1
|
Prouse T, Mohammad MA, Ghosh S, Kumar N, Duhaylungsod ML, Majumder R, Majumder S. Pancreatic Cancer and Venous Thromboembolism. Int J Mol Sci 2024; 25:5661. [PMID: 38891849 PMCID: PMC11171482 DOI: 10.3390/ijms25115661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of all pancreatic cancers and is the most fatal of all cancers. The treatment response from combination chemotherapies is far from satisfactory and surgery remains the mainstay of curative strategies. These challenges warrant identifying effective treatments for combating this deadly cancer. PDAC tumor progression is associated with the robust activation of the coagulation system. Notably, cancer-associated thrombosis (CAT) is a significant risk factor in PDAC. CAT is a concept whereby cancer cells promote thromboembolism, primarily venous thromboembolism (VTE). Of all cancer types, PDAC is associated with the highest risk of developing VTE. Hypoxia in a PDAC tumor microenvironment also elevates thrombotic risk. Direct oral anticoagulants (DOACs) or low-molecular-weight heparin (LMWH) are used only as thromboprophylaxis in PDAC. However, a precision medicine approach is recommended to determine the precise dose and duration of thromboprophylaxis in clinical setting.
Collapse
Affiliation(s)
- Teagan Prouse
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (T.P.); (M.A.M.); (S.G.); (N.K.); (M.L.D.)
| | - Mohammad A. Mohammad
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (T.P.); (M.A.M.); (S.G.); (N.K.); (M.L.D.)
| | - Sonali Ghosh
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (T.P.); (M.A.M.); (S.G.); (N.K.); (M.L.D.)
| | - Narender Kumar
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (T.P.); (M.A.M.); (S.G.); (N.K.); (M.L.D.)
| | - Ma. Lorena Duhaylungsod
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (T.P.); (M.A.M.); (S.G.); (N.K.); (M.L.D.)
| | - Rinku Majumder
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (T.P.); (M.A.M.); (S.G.); (N.K.); (M.L.D.)
| | - Samarpan Majumder
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Willems RAL, Biesmans C, Campello E, Simioni P, de Laat B, de Vos-Geelen J, Roest M, Ten Cate H. Cellular Components Contributing to the Development of Venous Thrombosis in Patients with Pancreatic Cancer. Semin Thromb Hemost 2024; 50:429-442. [PMID: 38049115 DOI: 10.1055/s-0043-1777304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive type of cancer and has a poor prognosis. Patients with PDAC are at high risk of developing thromboembolic events, which is a leading cause of morbidity and mortality following cancer progression. Plasma-derived coagulation is the most studied process in cancer-associated thrombosis. Other blood components, such as platelets, red blood cells, and white blood cells, have been gaining less attention. This narrative review addresses the literature on the role of cellular components in the development of venous thromboembolism (VTE) in patients with PDAC. Blood cells seem to play an important role in the development of VTE. Altered blood cell counts, i.e., leukocytosis, thrombocytosis, and anemia, have been found to associate with VTE risk. Tumor-related activation of leukocytes leads to the release of tissue factor-expressing microvesicles and the formation of neutrophil extracellular traps, initiating coagulation and forming a scaffold for thrombi. Tissue factor-expressing microvesicles are also thought to be released by PDAC cells. PDAC cells have been shown to stimulate platelet activation and aggregation, proposedly via the secretion of podoplanin and mucins. Hypofibrinolysis, partially explained by increased plasminogen activator inhibitor-1 activity, is observed in PDAC. In short, PDAC-associated hypercoagulability is a complex and multifactorial process. A better understanding of cellular contributions to hypercoagulability might lead to the improvement of diagnostic tests to identify PDAC patients at highest risk of VTE.
Collapse
Affiliation(s)
- Ruth Anne Laura Willems
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands
- Thrombosis Expert Center Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Maastricht, The Netherlands
| | - Charlotte Biesmans
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands
- Thrombosis Expert Center Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Elena Campello
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Paolo Simioni
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine - DIMED, University of Padova, Padova, Italy
| | - Bas de Laat
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Maastricht, The Netherlands
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Judith de Vos-Geelen
- Division of Medical Oncology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- GROW, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mark Roest
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Hugo Ten Cate
- Thrombosis Expert Center Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Division of Vascular Medicine, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- CARIM, School for Cardiovascular Diseases, Maastricht, The Netherlands
| |
Collapse
|
3
|
Gao Z, Azar J, Zhu H, Williams-Perez S, Kang SW, Marginean C, Rubinstein MP, Makawita S, Lee HS, Camp ER. Translational and oncologic significance of tertiary lymphoid structures in pancreatic adenocarcinoma. Front Immunol 2024; 15:1324093. [PMID: 38361928 PMCID: PMC10867206 DOI: 10.3389/fimmu.2024.1324093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with poor survival and limited treatment options. PDAC resistance to immunotherapeutic strategies is multifactorial, but partially owed to an immunosuppressive tumor immune microenvironment (TiME). However, the PDAC TiME is heterogeneous and harbors favorable tumor-infiltrating lymphocyte (TIL) populations. Tertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop within non-lymphoid tissue under chronic inflammation in multiple contexts, including cancers. Our current understanding of their role within the PDAC TiME remains limited; TLS are complex structures with multiple anatomic features such as location, density, and maturity that may impact clinical outcomes such as survival and therapy response in PDAC. Similarly, our understanding of methods to manipulate TLS is an actively developing field of research. TLS may function as anti-tumoral immune niches that can be leveraged as a therapeutic strategy to potentiate both existing chemotherapeutic regimens and potentiate future immune-based therapeutic strategies to improve patient outcomes. This review seeks to cover anatomy, relevant features, immune effects, translational significance, and future directions of understanding TLS within the context of PDAC.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Huili Zhu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sophia Williams-Perez
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sung Wook Kang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Celia Marginean
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Mark P. Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Shalini Makawita
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - E. Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Baylor College of Medicine, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
4
|
Li K, Guo J, Ming Y, Chen S, Zhang T, Ma H, Fu X, Wang J, Liu W, Peng Y. A circular RNA activated by TGFβ promotes tumor metastasis through enhancing IGF2BP3-mediated PDPN mRNA stability. Nat Commun 2023; 14:6876. [PMID: 37898647 PMCID: PMC10613289 DOI: 10.1038/s41467-023-42571-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
Metastasis is the leading cause of cancer-related death, where TGFβ-induced epithelial-mesenchymal transition (EMT) process confers on cancer cells increased metastatic potential. However, the involvement of circRNAs in this process is still obscure. Here, we identify a TGFβ-induced circRNA called circITGB6 as an indispensable factor during the TGFβ-mediated EMT process. circITGB6 is significantly upregulated in metastatic cancer samples and its higher abundance is closely correlated to worse prognosis of colorectal cancer (CRC) patients. Through gain- and loss-of-function assays, circITGB6 is found to potently promote EMT process and tumor metastasis in various models in vitro and in vivo. Mechanistically, circITGB6 enhances the mRNA stability of PDPN, an EMT-promoting gene, by directly interacting with IGF2BP3. Notably, interfering circITGB6 with PEI-coated specific siRNA effectively represses liver metastasis. Therefore, our study reveals the function of a TGFβ-regulated circRNA in tumor metastasis and suggests that targeting circITGB6 is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Ke Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiawei Guo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Chen
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tingting Zhang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hulin Ma
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xin Fu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Wang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Frontier Medical Center, Tianfu Jincheng Laboratory, 610212, Chengdu, China.
| |
Collapse
|
5
|
Croft W, Pearce H, Margielewska-Davies S, Lim L, Nicol SM, Zayou F, Blakeway D, Marcon F, Powell-Brett S, Mahon B, Merard R, Zuo J, Middleton G, Roberts K, Brown RM, Moss P. Spatial determination and prognostic impact of the fibroblast transcriptome in pancreatic ductal adenocarcinoma. eLife 2023; 12:e86125. [PMID: 37350578 PMCID: PMC10361717 DOI: 10.7554/elife.86125] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma has a poor clinical outcome and responses to immunotherapy are suboptimal. Stromal fibroblasts are a dominant but heterogenous population within the tumor microenvironment and therapeutic targeting of stromal subsets may have therapeutic utility. Here, we combine spatial transcriptomics and scRNA-Seq datasets to define the transcriptome of tumor-proximal and tumor-distal cancer-associated fibroblasts (CAFs) and link this to clinical outcome. Tumor-proximal fibroblasts comprise large populations of myofibroblasts, strongly expressed podoplanin, and were enriched for Wnt ligand signaling. In contrast, inflammatory CAFs were dominant within tumor-distal subsets and expressed complement components and the Wnt-inhibitor SFRP2. Poor clinical outcome was correlated with elevated HIF-1α and podoplanin expression whilst expression of inflammatory and complement genes was predictive of extended survival. These findings demonstrate the extreme transcriptional heterogeneity of CAFs and its determination by apposition to tumor. Selective targeting of tumor-proximal subsets, potentially combined with HIF-1α inhibition and immune stimulation, may offer a multi-modal therapeutic approach for this disease.
Collapse
Affiliation(s)
- Wayne Croft
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
- Centre for Computational Biology, University of BirminghamBirminghamUnited Kingdom
| | - Hayden Pearce
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Sandra Margielewska-Davies
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Lindsay Lim
- Cancer Research Horizons, The Francis Crick InstituteLondonUnited Kingdom
| | - Samantha M Nicol
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Fouzia Zayou
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Daniel Blakeway
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Francesca Marcon
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Sarah Powell-Brett
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Brinder Mahon
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Reena Merard
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Jianmin Zuo
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Gary Middleton
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Keith Roberts
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Rachel M Brown
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of BirminghamBirminghamUnited Kingdom
- University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital BirminghamBirminghamUnited Kingdom
| |
Collapse
|
6
|
Luo W, Zhang T. Cancer-associated fibroblasts: A key target to snatch victory from defeat in therapy resistance associated with the pancreatic cancer stroma. Cancer Lett 2023:216279. [PMID: 37336287 DOI: 10.1016/j.canlet.2023.216279] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The stroma plays a dual role in the tumour microenvironment (TME), where it can both promote or restrict tumour growth. These effects are significantly modulated by the presence of cancer-associated fibroblasts (CAFs), key components of the TME. The stroma and CAFs influence pancreatic cancer (PC) both physically and functionally. The physical impact involves the deposition of a wall-like matrix, creating a solid barrier that prevents the escape of materials from the inside and the entry of substances from the outside. Functionally, the stroma influences PC treatment through crosstalk between CAFs, cancer cells, and immune cells. Transformation of the "CAFs wall", however, may reduce the original benefit of limiting PC metastasis. In this review, we found that targeting the CAFs and designing novel carriers allowing the entry of drugs or therapeutic agents into the TME are alternative strategies to effectively treat PC. This article aims to provide a specific review focusing on the possibly therapeutic markers and its novel therapeutic strategies of CAFs in PC, discussing the concise treatment methods and its new challenging in current advanced researches.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
7
|
Zhao Z, Li T, Yuan Y, Zhu Y. What is new in cancer-associated fibroblast biomarkers? Cell Commun Signal 2023; 21:96. [PMID: 37143134 PMCID: PMC10158035 DOI: 10.1186/s12964-023-01125-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
The tumor microenvironment is one of the important drivers of tumor development. Cancer-associated fibroblasts (CAFs) are a major component of the tumor stroma and actively participate in tumor development, invasion, metastasis, drug resistance, and other biological behaviors. CAFs are a highly heterogeneous group of cells, a reflection of the diversity of their origin, biomarkers, and functions. The diversity of CAF origin determines the complexity of CAF biomarkers, and CAF subpopulations expressing different biomarkers may play contrasting roles in tumor progression. In this review, we provide an overview of these emerging CAF biomarkers and the biological functions that they suggest, which may give a better understanding of the relationship between CAFs and tumor cells and be of great significance for breakthroughs in precision targeted therapy for tumors. Video Abstract.
Collapse
Affiliation(s)
- Zehua Zhao
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tianming Li
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, No. 155 of Nanjing Road, Heping District, Shenyang, 110001, China.
| | - Yanmei Zhu
- Department of Pathology, Affiliated Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University), No. 44 of Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
8
|
Mazzaglia C, Sheng Y, Rodrigues LN, Lei IM, Shields JD, Huang YYS. Deployable extrusion bioprinting of compartmental tumoroids with cancer associated fibroblasts for immune cell interactions. Biofabrication 2023; 15:025005. [PMID: 36626838 DOI: 10.1088/1758-5090/acb1db] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Realizing the translational impacts of three-dimensional (3D) bioprinting for cancer research necessitates innovation in bioprinting workflows which integrate affordability, user-friendliness, and biological relevance. Herein, we demonstrate 'BioArm', a simple, yet highly effective extrusion bioprinting platform, which can be folded into a carry-on pack, and rapidly deployed between bio-facilities. BioArm enabled the reconstruction of compartmental tumoroids with cancer-associated fibroblasts (CAFs), forming the shell of each tumoroid. The 3D printed core-shell tumoroids showedde novosynthesized extracellular matrices, and enhanced cellular proliferation compared to the tumour alone 3D printed spheroid culture. Further, thein vivophenotypes of CAFs normally lost after conventional 2D co-culture re-emerged in the bioprinted model. Embedding the 3D printed tumoroids in an immune cell-laden collagen matrix permitted tracking of the interaction between immune cells and tumoroids, and subsequent simulated immunotherapy treatments. Our deployable extrusion bioprinting workflow could significantly widen the accessibility of 3D bioprinting for replicating multi-compartmental architectures of tumour microenvironment, and for developing strategies in cancer drug testing in the future.
Collapse
Affiliation(s)
| | - Yaqi Sheng
- The Nanoscience Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | | | - Iek Man Lei
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Jacqueline D Shields
- MRC Cancer Unit, University of Cambridge, Cambridge, United Kingdom
- Comprehensive Cancer Centre, King's College London, Great Maze Pond, London, United Kingdom
| | - Yan Yan Shery Huang
- The Nanoscience Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Dadashzadeh A, Moghassemi S, Grubliauskaité M, Vlieghe H, Brusa D, Amorim CA. Medium supplementation can influence the human ovarian cells in vitro. J Ovarian Res 2022; 15:137. [PMID: 36572931 PMCID: PMC9791781 DOI: 10.1186/s13048-022-01081-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cells are an essential part of the triple principles of tissue engineering and a crucial component of the engineered ovary as they can induce angiogenesis, synthesize extracellular matrix and influence follicle development. Here, we hypothesize that by changing the medium supplementation, we can obtain different cell populations isolated from the human ovary to use in the engineered ovary. To this end, we have in vitro cultured cells isolated from the menopausal ovarian cortex using different additives: KnockOut serum replacement (KO), fetal bovine serum (FBS), human serum albumin (HSA), and platelet lysate (PL). RESULTS Our results showed that most cells soon after isolation (pre-culture, control) and cells in KO and FBS groups were CD31- CD34- (D0: vs. CD31-CD34+, CD31 + CD34+, and CD31 + CD34- p < 0.0001; KO: vs. CD31-CD34+, CD31 + CD34+, and CD31 + CD34- p < 0.0001; FBS: vs. CD31-CD34+ and CD31 + CD34+ p < 0.001, and vs. CD31 + CD34- p < 0.01). Moreover, a deeper analysis of the CD31-CD34- population demonstrated a significant augmentation (more than 86%) of the CD73+ and CD90+ cells (possibly fibroblasts, mesenchymal stem cells, or pericytes) in KO- and FBS-based media compared to the control (around 16%; p < 0.001). Still, in the CD31-CD34- population, we found a higher proportion (60%) of CD90+ and PDPN+ cells (fibroblast-like cells) compared to the control (around 7%; vs PL and KO p < 0.01 and vs FBS p < 0.001). Additionally, around 70% of cells in KO- and FBS-based media were positive for CD105 and CD146, which may indicate an increase in the number of pericytes in these media compared to a low percentage (4%) in the control group (vs KO and FBS p < 0.001). On the other hand, we remarked a significant decrease of CD31- CD34+ cells after in vitro culture using all different medium additives (HSA vs D0 p < 0.001, PL, KO, and FBS vs D0 P < 0.01). We also observed a significant increase in epithelial cells (CD326+) when the medium was supplemented with KO (vs D0 p < 0.05). Interestingly, HSA and PL showed more lymphatic endothelial cells compared to other groups (CD31 + CD34+: HSA and PL vs KO and FBS p < 0.05; CD31 + CD34 + CD90 + PDPN+: HSA and PL vs D0 p < 0.01). CONCLUSION Our results demonstrate that medium additives can influence the cell populations, which serve as building blocks for the engineered tissue. Therefore, according to the final application, different media can be used in vitro to favor different cell types, which will be incorporated into a functional matrix.
Collapse
Affiliation(s)
- Arezoo Dadashzadeh
- grid.7942.80000 0001 2294 713XPôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200 Brussels, Belgium
| | - Saeid Moghassemi
- grid.7942.80000 0001 2294 713XPôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200 Brussels, Belgium
| | - Monika Grubliauskaité
- grid.459837.40000 0000 9826 8822Department of Biobank, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Hanne Vlieghe
- grid.7942.80000 0001 2294 713XPôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200 Brussels, Belgium
| | - Davide Brusa
- grid.7942.80000 0001 2294 713XCytoFlux-Flow Cytometry and Cell Sorting Platform, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Christiani A. Amorim
- grid.7942.80000 0001 2294 713XPôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 55, bte B1.55.03, 1200 Brussels, Belgium
| |
Collapse
|
10
|
Luong T, Golivi Y, Nagaraju GP, El-Rayes BF. Fibroblast heterogeneity in pancreatic ductal adenocarcinoma: Perspectives in immunotherapy. Cytokine Growth Factor Rev 2022; 68:107-115. [PMID: 36096869 DOI: 10.1016/j.cytogfr.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023]
Abstract
Cancer-associated fibroblasts (CAFs), the key component in pancreatic tumor microenvironment (TME), originate from many sources and are naturally heterogeneous in phenotype and function. Numerous studies have identified their crucial role in promoting tumorigenesis through many routes including fostering cancer proliferation, angiogenesis, invasion, and metastasis. Conversely, research also indicates that subsets of CAFs express anti-tumor activity. These dual effects reflect the complexity of CAF heterogeneity and their interactions with other cells and factors in pancreatic TME. A critical component in this environment is infiltrated immune cells and immune mediators, which can communicate with CAFs. The crosstalk occurs via the production of various cytokines, chemokines, and other mediators and shapes the immunological state in TME. Comprehensive studies of the crosstalk between CAFs and tumor immune environment, particularly internal mechanisms interlinking CAFs and immune effectors, may provide new approaches for pancreatic ductal adenocarcinoma (PDAC) treatments. In this review, we explore the characteristics of CAFs, describe the interplay among CAFs, infiltrated immune cells, other mediators, and provide an overview of recent CAF-target therapies, their limitations, and potential research directions in CAF in the context of PDAC.
Collapse
Affiliation(s)
- Tha Luong
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Yuvasri Golivi
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35201, USA.
| |
Collapse
|
11
|
Bryce AS, Dreyer SB, Froeling FEM, Chang DK. Exploring the Biology of Cancer-Associated Fibroblasts in Pancreatic Cancer. Cancers (Basel) 2022; 14:5302. [PMID: 36358721 PMCID: PMC9659154 DOI: 10.3390/cancers14215302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/23/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy characterised by a stubbornly low 5-year survival which is essentially unchanged in the past 5 decades. Despite recent advances in chemotherapy and surgical outcomes, progress continues to lag behind that of other cancers. The PDAC microenvironment is characterised by a dense, fibrotic stroma of which cancer-associated fibroblasts (CAFs) are key players. CAFs and fibrosis were initially thought to be uniformly tumour-promoting, however this doctrine is now being challenged by a wealth of evidence demonstrating CAF phenotypic and functional heterogeneity. Recent technological advances have allowed for the molecular profiling of the PDAC tumour microenvironment at exceptional detail, and these technologies are being leveraged at pace to improve our understanding of this previously elusive cell population. In this review we discuss CAF heterogeneity and recent developments in CAF biology. We explore the complex relationship between CAFs and other cell types within the PDAC microenvironment. We discuss the potential for therapeutic targeting of CAFs, and we finally provide an overview of future directions for the field and the possibility of improving outcomes for patients with this devastating disease.
Collapse
Affiliation(s)
- Adam S. Bryce
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| | - Stephan B. Dreyer
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| | - Fieke E. M. Froeling
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Beatson West of Scotland Cancer Centre, 1053 Great Western Rd, Glasgow G12 0YN, UK
| | - David K. Chang
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| |
Collapse
|
12
|
Prognostic Model and Immune Infiltration of Ferroptosis Subcluster-Related Modular Genes in Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:5813522. [PMID: 36276279 PMCID: PMC9584706 DOI: 10.1155/2022/5813522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/28/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
Background Gastric cancer (GC) is one of the gastrointestinal tumors with the highest mortality rate. The number of GC patients is still high. As a way of iron-dependent programmed cell death, ferroptosis activates lipid peroxidation and accumulates large reactive oxygen species. The role of ferroptosis in GC prognosis was underrepresented. The objective was to investigate the role of ferroptosis-related genes (FRGs) in the prognosis and development of GC. Methods Datasets of GC patients were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database that include clinical information and RNA seq data. Through nonnegative matrix factorization (NMF) clustering, we identified and unsupervised cluster analysis of the expression matrix of FRGs. And we constructed the co-expression network between genes and clinical characteristics by consensus weighted gene co-expression network analysis (WGCNA). The prognostic model was constructed by univariate and multivariate regression analysis. The potential mechanisms of development and prognosis in GC were explored by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, gene ontology (GO), tumor immune microenvironment (TIME), and tumor mutation burden (TMB). Results Two molecular subclusters with different expression patterns of FRGs were identified, which have significantly different survival states. Ferroptosis subcluster-related modular genes were identified by WGCNA. Based on 8 ferroptosis subcluster-related modular genes (collagen triple helix repeat containing 1 (CTHRC1), podoplanin (PDPN), procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2), glutamine-fructose-6-phosphate transaminase 2 (GFPT2), ATP-binding cassette subfamily A member 1 (ABCA1), G protein-coupled receptor 176 (GPR176), serpin family E member 1 (SERPINE1), dual specificity phosphatase 1 (DUSP1)) and clinicopathological features, a nomogram was constructed and validated for their predictive efficiency on GC prognosis. Through receiver operating characteristic (ROC) analysis, the results showed that the area under the curve (AUC) of 1-, 3-, and 5-year survival were 0.721, 0.747, and 0.803, respectively, indicating that the risk-scoring model we constructed had good prognosis efficacy in GC. The degree of immune infiltration in high-risk group was largely higher than low-risk group. It indicated that the immune cells have a good response in high-risk group of GC. The TMB of high-risk group was higher, which could generate more mutations and was more conducive to the body's resistance to the development of cancer. Conclusion The risk-scoring model based on 8 ferroptosis subcluster-related modular genes has shown outstanding advantages in predicting patient prognosis. The interaction of ferroptosis in GC development may provide new insights into exploring molecular mechanisms and targeted therapies for GC patients.
Collapse
|
13
|
Szymoński K, Milian-Ciesielska K, Lipiec E, Adamek D. Current Pathology Model of Pancreatic Cancer. Cancers (Basel) 2022; 14:2321. [PMID: 35565450 PMCID: PMC9105915 DOI: 10.3390/cancers14092321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive and lethal malignant neoplasms, ranking in seventh place in the world in terms of the incidence of death, with overall 5-year survival rates still below 10%. The knowledge about PC pathomechanisms is rapidly expanding. Daily reports reveal new aspects of tumor biology, including its molecular and morphological heterogeneity, explain complicated "cross-talk" that happens between the cancer cells and tumor stroma, or the nature of the PC-associated neural remodeling (PANR). Staying up-to-date is hard and crucial at the same time. In this review, we are focusing on a comprehensive summary of PC aspects that are important in pathologic reporting, impact patients' outcomes, and bring meaningful information for clinicians. Finally, we show promising new trends in diagnostic technologies that might bring a difference in PC early diagnosis.
Collapse
Affiliation(s)
- Krzysztof Szymoński
- Department of Pathomorphology, Jagiellonian University Medical College, 31-531 Cracow, Poland;
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland;
| | | | - Ewelina Lipiec
- M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348 Cracow, Poland;
| | - Dariusz Adamek
- Department of Pathomorphology, Jagiellonian University Medical College, 31-531 Cracow, Poland;
| |
Collapse
|
14
|
Campello E, Bosh F, Simion C, Spiezia L, Simioni P. Mechanisms of thrombosis in pancreatic ductal adenocarcinoma. Best Pract Res Clin Haematol 2022; 35:101346. [DOI: 10.1016/j.beha.2022.101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
|
15
|
De La Torre P, Pérez-Lorenzo MJ, Alcázar-Garrido Á, Collado J, Martínez-López M, Forcén L, Masero-Casasola AR, García A, Gutiérrez-Vélez MC, Medina-Polo J, Muñoz E, Flores AI. Perinatal mesenchymal stromal cells of the human decidua restore continence in rats with stress urinary incontinence induced by simulated birth trauma and regulate senescence of fibroblasts from women with stress urinary incontinence. Front Cell Dev Biol 2022; 10:1033080. [PMID: 36742196 PMCID: PMC9893794 DOI: 10.3389/fcell.2022.1033080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Stress urinary incontinence (SUI) is a condition that causes the involuntary loss of urine when making small efforts, which seriously affects daily life of people who suffer from it. Women are more affected by this form of incontinence than men, since parity is the main risk factor. Weakening of the pelvic floor tissues is the cause of SUI, although a complete understanding of the cellular and molecular mechanisms of the pathology is still lacking. Reconstructive surgery to strengthen tissue in SUI patients is often associated with complications and/or is ineffective. Mesenchymal stromal cells from the maternal side of the placenta, i.e. the decidua, are proposed here as a therapeutic alternative based on the regenerative potential of mesenchymal cells. The animal model of SUI due to vaginal distention simulating labor has been used, and decidual mesenchymal stromal cell (DMSC) transplantation was effective in preventing a drop in pressure at the leak point in treated animals. Histological analysis of the urethras from DMSC-treated animals after VD showed recovery of the muscle fiber integrity, low or no extracellular matrix (ECM) infiltration and larger elastic fibers near the external urethral sphincter, compared to control animals. Cells isolated from the suburethral connective tissue of SUI patients were characterized as myofibroblasts, based on the expression of several specific genes and proteins, and were shown to achieve premature replicative senescence. Co-culture of SUI myofibroblasts with DMSC via transwell revealed a paracrine interaction between the cells through signals that mediated DMSC migration, SUI myofibroblast proliferation, and modulation of the proinflammatory and ECM-degrading milieu that is characteristic of senescence. In conclusion, DMSC could be an alternative therapeutic option for SUI by counteracting the effects of senescence in damaged pelvic tissue.
Collapse
Affiliation(s)
- Paz De La Torre
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Álvaro Alcázar-Garrido
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Jennifer Collado
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | - Laura Forcén
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana R. Masero-Casasola
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alicia García
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Mª Carmen Gutiérrez-Vélez
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - José Medina-Polo
- Male’s Integral Health Group, Urology Department, Research Institute Hospital 12 de Octubre (imas12), Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Eloy Muñoz
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- Obstetrics and Gynecology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana I. Flores
- Regenerative Medicine Group, Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
- *Correspondence: Ana I. Flores,
| |
Collapse
|
16
|
Haschemi R, Gockel LM, Bendas G, Schlesinger M. A Combined Activity of Thrombin and P-Selectin Is Essential for Platelet Activation by Pancreatic Cancer Cells. Int J Mol Sci 2021; 22:3323. [PMID: 33805059 PMCID: PMC8037188 DOI: 10.3390/ijms22073323] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
Pancreatic cancer patients have an elevated risk of suffering from venous thrombosis. Among several risk factors that contribute to hypercoagulability of this malignancy, platelets possess a key role in the initiation of clot formation. Although single mechanisms of platelet activation are well-known in principle, combinations thereof and their potential synergy to mediate platelet activation is, in the case of pancreatic cancer, far from being clear. Applying an inhibitor screening approach using light transmission aggregometry, dense granule release, and thrombin formation assays, we provide evidence that a combination of tissue factor-induced thrombin formation by cancer cells and their platelet P-selectin binding is responsible for AsPC-1 and Capan-2 pancreatic cancer cell-mediated platelet activation. While the blockade of one of these pathways leads to a pronounced inhibition of platelet aggregation and dense granule release, the simultaneous blockade of both pathways is inevitable to prevent platelet aggregation completely and minimize ATP release. In contrast, MIA PaCa-2 pancreatic cancer cells express reduced levels of tissue factor and P-selectin ligands and thus turn out to be poor platelet activators. Consequently, a simultaneous blockade of thrombin and P-selectin binding seems to be a powerful approach, as mediated by heparin to crucially reduce the hypercoagulable state of pancreatic cancer patients.
Collapse
Affiliation(s)
| | | | | | - Martin Schlesinger
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; (R.H.); (L.M.G.); (G.B.)
| |
Collapse
|
17
|
Chen J, Sivan U, Tan SL, Lippo L, De Angelis J, Labella R, Singh A, Chatzis A, Cheuk S, Medhghalchi M, Gil J, Hollander G, Marsden BD, Williams R, Ramasamy SK, Kusumbe AP. High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. SCIENCE ADVANCES 2021; 7:eabd7819. [PMID: 33536212 PMCID: PMC7857692 DOI: 10.1126/sciadv.abd7819] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/23/2020] [Indexed: 02/05/2023]
Abstract
Blood vessels provide supportive microenvironments for maintaining tissue functions. Age-associated vascular changes and their relation to tissue aging and pathology are poorly understood. Here, we perform 3D imaging of young and aging vascular beds. Multiple organs in mice and humans demonstrate an age-dependent decline in vessel density and pericyte numbers, while highly remodeling tissues such as skin preserve the vasculature. Vascular attrition precedes the appearance of cellular hallmarks of aging such as senescence. Endothelial VEGFR2 loss-of-function mice demonstrate that vascular perturbations are sufficient to stimulate cellular changes coupled with aging. Age-associated tissue-specific molecular changes in the endothelium drive vascular loss and dictate pericyte to fibroblast differentiation. Lineage tracing of perivascular cells with inducible PDGFRβ and NG2 Cre mouse lines demonstrated that increased pericyte to fibroblast differentiation distinguishes injury-induced organ fibrosis and zymosan-induced arthritis. To spur further discoveries, we provide a freely available resource with 3D vascular and tissue maps.
Collapse
Affiliation(s)
- Junyu Chen
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
- Department of Prosthodontics, State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Unnikrishnan Sivan
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Sin Lih Tan
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Luciana Lippo
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Jessica De Angelis
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Rossella Labella
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Amit Singh
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, Heidelberg D-69120, Germany
| | - Alexandros Chatzis
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Stanley Cheuk
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Mino Medhghalchi
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Jesus Gil
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Georg Hollander
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Brian D Marsden
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
- Structural Genomics Consortium, NDM, University of Oxford, Oxford OX3 7DQ, UK
| | - Richard Williams
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Saravana K Ramasamy
- Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments Group, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
18
|
Francescone R, Barbosa Vendramini-Costa D, Franco-Barraza J, Wagner J, Muir A, Lau AN, Gabitova L, Pazina T, Gupta S, Luong T, Rollins D, Malik R, Thapa RJ, Restifo D, Zhou Y, Cai KQ, Hensley HH, Tan Y, Kruger WD, Devarajan K, Balachandran S, Klein-Szanto AJ, Wang H, El-Deiry WS, Vander Heiden MG, Peri S, Campbell KS, Astsaturov I, Cukierman E. Netrin G1 Promotes Pancreatic Tumorigenesis through Cancer-Associated Fibroblast-Driven Nutritional Support and Immunosuppression. Cancer Discov 2021; 11:446-479. [PMID: 33127842 PMCID: PMC7858242 DOI: 10.1158/2159-8290.cd-20-0775] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/08/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year survival rate and lacks effective therapeutics. Therefore, it is of paramount importance to identify new targets. Using multiplex data from patient tissue, three-dimensional coculturing in vitro assays, and orthotopic murine models, we identified Netrin G1 (NetG1) as a promoter of PDAC tumorigenesis. We found that NetG1+ cancer-associated fibroblasts (CAF) support PDAC survival, through a NetG1-mediated effect on glutamate/glutamine metabolism. Also, NetG1+ CAFs are intrinsically immunosuppressive and inhibit natural killer cell-mediated killing of tumor cells. These protumor functions are controlled by a signaling circuit downstream of NetG1, which is comprised of AKT/4E-BP1, p38/FRA1, vesicular glutamate transporter 1, and glutamine synthetase. Finally, blocking NetG1 with a neutralizing antibody stunts in vivo tumorigenesis, suggesting NetG1 as potential target in PDAC. SIGNIFICANCE: This study demonstrates the feasibility of targeting a fibroblastic protein, NetG1, which can limit PDAC tumorigenesis in vivo by reverting the protumorigenic properties of CAFs. Moreover, inhibition of metabolic proteins in CAFs altered their immunosuppressive capacity, linking metabolism with immunomodulatory function.See related commentary by Sherman, p. 230.This article is highlighted in the In This Issue feature, p. 211.
Collapse
Affiliation(s)
- Ralph Francescone
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Débora Barbosa Vendramini-Costa
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Janusz Franco-Barraza
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jessica Wagner
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alexander Muir
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Allison N Lau
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Linara Gabitova
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Tatiana Pazina
- Blood Cell and Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sapna Gupta
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Tiffany Luong
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Dustin Rollins
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ruchi Malik
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Roshan J Thapa
- Blood Cell and Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Diana Restifo
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yan Zhou
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Biostatistics and Bioinformatics Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kathy Q Cai
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Histopathology Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Harvey H Hensley
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Small Animal Imaging Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Yinfei Tan
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Genomics Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Warren D Kruger
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Karthik Devarajan
- Biostatistics and Bioinformatics Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Siddharth Balachandran
- Blood Cell and Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Andres J Klein-Szanto
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Histopathology Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Huamin Wang
- Division of Pathology/Lab Medicine, Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wafik S El-Deiry
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Suraj Peri
- Biostatistics and Bioinformatics Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kerry S Campbell
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Blood Cell and Development and Function Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Edna Cukierman
- Cancer Biology Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Garcia PE, Scales MK, Allen BL, Pasca di Magliano M. Pancreatic Fibroblast Heterogeneity: From Development to Cancer. Cells 2020; 9:E2464. [PMID: 33198201 PMCID: PMC7698149 DOI: 10.3390/cells9112464] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extensive fibroinflammatory microenvironment that accumulates from the onset of disease progression. Cancer-associated fibroblasts (CAFs) are a prominent cellular component of the stroma, but their role during carcinogenesis remains controversial, with both tumor-supporting and tumor-restraining functions reported in different studies. One explanation for these contradictory findings is the heterogeneous nature of the fibroblast populations, and the different roles each subset might play in carcinogenesis. Here, we review the current literature on the origin and function of pancreatic fibroblasts, from the developing organ to the healthy adult pancreas, and throughout the initiation and progression of PDA. We also discuss clinical approaches to targeting fibroblasts in PDA.
Collapse
Affiliation(s)
- Paloma E. Garcia
- Program in Molecular and Cellular Pathology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48105, USA;
| | - Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109, USA; (M.K.S.); (B.L.A.)
- Rogel Cancer Center, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Gorchs L, Ahmed S, Mayer C, Knauf A, Fernández Moro C, Svensson M, Heuchel R, Rangelova E, Bergman P, Kaipe H. The vitamin D analogue calcipotriol promotes an anti-tumorigenic phenotype of human pancreatic CAFs but reduces T cell mediated immunity. Sci Rep 2020; 10:17444. [PMID: 33060625 PMCID: PMC7562723 DOI: 10.1038/s41598-020-74368-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
The pancreatic tumour stroma is composed of phenotypically heterogenous cancer-associated fibroblasts (CAFs) with both pro- and anti-tumorigenic functions. Here, we studied the impact of calcipotriol, a vitamin D3 analogue, on the activation of human pancreatic CAFs and T cells using 2- and 3-dimensional (2D, 3D) cell culture models. We found that calcipotriol decreased CAF proliferation and migration and reduced the release of the pro-tumorigenic factors prostaglandin E2, IL-6, periostin, and leukemia inhibitory factor. However, calcipotriol promoted PD-L1 upregulation, which could influence T cell mediated tumour immune surveillance. Calcipotriol reduced T cell proliferation and production of IFN-γ, granzyme B and IL-17, but increased IL-10 secretion. These effects were even more profound in the presence of CAFs in 2D cultures and in the presence of CAFs and pancreatic tumour cell line (PANC-1) spheroids in 3D cultures. Functional assays on tumour infiltrating lymphocytes also showed a reduction in T cell activation by calcipotriol. This suggests that calcipotriol reduces the tumour supportive activity of CAFs but at the same time reduces T cell effector functions, which could compromise the patients’ tumour immune surveillance. Thus, vitamin D3 analogues appear to have dual functions in the context of pancreatic cancer, which could have important clinical implications.
Collapse
Affiliation(s)
- Laia Gorchs
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Sultan Ahmed
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Chanté Mayer
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Alisa Knauf
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Fernández Moro
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Pathology/Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Department of Medicine, Centre for Infectious Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Rainer Heuchel
- Department of CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Elena Rangelova
- Department of CLINTEC, Karolinska Institutet, Stockholm, Sweden.,Pancreatic Surgery Unit, Centre for Digestive Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Infectious Disease Clinic, The Immunodeficiency Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Helen Kaipe
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden. .,Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
21
|
Han X, Zhang WH, Wang WQ, Yu XJ, Liu L. Cancer-associated fibroblasts in therapeutic resistance of pancreatic cancer: Present situation, predicaments, and perspectives. Biochim Biophys Acta Rev Cancer 2020; 1874:188444. [PMID: 33031899 DOI: 10.1016/j.bbcan.2020.188444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is highly lethal, and the most effective treatment is curative resection followed by chemotherapy. Unfortunately, chemoresistance is an extremely common occurrence, and novel treatment modalities, such as immunotherapy and molecular targeted therapy, have shown limited success in clinical practice. Pancreatic cancer is characterized by an abundant stromal compartment. Cancer-associated fibroblasts (CAFs) and the extracellular matrix they deposit account for a large portion of the pancreatic tumor stroma. CAFs interact directly and indirectly with pancreatic cancer cells and can compromise the effects of, and even promote tumorigenic responses to, various treatment approaches. To eliminate these adverse effects, CAFs depletion strategies were developed. Instead of the anticipated antitumor effects of CAFs depletion, more aggressive tumor phenotypes were occasionally observed. The failure of universal stromal depletion led to the investigation of CAFs heterogeneity that forms the foundation for stromal remodeling and normalization. This review analyzes the role of CAFs in therapeutic resistance of pancreatic cancer and discusses potential CAFs-targeting strategies basing on the diverse biological functions of CAFs, thus to improve the outcome of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Xuan Han
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wu-Hu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Pancreatic Cancer Institute, Shanghai, China; Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Reprogramming of Mesothelial-Mesenchymal Transition in Chronic Peritoneal Diseases by Estrogen Receptor Modulation and TGF-β1 Inhibition. Int J Mol Sci 2020; 21:ijms21114158. [PMID: 32532126 PMCID: PMC7312018 DOI: 10.3390/ijms21114158] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
In chronic peritoneal diseases, mesothelial-mesenchymal transition is determined by cues from the extracellular environment rather than just the cellular genome. The transformation of peritoneal mesothelial cells and other host cells into myofibroblasts is mediated by cell membrane receptors, Transforming Growth Factor β1 (TGF-β1), Src and Hypoxia-inducible factor (HIF). This article provides a narrative review of the reprogramming of mesothelial mesenchymal transition in chronic peritoneal diseases, drawing on the similarities in pathophysiology between encapsulating peritoneal sclerosis and peritoneal metastasis, with a particular focus on TGF-β1 signaling and estrogen receptor modulators. Estrogen receptors act at the cell membrane/cytosol as tyrosine kinases that can phosphorylate Src, in a similar way to other receptor tyrosine kinases; or can activate the estrogen response element via nuclear translocation. Tamoxifen can modulate estrogen membrane receptors, and has been shown to be a potent inhibitor of mesothelial-mesenchymal transition (MMT), peritoneal mesothelial cell migration, stromal fibrosis, and neoangiogenesis in the treatment of encapsulating peritoneal sclerosis, with a known side effect and safety profile. The ability of tamoxifen to inhibit the transduction pathways of TGF-β1 and HIF and achieve a quiescent peritoneal stroma makes it a potential candidate for use in cancer treatments. This is relevant to tumors that spread to the peritoneum, particularly those with mesenchymal phenotypes, such as colorectal CMS4 and MSS/EMT gastric cancers, and pancreatic cancer with its desmoplastic stroma. Morphological changes observed during mesothelial mesenchymal transition can be treated with estrogen receptor modulation and TGF-β1 inhibition, which may enable the regression of encapsulating peritoneal sclerosis and peritoneal metastasis.
Collapse
|
23
|
Helms E, Onate MK, Sherman MH. Fibroblast Heterogeneity in the Pancreatic Tumor Microenvironment. Cancer Discov 2020; 10:648-656. [PMID: 32014869 DOI: 10.1158/2159-8290.cd-19-1353] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/26/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
The poor prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) impels an improved understanding of disease biology to facilitate the development of better therapies. PDAC typically features a remarkably dense stromal reaction, featuring and established by a prominent population of cancer-associated fibroblasts (CAF). Genetically engineered mouse models and increasingly sophisticated cell culture techniques have demonstrated important roles for fibroblasts in PDAC progression and therapy response, but these roles are complex, with strong evidence for both tumor-supportive and tumor-suppressive or homeostatic functions. Here, we review the recent literature that has improved our understanding of heterogeneity in fibroblast fate and function in this disease including the existence of distinct fibroblast populations, and highlight important avenues for future study. SIGNIFICANCE: Although the abundant stromal reaction associated with pancreatic cancer has long been appreciated, the functions of the CAF cells that establish this stromal reaction remain unclear. An improved understanding of the transcriptional and functional heterogeneity of pancreatic CAFs, as well as their tumor-supportive versus tumor-suppressive capacity, may facilitate the development of effective therapies for this disease.
Collapse
Affiliation(s)
- Erin Helms
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - M Kathrina Onate
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Mara H Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, Oregon. .,Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
24
|
Taran D, Tarlui VN, Ceausu RA, Cimpean AM, Raica M, Sarb S. Podoplanin and PROX1 Expression in Hypercaloric Diet-induced Pancreatic Injuries. In Vivo 2019; 33:1157-1163. [PMID: 31280205 DOI: 10.21873/invivo.11586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/15/2019] [Accepted: 05/29/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND The role of podoplanin (PDPN) and homebox prospero gene 1 (PROX1) in early stages of pancreatic islet changes induced by hypercaloric diet is unclear. The aim of this study was to study PDPN and PROX1 variability in pancreatic islets after a hypercaloric diet in a rat experimental model. MATERIALS AND METHODS Pancreatic biopsies harvested from Sprague-Dawley rats at 3, 6, and 9 weeks following hypercaloric diet intake were evaluated for morphological and molecular changes of Langerhans islets based on PDPN and PROX1 expression Results: Six weeks of hypercaloric diet induced hypertrophy of pancreatic islets with focal expression of Pdpn and Prox1 mRNA. At 9 weeks of hypercaloric diet, strong peri-insular inflammation was found around hypertrophic islets highly expressing PDPN, and lacking Prox1 mRNA and protein expression. CONCLUSION This is the first report of Pdpn and Prox1 mRNA expression variability and involvement in early steps of pancreatic islet changes following hypercaloric food intake.
Collapse
Affiliation(s)
- Delia Taran
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Valeria Nicoleta Tarlui
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Raluca Amalia Ceausu
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania .,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Simona Sarb
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
25
|
Deficiency of the adrenomedullin-RAMP3 system suppresses metastasis through the modification of cancer-associated fibroblasts. Oncogene 2019; 39:1914-1930. [PMID: 31754214 DOI: 10.1038/s41388-019-1112-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023]
Abstract
Tumor metastasis is a primary source of morbidity and mortality in cancer. Adrenomedullin (AM) is a multifunctional peptide regulated by receptor activity-modifying proteins (RAMPs). We previously reported that the AM-RAMP2 system is involved in tumor angiogenesis, but the function of the AM-RAMP3 system remains largely unknown. Here, we investigated the actions of the AM-RAMP2 and 3 systems in the tumor microenvironment and their impact on metastasis. PAN02 pancreatic cancer cells were injected into the spleens of mice, leading to spontaneous liver metastasis. Tumor metastasis was enhanced in vascular endothelial cell-specific RAMP2 knockout mice (DI-E-RAMP2-/-). By contrast, metastasis was suppressed in RAMP3-/- mice, where the number of podoplanin (PDPN)-positive cancer-associated fibroblasts (CAFs) was reduced in the periphery of tumors at metastatic sites. Because PDPN-positive CAFs are a hallmark of tumor malignancy, we assessed the regulation of PDPN and found that Src/Cas/PDPN signaling is mediated by RAMP3. In fact, RAMP3 deficiency CAFs suppressed migration, proliferation, and metastasis in co-cultures with tumor cells in vitro and in vivo. Moreover, the activation of RAMP2 in RAMP3-/- mice suppressed both tumor growth and metastasis. Based on these results, we suggest that the upregulation of PDPN in DI-E-RAMP2-/- mice increases malignancy, while the downregulation of PDPN in RAMP3-/- mice reduces it. Selective activation of RAMP2 and inhibition of RAMP3 would therefore be expected to suppress tumor metastasis. This study provides the first evidence that understanding and targeting to AM-RAMP systems could contribute to the development of novel therapeutics against metastasis.
Collapse
|
26
|
The relationship between pancreatic cancer and hypercoagulability: a comprehensive review on epidemiological and biological issues. Br J Cancer 2019; 121:359-371. [PMID: 31327867 PMCID: PMC6738049 DOI: 10.1038/s41416-019-0510-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
It has long been recognised that pancreatic cancer induces a hypercoagulable state that may lead to clinically apparent thrombosis. Although the relationship between pancreatic cancer and hypercoagulability is well described, the underlying pathological mechanism(s) and the interplay between these pathways remain a matter of intensive study. This review summarises existing data on epidemiology and pathogenesis of thrombotic complications in pancreatic cancer with a particular emphasis on novel pathophysiological pathways. Pancreatic cancer is characterised by high tumoural expression of tissue factor, activation of leukocytes with the release of neutrophil extracellular traps, the dissemination of tumour-derived microvesicles that promote hypercoagulability and increased platelet activation. Furthermore, other coagulation pathways probably contribute to these processes, such as those that involve heparanase, podoplanin and hypofibrinolysis. In the era in which heparin and its derivatives—the currently recommended therapy for cancer-associated thrombosis—might be superseded by direct oral anticoagulants, novel data from mouse models of cancer-associated thrombosis suggest the possibility of future personalised therapeutic approaches. In this dynamic era for cancer-associated thrombosis, the discovery of novel prothrombotic and proinflammatory mechanisms will potentially uncover pharmacological targets to prevent and treat thrombosis without adversely affecting haemostasis.
Collapse
|
27
|
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, Sivajothi S, Armstrong TD, Engle DD, Yu KH, Hao Y, Wolfgang CL, Park Y, Preall J, Jaffee EM, Califano A, Robson P, Tuveson DA. Cross-Species Single-Cell Analysis of Pancreatic Ductal Adenocarcinoma Reveals Antigen-Presenting Cancer-Associated Fibroblasts. Cancer Discov 2019; 9:1102-1123. [PMID: 31197017 DOI: 10.1158/2159-8290.cd-19-0094] [Citation(s) in RCA: 1123] [Impact Index Per Article: 224.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/18/2019] [Accepted: 05/30/2019] [Indexed: 12/21/2022]
Abstract
Cancer-associated fibroblasts (CAF) are major players in the progression and drug resistance of pancreatic ductal adenocarcinoma (PDAC). CAFs constitute a diverse cell population consisting of several recently described subtypes, although the extent of CAF heterogeneity has remained undefined. Here we use single-cell RNA sequencing to thoroughly characterize the neoplastic and tumor microenvironment content of human and mouse PDAC tumors. We corroborate the presence of myofibroblastic CAFs and inflammatory CAFs and define their unique gene signatures in vivo. Moreover, we describe a new population of CAFs that express MHC class II and CD74, but do not express classic costimulatory molecules. We term this cell population "antigen-presenting CAFs" and find that they activate CD4+ T cells in an antigen-specific fashion in a model system, confirming their putative immune-modulatory capacity. Our cross-species analysis paves the way for investigating distinct functions of CAF subtypes in PDAC immunity and progression. SIGNIFICANCE: Appreciating the full spectrum of fibroblast heterogeneity in pancreatic ductal adenocarcinoma is crucial to developing therapies that specifically target tumor-promoting CAFs. This work identifies MHC class II-expressing CAFs with a capacity to present antigens to CD4+ T cells, and potentially to modulate the immune response in pancreatic tumors.See related commentary by Belle and DeNardo, p. 1001.This article is highlighted in the In This Issue feature, p. 983.
Collapse
Affiliation(s)
- Ela Elyada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Mohan Bolisetty
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.,Bristol-Myers Squibb, Pennington, New Jersey
| | - Pasquale Laise
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York
| | - William F Flynn
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Elise T Courtois
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Richard A Burkhart
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Jonathan A Teinor
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Pascal Belleau
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Giulia Biffi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | - Matthew S Lucito
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | | | - Todd D Armstrong
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Dannielle D Engle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York.,Salk institute for Biological Studies, La Jolla, California
| | - Kenneth H Yu
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuan Hao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Christopher L Wolfgang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| | | | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Andrea Califano
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York.,J.P. Sulzberger Columbia Genome Center, Columbia University, New York, New York.,Department of Biomedical Informatics, Columbia University, New York, New York.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut. .,Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut, Farmington, Connecticut
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. .,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
28
|
Neuzillet C, Tijeras-Raballand A, Ragulan C, Cros J, Patil Y, Martinet M, Erkan M, Kleeff J, Wilson J, Apte M, Tosolini M, Wilson AS, Delvecchio FR, Bousquet C, Paradis V, Hammel P, Sadanandam A, Kocher HM. Inter- and intra-tumoural heterogeneity in cancer-associated fibroblasts of human pancreatic ductal adenocarcinoma. J Pathol 2019; 248:51-65. [PMID: 30575030 PMCID: PMC6492001 DOI: 10.1002/path.5224] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/18/2018] [Accepted: 12/18/2018] [Indexed: 12/13/2022]
Abstract
Cancer‐associated fibroblasts (CAF) are orchestrators of the pancreatic ductal adenocarcinoma (PDAC) microenvironment. Stromal heterogeneity may explain differential pathophysiological roles of the stroma (pro‐ versus anti‐tumoural) in PDAC. We hypothesised that multiple CAF functional subtypes exist in PDAC, that contribute to stromal heterogeneity through interactions with cancer cells. Using molecular and functional analysis of patient‐derived CAF primary cultures, we demonstrated that human PDAC‐derived CAFs display a high level of inter‐ and intra‐tumour heterogeneity. We identified at least four subtypes of CAFs based on transcriptomic analysis, and propose a classification for human PDAC‐derived CAFs (pCAFassigner). Multiple CAF subtypes co‐existed in individual patient samples. The presence of these CAF subtypes in bulk tumours was confirmed using publicly available gene expression profiles, and immunostainings of CAF subtype markers. Each subtype displayed specific phenotypic features (matrix‐ and immune‐related signatures, vimentin and α‐smooth muscle actin expression, proliferation rate), and was associated with an assessable prognostic impact. A prolonged exposure of non‐tumoural pancreatic stellate cells to conditioned media from cancer cell lines (cancer education experiment) induced a CAF‐like phenotype, including loss of capacity to revert to quiescence and an increase in the expression of genes related to CAF subtypes B and C. This classification demonstrates molecular and functional inter‐ and intra‐tumoural heterogeneity of CAFs in human PDAC. Our subtypes overlap with those identified from single‐cell analyses in other cancers, and pave the way for the development of therapies targeting specific CAF subpopulations in PDAC. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Cindy Neuzillet
- Centre for Tumour Biology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK.,Barts and The London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK.,INSERM UMR1149, Beaujon University Hospital, Paris 7 Diderot University, Paris, France.,Department of Medical Oncology, Curie Institute, Versailles Saint-Quentin University, Paris, France
| | | | - Chanthirika Ragulan
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.,Centre for Molecular Pathology, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Jérôme Cros
- INSERM UMR1149, Beaujon University Hospital, Paris 7 Diderot University, Paris, France.,Department of Pathology, Beaujon University Hospital, Paris 7 Diderot University, Paris, France
| | - Yatish Patil
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.,Centre for Molecular Pathology, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | | | - Mert Erkan
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Jörg Kleeff
- Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Jeremy Wilson
- Pancreatic Research Group, South Western Sydney Clinical School, University of New South Wales and Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical School, University of New South Wales and Ingham Institute for Applied Medical Research, Sydney, Australia
| | - Marie Tosolini
- INSERM UMR 1037, Technological Pole and Bioinformatic Platform, Cancer Research Center of Toulouse, Toulouse, France
| | - Abigail S Wilson
- Centre for Tumour Biology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK
| | - Francesca R Delvecchio
- Centre for Tumour Biology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK
| | - Corinne Bousquet
- INSERM UMR 1037, Team 6 Protein Synthesis and Secretion in Carcinogenesis, Cancer Research Center of Toulouse, Toulouse, France
| | - Valérie Paradis
- INSERM UMR1149, Beaujon University Hospital, Paris 7 Diderot University, Paris, France.,Department of Pathology, Beaujon University Hospital, Paris 7 Diderot University, Paris, France
| | - Pascal Hammel
- INSERM UMR1149, Beaujon University Hospital, Paris 7 Diderot University, Paris, France.,Digestive Oncology Unit, Beaujon University Hospital, Paris 7 Diderot University, Paris, France
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.,Centre for Molecular Pathology, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute - a CRUK Centre of Excellence, Queen Mary University of London, London, UK.,Barts and The London HPB Centre, The Royal London Hospital, Barts Health NHS Trust, London, UK
| |
Collapse
|
29
|
Toshiyama R, Konno M, Eguchi H, Asai A, Noda T, Koseki J, Asukai K, Ohashi T, Matsushita K, Iwagami Y, Yamada D, Asaoka T, Wada H, Kawamoto K, Gotoh K, Kudo T, Satoh T, Doki Y, Mori M, Ishii H. Association of iron metabolic enzyme hepcidin expression levels with the prognosis of patients with pancreatic cancer. Oncol Lett 2018; 15:8125-8133. [PMID: 29731920 DOI: 10.3892/ol.2018.8357] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/21/2018] [Indexed: 12/11/2022] Open
Abstract
Hepcidin and ferroportin, which are known as key iron regulators, may be used in future treatments of pancreatic ductal adenocarcinoma. Iron is essential for life support; it helps oxygen molecules bind to hemoglobin and acts as an important catalytic enzyme center. However, iron overload is a risk factor for cancer, possibly through the generation of reactive oxygen species (ROS). Hepcidin, which is a peptide hormone mainly generated by the liver, inhibits iron absorption via enterocytes and iron release from macrophages. Notably, hepcidin regulates iron homeostasis in the body by regulating the iron transporter ferroportin. In the present study, it was assumed that high hepcidin expression and low ferroportin expression result in malignancy. Therefore, it was examined whether hepcidin and ferroportin expression levels were correlated with the prognosis of pancreatic cancer in patients. Results revealed that high hepcidin expression levels and low ferroportin expression levels in pancreatic cancer tissue were significantly associated with poor prognosis in the analyses of overall survival (P=0.0140 and 0.0478, respectively). Additionally, there was no significant difference in disease-free survival in the hepcidin- and ferroportin-staining groups. Hepcidin expression correlated with the pathological stage and vascular invasion (P=0.0493 and 0.0400, respectively), and ferroportin expression was correlated with age (P=0.0372). Multivariate analysis of overall survival in the hepcidin-staining group revealed that pathological N factor (pN), adjuvant chemotherapy, and hepcidin expression were independent prognostic factors (P=0.0450, 0.0002, and 0.0049, respectively). Similarly, multivariate analysis of overall survival in the ferroportin-staining group revealed that vascular invasion, and ferroportin expression were independent prognostic factors (P=0.0028, P<0.0001, and P=0.0056, respectively). Thus, hepcidin and ferroportin expressions might be novel prognostic indicators for pancreatic cancer.
Collapse
Affiliation(s)
- Reishi Toshiyama
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masamitsu Konno
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ayumu Asai
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jun Koseki
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kei Asukai
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomofumi Ohashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsunori Matsushita
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toshihiro Kudo
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Taroh Satoh
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|