1
|
Zhou M, Peng H, Luo S, Jiao K, Guo L, Fan C, Li J. Functionalization of Nucleic Acid Molecular Machines under Physiological Conditions: A Review. ACS APPLIED BIO MATERIALS 2025. [PMID: 40168177 DOI: 10.1021/acsabm.5c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
In-situ fabrication of nucleic acid molecular machines in biological environments is desirable for smart theranostic applications. However, given the complex nature of biological environments, the integration of multiple functional modules into a coordinated machine remains challenging. Recent advances in nucleic acid nanotechnology offer solutions to these challenges. Here, we outline design principles for nucleic acid-based molecular machines tailored for physiological conditions, drawing on recent examples. We review cutting-edge technologies that facilitate their functionalization in physiological settings, particularly presynthesis modifications using unnatural bases and postsynthesis functionalization via bioorthogonal chemistry and noncovalent biological interactions. We discuss the advantages and limitations of these technologies and suggest future directions to overcome existing challenges.
Collapse
Affiliation(s)
- Mo Zhou
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhangjiang Laboratory, 100 Haike Road, Shanghai 201210, China
| | - Hongzhen Peng
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Kai Jiao
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Linjie Guo
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chunhai Fan
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
López JG, Muñoz M, Arias V, García V, Calvo PC, Ondo-Méndez AO, Rodríguez-Burbano DC, Fonthal F. Electrochemical and Optical Carbon Dots and Glassy Carbon Biosensors: A Review on Their Development and Applications in Early Cancer Detection. MICROMACHINES 2025; 16:139. [PMID: 40047624 PMCID: PMC11857277 DOI: 10.3390/mi16020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/09/2025]
Abstract
Cancer remains one of the leading causes of mortality worldwide, making early detection a critical factor in improving patient outcomes and survival rates. Developing advanced biosensors is essential for achieving early detection and accurate cancer diagnosis. This review offers a comprehensive overview of the development and application of carbon dots (CDs) and glassy carbon (GC) biosensors for early cancer detection. It covers the synthesis of CDs and GC, electrode fabrication methods, and electrochemical and optical transduction principles. This review explores various biosensors, including enzymatic and non-enzymatic, and discusses key biomarkers relevant to cancer detection. It also examines characterization techniques for electrochemical and optical biosensors, such as electrochemical impedance spectroscopy, cyclic voltammetry, UV-VIS, and confocal microscopy. The findings highlight the advancements in biosensor performance, emphasizing improvements in sensitivity, selectivity, and stability, as well as underscoring the potential of integrating different transduction methods and characterization approaches to enhance early cancer detection.
Collapse
Affiliation(s)
- Juana G. López
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Mariana Muñoz
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Valentina Arias
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Valentina García
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Paulo C. Calvo
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| | - Alejandro O. Ondo-Méndez
- Clinical Investigation Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Diana C. Rodríguez-Burbano
- Givia Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia;
| | - Faruk Fonthal
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia; (J.G.L.); (M.M.); (V.A.); (V.G.); (P.C.C.)
| |
Collapse
|
3
|
Lodha SR, Merchant JG, Pillai AJ, Gore AH, Patil PO, Nangare SN, Kalyankar GG, Shah SA, Shah DR, Patole SP. Carbon dot-based fluorescent sensors for pharmaceutical detection: Current innovations, challenges, and future prospects. Heliyon 2024; 10:e41020. [PMID: 39759361 PMCID: PMC11697698 DOI: 10.1016/j.heliyon.2024.e41020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Environmental contamination by pharmaceuticals has become a matter of concern as they are released in sewage systems at trace levels, thus impacting biological systems. Increasing concerns about the low-level occurrence of pharmaceuticals in the environment demands sensitive and selective monitoring. Owing to their high sensitivity and specificity carbon dots (CDs) have emerged as suitable fluorescent sensors. This review discusses the current scenario of the status of pharmaceuticals in the environment, limitations associated with traditional techniques employed for their detection, and benefits offered by CDs like easy surface modification and tunable optical properties for sensing applications. Several representative means by which CDs interact with other molecules such as inner filter effect (IFE), dynamic quenching (DQ), static quenching (SQ), Förster resonance energy transfer (FRET), among others, are also discussed along with co-referencing fluorophores to design sensors. Based on developments described herein, CDs-based sensors can be expected to sense pharmaceuticals ranging from nanogram to picogram, target real-time industrial and spiked sample analysis, etc., which provides direction for future research.
Collapse
Affiliation(s)
- Sandesh R. Lodha
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Jesika G. Merchant
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Arya J. Pillai
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Anil H. Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Bardoli, 394350, Gujarat, India
| | - Pravin O. Patil
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sopan N. Nangare
- H.R Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Gajanan G. Kalyankar
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shailesh A. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Dinesh R. Shah
- Maliba Pharmacy College, Uka Tarsadia University, Maliba Campus, Gopal Vidyanagar, Bardoli, 394350, Gujarat, India
| | - Shashikant P. Patole
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
4
|
Dargah MM, Youseftabar-Miri L, Divsar F, Hosseinjani-Pirdehi H, Mahani M, Bakhtiari S, Montazar L. Triplex hairpin oligosensor for ultrasensitive determination of miRNA-155 as a cancer marker using Si quantum dots and Au nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124750. [PMID: 39003825 DOI: 10.1016/j.saa.2024.124750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
In this study, a new triplex hairpin oligosensor was developed for the determination of a breast cancer biomarker using silicon quantum dots (Si QD) (λex = 370 nm, λem = 482 nm) as donor and gold nanoparticles (GNP) as an acceptor in a FRET (fluorescence resonance energy transfer) mechanism. In the triplex hairpin oligosensor, a triplex-forming oligonucleotide (TFO) labeled with Si QD and a single-strand DNA labeled with GNP form a hairpin shape with a triplex structure at the hairpin stem. In a turn-on mechanism, the triplex hairpin stem is opened in the presence of sequence-specific miRNA-155 which leads to the release of the Si QD-labeled TFO probe and recovery of the fluorescence signal. About 80 % of the fluorescence intensity of the Si QD-TFO is quenched in the triplex hairpin structure of the oligosensor and in the presence of 800 pM miRNA-155, the fluorescence signal recovered to 57.7 % of its initial value. The LOD of about 10 pM was obtained. The designed triplex-based biosensor can discriminate concentrations of breast cancer biomarkers with high selectivity.
Collapse
Affiliation(s)
- Maryam Mohamadi Dargah
- Active Pharmaceutical Ingredients Research Center (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leila Youseftabar-Miri
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Faten Divsar
- Department of Chemistry, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran.
| | | | - Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| | - Shadi Bakhtiari
- Active Pharmaceutical Ingredients Research Center (APIRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leila Montazar
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
5
|
Liu X, Shi Q, Qi P, Wang Z, Zhang T, Zhang S, Wu J, Guo Z, Chen J, Zhang Q. Recent advances in living cell nucleic acid probes based on nanomaterials for early cancer diagnosis. Asian J Pharm Sci 2024; 19:100910. [PMID: 38948397 PMCID: PMC11214190 DOI: 10.1016/j.ajps.2024.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 07/02/2024] Open
Abstract
The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.
Collapse
Affiliation(s)
- Xuyao Liu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Qi Shi
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Peng Qi
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Ziming Wang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Tongyue Zhang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Sijia Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qiang Zhang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
6
|
Ratre P, Nazeer N, Soni N, Kaur P, Tiwari R, Mishra PK. Smart carbon-based sensors for the detection of non-coding RNAs associated with exposure to micro(nano)plastics: an artificial intelligence perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8429-8452. [PMID: 38182954 DOI: 10.1007/s11356-023-31779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
Micro(nano)plastics (MNPs) are pervasive environmental pollutants that individuals eventually consume. Despite this, little is known about MNP's impact on public health. In this article, we assess the evidence for potentially harmful consequences of MNPs in the human body, concentrating on molecular toxicity and exposure routes. Since MNPs are present in various consumer products, foodstuffs, and the air we breathe, exposure can occur through ingestion, inhalation, and skin contact. MNPs exposure can cause mitochondrial oxidative stress, inflammatory lesions, and epigenetic modifications, releasing specific non-coding RNAs in circulation, which can be detected to diagnose non-communicable diseases. This article examines the most fascinating smart carbon-based nanobiosensors for detecting circulating non-coding RNAs (lncRNAs and microRNAs). Carbon-based smart nanomaterials offer many advantages over traditional methods, such as ease of use, sensitivity, specificity, and efficiency, for capturing non-coding RNAs. In particular, the synthetic methods, conjugation chemistries, doping, and in silico approach for the characterization of synthesized carbon nanodots and their adaptability to identify and measure non-coding RNAs associated with MNPs exposure is discussed. Furthermore, the article provides insights into the use of artificial intelligence tools for designing smart carbon nanomaterials.
Collapse
Affiliation(s)
- Pooja Ratre
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Nazim Nazeer
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Nikita Soni
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Prasan Kaur
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Rajnarayan Tiwari
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Pradyumna Kumar Mishra
- Department of Environmental Biotechnology, Genetics & Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
7
|
Mahani M, Montazer L, Khakbaz F, Divsar F, Yoosefian M. Photothermal performance of a novel carbon dot and its conjugate with disulfiram for prostate cancer PC3 cell therapy. Nanomedicine (Lond) 2023; 18:1703-1718. [PMID: 37965936 DOI: 10.2217/nnm-2023-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Aim: To develop and employ a copper, sulfur, nitrogen-carbon quantum dot (C,S,N-CQD) multifunctional platform for synergistic cancer therapy, combining chemotherapy and photothermal treatment with in vitro cancer cell imaging. Materials & methods: Cu,S,N-CQDs were synthesized hydrothermally, loaded with disulfiram (DSF), and characterized through UV-Vis spectrophotometry, photoluminescence, Fourier-transform infrared spectroscopy, high-resolution transmission electron microscopy, dynamic light scattering, x-ray diffraction and EDAX. Results: Cu,S,N-CQD exhibited 5.5% absolute fluorescence quantum yield, 46.0% photothermal conversion efficiency and excellent stability. The release of DSF-loaded Cu,S,N-CQD, photothermal performance, and IC50 on PC3 prostate cancer cells, were evaluated. The impact of cellular glutathione on nanocarrier performance was investigated. Conclusion: Cu,S,N-CQD as a photothermal agent and DSF carrier showed synergy (combination index: 0.71) between chemotherapy and photothermal therapy. The nanocarrier simultaneously employed for in vitro cancer cell imaging due to its unique fluorescence properties.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry & Chemical Engineering, Graduate University of Advanced Technology, Kerman, 7631818356, Iran
| | - Leila Montazer
- Department of Chemistry, Faculty of Chemistry & Chemical Engineering, Graduate University of Advanced Technology, Kerman, 7631818356, Iran
| | - Faeze Khakbaz
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, 7616913439, Iran
| | - Faten Divsar
- Department of Chemistry, Payame Noor University (PNU), 19395-4697, Tehran, Iran
| | - Mehdi Yoosefian
- Department of Chemistry, Faculty of Chemistry & Chemical Engineering, Graduate University of Advanced Technology, Kerman, 7631818356, Iran
| |
Collapse
|
8
|
Wang L, Weng S, Su S, Wang W. Progress on the luminescence mechanism and application of carbon quantum dots based on biomass synthesis. RSC Adv 2023; 13:19173-19194. [PMID: 37362342 PMCID: PMC10288538 DOI: 10.1039/d3ra02519e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
With the continuous development of carbon-based materials, a variety of new materials have emerged one after another. Carbon Quantum Dots (CQDs) have succeeded in standing out from the crowd of new materials due to their better optical properties in biomedicine, ion detection, anti-counterfeiting materials and photocatalysis. In recent years, through the continuous exploration of CQDs, research scholars have found that the organic substances or heavy metals contained in traditional ones can cause irreversible harm to people and the environment. Therefore, the application of traditional CQDs in future studies will be gradually limited. Among various new materials, biomass raw materials have the merits of good biocompatibility, lower toxicity and green and environmental protection, which largely overcome the defects of traditional materials and have attracted many scholars to focus on the research and development of various biomass CQDs. This paper summarises the optical properties, fluorescence mechanisms, synthetic methods, functionalisation modulation of biomass CQDs and their relevant research progress in the fields of ion detection, bioimaging, biomedicine, biosensing, solar cells, anti-counterfeit materials, photocatalysis and capacitors. Finally, the paper concludes with some discussion of the challenges and prospects of this exciting and promising field of application.
Collapse
Affiliation(s)
- Lei Wang
- School of Life Science and Chemistry, MinNan Science and Technology University Quanzhou 362332 China
| | - Shujia Weng
- School of Life Science and Chemistry, MinNan Science and Technology University Quanzhou 362332 China
| | - Shuai Su
- School of Life Science and Chemistry, MinNan Science and Technology University Quanzhou 362332 China
| | - Weiwei Wang
- School of Life Science and Chemistry, MinNan Science and Technology University Quanzhou 362332 China
| |
Collapse
|
9
|
Synergistic effect enhancing the energy transfer efficiency of carbon dots-based molecular beacon probe for ultrasensitive detection of microRNA. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
10
|
Doxorubicin-loaded polymeric micelles decorated with nitrogen-doped carbon dots for targeted breast cancer therapy. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Khakbaz F, Mirzaei M, Mahani M. Lecithin sensitized thermo-sensitive niosome using NIR-carbon dots for breast cancer combined chemo-photothermal therapy. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Formation of miRNA Nanoprobes-Conjugation Approaches Leading to the Functionalization. Molecules 2022; 27:molecules27238428. [PMID: 36500520 PMCID: PMC9739806 DOI: 10.3390/molecules27238428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Recently, microRNAs (miRNA) captured the interest as novel diagnostic and prognostic biomarkers, with their potential for early indication of numerous pathologies. Since miRNA is a short, non-coding RNA sequence, the sensitivity and selectivity of their detection remain a cornerstone of scientific research. As such, methods based on nanomaterials have emerged in hopes of developing fast and facile approaches. At the core of the detection method based on nanotechnology lie nanoprobes and other functionalized nanomaterials. Since miRNA sensing and detection are generally rooted in the capture of target miRNA with the complementary sequence of oligonucleotides, the sequence needs to be attached to the nanomaterial with a specific conjugation strategy. As each nanomaterial has its unique properties, and each conjugation approach presents its drawbacks and advantages, this review offers a condensed overview of the conjugation approaches in nanomaterial-based miRNA sensing. Starting with a brief recapitulation of specific properties and characteristics of nanomaterials that can be used as a substrate, the focus is then centered on covalent and non-covalent bonding chemistry, leading to the functionalization of the nanomaterials, which are the most commonly used in miRNA sensing methods.
Collapse
|
13
|
Ultrasensitive FRET-based aptasensor for interleukin-6 as a biomarker for COVID-19 progression using nitrogen-doped carbon quantum dots and gold nanoparticles. Mikrochim Acta 2022; 189:472. [DOI: 10.1007/s00604-022-05570-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/06/2022] [Indexed: 11/27/2022]
|
14
|
Dhas N, Pastagia M, Sharma A, Khera A, Kudarha R, Kulkarni S, Soman S, Mutalik S, Barnwal RP, Singh G, Patel M. Organic quantum dots: An ultrasmall nanoplatform for cancer theranostics. J Control Release 2022; 348:798-824. [PMID: 35752250 DOI: 10.1016/j.jconrel.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 12/19/2022]
Abstract
Tumours are the second leading cause of death globally, generating alterations in biological interactions and, as a result, malfunctioning of crucial genetic traits. Technological advancements have made it possible to identify tumours at the cellular level, making transcriptional gene variations and other genetic variables more easily investigated. Standard chemotherapy is seen as a non-specific treatment that has the potential to destroy healthy cells while also causing systemic toxicity in individuals. As a result, developing new technologies has become a pressing necessity. QDs are semiconductor particles with diameters ranging from 2 to 10 nanometers. QDs have grabbed the interest of many researchers due to their unique characteristics, including compact size, large surface area, surface charges, and precise targeting. QD-based drug carriers are well known among the many nanocarriers. Using QDs as a delivery approach enhances solubility, lengthens retention time, and reduces the harmful effects of loaded medicines. Several varieties of quantum dots used in drug administration are discussed in this article, along with their chemical and physical characteristics and manufacturing methods. Furthermore, it discusses the role of QDs in biological, medicinal, and theranostic applications.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Monarch Pastagia
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Alisha Khera
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Mital Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
15
|
Liang Y, Yang H, Yin W, Zhang Y, Xu Y, Liu SY, Dai Z, Zou X. Long-term continuous monitoring of microRNA in living cells using modified gold nanoprobe. Anal Bioanal Chem 2022; 414:6157-6166. [PMID: 35732745 DOI: 10.1007/s00216-022-04182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
Long-term and continuous monitoring of the microRNA (miRNA) expression in living cells is essential in biomedical research, but it is currently limited by fast consumption and easy digestion of probes in the intracellular environment. Herein, we report polydopamine-modified gold nanoparticles (AuNPs@PDA) as protective and efficient nanocarriers for DNA hairpin probes (hpDNA), achieving long-term monitoring (48 h) of the miRNA (let-7a) levels in living cells after drug treatments. This method enabled excellent sensitivity and high selectivity toward let-7a with a limit of detection of 0.51 nM (n = 3) and a linear range from 1 to 100 nM. More importantly, AuNPs@PDA can not only efficiently improve the loading of hpDNA on each nanoparticle, but also effectively protect hpDNA from hydrolysis in the cell microenvironment, finally realizing the continuous monitoring of let-7a in living cells for 48 h. This simple method would be of great significance for drug screening and precision medicine.
Collapse
Affiliation(s)
- Yuling Liang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huihui Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wen Yin
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuzhi Xu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
16
|
Role of Nano-miRNAs in Diagnostics and Therapeutics. Int J Mol Sci 2022; 23:ijms23126836. [PMID: 35743278 PMCID: PMC9223810 DOI: 10.3390/ijms23126836] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNA) are key regulators of gene expression, controlling different biological processes such as cellular development, differentiation, proliferation, metabolism, and apoptosis. The relationships between miRNA expression and the onset and progression of different diseases, such as tumours, cardiovascular and rheumatic diseases, and neurological disorders, are well known. A nanotechnology-based approach could match miRNA delivery and detection to move beyond the proof-of-concept stage. Different kinds of nanotechnologies can have a major impact on the diagnosis and treatment of miRNA-related diseases such as cancer. Developing novel methodologies aimed at clinical practice represents a big challenge for the early diagnosis of specific diseases. Within this context, nanotechnology represents a wide emerging area at the forefront of research over the last two decades, whose potential has yet to be fully attained. Nanomedicine, derived from nanotechnology, can exploit the unique properties of nanometer-sized particles for diagnostic and therapeutic purposes. Through nanomedicine, specific treatment to counteract only cancer-cell proliferation will be improved, while leaving healthy cells intact. In this review, we dissect the properties of different nanocarriers and their roles in the early detection and treatment of cancer.
Collapse
|
17
|
Mahani M, Khakbaz F, Ju H. Hairpin oligosensor using SiQDs: Förster resonance energy transfer study and application for miRNA-21 detection. Anal Bioanal Chem 2022; 414:2505-2512. [PMID: 35099583 DOI: 10.1007/s00216-022-03891-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022]
Abstract
MicroRNAs are known to be tumor suppressors and promoters and can be used as cancer markers. In this work, a novel oligosensor was designed using Si quantum dots (SiQDs) for the detection of miRNAs. Five-nanometer SiQDs were synthesized, with a band gap of 2.8 eV, fluorescence lifetime of 4.56 μs (τ1/2 = 3.26 μs), quantum yield of 25%, fluorescence rate constant of 6.25 × 104, and non-radiative rate constant of 1.60 × 105 s-1. They showed excellent water dispersibility, good stability (with 95% confidence for 6-month storage) without photobleaching, and high biocompatibility, with an IC50 value of 292.2 μg/L. The SiQDs and Black Hole Quencher-1 (BHQ1) were conjugated to the 5' and 3' terminals of an oligomer, respectively. The resulting hairpin molecular beacon showed resonance energy transfer efficiency of 63%. A distance of 0.91 R (Förster distance) between SiQD and BHQ1 was obtained. In the presence of a stoichiometric amount of the complementary oligonucleotide (ΔGhybridization = -35.09 kcal mol-1), 98% of the fluorescence was recovered due to loop opening of the hairpin structure. The probe showed good selectivity toward miRNA-21, with a limit of detection of 14.9 fM. The oligosensor recoveries of miRNA-21 spiked in human serum and urine were 94-98% and 93-108%, respectively.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, Iran.
| | - Faeze Khakbaz
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
18
|
Wang X, Wang Y, Chen S, Fu P, Lin Y, Ye S, Long Y, Gao G, Zheng J. A persistent luminescence resonance energy transfer-based molecular beacon probe for the highly sensitive detection of microRNA in biological samples. Biosens Bioelectron 2022; 198:113849. [PMID: 34861528 DOI: 10.1016/j.bios.2021.113849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022]
Abstract
Herein, a time-resolved luminescence resonance energy transfer (TR-LRET) molecular beacon (MB) probe employing persistent luminescence nanoparticles (PLNPs) as the energy donors was first constructed, and further designed for microRNA21 (miR21) sensing. This probe (named as PLNPs-MB) was facilely fabricated by covalent bioconjugation between poly-(acrylic acid) (PAA) modified near-infrared (NIR) emissive PLNPs i.e. ZnGa2O4:Cr3+ and functionalized MB oligonucleotide (5'-NH2 and 3'-BHQ3). Accordingly, PLNPs and BHQ3 were in close proximity to each other, leading to the occurrence of LRET and obvious persistent luminescence (PL) quenching. In the presence of miR21, loop of the PLNP-MB was hybridized, accompanying BHQ3 away from PLNPs and the restraint of LRET process. As a result, PL of the PLNPs was recovered, which built the foundation of miR21 quantification. The probe provided a linear response range from 0.1 to 10 nM for miR21 detection. Quantification limit of this probe was competitive and about 1-2 orders of magnitude lower than that of other reported MB probes for nucleic acid. Moreover, the proposed probe was successfully adopted for miR21 detection in biological fluids (human serum, cell extraction). This work also provided a sensitive detection nanoplatform for other targets through modifying diverse MBs onto the surface of PLNPs.
Collapse
Affiliation(s)
- Xiuhua Wang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Yuhui Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China.
| | - Shu Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Yuanbin Lin
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Shuyuan Ye
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, PR China
| | - Yunfei Long
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China.
| | - Guosheng Gao
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, PR China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China.
| |
Collapse
|
19
|
Liu S, Huo Y, Fan L, Ning B, Sun T, Gao Z. Rapid and ultrasensitive detection of DNA and microRNA-21 using a zirconium porphyrin metal-organic framework-based switch fluorescence biosensor. Anal Chim Acta 2022; 1192:339340. [PMID: 35057960 DOI: 10.1016/j.aca.2021.339340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/19/2021] [Accepted: 11/28/2021] [Indexed: 01/15/2023]
Abstract
Sensitive and accurate detection of nucleic acid biomarkers is critical for early cancer diagnosis, disease monitoring, and clinical treatment. In this study, we developed a switch fluorescence biosensor for simple and high-efficient detection of nucleic acid biomarkers using 6-carboxyfluorescein (FAM)-modified single-stranded DNA (ssDNA) probes (FAM-P1/P2), and zirconium porphyrin metal-organic framework nanoparticles (ZrMOF) acted as fluorescence quencher. FAM-P1/P2 probes were adsorbed on ZrMOF surface because of π-π stacking, hydrogen bonding, and electrostatic interactions. Fluorescence quenching event occurred by fluorescence resonance energy transfer (FRET) and photo-induced electron transfer (PET) processes, thereby achieving the "off" fluorescence status. Once the specific binding was formed between the fluorescence probes and the targets, the rigid double-stranded DNA (dsDNA) structures were released from ZrMOF surface, resulting in the recovery of fluorescence and the "on" status. Because of the superior adsorption ability of ZrMOF toward ssDNA than dsDNA, the switch of fluorescence signals from "off" to "on" allowed rapid and ultrasensitive detection of ssDNA (T1) and microRNA-21 (miR-21) within 30 min. The limit of detection (signal-to-noise ratio = 3) for T1 and miR-21 were 2 fM and 11 aM, respectively. Moreover, the proposed strategy was very simple as it worked by the facile adsorption-quenching-recovery mechanism without difficult and complicated immobilization processes. Also, this biosensor showed an excellent analytical performance in the detection of miR-21 in human serum samples. Therefore, this biosensor might be considered a potential tool for the detection of DNA and miRNA biomarkers in clinical samples.
Collapse
Affiliation(s)
- Sha Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Yapeng Huo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Longxing Fan
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Baoan Ning
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tieqiang Sun
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
20
|
Mahani M, Karimi-Mazidi P, Khakbaz F, Torkzadeh-Mahani M. Carbon quantum dots-Annexin V probe: photoinduced electron transfer mechanism, phosphatidylserine detection, and apoptotic cell imaging. Mikrochim Acta 2022; 189:69. [PMID: 35066672 DOI: 10.1007/s00604-021-05147-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/12/2021] [Indexed: 12/22/2022]
Abstract
An annexin V-based probe is designed and fabricated using carbon quantum dot as highly stable and biocompatible fluorescent crystals for real-time fluorescence imaging of apoptotic cells. Carbon quantum dots were synthesized, characterized, and conjugated to annexin V. The fluorescence of CQDs at 450 nm (excitation at 350 nm) is quenched due to the photoinduced electron transfer between "carbon quantum dots" and two amino acids (tyrosine and tryptophan) in the annexin structure as quencher. The probe shows very strong and bright fluorescence emission in the presence of phosphatidylserine on the outer layer of the apoptotic cell membrane. It was shown that using fluorescence spectroscopy, the probe can be applied to sensitive phosphatidylserine determination and using fluorescence microscopy, it is possible to monitor cell apoptosis in real time.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, 7631818356, Kerman, Iran.
| | - Parisa Karimi-Mazidi
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, 7631818356, Kerman, Iran
| | - Faeze Khakbaz
- Department of Nano Chemistry, Faculty of Chemistry, Shahid Bahonar University, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| |
Collapse
|
21
|
Sharifianjazi F, Jafari Rad A, Bakhtiari A, Niazvand F, Esmaeilkhanian A, Bazli L, Abniki M, Irani M, Moghanian A. Biosensors and nanotechnology for cancer diagnosis (lung and bronchus, breast, prostate, and colon): a systematic review. Biomed Mater 2021; 17. [PMID: 34891145 DOI: 10.1088/1748-605x/ac41fd] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022]
Abstract
The second cause of death in the world has been reported to be cancer, and it has been on the rise in recent years. As a result of the difficulties of cancer detection and its treatment, the survival rate of patients is unclear. The early detection of cancer is an important issue for its therapy. Cancer detection based on biomarkers may effectively enhance the early detection and subsequent treatment. Nanomaterial-based nanobiosensors for cancer biomarkers are excellent tools for the molecular detection and diagnosis of disease. This review reports the latest advancement and attainment in applying nanoparticles to the detection of cancer biomarkers. In this paper, the recent advances in the application of common nanomaterials like graphene, carbon nanotubes, Au, Ag, Pt, and Fe3O4together with newly emerged nanoparticles such as quantum dots, upconversion nanoparticles, inorganics (ZnO, MoS2), and metal-organic frameworks for the diagnosis of biomarkers related to lung, prostate, breast, and colon cancer are highlighted. Finally, the challenges, outlook, and closing remarks are given.
Collapse
Affiliation(s)
| | - Azadeh Jafari Rad
- Department of Chemistry, Islamic Azad University, Omidiyeh Branch, Omidiyeh, Iran
| | | | - Firoozeh Niazvand
- School of Medicine, Abadan University of Medical Sciences, Abadan, Iran
| | | | - Leila Bazli
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
| | - Milad Abniki
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Mohammad Irani
- Dentistry Clinical Research Development Unit, Alborz University of Medical Sciences, Karaj, Iran
| | - Amirhossein Moghanian
- Department of Materials Engineering, Imam Khomeini International University, Qazvin 34149-16818, Iran
| |
Collapse
|
22
|
A simple "signal off-on" fluorescence nanoplatform for the label-free quantification of exosome-derived microRNA-21 in lung cancer plasma. Mikrochim Acta 2021; 188:397. [PMID: 34716495 DOI: 10.1007/s00604-021-05051-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
A simple nanoplatform based on molybdenum disulfide (MoS2) nanosheets, a fluorescence quencher (signal off), and a hybridization chain reaction (HCR) signal amplification (signal on) used for the enzyme-free, label-free, and low-background signal quantification of microRNA-21 in plasma exosome is reported. According to the sequence of microRNA-21, carboxy-fluorescein (FAM)-labeled hybridization probe 1 (FAM-H1) and hybridization probes 2 (FAM-H2) were designed with excitation maxima at 488 nm and emission maxima at 518 nm. MoS2 nanosheets could adsorb FAM-H1 and FAM-H2 and quenched their fluorescence signals to reduce the background signal. However, HCR was triggered when microRNA-21 was present. Consequently, HCR products containing a large number of FAM fluorophores can emit a strong fluorescence at 518 nm and could realize the detection of microRNA-21 as low as 6 pmol/L and had a wide linear relation of 0.01-25 nmol/L. This assay has the ability of single-base mismatch recognition and could identify microRNA-21 with high specificity. Most importantly, this approach was successfully applied to the detection of plasma exosomal microRNA-21 in patients with lung cancer, and it is proposed that other targets can also be detected by changing the FAM-H1 and FAM-H2 corresponding to the target sequence. Thus, a novel, hands-on strategy for liquid biopsy was proposed and has a potential application value in the early diagnosis of lung cancer.
Collapse
|
23
|
Maruthapandi M, Saravanan A, Das P, Luong JHT, Gedanken A. Microbial inhibition and biosensing with multifunctional carbon dots: Progress and perspectives. Biotechnol Adv 2021; 53:107843. [PMID: 34624454 DOI: 10.1016/j.biotechadv.2021.107843] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 12/25/2022]
Abstract
Carbon dots (CDs) and their doped counterparts including nitrogen-doped CDs (N@CDs) have been synthesized by bottom-up or top-down approaches from different precursors. The attractiveness of such emerging 2D‑carbon-based nanosized materials is attributed to their excellent biocompatibility, preparation, aqueous dispersibility, and functionality. The antimicrobial, optical, and electrochemical properties of CDs have been advocated for two important biotechnological applications: bacterial eradication and sensing/biosensing. CDs as well as N@CDs act as antimicrobial agents as their surfaces encompass functional hydroxyl, carboxyl, and amino groups that generate free radicals. As a new class of photoluminescent nanomaterials, CDs can be employed in diversified analytics. CDs with surface carboxyl or amino groups form nanocomposites with nanomaterials or be conjugated with biorecognition molecules toward the development of sensors/biosensors. The deployment of conductive CDs in electrochemical sensing has also increased significantly because of their quantum size, excellent biocompatibility, enzyme-mimicking activity, and high surface area. The review also addresses the ongoing challenges and promises of CDs in pathogenesis and analytics. Perspectives on the future possibilities include the use of CDs in microbial viability assay, wound healing, antiviral therapy, and medical devices.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Poushali Das
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
24
|
Mahani M, Taheri M, Divsar F, Khakbaz F, Nomani A, Ju H. Label-free triplex DNA-based biosensing of transcription factor using fluorescence resonance energy transfer between N-doped carbon dot and gold nanoparticle. Anal Chim Acta 2021; 1181:338919. [PMID: 34556210 DOI: 10.1016/j.aca.2021.338919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/21/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Herein, a new turn-on fluorescent assay was established as a platform for the sensing of transcription factor NF-kB p50 based on triplex DNA labeled with N-doped carbon dots (NCDs) and gold nanoparticles (AuNPs) as donors and acceptors, respectively in the fluorescence resonance energy transfer (FRET) system. The synthetized nanoparticles were studied by different characterization techniques. A labeled DNA molecule was designed to form a triplex when no target protein existence and reported its formation by the change in FRET efficiency. While the triplex DNA was formed, the fluorescence of carbon dots at 503 nm (excitation at 460 nm) was quenched by FRET between NCD and AuNP. However, presence of NF-kB p50 followed by the considerable enhancement in the fluorescence intensity caused by the release of AuNPs labeled single stranded DNA from the triplex DNA structure, used for sensitive determination of the transcription factor. This technique showed a linearity (R2 = 0.9943) in the range of 20-150 pM with a limit of detection of 9 pM for the determination of NF-kB p50. Moreover, the sequence-specific triplex-based biosensor could discriminate NF-kB p50 from the other proteins with high selectively. Our results suggest that the biosensor provides a generalizable platform for rapid detection of NF-kB p50 in synthetic medium, promising in prevention and early diagnosis of cancer.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, 7631818356, Iran.
| | - Maryam Taheri
- Department of Nanotechnology, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, 7631818356, Iran
| | - Faten Divsar
- Department of Chemistry, Payame Noor Universtiy (PNU), P. O. BOX 19395-3697, Tehran, Iran
| | - Faeze Khakbaz
- Department of NanoChemistry, Faculty of Chemistry, Shahid Bahonar University, Kerman, Iran
| | - Alireza Nomani
- Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
25
|
Oliveira-Jr GP, Barbosa RH, Thompson L, Pinckney B, Murphy-Thornley M, Lu S, Jones J, Hansen CH, Tigges J, Wong WP, Ghiran IC. Electrophoretic mobility shift as a molecular beacon-based readout for miRNA detection. Biosens Bioelectron 2021; 189:113307. [PMID: 34062334 PMCID: PMC8461749 DOI: 10.1016/j.bios.2021.113307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
MicroRNAs are short, non-coding RNA sequences involved in gene expression regulation. Quantification of miRNAs in biological fluids involves time consuming and laborious methods such as Northern blotting or PCR-based techniques. Molecular beacons (MB) are an attractive means for rapid detection of miRNAs, although the need for sophisticated readout methods limits their use in research and clinical settings. Here, we introduce a novel method based on delayed electrophoretic mobility, as a quantitative means for detection of miRNAs-MB hybridization. Upon hybridization with the target miRNAs, MB form a fluorescent duplex with reduced electrophoretic mobility, thus bypassing the need for additional staining. In addition to emission of light, the location of the fluorescent band on the gel acts as an orthogonal validation of the target identity, further confirming the specificity of binding. The limit of detection of this approach is approximately 100 pM, depending on the MB sequence. The method is sensitive enough to detect specific red blood cell miRNAs molecules in total RNA, with single nucleotide specificity. Altogether, we describe a rapid and affordable method that offers sensitive detection of single-stranded small DNA and RNA sequences.
Collapse
Affiliation(s)
- Getulio P Oliveira-Jr
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - Raquel H Barbosa
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Lauren Thompson
- Nano Flow Core Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Brandy Pinckney
- Nano Flow Core Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Moriah Murphy-Thornley
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Shulin Lu
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jennifer Jones
- Laboratory of Pathology Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Clinton H Hansen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - John Tigges
- Nano Flow Core Facility, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Wesley P Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ionita C Ghiran
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
26
|
Mahani M, Kordi M. Warfarin Induced Quenching of the Carbon Quantum Dots: Mechanism Study and Warfarin Sensor Construction. J Fluoresc 2021; 31:1731-1738. [PMID: 34460043 DOI: 10.1007/s10895-021-02804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
The mechanism of the fluorescence quenching of the CQDs by warfarin was determined and based on this study a simple, low cost and highly sensitive nanosensor was developed for determination of Warfarin in plasma samples. The carbon quantum dots with 3.5 µs lifetime (halflife of 2.4 µs) were synthesized by hydrothermal method and characterized. The fluorescence rate constant of 4.5 × 104 s-1 and quenching rate constant of 6.18 × 104 s-1 (from 10 μM warfarin that result in 17% lifetime reduction) was calculated. High quenching efficiency results in 21.63 L mmol-1 Stern-Volmer constant and the study of pH and temperature also confirm the dynamic quenching mechanism. The second order rate constant of 6.18 × 104 L mmol-1 s-1 was obtained for collisions between CQDs and warfarin. Based on this mechanism, a simple, low cost and very sensitive warfarin nanosensor was developed with calibration sensitivity of 21.63 L mmol-1, working range of 0.10 - 12.00 μM and detection limit of 0.01 μM.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, 7631818356, Kerman, Iran.
| | - Moazame Kordi
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, 7631818356, Kerman, Iran
| |
Collapse
|
27
|
Mahani M, Mahmoudi F, Fassihi J, Hasani Z, Divsar F. Carbon dots-embedded N-acetylneuraminic acid and glucuronic acid-imprinted polymers for targeting and imaging of cancer cells. Mikrochim Acta 2021; 188:224. [PMID: 34101046 DOI: 10.1007/s00604-021-04876-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
Diagnosis, treatment, and prediction of cancer progression require new targeting agents to specifically target cell surface receptors. Herein, we demonstrated fluorescent carbon quantum dots-molecularly imprinted polymer (CQD-MIP) for selective targeting and imaging of cancer cells. Carbon quantum dots (CQDs) were synthesized and characterized. The synthesized CQDs had average size of 1.5 nm and show intense fluorescence emission at wavelength of 450 nm with excitation at 370 nm. CQD-MIP nanoparticles imprinted with N-acetylneuraminic acid and glucuronic acid were prepared and characterized. CQD-MIPs were successfully applied for selective targeting and imaging of MCF-7, HepG-2, and NIH-3T3 cell lines. Non-imprinted polymer (NIP) showed no binding properties toward a target molecule. Non-imprinted polymer (NIP) and non-cancerous human cell lines were used for controlling the imprinting and targeting effects, respectively. Acceptable results were obtained with imprinted polymers on cancer cells.
Collapse
Affiliation(s)
- Mohamad Mahani
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Graduate University of Advanced Technology, Kerman, 7631818356, Iran.
| | - Firouze Mahmoudi
- Department of Nanotechnology, Faculty of Sciences and Modern Technologies, Graduate University of Advanced Technology, Kerman, Iran
| | | | - Zahra Hasani
- Department of New Materials, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, 7631133131, Iran
| | - Faten Divsar
- Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
| |
Collapse
|
28
|
Ai X, Zhao H, Hu T, Yan Y, He H, Ma C. A signal-on fluorescence-based strategy for detection of microRNA-21 based on graphene oxide and λ exonuclease-based signal amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2107-2113. [PMID: 33870957 DOI: 10.1039/d1ay00309g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MicroRNA (miRNA) expression is perturbed in various diseases. Herein, we have aimed to develop a novel and rapid fluorescence-based assay for detecting microRNA-21 (miR-21) activity based on FAM molecular signal amplification and graphene oxide (GO) quenching. In this system, a single stranded DNA (ssDNA) with a phosphate group at the 5'-end is labeled with a FAM molecular label at the 3'-end. In the presence of miR-21, this ssDNA forms a DNA/RNA duplex, which is cleaved by λ exonuclease (λ-exo), releasing FAM and resulting in fluorescence signal amplification at 530 nm. However, the DNA/RNA duplex is not generated in the absence of miR-21, which impedes λ-exo cleavage; subsequently, GO quenches the fluorescence intensity. The results show a detection limit of 0.02 nM and a wide linear range of 0.02-5 nM. The high sensitivity and easy operability of this assay can be applied for detecting miR-21 during clinical diagnosis of certain diseases and in biological research.
Collapse
Affiliation(s)
- Xiaojuan Ai
- School of Life Sciences, Central South University, Changsha 410013, China.
| | | | | | | | | | | |
Collapse
|
29
|
Kalogianni DP. Nanotechnology in emerging liquid biopsy applications. NANO CONVERGENCE 2021; 8:13. [PMID: 33934252 PMCID: PMC8088419 DOI: 10.1186/s40580-021-00263-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/23/2021] [Indexed: 05/17/2023]
Abstract
Liquid biopsy is considered as the most attractive alternative to traditional tissue biopsies. The major advantages of this approach lie in the non-invasive procedure, the rapidness of sample collection and the potential for early cancer diagnosis and real-time monitoring of the disease and the treatment response. Nanotechnology has dynamically emerged in a wide range of applications in the field of liquid biopsy. The benefits of using nanomaterials for biosensing include high sensitivity and detectability, simplicity in many cases, rapid analysis, the low cost of the analysis and the potential for portability and personalized medicine. The present paper reports on the nanomaterial-based methods and biosensors that have been developed for liquid biopsy applications. Most of the nanomaterials used exhibit great analytical performance; moreover, extremely low limits of detection have been achieved for all studied targets. This review will provide scientists with a comprehensive overview of all the nanomaterials and techniques that have been developed for liquid biopsy applications. A comparison of the developed methods in terms of detectability, dynamic range, time-length of the analysis and multiplicity, is also provided.
Collapse
|
30
|
Bellassai N, D'Agata R, Spoto G. Novel nucleic acid origami structures and conventional molecular beacon-based platforms: a comparison in biosensing applications. Anal Bioanal Chem 2021; 413:6063-6077. [PMID: 33825006 PMCID: PMC8440263 DOI: 10.1007/s00216-021-03309-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022]
Abstract
Nucleic acid nanotechnology designs and develops synthetic nucleic acid strands to fabricate nanosized functional systems. Structural properties and the conformational polymorphism of nucleic acid sequences are inherent characteristics that make nucleic acid nanostructures attractive systems in biosensing. This review critically discusses recent advances in biosensing derived from molecular beacon and DNA origami structures. Molecular beacons belong to a conventional class of nucleic acid structures used in biosensing, whereas DNA origami nanostructures are fabricated by fully exploiting possibilities offered by nucleic acid nanotechnology. We present nucleic acid scaffolds divided into conventional hairpin molecular beacons and DNA origami, and discuss some relevant examples by focusing on peculiar aspects exploited in biosensing applications. We also critically evaluate analytical uses of the synthetic nucleic acid structures in biosensing to point out similarities and differences between traditional hairpin nucleic acid sequences and DNA origami.
Collapse
Affiliation(s)
- Noemi Bellassai
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
- Consorzio Interuniversitario "Istituto Nazionale Biostrutture e Biosistemi", c/o Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| |
Collapse
|
31
|
Doxorubicin delivery to breast cancer cells with transferrin-targeted carbon quantum dots: An in vitro and in silico study. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102342] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
32
|
Amri C, Shukla AK, Lee JH. Recent Advancements in Nanoparticle-Based Optical Biosensors for Circulating Cancer Biomarkers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1339. [PMID: 33802028 PMCID: PMC8001438 DOI: 10.3390/ma14061339] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/18/2023]
Abstract
The effectiveness of cancer treatment strongly depends on the early detection of the disease. Currently, the most common diagnostic method, tissue biopsy, takes time and can be damaging to the patient. Circulating cancer biomarkers such as circulating tumor DNA, micro-RNA (miRNA), tumor proteins, exosomes, and circulating tumor cells have repeatedly demonstrated their viability as targets for minimally invasive cancer detection through liquid biopsies. However, among other things, achieving a great sensitivity of detection is still challenging due to the very low concentration of biomarkers in fluid samples. This review will discuss how the recent advances in nanoparticle-based biosensors are overcoming these practical difficulties. This report will be focusing mainly on optical transduction mechanisms of metal nanoparticles (M-NPs), quantum dots (QDs), and upconversion nanoparticles (UCNPs).
Collapse
Affiliation(s)
- Chaima Amri
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea;
| | - Arvind Kumar Shukla
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
| | - Jin-Ho Lee
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea;
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
| |
Collapse
|
33
|
Bidar N, Amini M, Oroojalian F, Baradaran B, Hosseini SS, Shahbazi MA, Hashemzaei M, Mokhtarzadeh A, Hamblin MR, de la Guardia M. Molecular beacon strategies for sensing purpose. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Bidar N, Oroojalian F, Baradaran B, Eyvazi S, Amini M, Jebelli A, Hosseini SS, Pashazadeh-Panahi P, Mokhtarzadeh A, de la Guardia M. Monitoring of microRNA using molecular beacons approaches: Recent advances. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Abstract
Early diagnosis of diseases is of great importance because it increases the chance of a cure and significantly reduces treatment costs. Thus, development of rapid, sensitive, and reliable biosensing techniques is essential for the benefits of human life and health. As such, various nanomaterials have been explored to improve performance of biosensors, among which, carbon dots (CDs) have received enormous attention due to their excellent performance. In this Review, the recent advancements of CD-based biosensors have been carefully summarized. First, biosensors are classified according to their sensing strategies, and the role of CDs in these sensors is elaborated in detail. Next, several typical CD-based biosensors (including CD-only, enzymatic, antigen-antibody, and nucleic acid biosensors) and their applications are fully discussed. Last, advantages, challenges, and perspectives on the future trends of CD-based biosensors are highlighted.
Collapse
Affiliation(s)
- Chunyu Ji
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Zhili Peng
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
| |
Collapse
|
36
|
Zhu HZ, Fang CJ, Guo Y, Zhang Q, Huang LM, Qiu D, Chen GP, Pang XF, Hu JJ, Sun JG, Chen ZT. Detection of miR-155-5p and imaging lung cancer for early diagnosis: in vitro and in vivo study. J Cancer Res Clin Oncol 2020; 146:1941-1951. [PMID: 32447486 PMCID: PMC7324423 DOI: 10.1007/s00432-020-03246-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/04/2020] [Indexed: 12/04/2022]
Abstract
Purpose Currently, the routine screening program has insufficient capacity for the early diagnosis of lung cancer. Therefore, a type of chitosan-molecular beacon (CS-MB) probe was developed to recognize the miR-155-5p and image the lung cancer cells for the early diagnosis. Methods Based on the molecular beacon (MB) technology and nanotechnology, the CS-MB probe was synthesized self-assembly. There are four types of cells—three kinds of animal models and one type of histopathological sections of human lung cancer were utilized as models, including A549, SPC-A1, H446 lung cancer cells, tumor-initiating cells (TICs), subcutaneous and lung xenografts mice, and lox-stop-lox(LSL) K-ras G12D transgenic mice. The transgenic mice dynamically displayed the process from normal lung tissues to atypical hyperplasia, adenoma, carcinoma in situ, and adenocarcinoma. The different miR-155-5p expression levels in these cells and models were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The CS-MB probe was used to recognize the miR-155-5p and image the lung cancer cells by confocal microscopy in vitro and by living imaging system in vivo. Results The CS-MB probe could be used to recognize the miR-155-5p and image the lung cancer cells significantly in these cells and models. The fluorescence intensity trends detected by the CS-MB probe were similar to the expression levels trends of miR-155 tested by qRT-PCR. Moreover, the fluorescence intensity showed an increasing trend with the tumor progression in the transgenic mice model, and the occurrence and development of lung cancer were dynamically monitored by the differen fluorescence intensity. In addition, the miR-155-5p in human lung cancer tissues could be detected by the miR-155-5p MB. Conclusion Both in vivo and in vitro experiments demonstrated that the CS-MB probe could be utilized to recognize the miR-155-5p and image the lung cancer cells. It provided a novel experimental and theoretical basis for the early diagnosis of the disease. Also, the histopathological sections of human lung cancer research laid the foundation for subsequent preclinical studies. In addition, different MBs could be designed to detect other miRNAs for the early diagnosis of other tumors.
Collapse
Affiliation(s)
- Hai-Zhen Zhu
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Chun-Ju Fang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Yi Guo
- Department of Basic Knowledge, Guiyang Nursing Vocational College, Guiyang, 400037, China
| | - Qi Zhang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Li-Min Huang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Dong Qiu
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou Cancer Center, Guiyang, 550002, China
| | - Guang-Peng Chen
- Cancer Institute of PLA, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiu-Feng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jian-Jun Hu
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Jian-Guo Sun
- Cancer Institute of PLA, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Zheng-Tang Chen
- Cancer Institute of PLA, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
37
|
DNAzyme-functionalized porous carbon nanospheres serve as a fluorescent nanoprobe for imaging detection of microRNA-21 and zinc ion in living cells. Mikrochim Acta 2020; 187:249. [DOI: 10.1007/s00604-020-04226-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
|
38
|
Cao X, Zhang K, Yan W, Xia Z, He S, Xu X, Ye Y, Wei Z, Liu S. Calcium ion assisted fluorescence determination of microRNA-167 using carbon dots-labeled probe DNA and polydopamine-coated Fe 3O 4 nanoparticles. Mikrochim Acta 2020; 187:212. [PMID: 32157454 DOI: 10.1007/s00604-020-4209-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/02/2020] [Indexed: 12/18/2022]
Abstract
A selective and sensitive fluorescence biosensor is described for determination of microRNA-167 using fluorescent resonant energy transfer (FRET) strategy. The FRET system comprises carbon dots (CDs, donor) labeled with probe DNA (pDNA) and polydopamine (PDA)-coated Fe3O4 nanoparticles (Fe3O4@PDA NPs, acceptor). The CDs-pDNA can be absorbed onto the surface of Fe3O4@PDA NPs because of the strong π interaction between pDNA and PDA. With the enhanced adsorption ability of Fe3O4@PDA NPs by Ca2+, the fluorescence intensity of CDs at 445 nm (excitation at 360 nm) is quenched. In presence of microRNA-167, the hybridized complex of CDs-pDNA-microRNA-167 will be released from the surface of Fe3O4@PDA NPs due to the weak π interaction of the complex and PDA. This results in the fluorescence recovery of CDs. By application of twice-magnetic separation, the biosensor shows a wide linear range of 0.5-100 nM to microRNA-167 with a 76 pM detection limit. The method was applied to the determination of microRNA-167 in samples of total microRNA extractions from A. thaliana seedlings, and the recoveries ranged from 96.4 to 98.3%.
Collapse
Affiliation(s)
- Xiaodong Cao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kairui Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wuwen Yan
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zihao Xia
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shudong He
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xuan Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yongkang Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Zhaojun Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Songqin Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
39
|
An CuInS 2 photocathode for the sensitive photoelectrochemical determination of microRNA-21 based on DNA-protein interaction and exonuclease III assisted target recycling amplification. Mikrochim Acta 2019; 186:692. [PMID: 31605242 DOI: 10.1007/s00604-019-3804-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/07/2019] [Indexed: 01/15/2023]
Abstract
A photocathode is described for the determination of microRNA-21 by using CuInS2 as an active photocathode material. Exonuclease III assisted target recycling amplification was employed to enhance the detection sensitivity. The TATA-binding protein (TBP) was applied to enhance steric hindrance which decreases the photoelectrochemical intensity. This strategy is designed by combining the anti-interference photocathode material, enzyme assisted target recycling amplification and TBP induced signal off, showing remarkable amplification efficiency. Under the optimized conditions, the detection limit for microRNA-21 is as low as 0.47 fM, and a linear range was got from 1.0 × 10-15 M to 1.0 × 10-6 M. Graphical abstract Schematic representation of sensitive photoelectrochemical detection of microRNA-21.CuInS2 is used as an active photocathode material. Combined Exonuclease III assisted target recycling amplification and TATA-binding protein decreased of photoelectrochemical intensity, the detection limit was 0.47 fM with good selectivity. (miR-21: microRNA-21; CS: chitosan).
Collapse
|
40
|
Single-Step FRET-Based Detection of Femtomoles DNA. SENSORS 2019; 19:s19163495. [PMID: 31405068 PMCID: PMC6719117 DOI: 10.3390/s19163495] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
Sensitive detection of nucleic acids and identification of single nucleotide polymorphism (SNP) is crucial in diagnosis of genetic diseases. Many strategies have been developed for detection and analysis of DNA, including fluorescence, electrical, optical, and mechanical methods. Recent advances in fluorescence resonance energy transfer (FRET)-based sensing have provided a new avenue for sensitive and quantitative detection of various types of biomolecules in simple, rapid, and recyclable platforms. Here, we report single-step FRET-based DNA sensors designed to work via a toehold-mediated strand displacement (TMSD) process, leading to a distinct change in the FRET efficiency upon target binding. Using single-molecule FRET (smFRET), we show that these sensors can be regenerated in situ, and they allow detection of femtomoles DNA without the need for target amplification while still using a dramatically small sample size (fewer than three orders of magnitude compared to the typical sample size of bulk fluorescence). In addition, these single-molecule sensors exhibit a dynamic range of approximately two orders of magnitude. Using one of the sensors, we demonstrate that the single-base mismatch sequence can be discriminated from a fully matched DNA target, showing a high specificity of the method. These sensors with simple and recyclable design, sensitive detection of DNA, and the ability to discriminate single-base mismatch sequences may find applications in quantitative analysis of nucleic acid biomarkers.
Collapse
|
41
|
Recent advances on nanomaterials-based fluorimetric approaches for microRNAs detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:110007. [PMID: 31500008 DOI: 10.1016/j.msec.2019.110007] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/09/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs are types of small single-stranded endogenous highly conserved non-coding RNAs, which play main regulatory functions in a wide range of cellular and physiological events, such as proliferation, differentiation, neoplastic transformation, and cell regeneration. Recent findings have proved a close association between microRNAs expression and the development of many diseases, indicating the importance of microRNAs as clinical biomarkers and targets for drug discovery. However, due to a number of prominent characteristics like small size, high sequence similarity and low abundance, sensitive and selective identification of microRNAs has rather been a hardship through routine traditional assays, including quantitative polymerase chain reaction, microarrays, and northern blotting analysis. More recently, the soaring progression in nanotechnology and fluorimetric methodologies in combination with nanomaterials have promised microRNAs detection with high sensitivity, efficiency and selectivity, excellent reproducibility and lower cost. Therefore, this review will represent an overview of latest advances in microRNAs detection through nanomaterials-based fluorescent methods, like gold nanoparticles, silver and copper nanoclusters, graphene oxide, and magnetic silicon nanoparticles.
Collapse
|
42
|
Cheng YY, Xie YF, Li CM, Li YF, Huang CZ. Förster Resonance Energy Transfer-Based Soft Nanoballs for Specific and Amplified Detection of MicroRNAs. Anal Chem 2019; 91:11023-11029. [DOI: 10.1021/acs.analchem.9b01281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yun Ying Cheng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yi Fen Xie
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chun Mei Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Yuan Fang Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
43
|
Current advances of carbon dots based biosensors for tumor marker detection, cancer cells analysis and bioimaging. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|