols and gut microbiota as a new triad that underlies the molecular mechanisms by which gut microbiota governs hepatic pathophysiology during metabolic adaptation to HFD.
Collapse
Affiliation(s)
- Vincent Blasco-Baque
- Institut National de la Santé et de la Recherche Médicale (Inserm), Toulouse, France
- Unité Mixte de Recherche, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse, France
- Faculté de Chirurgie Dentaire de Toulouse, Université Paul Sabatier, Toulouse, France
| | | | - Aurelie Fabre
- Institut National de la Santé et de la Recherche Médicale (Inserm), Toulouse, France
- Unité Mixte de Recherche, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse, France
| | - Sandra Handgraaf
- Institut National de la Santé et de la Recherche Médicale (Inserm), Toulouse, France
- Unité Mixte de Recherche, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse, France
| | - Pierre Gourdy
- Institut National de la Santé et de la Recherche Médicale (Inserm), Toulouse, France
- Unité Mixte de Recherche, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse, France
| | - Jean-François Arnal
- Institut National de la Santé et de la Recherche Médicale (Inserm), Toulouse, France
- Unité Mixte de Recherche, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse, France
| | | | - Carole Schuster-Klein
- Pôle d'Innovation Thérapeutique Métabolisme, Recherche de Découvertes, Institut de Recherches Servier, Suresnes, France
| | - Beatrice Guardiola
- Pôle d'Innovation Thérapeutique Métabolisme, Recherche de Découvertes, Institut de Recherches Servier, Suresnes, France
| | - François Tercé
- Institut National de la Santé et de la Recherche Médicale (Inserm), Toulouse, France
- Unité Mixte de Recherche, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse, France
| | - Rémy Burcelin
- Institut National de la Santé et de la Recherche Médicale (Inserm), Toulouse, France
- Unité Mixte de Recherche, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse, France
| | - Matteo Serino
- Institut National de la Santé et de la Recherche Médicale (Inserm), Toulouse, France.
- Unité Mixte de Recherche, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse, France.
- Unité Mixte de Recherche (UMR) 1220, Institut de Recherche en Santé Digestive (IRSD), Université Paul Sabatier (UPS), Centre Hospitalier Universitaire (CHU) Purpan, Place du Docteur Baylac, CS 60039, 31024, Toulouse, Cedex 3, France.
| |
Collapse
|
22
|
Abstract
Objective: To systematically review the updated information about the gut microbiota-brain axis. Data Sources: All articles about gut microbiota-brain axis published up to July 18, 2016, were identified through a literature search on PubMed, ScienceDirect, and Web of Science, with the keywords of “gut microbiota”, “gut-brain axis”, and “neuroscience”. Study Selection: All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed, with no limitation of study design. Results: It is well-recognized that gut microbiota affects the brain's physiological, behavioral, and cognitive functions although its precise mechanism has not yet been fully understood. Gut microbiota-brain axis may include gut microbiota and their metabolic products, enteric nervous system, sympathetic and parasympathetic branches within the autonomic nervous system, neural-immune system, neuroendocrine system, and central nervous system. Moreover, there may be five communication routes between gut microbiota and brain, including the gut-brain's neural network, neuroendocrine-hypothalamic-pituitary-adrenal axis, gut immune system, some neurotransmitters and neural regulators synthesized by gut bacteria, and barrier paths including intestinal mucosal barrier and blood-brain barrier. The microbiome is used to define the composition and functional characteristics of gut microbiota, and metagenomics is an appropriate technique to characterize gut microbiota. Conclusions: Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain, which may provide a new way to protect the brain in the near future.
Collapse
Affiliation(s)
- Hong-Xing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yu-Ping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053; Center of Epilepsy, Beijing Institute for Brain Disorders, Laboratory of Brain Disorders, Capital Medical University, Beijing 100069, China
| |
Collapse
|
23
|
Moreno-Indias I, Sánchez-Alcoholado L, García-Fuentes E, Cardona F, Queipo-Ortuño MI, Tinahones FJ. Insulin resistance is associated with specific gut microbiota in appendix samples from morbidly obese patients. Am J Transl Res 2016; 8:5672-5684. [PMID: 28078038 PMCID: PMC5209518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
Alterations in intestinal microbiota composition could promote a proinflammatory state in adipose tissue that is associated with obesity and insulin resistance. Our aim was to identify the gut microbiota associated with insulin resistance in appendix samples from morbidly obese patients classified in 2 groups, high (IR-MO) and low insulin-resistant (NIR-MO), and to determine the possible association between these gut microbiota and variables associated with insulin resistance and the expression of genes related to inflammation and macrophage infiltration in adipose tissue. Appendix samples were obtained during gastric bypass surgery and the microbiome composition was determined by 16S rRNA pyrosequencing and bioinformatics analysis by QIIME. The Chao and Shannon indices for each study group suggested similar bacterial richness and diversity in the appendix samples between both study groups. 16S rRNA pyrosequencing showed that the IR-MO group had a significant increase in the abundance of Firmicutes, Fusobacteria, Pseudomonaceae, Prevotellaceae, Fusobacteriaceae, Pseudomonas, Catenibacterium, Prevotella, Veillonella and Fusobacterium compared to the NIR-MO group. Moreover, in the IR-MO group we found a significant positive correlation between the abundance of Prevotella, Succinovibrio, Firmicutes and Veillonella and the visceral adipose tissue expression level of IL6, TNF alpha, ILB1 and CD11b respectively, and significant negative correlations between the abundance of Butyricimonas and Bifidobacterium, and plasma glucose and insulin levels, respectively. In conclusion, an appendix dysbiosis occurs in IR-MO patients, with a loss of butyrate-producing bacteria, essential to maintenance of gut integrity, together with an increase in mucin-degrading bacteria and opportunistic pathogens. The microbiota present in the IR-MO group were related to low grade inflammation in adipose tissue and could be useful for developing strategies to control the development of insulin resistance.
Collapse
Affiliation(s)
- Isabel Moreno-Indias
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of The Biomedical Research Institute of Malaga (IBIMA), Virgen de la Victoria University Hospital, Malaga UniversityMalaga, Spain
- Biomedical Research Networking Center for Pathophysiology of Obesity and NutritionMadrid, Spain
| | - Lidia Sánchez-Alcoholado
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of The Biomedical Research Institute of Malaga (IBIMA), Virgen de la Victoria University Hospital, Malaga UniversityMalaga, Spain
| | - Eduardo García-Fuentes
- Biomedical Research Networking Center for Pathophysiology of Obesity and NutritionMadrid, Spain
- Clinical Management Unit of Endocrinology and Nutrition, Biomedical Research Institute of Malaga (IBIMA), Regional University HospitalMalaga, Spain
| | - Fernando Cardona
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of The Biomedical Research Institute of Malaga (IBIMA), Virgen de la Victoria University Hospital, Malaga UniversityMalaga, Spain
- Biomedical Research Networking Center for Pathophysiology of Obesity and NutritionMadrid, Spain
| | - Maria Isabel Queipo-Ortuño
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of The Biomedical Research Institute of Malaga (IBIMA), Virgen de la Victoria University Hospital, Malaga UniversityMalaga, Spain
- Biomedical Research Networking Center for Pathophysiology of Obesity and NutritionMadrid, Spain
| | - Francisco J Tinahones
- Clinical Management Unit of Endocrinology and Nutrition, Laboratory of The Biomedical Research Institute of Malaga (IBIMA), Virgen de la Victoria University Hospital, Malaga UniversityMalaga, Spain
- Biomedical Research Networking Center for Pathophysiology of Obesity and NutritionMadrid, Spain
| |
Collapse
|
24
|
|
25
|
Muñoz-Garach A, Diaz-Perdigones C, Tinahones FJ. Microbiota y diabetes mellitus tipo 2. ACTA ACUST UNITED AC 2016; 63:560-568. [DOI: 10.1016/j.endonu.2016.07.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 02/06/2023]
|
26
|
Slattery J, MacFabe DF, Frye RE. The Significance of the Enteric Microbiome on the Development of Childhood Disease: A Review of Prebiotic and Probiotic Therapies in Disorders of Childhood. Clin Med Insights Pediatr 2016; 10:91-107. [PMID: 27774001 PMCID: PMC5063840 DOI: 10.4137/cmped.s38338] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/30/2016] [Accepted: 09/05/2016] [Indexed: 02/07/2023] Open
Abstract
Recent studies have highlighted the fact that the enteric microbiome, the trillions of microbes that inhabit the human digestive tract, has a significant effect on health and disease. Methods for manipulating the enteric microbiome, particularly through probiotics and microbial ecosystem transplantation, have undergone some study in clinical trials. We review some of the evidence for microbiome alteration in relation to childhood disease and discuss the clinical trials that have examined the manipulation of the microbiome in an effort to prevent or treat childhood disease with a primary focus on probiotics, prebiotics, and/or synbiotics (ie, probiotics + prebiotics). Studies show that alterations in the microbiome may be a consequence of events occurring during infancy and/or childhood such as prematurity, C-sections, and nosocomial infections. In addition, certain childhood diseases have been associated with microbiome alterations, namely necrotizing enterocolitis, infantile colic, asthma, atopic disease, gastrointestinal disease, diabetes, malnutrition, mood/anxiety disorders, and autism spectrum disorders. Treatment studies suggest that probiotics are potentially protective against the development of some of these diseases. Timing and duration of treatment, the optimal probiotic strain(s), and factors that may alter the composition and function of the microbiome are still in need of further research. Other treatments such as prebiotics, fecal microbial transplantation, and antibiotics have limited evidence. Future translational work, in vitro models, long-term and follow-up studies, and guidelines for the composition and viability of probiotic and microbial therapies need to be developed. Overall, there is promising evidence that manipulating the microbiome with probiotics early in life can help prevent or reduce the severity of some childhood diseases, but further research is needed to elucidate biological mechanisms and determine optimal treatments.
Collapse
Affiliation(s)
- John Slattery
- Arkansas Children’s Research Institute, Little Rock, AR, USA
- Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Derrick F. MacFabe
- The Kilee Patchell-Evans Autism Research Group, Departments of Psychology (Neuroscience) and Psychiatry, Division of Developmental Disabilities, University of Western Ontario, London, ON, Canada
| | - Richard E. Frye
- Arkansas Children’s Research Institute, Little Rock, AR, USA
- Division of Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
27
|
Kobyliak N, Conte C, Cammarota G, Haley AP, Styriak I, Gaspar L, Fusek J, Rodrigo L, Kruzliak P. Probiotics in prevention and treatment of obesity: a critical view. Nutr Metab (Lond) 2016; 13:14. [PMID: 26900391 PMCID: PMC4761174 DOI: 10.1186/s12986-016-0067-0] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/25/2016] [Indexed: 12/22/2022] Open
Abstract
The worldwide prevalence of obesity more than doubled between 1980 and 2014. The obesity pandemic is tightly linked to an increase in energy availability, sedentariness and greater control of ambient temperature that have paralleled the socioeconomic development of the past decades. The most frequent cause which leads to the obesity development is a dysbalance between energy intake and energy expenditure. The gut microbiota as an environmental factor which influence whole-body metabolism by affecting energy balance but also inflammation and gut barrier function, integrate peripheral and central food intake regulatory signals and thereby increase body weight. Probiotics have physiologic functions that contribute to the health of gut microbiota, can affect food intake and appetite, body weight and composition and metabolic functions through gastrointestinal pathways and modulation of the gut bacterial community.
Collapse
Affiliation(s)
- Nazarii Kobyliak
- Division of Endocrinology and Metabolic Diseases, Catholic University of Sacred Heart, A. Gemelli Medical School, Rome, Italy
| | - Caterina Conte
- Division of Endocrinology and Metabolic Diseases, Catholic University of Sacred Heart, A. Gemelli Medical School, Rome, Italy
| | - Giovanni Cammarota
- Division of Internal Medicine and Gastroenterology, Catholic University of Sacred Heart, A. Gemelli Medical School, Rome, Italy
| | - Andreana P Haley
- Department of Psychology, The University of Texas at Austin, Austin, TX USA ; University of Texas Imaging Research Center, Austin, TX USA
| | - Igor Styriak
- Institute of Geotechnics, Department of Biotechnology, Slovak Academy of Sciences, Kosice, Slovak Republic
| | - Ludovit Gaspar
- 2nd Department of Internal Medicine, Comenius University and University Hospital, Mickiewiczova 13, 813 69 Bratislava, Slovak Republic
| | - Jozef Fusek
- Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic
| | - Luis Rodrigo
- Department of Gastroenterology, Central University Hospital of Asturias (HUCA), Oviedo, Spain
| | - Peter Kruzliak
- Department of Gastroenterology, Central University Hospital of Asturias (HUCA), Oviedo, Spain ; 2nd Department of Internal Medicine, Faculty of Medicine, Masaryk University, Pekarska 53, 656 91 Brno, Czech Republic ; Laboratory of Structural Biology and Proteomics, Central Laboratories, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
28
|
Boye A, Zou YH, Yang Y. Metabolic derivatives of alcohol and the molecular culprits of fibro-hepatocarcinogenesis: Allies or enemies? World J Gastroenterol 2016; 22:50-71. [PMID: 26755860 PMCID: PMC4698508 DOI: 10.3748/wjg.v22.i1.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/12/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic intake of alcohol undoubtedly overwhelms the structural and functional capacity of the liver by initiating complex pathological events characterized by steatosis, steatohepatitis, hepatic fibrosis and cirrhosis. Subsequently, these initial pathological events are sustained and ushered into a more complex and progressive liver disease, increasing the risk of fibro-hepatocarcinogenesis. These coordinated pathological events mainly result from buildup of toxic metabolic derivatives of alcohol including but not limited to acetaldehyde (AA), malondialdehyde (MDA), CYP2E1-generated reactive oxygen species, alcohol-induced gut-derived lipopolysaccharide, AA/MDA protein and DNA adducts. The metabolic derivatives of alcohol together with other comorbidity factors, including hepatitis B and C viral infections, dysregulated iron metabolism, abuse of antibiotics, schistosomiasis, toxic drug metabolites, autoimmune disease and other non-specific factors, have been shown to underlie liver diseases. In view of the multiple etiology of liver diseases, attempts to delineate the mechanism by which each etiological factor causes liver disease has always proved cumbersome if not impossible. In the case of alcoholic liver disease (ALD), it is even more cumbersome and complicated as a result of the many toxic metabolic derivatives of alcohol with their varying liver-specific toxicities. In spite of all these hurdles, researchers and experts in hepatology have strived to expand knowledge and scientific discourse, particularly on ALD and its associated complications through the medium of scientific research, reviews and commentaries. Nonetheless, the molecular mechanisms underpinning ALD, particularly those underlying toxic effects of metabolic derivatives of alcohol on parenchymal and non-parenchymal hepatic cells leading to increased risk of alcohol-induced fibro-hepatocarcinogenesis, are still incompletely elucidated. In this review, we examined published scientific findings on how alcohol and its metabolic derivatives mount cellular attack on each hepatic cell and the underlying molecular mechanisms leading to disruption of core hepatic homeostatic functions which probably set the stage for the initiation and progression of ALD to fibro-hepatocarcinogenesis. We also brought to sharp focus, the complex and integrative role of transforming growth factor beta/small mothers against decapentaplegic/plasminogen activator inhibitor-1 and the mitogen activated protein kinase signaling nexus as well as their cross-signaling with toll-like receptor-mediated gut-dependent signaling pathways implicated in ALD and fibro-hepatocarcinogenesis. Looking into the future, it is hoped that these deliberations may stimulate new research directions on this topic and shape not only therapeutic approaches but also models for studying ALD and fibro-hepatocarcinogenesis.
Collapse
|
29
|
Leung RKK, Wu YK. Circulating microbial RNA and health. Sci Rep 2015; 5:16814. [PMID: 26576508 PMCID: PMC4649493 DOI: 10.1038/srep16814] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/15/2015] [Indexed: 12/22/2022] Open
Abstract
Measurement of health indicators in the blood is a commonly performed diagnostic procedure. Two blood studies one involving extended observations on the health of an individual by integrative Personal Omics Profiling (iPOP), and the other tracking the impact of Left Ventricular Assist Device (LVAD) placement on nine heart failure patients were examined for the association of change in health status with change in microbial RNA species. Decrease in RNA expression ratios of human to bacteria and viruses accompanying deteriorated conditions was evident in both studies. Despite large between-subject variations in bacterial composition before LVAD implantation among all the patients, on day 180 after the implantation they manifested apparent between-subject bacterial similarity. In the iPOP study three periods, namely, pre-respiratory syncytial virus (RSV) infection with normal blood glucose level, RSV infection with normal blood glucose level, and post-RSV infection with high blood glucose level could be defined. The upsurge of Enterobacteria phage PhiX 174 sensu lato and Escherichia coli gene expression, in which membrane transporters, membrane receptors for environment signalling, carbohydrate catabolic genes and carbohydrate-active enzymes were enriched only throughout the second period, which suggests a potentially overlooked microbial response to or modulation of the host blood glucose level.
Collapse
Affiliation(s)
- Ross Ka-Kit Leung
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, The People's Republic of China.,Division of Genomics and Bioinformatics, CUHK-BGI Innovation Institute of Trans-omics, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, The People's Republic of China
| | - Ying-Kit Wu
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, The People's Republic of China.,Division of Genomics and Bioinformatics, CUHK-BGI Innovation Institute of Trans-omics, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, The People's Republic of China
| |
Collapse
|
30
|
Murphy EA, Velazquez KT, Herbert KM. Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care 2015; 18:515-20. [PMID: 26154278 PMCID: PMC4578152 DOI: 10.1097/mco.0000000000000209] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW This review will examine the recent scientific literature surrounding high-fat-diet (HFD)-induced alterations in gut microbiota and subsequent development of obesity and chronic disease risk. RECENT FINDINGS Excessive consumption of HFDs has undoubtedly contributed to the obesity epidemic. The mechanisms responsible for this relationship are, however, likely to be more complex than the simple concept of energy balance. In fact, emerging literature has implicated HFD-induced alterations in gut microbiota in the obesity epidemic. HFD consumption generally leads to a decrease in Bacteroidetes and an increase in Firmicutes, alterations that have been associated with obesity and subsequent development of chronic diseases. Potential mechanisms for this effect include an improved capacity for energy harvest and storage, and enhanced gut permeability and inflammation. We highlight the most important recent advances linking HFD-induced dysbiosis to obesity, explore the possible mechanisms for this effect, examine the implications for disease development, and evaluate the possibility of therapeutic targeting of the gut microbiome to reduce obesity. SUMMARY A better understanding of the mechanisms linking HFD to alterations in gut microbiota is necessary to allow for the regulation of dysbiosis and ensuing promotion of antiobesity effects.
Collapse
Affiliation(s)
- E. Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Kandy T. Velazquez
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Kyle M. Herbert
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| |
Collapse
|
31
|
Neis EPJG, Dejong CHC, Rensen SS. The role of microbial amino acid metabolism in host metabolism. Nutrients 2015; 7:2930-46. [PMID: 25894657 PMCID: PMC4425181 DOI: 10.3390/nu7042930] [Citation(s) in RCA: 532] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/21/2015] [Accepted: 04/01/2015] [Indexed: 12/12/2022] Open
Abstract
Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Evelien P J G Neis
- Department of Surgery, Maastricht University Medical Center, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | - Cornelis H C Dejong
- Department of Surgery, Maastricht University Medical Center, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | - Sander S Rensen
- Department of Surgery, Maastricht University Medical Center, PO Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
32
|
Lai M, Chandrasekera PC, Barnard ND. You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr Diabetes 2014; 4:e135. [PMID: 25198237 PMCID: PMC4183971 DOI: 10.1038/nutd.2014.30] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/18/2014] [Accepted: 06/25/2014] [Indexed: 12/16/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are rapidly growing worldwide epidemics with major health consequences. Various human-based studies have confirmed that both genetic and environmental factors (particularly high-caloric diets and sedentary lifestyle) greatly contribute to human T2DM. Interactions between obesity, insulin resistance and β-cell dysfunction result in human T2DM, but the mechanisms regulating the interplay among these impairments remain unclear. Rodent models of high-fat diet (HFD)-induced obesity have been used widely to study human obesity and T2DM. With >9000 publications on PubMed over the past decade alone, many aspects of rodent T2DM have been elucidated; however, correlation to human obesity/diabetes remains poor. This review investigates the reasons for this translational discrepancy by critically evaluating rodent HFD models. Dietary modification in rodents appears to have limited translatable benefit for understanding and treating human obesity and diabetes due—at least in part—to divergent dietary compositions, species/strain and gender variability, inconsistent disease penetrance, severity and duration and lack of resemblance to human obesogenic pathophysiology. Therefore future research efforts dedicated to acquiring translationally relevant data—specifically human data, rather than findings based on rodent studies—would accelerate our understanding of disease mechanisms and development of therapeutics for human obesity/T2DM.
Collapse
Affiliation(s)
- M Lai
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | | | - N D Barnard
- 1] Physicians Committee for Responsible Medicine, Washington, DC, USA [2] Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
33
|
Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes (Lond) 2014; 38:1290-8. [PMID: 25012772 DOI: 10.1038/ijo.2014.119] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/03/2014] [Accepted: 06/25/2014] [Indexed: 01/28/2023]
Abstract
BACKGROUND Obesity has been associated with disruption of the gut microbiota, which is established during infancy and vulnerable to disruption by antibiotics. OBJECTIVES To investigate the association between early-life antibiotic exposure and subsequent development of overweight and central adiposity. METHODS Provincial health-care records were linked to clinical and survey data from a Canadian longitudinal birth cohort study. Antibiotic exposure during the first year of life was documented from prescription records. Overweight and central adiposity were determined from anthropometric measurements at ages 9 (n=616) and 12 (n=431). Associations were determined by multiple logistic regression. RESULTS Infants receiving antibiotics in the first year of life were more likely to be overweight later in childhood compared with those who were unexposed (32.4 versus 18.2% at age 12, P=0.002). Following adjustment for birth weight, breastfeeding, maternal overweight and other potential confounders, this association persisted in boys (aOR 5.35, 95% confidence interval (CI) 1.94-14.72) but not in girls (aOR 1.13, CI 0.46-2.81). Similar gender-specific associations were found for overweight at age 9 (aOR 2.19, CI 1.06-4.54 for boys; aOR 1.20, CI 0.53-2.70 for girls) and for high central adiposity at age 12 (aOR 2.85, CI 1.24-6.51 for boys; aOR 1.59, CI 0.68-3.68 for girls). CONCLUSIONS Among boys, antibiotic exposure during the first year of life was associated with an increased risk of overweight and central adiposity in preadolescence, indicating that antibiotic stewardship is particularly important during infancy. Given the current epidemic of childhood obesity and the high prevalence of infant antibiotic exposure, further studies are necessary to determine the mechanisms underlying this association, to identify the long-term health consequences, and to develop strategies for mitigating these effects when antibiotic exposure cannot be avoided.
Collapse
|
34
|
Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol 2014; 5:190. [PMID: 24808896 PMCID: PMC4010744 DOI: 10.3389/fmicb.2014.00190] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 04/08/2014] [Indexed: 12/21/2022] Open
Abstract
Obesity and its associated disorders are a major public health concern. Although obesity has been mainly related with perturbations of the balance between food intake and energy expenditure, other factors must nevertheless be considered. Recent insight suggests that an altered composition and diversity of gut microbiota could play an important role in the development of metabolic disorders. This review discusses research aimed at understanding the role of gut microbiota in the pathogenesis of obesity and type 2 diabetes mellitus (TDM2). The establishment of gut microbiota is dependent on the type of birth. With effect from this point, gut microbiota remain quite stable, although changes take place between birth and adulthood due to external influences, such as diet, disease and environment. Understand these changes is important to predict diseases and develop therapies. A new theory suggests that gut microbiota contribute to the regulation of energy homeostasis, provoking the development of an impairment in energy homeostasis and causing metabolic diseases, such as insulin resistance or TDM2. The metabolic endotoxemia, modifications in the secretion of incretins and butyrate production might explain the influence of the microbiota in these diseases.
Collapse
Affiliation(s)
- Isabel Moreno-Indias
- Unidad de Gestion Clínica de Endocrinología y Nutrición, Laboratorio del Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga (Virgen de la Victoria) Málaga, Spain ; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición Madrid, Spain
| | - Fernando Cardona
- Unidad de Gestion Clínica de Endocrinología y Nutrición, Laboratorio del Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga (Virgen de la Victoria) Málaga, Spain ; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición Madrid, Spain
| | - Francisco J Tinahones
- Unidad de Gestion Clínica de Endocrinología y Nutrición, Laboratorio del Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga (Virgen de la Victoria) Málaga, Spain ; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición Madrid, Spain
| | - María Isabel Queipo-Ortuño
- Unidad de Gestion Clínica de Endocrinología y Nutrición, Laboratorio del Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario de Málaga (Virgen de la Victoria) Málaga, Spain ; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición Madrid, Spain
| |
Collapse
|
35
|
Erejuwa OO, Sulaiman SA, Ab Wahab MS. Modulation of gut microbiota in the management of metabolic disorders: the prospects and challenges. Int J Mol Sci 2014; 15:4158-88. [PMID: 24608927 PMCID: PMC3975390 DOI: 10.3390/ijms15034158] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/12/2014] [Accepted: 02/21/2014] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota plays a number of important roles including digestion, metabolism, extraction of nutrients, synthesis of vitamins, prevention against pathogen colonization, and modulation of the immune system. Alterations or changes in composition and biodiversity of the gut microbiota have been associated with many gastrointestinal tract (GIT) disorders such as inflammatory bowel disease and colon cancer. Recent evidence suggests that altered composition and diversity of gut microbiota may play a role in the increased prevalence of metabolic diseases. This review article has two main objectives. First, it underscores approaches (such as probiotics, prebiotics, antimicrobial agents, bariatric surgery, and weight loss strategies) and their prospects in modulating the gut microbiota in the management of metabolic diseases. Second, it highlights some of the current challenges and discusses areas of future research as it relates to the gut microbiota and metabolic diseases. The prospect of modulating the gut microbiota seems promising. However, considering that research investigating the role of gut microbiota in metabolic diseases is still in its infancy, more rigorous and well-designed in vitro, animal and clinical studies are needed.
Collapse
Affiliation(s)
- Omotayo O Erejuwa
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Siti A Sulaiman
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mohd S Ab Wahab
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
36
|
Burcelin R, Chabo C, Blasco-Baque V, Sérino M, Amar J. Le microbiote intestinal à l’origine de nouvelles perspectives thérapeutiques pour les maladies métaboliques ? Med Sci (Paris) 2013; 29:800-6. [DOI: 10.1051/medsci/2013298021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|