1
|
Du Y, Li Y, Hu J, Fang R, Liu Y, Cai L, Song Y, Ma S, Gao J, Zhang H, Li B, Xiong H, Yu H, Yang S, Zhu S, Zheng H. Repetitive Transcranial Magnetic Stimulation: Is it an Effective Treatment for Cancer Pain? Pain Ther 2025; 14:47-66. [PMID: 39551863 PMCID: PMC11751341 DOI: 10.1007/s40122-024-00679-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
Cancer is a major public health issue, with an estimated 20 million new cases and 9.7 million cancer-related deaths worldwide in 2022. Approximately 44.5% of patients experience cancer pain, significantly impacting their quality of life and causing physical and psychological burdens. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, shows potential in managing cancer pain. This review summarizes current research on rTMS for cancer pain, focusing on pain directly caused by tumors, pain from cancer treatments, postoperative pain, and cancer-related symptoms. Additionally, rTMS shows promise in improving cancer-related fatigue, anxiety, depression, and cognitive dysfunction, which can indirectly reduce cancer pain. The analgesic mechanisms of rTMS include inhibiting nociceptive signal transmission in the spinal cord, modulating hemodynamic changes in brain regions, and promoting endogenous opioid release. High-frequency stimulation of the primary motor cortex (M1) has shown significant analgesic effects, improving patients' emotional and cognitive functions and overall quality of life. rTMS has a favorable safety profile, with most studies reporting no severe adverse events. In conclusion, rTMS holds substantial potential for cancer pain management, offering a non-invasive and multifaceted therapeutic approach. Continued research and clinical application are expected to establish rTMS as an essential component of comprehensive cancer pain treatment strategies, significantly enhancing the overall well-being of patients with cancer.
Collapse
Affiliation(s)
- Yanyuan Du
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Yaoyuan Li
- Department of Rehabilitation Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jieqing Hu
- Fengtai Community Health Service Center, Beijing, 100071, China
| | - Ruiying Fang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Yuming Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Liu Cai
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Ying Song
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Susu Ma
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Jin Gao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Hanyue Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Baihui Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Hongtai Xiong
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Huibo Yu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China
| | - Shenglei Yang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, 100084, China
| | - Shuduo Zhu
- Binzhou People's Hospital, Binzhou, 256610, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No. 5, Beixiange, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
2
|
Pires MP, McBenedict B, Ahmed IE, Yau RCC, Fong YB, Goh KS, Lim YS, Mohamed SA, Ngu O, Devan JN, Hauwanga WN, Lima Pessôa B. Exploring the Thalamus as a Target for Neuropathic Pain Management: An Integrative Review. Cureus 2024; 16:e60130. [PMID: 38864037 PMCID: PMC11165437 DOI: 10.7759/cureus.60130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 06/13/2024] Open
Abstract
Neuropathic pain (NP), resulting from damage to the somatosensory system, is characterized by either spontaneous or evoked pain. In the context of NP, wherein aberrant signaling pathways contribute to the perception of pain, the thalamus emerges as a key player. This structure is integral to the pain network that includes connections to the dorsal horn of the spinal cord, highlighting its role in the affective-motivational aspects of pain perception. Given its significant involvement, the thalamus is targeted in advanced treatments such as thalamotomy and deep brain stimulation (DBS) when traditional therapies fail, emphasizing the need to understand its function in NP to improve management strategies. This review aimed to provide an overview of the role of the thalamus in the transmission of nociceptive information in NP by discussing the existing evidence, including the effectiveness and safety of current techniques in the management and treatment of NP. This is an integrative review involving the qualitative analysis of scientific articles published in PubMed/MEDLINE, Embase, Scopus, and Web of Science. A total of 687 articles were identified, and after selection, 15 articles were included in this study. All studies reviewed demonstrated varying degrees of effectiveness of DBS and thalamotomy in alleviating painful symptoms, although the relief was often temporary. Many studies noted a reduction in pain perception at the conclusion of treatment compared to pre-treatment levels, with this decrease maintained throughout patient follow-ups. However, adverse events associated with these treatments were also reported. In conclusion, there are some benefits, albeit temporary, to using thalamotomy and DBS to alleviate the painful symptoms of NP. Both procedures are considered advanced forms of surgical intervention that aim to modulate pain pathways in the brain, providing significant relief for patients suffering from chronic pain resistant to conventional treatment. Despite limitations, these surgical interventions offer renewed hope for patients facing disabling chronic pain and can provide a significant improvement in quality of life.
Collapse
Affiliation(s)
| | | | | | | | - Yan Bin Fong
- Surgery, Universiti Putra Malaysia, Serdang, MYS
| | - Kang Suen Goh
- Internal Medicine, Monash University Malaysia, Subang Jaya, MYS
| | - Yee Siew Lim
- Surgery, International Medical University, Seremban, MYS
| | - Suber Abdi Mohamed
- Medicine, Jiangsu University, Zhenjiang Jiangbin Hospital, Zhenjiang, CHN
| | - Owen Ngu
- Medicine, University of Malaya, Kuala Lumpur, MYS
| | - Jeshua N Devan
- Surgery, Asian Institute of Medicine, Science and Technology University, Bedong, MYS
| | - Wilhelmina N Hauwanga
- Family Medicine, Faculty of Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | | |
Collapse
|
3
|
Kim K, Nan G, Bak H, Kim HY, Kim J, Cha M, Lee BH. Insular cortex stimulation alleviates neuropathic pain through changes in the expression of collapsin response mediator protein 2 involved in synaptic plasticity. Neurobiol Dis 2024; 194:106466. [PMID: 38471625 DOI: 10.1016/j.nbd.2024.106466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
In recent studies, brain stimulation has shown promising potential to alleviate chronic pain. Although studies have shown that stimulation of pain-related brain regions can induce pain-relieving effects, few studies have elucidated the mechanisms of brain stimulation in the insular cortex (IC). The present study was conducted to explore the changes in characteristic molecules involved in pain modulation mechanisms and to identify the changes in synaptic plasticity after IC stimulation (ICS). Following ICS, pain-relieving behaviors and changes in proteomics were explored. Neuronal activity in the IC after ICS was observed by optical imaging. Western blotting was used to validate the proteomics data and identify the changes in the expression of glutamatergic receptors associated with synaptic plasticity. Experimental results showed that ICS effectively relieved mechanical allodynia, and proteomics identified specific changes in collapsin response mediator protein 2 (CRMP2). Neuronal activity in the neuropathic rats was significantly decreased after ICS. Neuropathic rats showed increased expression levels of phosphorylated CRMP2, alpha amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR), and N-methyl-d-aspartate receptor (NMDAR) subunit 2B (NR2B), which were inhibited by ICS. These results indicate that ICS regulates the synaptic plasticity of ICS through pCRMP2, together with AMPAR and NR2B, to induce pain relief.
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Guanghai Nan
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyeji Bak
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Junesun Kim
- Rehabilitation Science Program, Department of Health Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Department of Health and Environment Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
4
|
Borelli E, Benuzzi F, Ballotta D, Bandieri E, Luppi M, Cacciari C, Porro CA, Lui F. Words hurt: common and distinct neural substrates underlying nociceptive and semantic pain. Front Neurosci 2023; 17:1234286. [PMID: 37829724 PMCID: PMC10565001 DOI: 10.3389/fnins.2023.1234286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Recent studies have shown that processing semantic pain, such as words associated with physical pain, modulates pain perception and enhances activity in regions of the pain matrix. A direct comparison between activations due to noxious stimulation and processing of words conveying physical pain may clarify whether and to what extent the neural substrates of nociceptive pain are shared by semantic pain. Pain is triggered also by experiences of social exclusion, rejection or loss of significant others (the so-called social pain), therefore words expressing social pain may modulate pain perception similarly to what happens with words associated with physical pain. This event-related fMRI study aims to compare the brain activity related to perceiving nociceptive pain and that emerging from processing semantic pain, i.e., words related to either physical or social pain, in order to identify common and distinct neural substrates. Methods Thirty-four healthy women underwent two fMRI sessions each. In the Semantic session, participants were presented with positive words, negative pain-unrelated words, physical pain-related words, and social pain-related words. In the Nociceptive session, participants received cutaneous mechanical stimulations that could be either painful or not. During both sessions, participants were asked to rate the unpleasantness of each stimulus. Linguistic stimuli were also rated in terms of valence, arousal, pain relatedness, and pain intensity, immediately after the Semantic session. Results In the Nociceptive session, the 'nociceptive stimuli' vs. 'non-nociceptive stimuli' contrast revealed extensive activations in SI, SII, insula, cingulate cortex, thalamus, and dorsolateral prefrontal cortex. In the Semantic session, words associated with social pain, compared to negative pain-unrelated words, showed increased activity in most of the same areas, whereas words associated with physical pain, compared to negative pain-unrelated words, only activated the left supramarginal gyrus and partly the postcentral gyrus. Discussion Our results confirm that semantic pain partly shares the neural substrates of nociceptive pain. Specifically, social pain-related words activate a wide network of regions, mostly overlapping with those pertaining to the affective-motivational aspects of nociception, whereas physical pain-related words overlap with a small cluster including regions related to the sensory-discriminative aspects of nociception. However, most regions of overlap are differentially activated in different conditions.
Collapse
Affiliation(s)
- Eleonora Borelli
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Bandieri
- Oncology and Palliative Care Units, Civil Hospital Carpi, USL, Carpi, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Hematology Unit and Chair, Azienda Ospedaliera Universitaria di Modena, Modena, Italy
| | - Cristina Cacciari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Adolfo Porro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fausta Lui
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Dugré JR, Potvin S. Neural bases of frustration-aggression theory: A multi-domain meta-analysis of functional neuroimaging studies. J Affect Disord 2023; 331:64-76. [PMID: 36924847 DOI: 10.1016/j.jad.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Early evidence suggests that unexpected non-reward may increase the risk for aggressive behaviors. Despite the growing interest in understanding brain functions that may be implicated in aggressive behaviors, the neural processes underlying such frustrative events remain largely unknown. Furthermore, meta-analytic results have produced discrepant results, potentially due to substantial differences in the definition of anger/aggression constructs. METHODS Therefore, we conducted a coordinate-based meta-analysis, using the activation likelihood estimation algorithm, on neuroimaging studies examining reward omission and retaliatory behaviors in healthy subjects. Conjunction analyses were further examined to discover overlapping brain activations across these meta-analytic maps. RESULTS Frustrative non-reward deactivated the orbitofrontal cortex, ventral striatum and posterior cingulate cortex, whereas increased activations were observed in midcingulo-insular regions. Retaliatory behaviors recruited the left fronto-insular and anterior midcingulate cortices, the dorsal caudate and the primary somatosensory cortex. Conjunction analyses revealed that both strongly activated midcingulo-insular regions. LIMITATIONS Spatial overlap between neural correlates of frustration and retaliatory behaviors was conducted using a conjunction analysis. Therefore, neurobiological markers underlying the temporal sequence of the frustration-aggression theory should be interpreted with caution. CONCLUSIONS Nonetheless, our results underscore the role of anterior midcingulate/pre-supplementary motor area and fronto-insular cortex in both frustration and retaliatory behaviors. A neurobiological framework for understanding frustration-based impulsive aggression is provided.
Collapse
Affiliation(s)
- Jules R Dugré
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montréal, Canada.
| | - Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montréal, Canada.
| |
Collapse
|
6
|
Hyperacusis: Loudness Intolerance, Fear, Annoyance and Pain. Hear Res 2022; 426:108648. [DOI: 10.1016/j.heares.2022.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
|
7
|
Impaired Cognitive Empathy in Outpatients with Chronic Musculoskeletal Pain: A Cross-Sectional Study. Neural Plast 2021; 2021:4430594. [PMID: 34616448 PMCID: PMC8487839 DOI: 10.1155/2021/4430594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background In recent years, a growing number of researchers showed significant interest in psychological and social interventions to manage chronic musculoskeletal (MSK) pain. Cognitive and emotional empathy is an attractive and valuable sociopsychological factor that may provide protection and resilience against chronic MSK pain. However, its effect on outpatients remains underexplored. Objective To compare the empathy ability between chronic MSK pain outpatients and healthy controls and explore the relationship between cognitive/emotional empathy and chronic pain. Methods Patients with chronic MSK pain (n = 22) and healthy controls (n = 26) completed the pain assessment and empathy ability task, utilizing a multidimensional empathy assessment tool with satisfactory reliability and validity (i.e., the Chinese version of the Multifaceted Empathy Test (MET-C)). Results The data indicated that the chronic MSK pain outpatients had impaired cognitive empathy (i.e., lower squared cognitive empathy accuracy: Student's t = −2.119, P = 0.040, and longer task completion time: Student's t = 3.382, P = 0.002) compared to healthy controls, and cognitive empathy was negatively correlated with pain intensity (r = −0.614, P = 0.002). Further, the impaired cognitive empathy was present in identifying positive, but not negative emotions. Conclusion These results indicate that chronic MSK pain is associated with impaired empathy ability. Our studies contribute to offering a potential direction for developing psychosocial interventions to treat chronic MSK pain.
Collapse
|
8
|
Maallo AMS, Moulton EA, Sieberg CB, Giddon DB, Borsook D, Holmes SA. A lateralized model of the pain-depression dyad. Neurosci Biobehav Rev 2021; 127:876-883. [PMID: 34090918 PMCID: PMC8289740 DOI: 10.1016/j.neubiorev.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 11/25/2022]
Abstract
Chronic pain and depression are two frequently co-occurring and debilitating conditions. Even though the former is treated as a physical affliction, and the latter as a mental illness, both disorders closely share neural substrates. Here, we review the association of pain with depression, especially when symptoms are lateralized on either side of the body. We also explore the overlapping regions in the forebrain implicated in these conditions. Finally, we synthesize these findings into a model, which addresses gaps in our understanding of comorbid pain and depression. Our lateralized pain-depression dyad model suggests that individuals diagnosed with depression should be closely monitored for pain symptoms in the left hemibody. Conversely, for patients in pain, with the exception of acute pain with a known source, referrals in today's pain centers for psychological evaluation should be part of standard practice, within the framework of an interdisciplinary approach to pain treatment.
Collapse
Affiliation(s)
- Anne Margarette S Maallo
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Eric A Moulton
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine B Sieberg
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Biobehavioral Pediatric Pain Lab, Department of Psychiatry & Behavioral Sciences, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Donald B Giddon
- Harvard School of Dental Medicine, Harvard University, Boston, MA, USA; Pain Management Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - David Borsook
- Harvard Medical School, Boston, MA, USA; Departments of Psychiatry and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott A Holmes
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Kim D, Chae Y, Park HJ, Lee IS. Effects of Chronic Pain Treatment on Altered Functional and Metabolic Activities in the Brain: A Systematic Review and Meta-Analysis of Functional Neuroimaging Studies. Front Neurosci 2021; 15:684926. [PMID: 34290582 PMCID: PMC8287208 DOI: 10.3389/fnins.2021.684926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/02/2021] [Indexed: 01/08/2023] Open
Abstract
Previous studies have identified altered brain changes in chronic pain patients, however, it remains unclear whether these changes are reversible. We summarized the neural and molecular changes in patients with chronic pain and employed a meta-analysis approach to quantify the changes. We included 75 studies and 11 of these 75 studies were included in the activation likelihood estimation (ALE) analysis. In the 62 functional magnetic resonance imaging (fMRI) studies, the primary somatosensory and motor cortex (SI and MI), thalamus, insula, and anterior cingulate cortex (ACC) showed significantly decreased activity after the treatments compared to baseline. In the 13 positron emission tomography (PET) studies, the SI, MI, thalamus, and insula showed significantly increased glucose uptake, blood flow, and opioid-receptor binding potentials after the treatments compared to baseline. A meta-analysis of fMRI studies in patients with chronic pain, during pain-related tasks, showed a significant deactivation likelihood cluster in the left medial posterior thalamus. Further studies are warranted to understand brain reorganization in patients with chronic pain compared to the normal state, in terms of its relationship with symptom reduction and baseline conditions.
Collapse
Affiliation(s)
- Dongwon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Younbyoung Chae
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| | - Hi-Joon Park
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| | - In-Seon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
10
|
Huo BB, Zheng MX, Hua XY, Shen J, Wu JJ, Xu JG. Metabolic Brain Network Analysis With 18F-FDG PET in a Rat Model of Neuropathic Pain. Front Neurol 2021; 12:566119. [PMID: 34276529 PMCID: PMC8284720 DOI: 10.3389/fneur.2021.566119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain has been found to be related to profound reorganization in the function and structure of the brain. We previously demonstrated changes in local brain activity and functional/metabolic connectivity among selected brain regions by using neuroimaging methods. The present study further investigated large-scale metabolic brain network changes in 32 Sprague–Dawley rats with right brachial plexus avulsion injury (BPAI). Graph theory was applied in the analysis of 2-deoxy-2-[18F] fluoro-D-glucose (18F-FDG) PET images. Inter-subject metabolic networks were constructed by calculating correlation coefficients. Global and nodal network properties were calculated and comparisons between pre- and post-BPAI (7 days) status were conducted. The global network properties (including global efficiency, local efficiency and small-world index) and nodal betweenness centrality did not significantly change for all selected sparsity thresholds following BPAI (p > 0.05). As for nodal network properties, both nodal degree and nodal efficiency measures significantly increased in the left caudate putamen, left medial prefrontal cortex, and right caudate putamen (p < 0.001). The right entorhinal cortex showed a different nodal degree (p < 0.05) but not nodal efficiency. These four regions were selected for seed-based metabolic connectivity analysis. Strengthened connectivity was found among these seeds and distributed brain regions including sensorimotor area, cognitive area, and limbic system, etc. (p < 0.05). Our results indicated that the brain had the resilience to compensate for BPAI-induced neuropathic pain. However, the importance of bilateral caudate putamen, left medial prefrontal cortex, and right entorhinal cortex in the network was strengthened, as well as most of their connections with distributed brain regions.
Collapse
Affiliation(s)
- Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Shen
- Department of Orthopedics, Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Distinct neural networks subserve placebo analgesia and nocebo hyperalgesia. Neuroimage 2021; 231:117833. [PMID: 33549749 DOI: 10.1016/j.neuroimage.2021.117833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 12/19/2022] Open
Abstract
Neural networks involved in placebo analgesia and nocebo hyperalgesia processes have been widely investigated with neuroimaging methods. However, few studies have directly compared these two processes and it remains unclear whether common or distinct neural circuits are involved. To address this issue, we implemented a coordinate-based meta-analysis and compared neural representations of placebo analgesia (30 studies; 205 foci; 677 subjects) and nocebo hyperalgesia (22 studies; 301 foci; 401 subjects). Contrast analyses confirmed placebo-specific concordance in the right ventral striatum, and nocebo-specific concordance in the dorsal anterior cingulate cortex (dACC), left posterior insula and left parietal operculum during combined pain anticipation and administration stages. Importantly, no overlapping regions were found for these two processes in conjunction analyses, even when the threshold was low. Meta-analytic connectivity modeling (MACM) and resting-state functional connectivity (RSFC) analyses on key regions further confirmed the distinct brain networks underlying placebo analgesia and nocebo hyperalgesia. Together, these findings indicate that the placebo analgesia and nocebo hyperalgesia processes involve distinct neural circuits, which supports the view that the two phenomena may operate via different neuropsychological processes.
Collapse
|
12
|
Xu A, Larsen B, Henn A, Baller EB, Scott JC, Sharma V, Adebimpe A, Basbaum AI, Corder G, Dworkin RH, Edwards RR, Woolf CJ, Eickhoff SB, Eickhoff CR, Satterthwaite TD. Brain Responses to Noxious Stimuli in Patients With Chronic Pain: A Systematic Review and Meta-analysis. JAMA Netw Open 2021; 4:e2032236. [PMID: 33399857 PMCID: PMC7786252 DOI: 10.1001/jamanetworkopen.2020.32236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPORTANCE Functional neuroimaging is a valuable tool for understanding how patients with chronic pain respond to painful stimuli. However, past studies have reported heterogenous results, highlighting opportunities for a quantitative meta-analysis to integrate existing data and delineate consistent associations across studies. OBJECTIVE To identify differential brain responses to noxious stimuli in patients with chronic pain using functional magnetic resonance imaging (fMRI) while adhering to current best practices for neuroimaging meta-analyses. DATA SOURCES All fMRI experiments published from January 1, 1990, to May 28, 2019, were identified in a literature search of PubMed/MEDLINE, EMBASE, Web of Science, Cochrane Library, PsycINFO, and SCOPUS. STUDY SELECTION Experiments comparing brain responses to noxious stimuli in fMRI between patients and controls were selected if they reported whole-brain results, included at least 10 patients and 10 healthy control participants, and used adequate statistical thresholding (voxel-height P < .001 or cluster-corrected P < .05). Two independent reviewers evaluated titles and abstracts returned by the search. In total, 3682 abstracts were screened, and 1129 full-text articles were evaluated. DATA EXTRACTION AND SYNTHESIS Thirty-seven experiments from 29 articles met inclusion criteria for meta-analysis. Coordinates reporting significant activation differences between patients with chronic pain and healthy controls were extracted. These data were meta-analyzed using activation likelihood estimation. Data were analyzed from December 2019 to February 2020. MAIN OUTCOMES AND MEASURES A whole-brain meta-analysis evaluated whether reported differences in brain activation in response to noxious stimuli between patients and healthy controls were spatially convergent. Follow-up analyses examined the directionality of any differences. Finally, an exploratory (nonpreregistered) region-of-interest analysis examined differences within the pain network. RESULTS The 37 experiments from 29 unique articles included a total of 511 patients and 433 controls (944 participants). Whole-brain meta-analyses did not reveal significant differences between patients and controls in brain responses to noxious stimuli at the preregistered statistical threshold. However, exploratory analyses restricted to the pain network revealed aberrant activity in patients. CONCLUSIONS AND RELEVANCE In this systematic review and meta-analysis, preregistered, whole-brain analyses did not reveal aberrant fMRI activity in patients with chronic pain. Exploratory analyses suggested that subtle, spatially diffuse differences may exist within the pain network. Future work on chronic pain biomarkers may benefit from focus on this core set of pain-responsive areas.
Collapse
Affiliation(s)
- Anna Xu
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Bart Larsen
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Alina Henn
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH (Rheinisch-Westfälische Technische Hochschule) Aachen University, Aachen, Germany
| | - Erica B. Baller
- Department of Psychiatry, University of Pennsylvania, Philadelphia
- Department of Psychiatry, Massachusetts General Hospital, Boston
- Department of Psychiatry, Harvard University, Boston, Massachusetts
| | - J. Cobb Scott
- Department of Psychiatry, University of Pennsylvania, Philadelphia
- VISN4 Mental Illness Research, Education, and Clinical Center at the Corporal Michael J. Crescenz VA (Veterans Affairs) Medical Center, Philadelphia, Pennsylvania
| | - Vaishnavi Sharma
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Azeez Adebimpe
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | | | - Gregory Corder
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Robert H. Dworkin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Robert R. Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Clifford J. Woolf
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain and Behaviour Sections, Research Centre Jülich, Jülich, Germany
| | - Claudia R. Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behaviour Sections, Research Centre Jülich, Jülich, Germany
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | |
Collapse
|
13
|
Van Oudenhove L, Kragel PA, Dupont P, Ly HG, Pazmany E, Enzlin P, Rubio A, Delon-Martin C, Bonaz B, Aziz Q, Tack J, Fukudo S, Kano M, Wager TD. Common and distinct neural representations of aversive somatic and visceral stimulation in healthy individuals. Nat Commun 2020; 11:5939. [PMID: 33230131 PMCID: PMC7684294 DOI: 10.1038/s41467-020-19688-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
Different pain types may be encoded in different brain circuits. Here, we examine similarities and differences in brain processing of visceral and somatic pain. We analyze data from seven fMRI studies (N = 165) and five types of pain and discomfort (esophageal, gastric, and rectal distension, cutaneous thermal stimulation, and vulvar pressure) to establish and validate generalizable pain representations. We first evaluate an established multivariate brain measure, the Neurologic Pain Signature (NPS), as a common nociceptive pain system across pain types. Then, we develop a multivariate classifier to distinguish visceral from somatic pain. The NPS responds robustly in 98% of participants across pain types, correlates with perceived intensity of visceral pain and discomfort, and shows specificity to pain when compared with cognitive and affective conditions from twelve additional studies (N = 180). Pre-defined signatures for non-pain negative affect do not respond to visceral pain. The visceral versus the somatic classifier reliably distinguishes somatic (thermal) from visceral (rectal) stimulation in both cross-validation and independent cohorts. Other pain types reflect mixtures of somatic and visceral patterns. These results validate the NPS as measuring a common core nociceptive pain system across pain types, and provide a new classifier for visceral versus somatic pain.
Collapse
Affiliation(s)
- Lukas Van Oudenhove
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Philip A Kragel
- Department of Psychology and Neuroscience and the Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Huynh Giao Ly
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| | - Els Pazmany
- Interfaculty Institute for Family and Sexuality Studies, Department of Neurosciences, University of Leuven, Leuven, Belgium
| | - Paul Enzlin
- Interfaculty Institute for Family and Sexuality Studies, Department of Neurosciences, University of Leuven, Leuven, Belgium
| | - Amandine Rubio
- Grenoble Institute of Neuroscience, University of Grenoble Alpes, Grenoble, France
| | - Chantal Delon-Martin
- Grenoble Institute of Neuroscience, University of Grenoble Alpes, Grenoble, France
| | - Bruno Bonaz
- Grenoble Institute of Neuroscience, University of Grenoble Alpes, Grenoble, France
| | - Qasim Aziz
- Barts and The London School of Medicine and Dentistry, Wingate Institute of Neurogastroenterology, Centre for Neuroscience and Trauma, Blizzard Institute, Queen Mary University of London, London, UK
| | - Jan Tack
- Gastrointestinal Motility and Sensitivity Research Group, Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism, and Ageing, KU Leuven, Leuven, Belgium
| | - Shin Fukudo
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Michiko Kano
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Sendai, Japan
| | - Tor D Wager
- Cognitive and Affective Neuroscience Lab, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
14
|
Moss RA. Psychotherapy in pain management: New viewpoints and treatment targets based on a brain theory. AIMS Neurosci 2020; 7:194-207. [PMID: 32995484 PMCID: PMC7519970 DOI: 10.3934/neuroscience.2020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/30/2020] [Indexed: 11/24/2022] Open
Abstract
The current paper provides an explanation of neurophysiological pain processing based the Dimensional Systems Model (DSM), a theory of higher cortical functions in which the cortical column is considered the binary digit for all cortical functions. Within the discussion, novel views on the roles of the basal ganglia, cerebellum, and cingulate cortex are presented. Additionally, an applied Clinical Biopsychological Model (CBM) based on the DSM will be discussed as related to psychological treatment with chronic pain patients. Three specific areas that have not been adequately addressed in the psychological treatment of chronic pain patients will be discussed based on the CBM. The treatment approaches have been effectively used in a clinical setting. Conclusions focus on a call for researchers and clinicians to fully evaluate the value of both the DSM and CBM.
Collapse
Affiliation(s)
- Robert A. Moss
- North Mississippi Regional Pain Consultants, 4381 Eason Blvd., Tupelo, MS 38801 USA
| |
Collapse
|
15
|
Kano M, Grinsvall C, Ran Q, Dupont P, Morishita J, Muratsubaki T, Mugikura S, Ly HG, Törnblom H, Ljungberg M, Takase K, Simrén M, Van Oudenhove L, Fukudo S. Resting state functional connectivity of the pain matrix and default mode network in irritable bowel syndrome: a graph theoretical analysis. Sci Rep 2020; 10:11015. [PMID: 32620938 PMCID: PMC7335204 DOI: 10.1038/s41598-020-67048-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/27/2020] [Indexed: 01/14/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional disorder of brain-gut interactions. Differential brain responses to rectal distention between IBS and healthy controls (HCs) have been demonstrated, particularly in the pain matrix and the default mode network. This study aims to compare resting-state functional properties of these networks between IBS patients and HCs using graph analysis in two independent cohorts. We used a weighted graph analysis of the adjacency matrix based on partial correlations between time series in the different regions in each subject to determine subject specific graph measures. These graph measures were normalized by values obtained in equivalent random networks. We did not find any significant differences between IBS patients and controls in global normalized graph measures, hubs, or modularity structure of the pain matrix and the DMN in any of our two independent cohorts. Furthermore, we did not find consistent associations between these global network measures and IBS symptom severity or GI-specific anxiety but we found a significant difference in the relationship between measures of psychological distress (anxiety and/or depressive symptoms) and normalized characteristic path length. The responses of these networks to visceral stimulation rather than their organisation at rest may be primarily disturbed in IBS.
Collapse
Affiliation(s)
- Michiko Kano
- Sukawa clinic, Kirari health coop, Fukushima, Japan.
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan.
- Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan.
| | - Cecilia Grinsvall
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Qian Ran
- Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium
| | - Patrick Dupont
- Laboratory for Cognitive Neurology, KU Leuven, Leuven, Belgium
| | - Joe Morishita
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Tomohiko Muratsubaki
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shunji Mugikura
- Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Huynh Giao Ly
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Hans Törnblom
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Ljungberg
- Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Diagnostic Imaging, Sahlgrenska University Hospital, MR Centre, Gothenburg, Sweden
| | - Kei Takase
- Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Magnus Simrén
- Department of Internal Medicine & Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lukas Van Oudenhove
- Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
- Cognitive and Affective Neuroscience Lab, Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Shin Fukudo
- Behavioral Medicine, Graduate School of Medicine, Tohoku University, Sendai, Japan
- Psychosomatic Medicine, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
16
|
Hou AL, Zheng MX, Hua XY, Huo BB, Shen J, Xu JG. Electroacupuncture-Related Metabolic Brain Connectivity in Neuropathic Pain due to Brachial Plexus Avulsion Injury in Rats. Front Neural Circuits 2020; 14:35. [PMID: 32625066 PMCID: PMC7313422 DOI: 10.3389/fncir.2020.00035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: The present study aimed to investigate the analgesic effect of electroacupuncture (EA) in neuropathic pain due to brachial plexus avulsion injury (BPAI) and related changes in the metabolic brain connectivity. Methods: Neuropathic pain model due to BPAI was established in adult female Sprague-Dawley rats. EA stimulations (2/15 Hz, 30 min/day, 5-day intervention followed by 2-day rest in each session) were applied to the fifth-seventh cervical "Jiaji" acupoints on the noninjured side from 1st to 12th weeks following BPAI (EA group, n = 8). Three control groups included sham EA (nonelectrical acupuncture applied to 3 mm lateral to the real "Jiaji" acupoints), BPAI-only, and normal rats (no particular intervention; eight rats in each group). Thermal withdrawal latency (TWL) of the noninjured forepaw was regularly tested to evaluate the threshold of thermalgesia. Small animal [fluorine-18]-fluoro-2-deoxy-D-glucose (18F-FDG) PET/CT scans of brain were conducted at the end of 4th, 12th, and 16th weeks to explore metabolic alterations of brain. Results: In the EA group, the TWL of the noninjured forepaw significantly decreased following BPAI and then increased following EA stimulation, compared with sham EA (P < 0.001). The metabolic brain connectivity among somatosensory cortex (SC), motor cortex (MC), caudate putamen (Cpu), and dorsolateral thalamus (DLT) in bilateral hemispheres decreased throughout the 16 weeks' observation in the BPAI-only group, compared with the normal rats (P < 0.05). In the EA group, the strength of connectivity among the above regions were found to be increased at the end of 4th week following BPAI modeling, decreased at 12th week, and then increased again at 16th week (P < 0.05). The changes in metabolic connectivity were uncharacteristic and dispersed in the sham EA group. Conclusion: The study revealed long-term and extensive changes of metabolic brain connectivity in EA-treated BPAI-induced neuropathic pain rats. Bilateral sensorimotor and pain-related brain regions were mainly involved in this process. It indicated that modulation of brain metabolic connectivity might be an important mechanism of analgesic effect in EA stimulation for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Ao-Lin Hou
- Shanghai Eighth People Hospital, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Shen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Orthopedics, Guanghua Hospital of Integrative Chinese and Western Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Abstract
Group differences in touch and pain thresholds-and their neural correlates-were studied in women with provoked vestibulodynia (PVD; N = 15), a common subtype of vulvodynia (chronic vulvar pain), and pain-free control women (N = 15). Results from quantitative sensory testing and self-report measures indicated that, as compared with control participants, women with PVD exhibited allodynia (ie, pain in response to a normally nonpainful stimulus) and hyperalgesia (ie, an increased response to a normally painful stimulus) at vulvar and nonvulvar sites. In addition, brain imaging analyses demonstrated reduced difference scores between touch and pain in the S2 area in women with PVD compared with control participants, supporting previous findings of allodynia in women with PVD. There were no significant reductions in difference scores between touch and pain for regions related to cognitive and affective processing of painful stimuli. The results of this study contribute important information to the general pain and vulvodynia literatures in elucidating the specific sensorimotor neural mechanisms that underlie hyperalgesia in a chronic pain population. These results have implications for differentiating neural processing of touch and pain for women with and without PVD. Future research should attempt to examine alterations related to hyperalgesia in commonly comorbid conditions of PVD.
Collapse
|
18
|
Provenzano D, Washington SD, Baraniuk JN. A Machine Learning Approach to the Differentiation of Functional Magnetic Resonance Imaging Data of Chronic Fatigue Syndrome (CFS) From a Sedentary Control. Front Comput Neurosci 2020; 14:2. [PMID: 32063839 PMCID: PMC7000378 DOI: 10.3389/fncom.2020.00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic Fatigue Syndrome (CFS) is a debilitating condition estimated to impact at least 1 million individuals in the United States, however there persists controversy about its existence. Machine learning algorithms have become a powerful methodology for evaluating multi-regional areas of fMRI activation that can classify disease phenotype from sedentary control. Uncovering objective biomarkers such as an fMRI pattern is important for lending credibility to diagnosis of CFS. fMRI scans were evaluated for 69 patients (38 CFS and 31 Control) taken before (Day 1) and after (Day 2) a submaximal exercise test while undergoing the n-back memory paradigm. A predictive model was created by grouping fMRI voxels into the Automated Anatomical Labeling (AAL) atlas, splitting the data into a training and testing dataset, and feeding these inputs into a logistic regression to evaluate differences between CFS and control. Model results were cross-validated 10 times to ensure accuracy. Model results were able to differentiate CFS from sedentary controls at a 80% accuracy on Day 1 and 76% accuracy on Day 2 (Table 3). Recursive features selection identified 29 ROI's that significantly distinguished CFS from control on Day 1 and 28 ROI's on Day 2 with 10 regions of overlap shared with Day 1 (Figure 3). These 10 shared regions included the putamen, inferior frontal gyrus, orbital (F3O), supramarginal gyrus (SMG), temporal pole; superior temporal gyrus (T1P) and caudate ROIs. This study was able to uncover a pattern of activated neurological regions that differentiated CFS from Control. This pattern provides a first step toward developing fMRI as a diagnostic biomarker and suggests this methodology could be emulated for other disorders. We concluded that a logistic regression model performed on fMRI data significantly differentiated CFS from Control.
Collapse
Affiliation(s)
| | | | - James N. Baraniuk
- Baraniuk Lab, Department of Medicine, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
19
|
Xu A, Larsen B, Baller EB, Scott JC, Sharma V, Adebimpe A, Basbaum AI, Dworkin RH, Edwards RR, Woolf CJ, Eickhoff SB, Eickhoff CR, Satterthwaite TD. Convergent neural representations of experimentally-induced acute pain in healthy volunteers: A large-scale fMRI meta-analysis. Neurosci Biobehav Rev 2020; 112:300-323. [PMID: 31954149 DOI: 10.1016/j.neubiorev.2020.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Characterizing a reliable, pain-related neural signature is critical for translational applications. Many prior fMRI studies have examined acute nociceptive pain-related brain activation in healthy participants. However, synthesizing these data to identify convergent patterns of activation can be challenging due to the heterogeneity of experimental designs and samples. To address this challenge, we conducted a comprehensive meta-analysis of fMRI studies of stimulus-induced pain in healthy participants. Following pre-registration, two independent reviewers evaluated 4,927 abstracts returned from a search of 8 databases, with 222 fMRI experiments meeting inclusion criteria. We analyzed these experiments using Activation Likelihood Estimation with rigorous type I error control (voxel height p < 0.001, cluster p < 0.05 FWE-corrected) and found a convergent, largely bilateral pattern of pain-related activation in the secondary somatosensory cortex, insula, midcingulate cortex, and thalamus. Notably, these regions were consistently recruited regardless of stimulation technique, location of induction, and participant sex. These findings suggest a highly-conserved core set of pain-related brain areas, encouraging applications as a biomarker for novel therapeutics targeting acute nociceptive pain.
Collapse
Affiliation(s)
- Anna Xu
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Bart Larsen
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Erica B Baller
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, Harvard University, Boston, MA, USA
| | - J Cobb Scott
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA; VISN4 Mental Illness Research, Education, and Clinical Center at the Philadelphia VA Medical Center, Philadelphia, PA, 19104, USA
| | - Vaishnavi Sharma
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Azeez Adebimpe
- Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Robert H Dworkin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Robert R Edwards
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University, D-40225 Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-1, INM-7), Research Centre Jülich, Germany
| | - Claudia R Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-1, INM-7), Research Centre Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | |
Collapse
|
20
|
Zortea M, Ramalho L, Alves RL, Alves CFDS, Braulio G, Torres ILDS, Fregni F, Caumo W. Transcranial Direct Current Stimulation to Improve the Dysfunction of Descending Pain Modulatory System Related to Opioids in Chronic Non-cancer Pain: An Integrative Review of Neurobiology and Meta-Analysis. Front Neurosci 2019; 13:1218. [PMID: 31803005 PMCID: PMC6876542 DOI: 10.3389/fnins.2019.01218] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Opioid long-term therapy can produce tolerance, opioid-induced hyperalgesia (OIH), and it induces dysfunction in pain descending pain inhibitory system (DPIS). Objectives: This integrative review with meta-analysis aimed: (i) To discuss the potential mechanisms involved in analgesic tolerance and opioid-induced hyperalgesia (OIH). (ii) To examine how the opioid can affect the function of DPIS. (ii) To show evidence about the tDCS as an approach to treat acute and chronic pain. (iii) To discuss the effect of tDCS on DPIS and how it can counter-regulate the OIH. (iv) To draw perspectives for the future about the tDCS effects as an approach to improve the dysfunction in the DPIS in chronic non-cancer pain. Methods: Relevant published randomized clinical trials (RCT) comparing active (irrespective of the stimulation protocol) to sham tDCS for treating chronic non-cancer pain were identified, and risk of bias was assessed. We searched trials in PubMed, EMBASE and Cochrane trials databases. tDCS protocols accepted were application in areas of the primary motor cortex (M1), dorsolateral prefrontal cortex (DLPFC), or occipital area. Results: Fifty-nine studies were fully reviewed, and 24 with moderate to the high-quality methodology were included. tDCS improved chronic pain with a moderate effect size [pooled standardized mean difference; -0.66; 95% confidence interval (CI) -0.91 to -0.41]. On average, active protocols led to 27.26% less pain at the end of treatment compared to sham [95% CI; 15.89-32.90%]. Protocol varied in terms of anodal or cathodal stimulation, areas of stimulation (M1 and DLPFC the most common), number of sessions (from 5 to 20) and current intensity (from 1 to 2 mA). The time of application was 20 min in 92% of protocols. Conclusion: In comparison with sham stimulation, tDCS demonstrated a superior effect in reducing chronic pain conditions. They give perspectives that the top-down neuromodulator effects of tDCS are a promising approach to improve management in refractory chronic not-cancer related pain and to enhance dysfunctional neuronal circuitries involved in the DPIS and other pain dimensions and improve pain control with a therapeutic opioid-free. However, further studies are needed to determine individualized protocols according to a biopsychosocial perspective.
Collapse
Affiliation(s)
- Maxciel Zortea
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Leticia Ramalho
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Rael Lopes Alves
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Camila Fernanda da Silveira Alves
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Gilberto Braulio
- Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Service of Anesthesia and Perioperative Medicine, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Iraci Lucena da Silva Torres
- Department of Pharmacology, Institute of Health Sciences (ICBS), Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Pharmacology of Pain and Neuromodulation: Pre-clinical Investigations Research Group, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Wolnei Caumo
- Post-graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande Do Sul (UFRGS), Porto Alegre, Brazil.,Laboratory of Pain & Neuromodulation, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Pain Treatment and Palliative Medicine Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| |
Collapse
|
21
|
Meeker TJ, Keaser ML, Khan SA, Gullapalli RP, Seminowicz DA, Greenspan JD. Non-invasive Motor Cortex Neuromodulation Reduces Secondary Hyperalgesia and Enhances Activation of the Descending Pain Modulatory Network. Front Neurosci 2019; 13:467. [PMID: 31139047 PMCID: PMC6519323 DOI: 10.3389/fnins.2019.00467] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 11/29/2022] Open
Abstract
Central sensitization is a driving mechanism in many chronic pain patients, and manifests as hyperalgesia and allodynia beyond any apparent injury. Recent studies have demonstrated analgesic effects of motor cortex (M1) stimulation in several chronic pain disorders, yet its neural mechanisms remain uncertain. We evaluated whether anodal M1 transcranial direct current stimulation (tDCS) would mitigate central sensitization as measured by indices of secondary hyperalgesia. We used a capsaicin-heat pain model to elicit secondary mechanical hyperalgesia in 27 healthy subjects. In an assessor and subject-blind randomized, sham-controlled, crossover trial, anodal M1 tDCS decreased the intensity of pinprick hyperalgesia more than cathodal or sham tDCS. To elucidate the mechanism driving analgesia, subjects underwent fMRI of painful mechanical stimuli prior to and following induction of the pain model, after receiving M1 tDCS. We hypothesized that anodal M1 tDCS would enhance engagement of a descending pain modulatory (DPM) network in response to mechanical stimuli. Anodal tDCS normalized the effects of central sensitization on neurophysiological responses to mechanical pain in the medial prefrontal cortex, pregenual anterior cingulate cortex, and periaqueductal gray, important regions in the DPM network. Taken together, these results provide support for the hypothesis that anodal M1-tDCS reduces central sensitization-induced hyperalgesia through the DPM network in humans.
Collapse
Affiliation(s)
- Timothy J. Meeker
- Department of Neurosurgery, Johns Hopkins Medicine, Baltimore, MD, United States
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Michael L. Keaser
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Shariq A. Khan
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Rao P. Gullapalli
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - David A. Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Joel D. Greenspan
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, Baltimore, MD, United States
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland, Baltimore, Baltimore, MD, United States
| |
Collapse
|
22
|
Peyron R, Fauchon C. The posterior insular-opercular cortex: An access to the brain networks of thermosensory and nociceptive processes? Neurosci Lett 2019; 702:34-39. [DOI: 10.1016/j.neulet.2018.11.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Herpertz SC, Schmitgen MM, Fuchs C, Roth C, Wolf RC, Bertsch K, Flor H, Grinevich V, Boll S. Oxytocin Effects on Pain Perception and Pain Anticipation. THE JOURNAL OF PAIN 2019; 20:1187-1198. [PMID: 31009765 DOI: 10.1016/j.jpain.2019.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/11/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
There is an ongoing debate whether the neuropeptide oxytocin (OT) modulates pain processing in humans. This study differentiates behavioral and neuronal OT effects on pain perception and pain anticipation by using a Pavlovian conditioning paradigm. Forty-six males received intranasally administered OT in a randomized, double-blind, placebo-controlled group design. Although OT exerted no direct effect on perceived pain, OT was found to modulate the blood oxygen level-dependent response in the ventral striatum for painful versus warm unconditioned stimuli and to decrease activity in the anterior insula (IS) with repeated thermal pain stimuli. Regarding pain anticipation, OT increased responses to CSpain versus CSminus in the nucleus accumbens. Furthermore, in the OT condition increased correct expectations, particularly for the most certain conditioned stimuli (CS)-unconditioned stimuli associations (CSminus and CSpain) were found, as well as greatest deactivations in the right posterior IS in response to the least certain condition (CSwarm) with posterior IS activity and correct expectancies being positively correlated. In conclusion, OT seems to have both a direct effect on pain processing via the ventral striatum and by inducing habituation in the anterior IS as well as on pain anticipation by boostering associative learning in general and the neuronal conditioned fear of pain response in particular. PERSPECTIVE: The neuropeptide OT has recently raised the hope to offer a novel avenue for modulating pain experience. This study found OT to modulate pain processing and to facilitate the anticipation of pain, inspiring further research on OT effects on the affective dimension of the pain experience.
Collapse
Affiliation(s)
- Sabine C Herpertz
- Department of General Psychiatry, University Hospital of Heidelberg, Heidelberg, Germany.
| | - Mike M Schmitgen
- Department of General Psychiatry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Christine Fuchs
- Department of General Psychiatry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Corinna Roth
- Department of General Psychiatry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Robert Christian Wolf
- Department of General Psychiatry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Katja Bertsch
- Department of General Psychiatry, University Hospital of Heidelberg, Heidelberg, Germany
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health Mannheim, University of Heidelberg, Mannheim, Germany
| | - Valery Grinevich
- Schaller Research Group on Neuropeptides, German Cancer Research Center DKFZ, Heidelberg, Germany
| | - Sabrina Boll
- Department of General Psychiatry, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Moningka H, Lichenstein S, Worhunsky PD, DeVito EE, Scheinost D, Yip SW. Can neuroimaging help combat the opioid epidemic? A systematic review of clinical and pharmacological challenge fMRI studies with recommendations for future research. Neuropsychopharmacology 2019; 44:259-273. [PMID: 30283002 PMCID: PMC6300537 DOI: 10.1038/s41386-018-0232-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 02/04/2023]
Abstract
The current opioid epidemic is an urgent public health problem, with enormous individual, societal, and healthcare costs. Despite effective, evidence-based treatments, there is significant individual variability in treatment responses and relapse rates are high. In addition, the neurobiology of opioid-use disorder (OUD) and its treatment is not well understood. This review synthesizes published fMRI literature relevant to OUD, with an emphasis on findings related to opioid medications and treatment, and proposes areas for further research. We conducted a systematic literature review of Medline and Psychinfo to identify (i) fMRI studies comparing OUD and control participants; (ii) studies related to medication, treatment, abstinence or withdrawal effects in OUD; and (iii) studies involving manipulation of the opioid system in healthy individuals. Following application of exclusionary criteria (e.g., insufficient sample size), 45 studies were retained comprising data from ~1400 individuals. We found convergent evidence that individuals with OUD display widespread heightened neural activation to heroin cues. This pattern is potentiated by heroin, attenuated by medication-assisted treatments for opioids, predicts treatment response, and is reduced following extended abstinence. Nonetheless, there is a paucity of literature examining neural characteristics of OUD and its treatment. We discuss limitations of extant research and identify critical areas for future neuroimaging studies, including the urgent need for studies examining prescription opioid users, assessing sex differences and utilizing a wider range of clinically relevant task-based fMRI paradigms across different stages of addiction.
Collapse
Affiliation(s)
- Hestia Moningka
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Sarah Lichenstein
- Yale School of Medicine, Radiology and Bioimaging Sciences, New Haven, CT, 06510, USA
| | - Patrick D Worhunsky
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Elise E DeVito
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Dustin Scheinost
- Yale School of Medicine, Radiology and Bioimaging Sciences, New Haven, CT, 06510, USA
| | - Sarah W Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
25
|
Lichenstein SD, Zakiniaeiz Y, Yip SW, Garrison KA. Mechanisms and Clinical Features of Co-occurring Opioid and Nicotine Use. CURRENT ADDICTION REPORTS 2019; 6:114-125. [PMID: 32864292 DOI: 10.1007/s40429-019-00245-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose of review To review the literature addressing shared pathophysiological and clinical features of opioid and nicotine use to inform etiology and treatment, and highlight areas for future research. Recent findings Opioid and nicotine use co-occur at an alarmingly high rate, and this may be driven in part by interactions between the opioid and cholinergic systems underlying drug reward and the transition to dependence. Pain, among other shared risk factors, is strongly implicated in both opioid and nicotine use and appears to play an important role in their co-occurrence. Additionally, there are important sex/gender considerations that require further study. Regarding treatment, smoking cessation can improve treatment outcomes in opioid use disorder, and pharmacological approaches that target the opioid and cholinergic systems may be effective for treating both classes of substance use disorders. Summary Understanding overlapping etiological and pathophysiological mechanisms of opioid and nicotine use can aid in understanding their co-occurrence and guiding their treatment.
Collapse
Affiliation(s)
| | - Yasmin Zakiniaeiz
- Department of Radiology & Biomedical Imaging, Yale School of Medicine
| | - Sarah W Yip
- Department of Psychiatry, Yale School of Medicine
| | | |
Collapse
|
26
|
Yoon MS, Koh CS, Lee J, Shin J, Kong C, Jung HH, Chang JW. Injecting NMDA and Ro 25-6981 in insular cortex induce neuroplastic changes and neuropathic pain-like behaviour. Eur J Pain 2018; 22:1691-1700. [PMID: 29862605 DOI: 10.1002/ejp.1254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuropathic pain is associated with abnormal sensitivity of the central nervous system. Although the mechanism underlying the development of sensitization remains to be fully elucidated, recent studies have reported that neuroplastic changes in the pain circuitry may be involved in hypersensitivity associated with neuropathic pain. However, it is difficult to investigate such phenomena in existing animal pain model. Therefore, in this study, we developed a novel animal model - the circuit plasticity reconstruction (CPR) model - to mimic central sensitization associated with neuroplastic changes. METHOD NMDA and Ro 25-6981 were injected into the right insular cortex of Sprague-Dawley rats, while electrical stimulation was delivered to the contralateral hind paw. Mechanical allodynia was tested by von Frey test with up-down method, and neuroplastic changes were confirmed by PSA-NCAM-positive immunostaining. RESULT The mechanical withdrawal threshold of the left hind paw decreased beginning 1 day after CPR modelling and persisted until day 21 comparing to the modified CPR 1 (mod-CPR 1) group (CPR: 91.68 ± 1.8%, mod-CPR 1: 42.71 ± 3.4%, p < 0.001). In contrast, mod-CPR 2 surgery without electrical stimulation did not induce mechanical allodynia. Immunostaining for PSA-NCAM also revealed that neuroplastic changes had occurred in the CPR group. CONCLUSION Our results demonstrated that CPR modelling induced neuroplasticity within the insular cortex, leading to alterations in the neural circuitry and central sensitization. SIGNIFICANCE This article represents that the CPR model can mimic the neuropathic pain derived by neuroplastic changes. Our findings indicate that the CPR model may aid the development of novel therapeutic strategies for neuropathic pain and in elucidating the mechanisms underlying pain induced by central sensitization and neuroplastic changes.
Collapse
Affiliation(s)
- M S Yoon
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - C S Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - J Lee
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - J Shin
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - C Kong
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - H H Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - J W Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
27
|
Wanigasekera V, Wartolowska K, Huggins J, Duff E, Vennart W, Whitlock M, Massat N, Pauer L, Rogers P, Hoggart B, Tracey I. Disambiguating pharmacological mechanisms from placebo in neuropathic pain using functional neuroimaging. Br J Anaesth 2018; 120:299-307. [DOI: 10.1016/j.bja.2017.11.064] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
28
|
Han JJ, Jang JH, Ridder DD, Vanneste S, Koo JW, Song JJ. Increased parietal circuit-breaker activity in delta frequency band and abnormal delta/theta band connectivity in salience network in hyperacusis subjects. PLoS One 2018; 13:e0191858. [PMID: 29370266 PMCID: PMC5785008 DOI: 10.1371/journal.pone.0191858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 01/13/2018] [Indexed: 11/18/2022] Open
Abstract
Recent studies have suggested that hyperacusis, an abnormal hypersensitivity to ordinary environmental sounds, may be characterized by certain resting-state cortical oscillatory patterns, even with no sound stimulus. However, previous studies are limited in that most studied subjects with other comorbidities that may have affected cortical activity. In this regard, to assess ongoing cortical oscillatory activity in idiopathic hyperacusis patients with no comorbidities, we compared differences in resting-state cortical oscillatory patterns between five idiopathic hyperacusis subjects and five normal controls. The hyperacusis group demonstrated significantly higher electrical activity in the right auditory-related cortex for the gamma frequency band and left superior parietal lobule (SPL) for the delta frequency band versus the control group. The hyperacusis group also showed significantly decreased functional connectivity between the left auditory cortex (AC) and left orbitofrontal cortex (OFC), between the left AC and left subgenual anterior cingulate cortex (sgACC) for the gamma band, and between the right insula and bilateral dorsal anterior cingulate cortex (dACC) and between the left AC and left sgACC for the theta band versus the control group. The higher electrical activity in the SPL may indicate a readiness of “circuit-breaker” activity to shift attention to forthcoming sound stimuli. Also, because of the disrupted salience network, consisting of the dACC and insula, abnormally increased salience to all sound stimuli may emerge, as a consequence of decreased top-down control of the AC by the dACC and dysfunctional emotional weight attached to auditory stimuli by the OFC. Taken together, abnormally enhanced attention and salience to forthcoming sound stimuli may render hyperacusis subjects hyperresponsive to non-noxious auditory stimuli.
Collapse
Affiliation(s)
- Jae Joon Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Hye Jang
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, School for Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, United States of America
| | - Ja-Won Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
- * E-mail:
| |
Collapse
|
29
|
Altered Functional Connectivity in Sickle Cell Disease Exists at Rest and During Acute Pain Challenge. Clin J Pain 2017; 33:1060-1070. [DOI: 10.1097/ajp.0000000000000492] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
Abstract
Pain and stress share significant conceptual and physiological overlaps. Both phenomena challenge the body's homeostasis and necessitate decision-making to help animals adapt to their environment. In addition, chronic stress and chronic pain share a common behavioral model of failure to extinguish negative memories. Yet, they also have discrepancies such that the final brain endophenotype of posttraumatic stress disorder, depression, and chronic pain appears to be different among the three conditions, and the role of the hypothalamic-pituitary-adrenal axis remains unclear in the physiology of pain. Persistence of either stress or pain is maladaptive and could lead to compromised well-being. In this brief review, we highlight the commonalities and differences between chronic stress and chronic pain, while focusing particularly on the central role of the limbic brain. We assess the current attempts in the field to conceptualize and understand chronic pain, within the context of knowledge gained from the stress literature. The limbic brain-including hippocampus, amygdala, and ventromedial pre-frontal cortex-plays a critical role in learning. These brain areas integrate incoming nociceptive or stress signals with internal state, and generate learning signals necessary for decision-making. Therefore, the physiological and structural remodeling of this learning circuitry is observed in conditions such as chronic pain, depression, and posttraumatic stress disorder, and is also linked to the risk of onset of these conditions.
Collapse
Affiliation(s)
- Chadi G Abdallah
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,National Center for PTSD-Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA
| | - Paul Geha
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,National Center for PTSD-Clinical Neurosciences Division, US Department of Veterans Affairs, West Haven, CT, USA.,The John B. Pierce Laboratory, New Haven, CT, USA
| |
Collapse
|
31
|
Brain activations during pain: a neuroimaging meta-analysis of patients with pain and healthy controls. Pain 2017; 157:1279-1286. [PMID: 26871535 DOI: 10.1097/j.pain.0000000000000517] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In response to recent publications from pain neuroimaging experiments, there has been a debate about the existence of a primary pain region in the brain. Yet, there are few meta-analyses providing assessments of the minimum cerebral denominators of pain. Here, we used a statistical meta-analysis method, called activation likelihood estimation, to define (1) core brain regions activated by pain per se, irrelevant of pain modality, paradigm, or participants and (2) activation likelihood estimation commonalities and differences between patients with chronic pain and healthy individuals. A subtraction analysis of 138 independent data sets revealed that the minimum denominator for activation across pain modalities and paradigms included the right insula, secondary sensory cortex, and right anterior cingulate cortex (ACC). Common activations for healthy subjects and patients with pain alike included the thalamus, ACC, insula, and cerebellum. A comparative analysis revealed that healthy individuals were more likely to activate the cingulum, thalamus, and insula. Our results point toward the central role of the insular cortex and ACC in pain processing, irrelevant of modality, body part, or clinical experience; thus, furthering the importance of ACC and insular activation as key regions for the human experience of pain.
Collapse
|
32
|
Abstract
Over the past two decades, the question of how our brain makes us sensitive to the state of conspecifics and how that affects our behaviour has undergone a profound change. Twenty years ago what would now be called social neuroscience was focused on the visual processing of facial expressions and body movements in temporal lobe structures of primates (Puce and Perrett 2003). With the discovery of mirror neurons, this changed rapidly towards the modern field of social neuroscience, in which high-level vision is but one of many focuses of interest. In this essay, we will argue that for the further progress of the field, the integration of animal neuroscience and human neuroscience is paramount. We will do so, by focusing on the field of embodied social cognition. We will first show how the combination of animal and human neuroscience was critical in how the discovery of mirror neurons placed the motor system on the map of social cognition. We will then argue why an integrated cross-species approach will be pivotal to our understanding of the neural basis of emotional empathy and its link to prosocial behaviour.
Collapse
Affiliation(s)
- Christian Keysers
- Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands.
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
33
|
|
34
|
Alomar S, Bakhaidar M. Neuroimaging of neuropathic pain: review of current status and future directions. Neurosurg Rev 2016; 41:771-777. [DOI: 10.1007/s10143-016-0807-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/24/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
|
35
|
Tanasescu R, Cottam WJ, Condon L, Tench CR, Auer DP. Functional reorganisation in chronic pain and neural correlates of pain sensitisation: A coordinate based meta-analysis of 266 cutaneous pain fMRI studies. Neurosci Biobehav Rev 2016; 68:120-133. [PMID: 27168346 PMCID: PMC5554296 DOI: 10.1016/j.neubiorev.2016.04.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 12/19/2022]
Abstract
Maladaptive mechanisms of pain processing in chronic pain conditions (CP) are poorly understood. We used coordinate based meta-analysis of 266 fMRI pain studies to study functional brain reorganisation in CP and experimental models of hyperalgesia. The pattern of nociceptive brain activation was similar in CP, hyperalgesia and normalgesia in controls. However, elevated likelihood of activation was detected in the left putamen, left frontal gyrus and right insula in CP comparing stimuli of the most painful vs. other site. Meta-analysis of contrast maps showed no difference between CP, controls, mood conditions. In contrast, experimental hyperalgesia induced stronger activation in the bilateral insula, left cingulate and right frontal gyrus. Activation likelihood maps support a shared neural pain signature of cutaneous nociception in CP and controls. We also present a double dissociation between neural correlates of transient and persistent pain sensitisation with general increased activation intensity but unchanged pattern in experimental hyperalgesia and, by contrast, focally increased activation likelihood, but unchanged intensity, in CP when stimulated at the most painful body part.
Collapse
Affiliation(s)
- Radu Tanasescu
- Clinical Neurology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK; Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
| | - William J Cottam
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK; Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
| | - Laura Condon
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK; Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK
| | - Christopher R Tench
- Clinical Neurology, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK
| | - Dorothee P Auer
- Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, UK; Arthritis Research UK Pain Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW This article reviews the current state of knowledge in functional MRI (fMRI) research related to pain with primary focus on clinical studies. RECENT FINDINGS With fMRI, the subjective effects of pain (sensory, affect, emotion, and motor components) can be objectively imaged. Although the conventional fMRI technique has been the isolation of regions in the brain transmitting and modulating pain, functional connectivity measurement can identify functionally linked regions associated with pain processing. The primary and secondary somatosensory cortex (S1 and S2), anterior cingulate cortex (ACC), and insula are the four regions (part of pain matrix) consistently activated in pain states. Functional connectivity between the prefrontal cortex (PFC), ACC, and insula correlates well with clinical pain measures. The dorsal medial PFC to insula connectivity can identify patients prone to persistent back pain. Default mode network (DMN) to insula connectivity is associated with spontaneous pain in fibromyalgia patients. In addition, the DMN encompasses the PFC. Techniques for fMRI analysis, templates, and standards for identifying the functional networks in the brain are evolving continuously. The activation pattern with analgesic agents seems to be specific to the class of drugs. SUMMARY As we learn more about fMRI related to pain, functional connectivity patterns could emerge as biomarkers for specific pain conditions.
Collapse
|
37
|
Dehghan M, Schmidt-Wilcke T, Pfleiderer B, Eickhoff SB, Petzke F, Harris RE, Montoya P, Burgmer M. Coordinate-based (ALE) meta-analysis of brain activation in patients with fibromyalgia. Hum Brain Mapp 2016; 37:1749-58. [PMID: 26864780 DOI: 10.1002/hbm.23132] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 11/09/2022] Open
Abstract
There are an increasing number of neuroimaging studies that allow a better understanding of symptoms, neural correlates and associated conditions of fibromyalgia. However, the results of these studies are difficult to compare, as they include a heterogeneous group of patients, use different stimulation paradigms, tasks, and the statistical evaluation of neuroimaging data shows high variability. Therefore, this meta-analytic approach aimed at evaluating potential alterations in neuronal brain activity or structure related to pain processing in fibromyalgia syndrome (FMS) patients, using quantitative coordinate-based "activation likelihood estimation" (ALE) meta-analysis. 37 FMS papers met the inclusion criteria for an ALE analysis (1,264 subjects, 274 activation foci). A pooled ALE analysis of different modalities of neuroimaging and additional analyses according functional and structural changes indicated differences between FMS patients and controls in the insula, amygdala, anterior/mid cingulate cortex, superior temporal gyrus, the primary and secondary somatosensory cortex, and lingual gyrus. Our analysis showed consistent results across FMS studies with potential abnormalities especially in pain-related brain areas. Given that similar alterations have already been demonstrated in patients with other chronic pain conditions and the lack of adequate control groups of chronic pain subjects in most FMS studies, it is not clear however, whether these findings are associated with chronic pain in general or are unique features of patients with FMS. Hum Brain Mapp 37:1749-1758, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mahboobeh Dehghan
- Department of Psychosomatics and Psychotherapy, University Hospital Münster, Münster, Germany
| | - Tobias Schmidt-Wilcke
- Department of Neurology, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil, Ruhr Universität Bochum, Bochum, Germany
| | - Bettina Pfleiderer
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Germany.,Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University, Düsseldorf, Germany
| | - Frank Petzke
- Department of Anesthesiology, Pain Medicine, University Hospital Göttingen, Göttingen, Germany
| | - Richard E Harris
- Department of Anesthesiology, Chronic Pain and Fatigue Research, University of Michigan, Michigan
| | - Pedro Montoya
- Research Institute of Health Sciences, University of Balearic Islands, Palma, Spain
| | - Markus Burgmer
- Department of Psychosomatics and Psychotherapy, University Hospital Münster, Münster, Germany
| |
Collapse
|
38
|
Reimann HM, Hentschel J, Marek J, Huelnhagen T, Todiras M, Kox S, Waiczies S, Hodge R, Bader M, Pohlmann A, Niendorf T. Normothermic Mouse Functional MRI of Acute Focal Thermostimulation for Probing Nociception. Sci Rep 2016; 6:17230. [PMID: 26821826 PMCID: PMC4731789 DOI: 10.1038/srep17230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 10/27/2015] [Indexed: 11/30/2022] Open
Abstract
Combining mouse genomics and functional magnetic resonance imaging (fMRI) provides a promising tool to unravel the molecular mechanisms of chronic pain. Probing murine nociception via the blood oxygenation level-dependent (BOLD) effect is still challenging due to methodological constraints. Here we report on the reproducible application of acute noxious heat stimuli to examine the feasibility and limitations of functional brain mapping for central pain processing in mice. Recent technical and procedural advances were applied for enhanced BOLD signal detection and a tight control of physiological parameters. The latter includes the development of a novel mouse cradle designed to maintain whole-body normothermia in anesthetized mice during fMRI in a way that reflects the thermal status of awake, resting mice. Applying mild noxious heat stimuli to wildtype mice resulted in highly significant BOLD patterns in anatomical brain structures forming the pain matrix, which comprise temporal signal intensity changes of up to 6% magnitude. We also observed sub-threshold correlation patterns in large areas of the brain, as well as alterations in mean arterial blood pressure (MABP) in response to the applied stimulus.
Collapse
Affiliation(s)
- Henning Matthias Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jan Hentschel
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Jaroslav Marek
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Mihail Todiras
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Stefanie Kox
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Sonia Waiczies
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Russ Hodge
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Michael Bader
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Andreas Pohlmann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
39
|
[Imaging techniques and pain]. Schmerz 2015; 29:539-43. [PMID: 26351124 DOI: 10.1007/s00482-015-0053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Over the last 15 years, functional brain imaging techniques have provided critical insights into cortical, subcortical and even spinal mechanisms involved in pain perception and pain modulation in humans. The pivotal contribution of brain imaging studies conducted in Germany have thereby been internationally acknowledged. One of the key challenges for the next decade is to shift the focus from studies in healthy volunteers to different clinical populations suffering from chronic pain to characterize CNS mechanisms, as well as neurobiological predictors and resilience factors of pain chronification. Ultimately, the knowledge gained by this work may help identify individual or syndrome-specific CNS changes as biomarkers to make therapeutic decisions.
Collapse
|
40
|
[Neuropathic pain. How to open the blackbox]. Schmerz 2015; 29:479-80, 482-5. [PMID: 26264897 DOI: 10.1007/s00482-015-0028-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article, without presuming to be comprehensive, gives a brief outline of the development of research on neuropathic pain in Germany. Current clinical research on this subject focusses on the validation of human models, patient phenotyping, mechanism-based classification and treatment as well as on molecular pathomechanisms. This clinical research is based to a large extent on the work of several internationally recognized basic researchers in the 1990s. In particular, findings from system physiology led to the analysis of clinical phenotypes and the underlying pathophysiology. In parallel, basic research achieved international top levels through the development of innovative methods. Close cooperation, building of consortia and European networking made major contributions to the success of this research.
Collapse
|
41
|
Hansen TM, Olesen AE, Graversen C, Drewes AM, Frøkjaer JB. The Effect of Oral Morphine on Pain-Related Brain Activation - An Experimental Functional Magnetic Resonance Imaging Study. Basic Clin Pharmacol Toxicol 2015; 117:316-22. [PMID: 25924691 DOI: 10.1111/bcpt.12415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/23/2015] [Indexed: 01/04/2023]
Abstract
Knowledge about cerebral mechanisms underlying pain perception and effect of analgesic drugs is important for developing methods for diagnosis and treatment of pain. The aim was to explore altered brain activation before and after morphine treatment using functional magnetic resonance imaging recorded during experimental painful heat stimulation. Functional magnetic resonance imaging data were recorded and analysed in 20 healthy volunteers (13 men and 7 women, 24.9 ± 2.6 years) in a randomized, double-blind, placebo-controlled, cross-over study. Painful stimulations were applied to the right forearm using a contact heat evoked potential stimulator (CHEPS) before and after treatment with 30 mg oral morphine and placebo. CHEPS stimulations before treatment induced activation in the anterior cingulate cortex, secondary somatosensory cortex/insula, thalamus and cerebellum (n = 16, p < 0.05). In response to morphine treatment, the spatial extent of these pain-specific areas decreased (n = 20). Reduced pain-induced activation was seen in the right insula, anterior cingulate cortex and inferior parietal cortex after morphine treatment compared to before treatment (n = 16, p < 0.05), and sensory ratings of pain perception were significantly reduced after morphine treatment (p = 0.02). No effect on pain-induced brain activation was seen after placebo treatment compared to before treatment (n = 12, p > 0.05). In conclusion, heat stimulation activated areas in the 'pain matrix' and a clinically relevant dose of orally administered morphine revealed significant changes in brain areas where opioidergic pathways are predominant. The method may be useful to investigate the mechanisms of analgesics.
Collapse
Affiliation(s)
- Tine Maria Hansen
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Anne Estrup Olesen
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Carina Graversen
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Health Science and Technology, Center for Sensory-Motor Interaction (SMI), Aalborg University, Aalborg, Denmark
| | - Jens Brøndum Frøkjaer
- Mech-Sense, Department of Radiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
42
|
Navratilova E, Porreca F. Reward and motivation in pain and pain relief. Nat Neurosci 2014; 17:1304-12. [PMID: 25254980 PMCID: PMC4301417 DOI: 10.1038/nn.3811] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/18/2014] [Indexed: 12/13/2022]
Abstract
Pain is fundamentally unpleasant, a feature that protects the organism by promoting motivation and learning. Relief of aversive states, including pain, is rewarding. The aversiveness of pain, as well as the reward from relief of pain, is encoded by brain reward/motivational mesocorticolimbic circuitry. In this Review, we describe current knowledge of the impact of acute and chronic pain on reward/motivation circuits gained from preclinical models and from human neuroimaging. We highlight emerging clinical evidence suggesting that anatomical and functional changes in these circuits contribute to the transition from acute to chronic pain. We propose that assessing activity in these conserved circuits can offer new outcome measures for preclinical evaluation of analgesic efficacy to improve translation and speed drug discovery. We further suggest that targeting reward/motivation circuits may provide a path for normalizing the consequences of chronic pain to the brain, surpassing symptomatic management to promote recovery from chronic pain.
Collapse
Affiliation(s)
- Edita Navratilova
- Department of Pharmacology, University of Arizona Health Science Center, Tucson, Arizona, USA
| | - Frank Porreca
- Department of Pharmacology, University of Arizona Health Science Center, Tucson, Arizona, USA
| |
Collapse
|
43
|
Lin HC, Huang YH, Chao THH, Lin WY, Sun WZ, Yen CT. Gabapentin reverses central hypersensitivity and suppresses medial prefrontal cortical glucose metabolism in rats with neuropathic pain. Mol Pain 2014; 10:63. [PMID: 25253440 PMCID: PMC4182821 DOI: 10.1186/1744-8069-10-63] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/10/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Gabapentin (GBP) is known to suppress neuropathic hypersensitivity of primary afferents and the spinal cord dorsal horn. However, its supra-spinal action sites are unclear. We identify the brain regions where GBP changes the brain glucose metabolic rate at the effective dose that alleviates mechanical allodynia using 18 F-fluorodeoxyglucose-positron emission tomography (FDG-PET) scanning. RESULTS Comparing the PET imaging data before and after the GBP treatment, the spared nerve injury-induced increases of glucose metabolism in the thalamus and cerebellar vermis were reversed, and a significant decrease occurred in glucose metabolism in the medial prefrontal cortex (mPFC), including the anterior cingulate cortex. GBP treatment also reversed post-SNI connectivity increases between limbic cortices and thalamus. CONCLUSIONS Our results indicate that GBP analgesic effect may be mediated by reversing central hypersensitivity, and suppressing mPFC, a crucial part of the cortical representation of pain, in the brain.
Collapse
Affiliation(s)
- Hsiao-Chun Lin
- />Department of Life Science, National Taiwan University, No 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan
| | - Yu-Hsin Huang
- />Department of Anesthesiology, National Taiwan University Hospital, Taipei, 10002 Taiwan
| | - Tzu-Hao Harry Chao
- />Department of Life Science, National Taiwan University, No 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan
| | - Wen-Ying Lin
- />Department of Life Science, National Taiwan University, No 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan
- />Department of Anesthesiology, National Taiwan University Hospital, Taipei, 10002 Taiwan
| | - Wei-Zen Sun
- />Department of Anesthesiology, National Taiwan University Hospital, Taipei, 10002 Taiwan
| | - Chen-Tung Yen
- />Department of Life Science, National Taiwan University, No 1, Section 4, Roosevelt Road, Taipei, 10617 Taiwan
| |
Collapse
|
44
|
Garcia-Larrea L, Peyron R. Pain matrices and neuropathic pain matrices: A review. Pain 2013; 154 Suppl 1:S29-S43. [PMID: 24021862 DOI: 10.1016/j.pain.2013.09.001] [Citation(s) in RCA: 324] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/19/2013] [Accepted: 09/02/2013] [Indexed: 01/18/2023]
|
45
|
Sparks C, Cleland J, Elliott J, Strubhar A. Supraspinal structures may be associated with hypoalgesia following thrust manipulation to the spine: a review of the literature. PHYSICAL THERAPY REVIEWS 2013. [DOI: 10.1179/1743288x12y.0000000058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
46
|
Lin CS, Niddam DM, Hsu ML. Meta-analysis on brain representation of experimental dental pain. J Dent Res 2013; 93:126-33. [PMID: 24221915 DOI: 10.1177/0022034513512654] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) has been widely used for investigating the brain representation associated with dental pain evoked by pulpal electrical stimulation. However, because of the heterogeneity of experimental designs and the small sample size of individual studies, the common brain representation regarding dental pain has remained elusive. We used imaging meta-analysis to investigate six dental pain-related fMRI studies (n = 87) and tested 3 hypotheses: (1) Dental pain is associated with the 'core' pain-related network; (2) pain-related brain activation is somatotopically organized in the somatosensory cortex; and (3) dental pain is associated with the cognitive-affective network related to pain. Qualitative and quantitative meta-analyses revealed: (1) common activation of the core pain-related network, including the somatosensory cortex, the insula, and the cingulate cortex; (2) inconsistency in somatotopically organized activation of the primary somatosensory cortex; and (3) common activation in the dorsolateral prefrontal cortex, suggesting a role of re-appraisal and coping in the experience of dental pain. In conclusion, fMRI combined with pulpal stimulation can effectively evoke activity in the pain-related network. The dental pain-related brain representation disclosed the mechanisms of how sensory and cognitive-affective factors shape dental pain, which will help in the development of more effective customized methods for central pain control.
Collapse
Affiliation(s)
- C-S Lin
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | | | | |
Collapse
|
47
|
Hyperacusis-associated pathological resting-state brain oscillations in the tinnitus brain: a hyperresponsiveness network with paradoxically inactive auditory cortex. Brain Struct Funct 2013; 219:1113-28. [PMID: 23609486 DOI: 10.1007/s00429-013-0555-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
|
48
|
Peyron R, Faillenot I, Pomares F, Le Bars D, Garcia-Larrea L, Laurent B. Mechanical allodynia in neuropathic pain. Where are the brain representations located? A positron emission tomography (PET) study. Eur J Pain 2013; 17:1327-37. [DOI: 10.1002/j.1532-2149.2013.00307.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2013] [Indexed: 11/07/2022]
|
49
|
Bari AA, Pouratian N. Brain imaging correlates of peripheral nerve stimulation. Surg Neurol Int 2012; 3:S260-8. [PMID: 23230531 PMCID: PMC3514912 DOI: 10.4103/2152-7806.103016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/04/2012] [Indexed: 11/04/2022] Open
Abstract
Direct peripheral nerve stimulation is an effective treatment for a number of disorders including epilepsy, depression, neuropathic pain, cluster headache, and urological dysfunction. The efficacy of this stimulation is ultimately due to modulation of activity in the central nervous system. However, the exact brain regions involved in each disorder and how they are modulated by peripheral nerve stimulation is not fully understood. The use of functional neuroimaging such as SPECT, PET and fMRI in patients undergoing peripheral nerve stimulation can help us to understand these mechanisms. We review the literature for functional neuroimaging performed in patients implanted with peripheral nerve stimulators for the above-mentioned disorders. These studies suggest that brain activity in response to peripheral nerve stimulation is a complex interaction between the stimulation parameters, disease type and severity, chronicity of stimulation, as well as nonspecific effects. From this information we may be able to understand which brain structures are involved in the mechanism of peripheral nerve stimulation as well as define the neural substrates underlying these disorders.
Collapse
Affiliation(s)
- Ausaf A Bari
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | |
Collapse
|