1
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
2
|
Kirsch DE, Grodin EN, Nieto SJ, Kady A, Ray LA. Early life stress is associated with greater negative emotionality and peripheral inflammation in alcohol use disorder. Neuropsychopharmacology 2024; 49:1719-1728. [PMID: 38740901 PMCID: PMC11399383 DOI: 10.1038/s41386-024-01877-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/18/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Early life stress (ELS) increases risk for psychiatric illness, including alcohol use disorder (AUD). Researchers have hypothesized that individuals with and without a history of ELS who have the same primary DSM-5 diagnosis are clinically and biologically distinct. While there is strong support for this hypothesis in the context of mood disorders, the hypothesis remains largely untested in the context of AUD. This study investigated the impact of ELS on the neuroclinical phenomenology and inflammatory profile of individuals with AUD. Treatment-seeking adults with AUD (N = 163) completed the Adverse Childhood Experiences (ACE) Questionnaire and phenotypic battery as part of a pharmacotherapy trial for AUD (NCT03594435). Participants were classified as having "no-ELS," (ACE = 0) "moderate-ELS," (ACE = 1, 2 or 3) or "high-ELS" (ACE = 4 + ). The Addictions Neuroclinical Assessment domains incentive salience and negative emotionality were derived and used to assess the neuroclinical phenomenology of AUD. We tested (1) cumulative ELS as a predictor of ANA domains and (2) ELS group differences in ANA domains. A subset of participants (N = 98) provided blood samples for a biomarker of peripheral inflammation (C-reactive protein; CRP); analyses were repeated with CRP as the outcome variable. Greater ELS predicted higher negative emotionality and elevated CRP, but not incentive salience. The high-ELS group exhibited greater negative emotionality compared with the no-ELS and moderate-ELS groups, with no difference between the latter two groups. The high-ELS group exhibited elevated CRP compared with the no/moderate-ELS group. Findings suggest that high-ELS exposure is associated with a unique AUD neuroclinical presentation marked by greater negative emotionality, and inflammatory profile characterized by elevated peripheral CRP.
Collapse
Affiliation(s)
- Dylan E Kirsch
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA, 90095-1563, USA
| | - Erica N Grodin
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA, 90095-1563, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Steven J Nieto
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA, 90095-1563, USA
| | - Annabel Kady
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA, 90095-1563, USA
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, 1285 Franz Hall, Box 951563, Los Angeles, CA, 90095-1563, USA.
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Aghamiri H, Jafari-Sabet M, Hoormand M. Ameliorative Effect of Cannabidiol on Topiramate-Induced Memory Loss: The Role of Hippocampal and Prefrontal Cortical NMDA Receptors and CREB/BDNF Signaling Pathways in Rats. Neurochem Res 2024; 49:363-378. [PMID: 37814133 DOI: 10.1007/s11064-023-04041-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
Cannabidiol (CBD) is a promising neurological agent with potential beneficial effects on memory and cognitive function. The combination of CBD and topiramate in the treatment of some neurological diseases has been of great interest. Since Topiramate-induced memory loss is a major drawback of its clinical application and the overall effect of the combination of CBD and topiramate on memory is still unclear, here we investigated the effect of CBD on topiramate-induced memory loss and the underlying molecular mechanisms. A one trial step-through inhibitory test was used to evaluate memory consolidation in rats. Moreover, the role of N-methyl-D-aspartate receptors (NMDARs) in the combination of CBD and topiramate in memory consolidation was evaluated through the intra-CA1 administration of MK-801 and NMDA. Western blot analysis was used to evaluate variations in brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic AMP response element-binding protein (pCREB)/CREB ratio in the prefrontal cortex (PFC) and hippocampus (HPC). While the intraperitoneal (i.p.) administration of topiramate (50, 75, and 100 mg/kg) significantly reduced inhibitory time latency, the i.p. administration of CBD (20 and 40 mg/kg) could effectively reverse these effects. Similarly, the sub-effective doses of NMDA plus CBD (10 mg/kg) could improve the topiramate-induced memory loss along with an enhancement in BDNF and pCREB expression in the PFC and HPC. Contrarily, the administration of sub-effective doses of the NMDAR antagonist (MK-801) diminished the protective effects of CBD (20 mg/kg) on topiramate-induced memory loss associated with decreased BDNF and pCREB levels in the PFC and HPC. These findings suggest that CBD can improve topiramate-induced memory impairment, partially by the NMDARs of the PFC and HPC, possibly regulated by the CREB/BDNF signaling pathway.
Collapse
Affiliation(s)
- Helia Aghamiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mahmood Hoormand
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Dell'Osso L, Nardi B, Massoni L, Gravina D, Benedetti F, Cremone IM, Carpita B. Neuroprotective Properties of Antiepileptics: What are the Implications for Psychiatric Disorders? Curr Med Chem 2024; 31:3447-3472. [PMID: 37226791 DOI: 10.2174/0929867330666230523155728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
Since the discovery of the first antiepileptic compound, increasing attention has been paid to antiepileptic drugs (AEDs), and recently, with the understanding of the molecular mechanism underlying cells death, a new interest has revolved around a potential neuroprotective effect of AEDs. While many neurobiological studies in this field have focused on the protection of neurons, growing data are reporting how exposure to AEDs can also affect glial cells and the plastic response underlying recovery; however, demonstrating the neuroprotective abilities of AEDs remains a changeling task. The present work aims to summarize and review the literature available on the neuroprotective properties of the most commonly used AEDs. Results highlighted how further studies should investigate the link between AEDs and neuroprotective properties; while many studies are available on valproate, results for other AEDs are very limited and the majority of the research has been carried out on animal models. Moreover, a better understanding of the biological basis underlying neuro-regenerative defects may pave the way for the investigation of further therapeutic targets and eventually lead to an improvement in the actual treatment strategies.
Collapse
Affiliation(s)
- Liliana Dell'Osso
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Benedetta Nardi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Leonardo Massoni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Davide Gravina
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Francesca Benedetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Ivan Mirko Cremone
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| | - Barbara Carpita
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56127, Italy
| |
Collapse
|
5
|
Effects of early life stress on brain cytokines: A systematic review and meta-analysis of rodent studies. Neurosci Biobehav Rev 2022; 139:104746. [PMID: 35716876 DOI: 10.1016/j.neubiorev.2022.104746] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/13/2022] [Accepted: 06/11/2022] [Indexed: 12/21/2022]
Abstract
Exposure to early life stress (ELS) may lead to long-lasting neurobiological and behavioral impairments. Alterations in the immune system and neuroinflammatory state induced by ELS exposure are considered risk factors for developing psychiatric disorders. Here, we performed a systematic review and meta-analysis of rodent studies investigating the short and long-term effects of ELS exposure on anti and pro-inflammatory cytokines in brain tissues. Our analysis shows that animals exposed to ELS present an increase in pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. On the other hand, no alteration was observed in the anti-inflammatory cytokine IL-10. Meta-regression revealed that alterations were more prominent in the hippocampus of adult animals that were exposed to more extended periods of ELS. These inflammatory effects were not permanent since few alterations were identified in aged animals. Our findings suggest that ELS exposure alters pro-inflammatory cytokines expression and may act as a primer for a secondary challenge that may induce lifelong immune alterations. Moreover, the actual evidence is insufficient to comprehend the relationship between anti-inflammatory cytokines and ELS fully.
Collapse
|
6
|
Effects of early life adversities upon memory processes and cognition in rodent models. Neuroscience 2022; 497:282-307. [PMID: 35525496 DOI: 10.1016/j.neuroscience.2022.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 01/14/2023]
Abstract
Exposure to stressors in early postnatal life induces long-lasting modifications in brainfunction.Thisplasticity,an essential characteristic of the brain that enables adaptation to the environment, may also induce impairments in some psychophysiological functions, including learning and memory. Early life stress (ELS) has long-term effects on thehypothalamic-pituitary-adrenal axisresponse to stressors, and has been reported to lead toneuroinflammation,altered levelsof neurotrophic factors, modifications inneurogenesis andsynaptic plasticity,with changes in neurotransmitter systems and network functioning. In this review, we focus on early postnatal stress in animal models and their effects on learning and memory.Many studies have reported ELS-induced impairments in different types of memories, including spatial memory, fear memory, recognition (both for objects and social) memory, working memory and reversal learning. Studies are not always in agreement, however, no effects, or sometimes facilitation, being reported, depending on the nature and intensity of the early intervention, as well as the age when the outcome was evaluated and the sex of the animals. When considering processes occurring after consolidation, related with memory maintenance or modification, there are a very reduced number of reports. Future studies addressing the mechanisms underlying memory changes for ELS should shed some light on the understanding of the different effects induced by stressors of different types and intensities on cognitive functions.
Collapse
|
7
|
Cattane N, Vernon AC, Borsini A, Scassellati C, Endres D, Capuron L, Tamouza R, Benros ME, Leza JC, Pariante CM, Riva MA, Cattaneo A. Preclinical animal models of mental illnesses to translate findings from the bench to the bedside: Molecular brain mechanisms and peripheral biomarkers associated to early life stress or immune challenges. Eur Neuropsychopharmacol 2022; 58:55-79. [PMID: 35235897 DOI: 10.1016/j.euroneuro.2022.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Animal models are useful preclinical tools for studying the pathogenesis of mental disorders and the effectiveness of their treatment. While it is not possible to mimic all symptoms occurring in humans, it is however possible to investigate the behavioral, physiological and neuroanatomical alterations relevant for these complex disorders in controlled conditions and in genetically homogeneous populations. Stressful and infection-related exposures represent the most employed environmental risk factors able to trigger or to unmask a psychopathological phenotype in animals. Indeed, when occurring during sensitive periods of brain maturation, including pre, postnatal life and adolescence, they can affect the offspring's neurodevelopmental trajectories, increasing the risk for mental disorders. Not all stressed or immune challenged animals, however, develop behavioral alterations and preclinical animal models can explain differences between vulnerable or resilient phenotypes. Our review focuses on different paradigms of stress (prenatal stress, maternal separation, social isolation and social defeat stress) and immune challenges (immune activation in pregnancy) and investigates the subsequent alterations in several biological and behavioral domains at different time points of animals' life. It also discusses the "double-hit" hypothesis where an initial early adverse event can prime the response to a second negative challenge. Interestingly, stress and infections early in life induce the activation of the hypothalamic-pituitary-adrenal (HPA) axis, alter the levels of neurotransmitters, neurotrophins and pro-inflammatory cytokines and affect the functions of microglia and oxidative stress. In conclusion, animal models allow shedding light on the pathophysiology of human mental illnesses and discovering novel molecular drug targets for personalized treatments.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Ryad Tamouza
- Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Laboratoire Neuro-psychiatrie translationnelle, AP-HP, UniversitéParis Est Créteil, INSERM U955, IMRB, Hôpital Henri Mondor, Fondation FondaMental, F-94010 Créteil, France
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Juan C Leza
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN-UCM. Spain
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Marco A Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
8
|
Salzmann S, Salzmann-Djufri M, Euteneuer F. Childhood Emotional Neglect and Cardiovascular Disease: A Narrative Review. Front Cardiovasc Med 2022; 9:815508. [PMID: 35198614 PMCID: PMC8858943 DOI: 10.3389/fcvm.2022.815508] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Psychosocial factors predict the incidence and progression of cardiovascular disease (CVD). There is accumulating evidence for the importance of childhood maltreatment for the development and progression of both CVD-related risk factors and CVD. However, past research has predominantly focused on active forms of childhood maltreatment such as emotional abuse, physical abuse, and sexual abuse. At the same time, childhood neglect as a relatively silent form of childhood maltreatment received less attention. Childhood emotional neglect is the most common form of neglect. This narrative review summarizes findings on the association between childhood emotional neglect and CVD and potential underlying mechanisms. These mechanisms may involve biological factors (i.e., elevated inflammation, autonomic dysregulation, dysregulated HPA axis, and altered brain development), psychological variables and mental health (i.e., depression and anxiety), and health behaviors (i.e., eating behavior, smoking, drug use, physical activity) and interpersonal aspects. Evidence suggests that emotional neglect is associated with CVD and CVD risk factors such as obesity, diabetes, inflammation, a dysregulated stress system, altered brain development, depression and other psychological abnormalities (i.e., emotion-regulation difficulties), interpersonal difficulties, and lack of health behaviors. Specific subtypes of childhood maltreatment may be associated with CVD via different mechanisms. This review further encompasses clinical suggestions, identifies research gaps, and has implications for future studies. However, more research with better study designs is desperately needed to identify the exact underlying mechanisms and opportunities for mitigating the negative health consequences of emotional neglect to reduce the prevalence and progression of CVD.
Collapse
Affiliation(s)
- Stefan Salzmann
- Division of Clinical Psychology and Psychotherapy, Philipps University of Marburg, Marburg, Germany
- *Correspondence: Stefan Salzmann
| | | | - Frank Euteneuer
- Department of Psychology, Clinical Psychology and Psychotherapy, Medical School Berlin, Berlin, Germany
| |
Collapse
|
9
|
Poleksic J, Aksic M, Kapor S, Aleksic D, Stojkovic T, Radovic M, Djulejic V, Markovic B, Stamatakis A. Effects of Maternal Deprivation on the Prefrontal Cortex of Male Rats: Cellular, Neurochemical, and Behavioral Outcomes. Front Behav Neurosci 2021; 15:666547. [PMID: 34819843 PMCID: PMC8606589 DOI: 10.3389/fnbeh.2021.666547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/08/2021] [Indexed: 01/13/2023] Open
Abstract
Stressful events experienced during early life are associated with increased vulnerability of developing psychopathology in adulthood. In the present study, we exposed 9-day-old Wistar rats to 24 h maternal deprivation (MD) with the aim to investigate the impact of early life stress (ELS) on morphological, biochemical, and functional aspects of the prefrontal cortex (PFC), a brain region particularly sensitive to stress. We found that in the superficial medial orbital cortex (MO), young adult male rats had reduced density of GAD67 and CCK immunopositive cells, while the rostral part of the ventral lateral orbital cortex (roVLO) showed a decrease in the density of GAD67 immunopositive cells in both superficial and deep layers. In addition, the superficial rostral part of area 1 of the cingulate cortex (roCg1) and deep prelimbic cortex (PrL) was also affected by MD indicated by the reduction in PV immunopositive cellular density. Furthermore, MD induced upregulation of brain-derived neurotrophic factor (BDNF), while it did not affect the overall expression of Iba1 in neonatal or young adult PFC as measured by Western blot, however, microglial activation in young adult MD rats was detected immunohistochemically in deep layers of MO and infralimbic cortex (IL). Interestingly, when young adult male rats were subjected to a behavioral flexibility test in a T-maze, MD rats showed a subtle impairment in T-maze reversal learning indicating a mildly affected PFC function. Taken together, our findings demonstrated that MD reduced the density of interneurons and induced microglial activation, in particular, PFC areas at young adulthood, and could alter synaptic plasticity accompanied by PFC dysfunction.
Collapse
Affiliation(s)
- Joko Poleksic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Aksic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodan Kapor
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dubravka Aleksic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tihomir Stojkovic
- Institute of Clinical and Medical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marina Radovic
- Institute of Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vuk Djulejic
- Institute of Anatomy "Niko Miljanic", School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Branka Markovic
- Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia
| | - Antonios Stamatakis
- Biology-Biochemistry Lab, School of Health Sciences, Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Shahraki S, Esmaeilpour K, Shabani M, Sepehri G, Rajizadeh MA, Maneshian M, Joushi S, Sheibani V. Choline chloride modulates learning, memory, and synaptic plasticity impairments in maternally separated adolescent male rats. Int J Dev Neurosci 2021; 82:19-38. [PMID: 34727391 DOI: 10.1002/jdn.10155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 11/06/2022] Open
Abstract
Maternal separation (MS) is a model to induce permanent alternations in the central nervous system (CNS) and is associated with increased levels of anxiety and cognitive deficiencies. Since Methyl donor choline (Ch) has been shown to play a significant role in learning and memory and enhances synaptic plasticity, the authors hypothesized that Ch may attenuate MS-induced impairments in synaptic plasticity and cognitive performance. Rat pups underwent a MS protocol for 180 min/day from postnatal day (PND) 1 to 21. Ch was administered subcutaneously (100 mg/kg, 21 days) to the Choline chloride and MS + Choline chloride groups from PND 29 to 49. Anxiety-like behavior, recognition memory, spatial and passive avoidance learning and memory were measured in the adolescent rats. In addition, evoked field excitatory postsynaptic potentials (fEPSP) were recorded from the CA1 region of the hippocampus. MS induced higher anxiety-like behavior in the animals. It also impaired learning and memory. However, MS had no effect on locomotor activity. Subcutaneous administration of Ch attenuated MS-induced cognitive deficits and enhanced the learning and memory of MS rats. Ch also decreased anxiety-like behavior in the open field test. The present results showed that long-term potentiation (LTP) was induced in all groups except MS and MS + saline animals. However, Ch injection induced LTP and had maintenance in MS + choline chloride, but it was not statistically significant compared with the MS group. In summary, the present findings indicate that MS can interfere with normal animal's cognition and subcutaneous of Ch may be considered an appropriate therapeutic strategy for promoting cognitive dysfunctions in MS animals.
Collapse
Affiliation(s)
- Sarieh Shahraki
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology & pharmacology, school of medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Khadijeh Esmaeilpour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario, Canada
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Sepehri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Rajizadeh
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Marzieh Maneshian
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sara Joushi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Sheibani
- Department of Physiology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Bianco CD, Hübner IC, Bennemann B, de Carvalho CR, Brocardo PS. Effects of postnatal ethanol exposure and maternal separation on mood, cognition and hippocampal arborization in adolescent rats. Behav Brain Res 2021; 411:113372. [PMID: 34022294 DOI: 10.1016/j.bbr.2021.113372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/24/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
Ethanol exposure and early life stress during brain development are associated with an increased risk of developing psychiatric disorders. We used a third-trimester equivalent model of fetal alcohol spectrum disorders combined with a maternal separation (MS) protocol to evaluate whether these stressors cause sexually dimorphic behavioral and hippocampal dendritic arborization responses in adolescent rats. Wistar rat pups were divided into four experimental groups: 1) Control; 2) MS (MS, for 3 h/day from postnatal (PND) 2 to PND14); 3) EtOH (EtOH, 5 g/kg/day, i.p., PND2, 4, 6, 8, and 10); 4) EtOH + MS. All animals were divided into two cohorts and subjected to a battery of behavioral tests when they reached adolescence (PND37-44). Animals from cohort 1 were submitted to: 1) the open field test; 2) self-cleaning behavior (PND38); and 3) the motivation test (PND39-41). Animals from cohort 2 were submitted to: 1) the novel object recognition (PND37-39); 2) social investigation test (PND40); and 3) Morris water maze test (PND41-44). At PND45, the animals were euthanized, and the brains were collected for subsequent dendritic analysis. Postnatal ethanol exposure (PEE) caused anxiety-like behavior in females and reduced motivation, and increased hippocampal dendritic arborization in both sexes. MS reduced body weight, increased locomotor activity in females, and increased motivation, and hippocampal dendritic arborization in both sexes. We found that males from the EtOH + MS groups are more socially engaged than females, who were more interested in sweets than males. Altogether, these data suggest that early life adverse conditions may alter behavior in a sex-dependent manner in adolescent rats.
Collapse
Affiliation(s)
- Claudia Daniele Bianco
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Ian Carlos Hübner
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Bianca Bennemann
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Cristiane Ribeiro de Carvalho
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Patricia S Brocardo
- Neuroscience Graduate Program, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
12
|
Gildawie KR, Orso R, Peterzell S, Thompson V, Brenhouse HC. Sex differences in prefrontal cortex microglia morphology: Impact of a two-hit model of adversity throughout development. Neurosci Lett 2020; 738:135381. [PMID: 32927000 PMCID: PMC7584734 DOI: 10.1016/j.neulet.2020.135381] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022]
Abstract
Neuroimmune mechanisms play critical roles in brain development and can be impacted by early life adversity. Microglia are the resident immune cells in the brain, with both sex-specific and region-specific developmental profiles. Since early life adversity is associated with several neuropsychiatric disorders with developmental pathogeneses, here we investigated the degree to which maternal separation (MS) impacted microglia over development. Microglia are dynamic cells that alter their morphology in accordance with their functions and in response to stressors. While males and females reportedly display different microglial morphology in several brain regions over development and following immune and psychological challenges, little is known about such differences in the prefrontal cortex (PFC), which regulates several early life adversity-attributable disorders. Additionally, little is known about the potential for early life adversity to prime microglia for later immune challenges. In the current study, male and female rats were exposed to MS followed by lipopolysaccharide administration in juvenility or adolescence. The prelimbic and infralimbic PFC were then separately analyzed for microglial density and morphology. Typically developing males expressed smaller soma and less arborization than females in juvenility, but larger soma than females in adolescence. MS led to fewer microglia in the infralimbic PFC of adolescent males. Both MS and lipopolysaccharide administration affected morphological characteristics in juvenile males and females, with MS exposure leading to a greater increase in soma size following lipopolysaccharide. Interestingly, effects of MS and lipopolysaccharide were not observed in adolescence, while notable sex differences in PFC microglial morphology were apparent. Taken together, these findings provide insight into how PFC microglia may differentially respond to challenges over development in males and females.
Collapse
Affiliation(s)
| | - Rodrigo Orso
- Psychology Department, Northeastern University, Boston, MA, USA; Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
13
|
Tata DA, Dandi E, Spandou E. Expression of synaptophysin and BDNF in the medial prefrontal cortex following early life stress and neonatal hypoxia-ischemia. Dev Psychobiol 2020; 63:173-182. [PMID: 32623722 DOI: 10.1002/dev.22011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/10/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023]
Abstract
This study aims at investigating whether early stress interacts with brain injury due to neonatal hypoxia-ischemia (HI). To this end, we examined possible changes in synaptophysin (SYN) and brain-derived neurotrophic factor (BDNF) expression in the medial prefrontal cortex (mPFC) of maternally separated rats that were subsequently exposed to a HI episode. Rat pups (n = 11) were maternally separated during postnatal days 1 to 6 (3hr/day), while another group was left undisturbed (n = 11). On postnatal day 7, a subgroup (n = 12) from each postnatal manipulation was exposed to HI. Synaptophysin and BDNF expression was estimated in mPFC prelimbic and anterior cingulate subregions of the ipsilateral and contralateral to the occluded common carotid artery hemispheres. Maternally separated rats expressed significantly less BDNF and SYN in both hemispheres. Neonatal HI significantly reduced BDNF and SYN expression in the ipsilateral mPFC only and this reduction was not further altered by early stress. Our findings indicate the enduring negative effect of a short period of maternal separation on the expression of mPFC SYN and BDNF. They, also, reveal that the HI-associated decreases in these markers are limited to the ipsilateral mPFC and are not exacerbated by early stress. These decreases may have important functional implications given the role of prefrontal area in high-order cognition.
Collapse
Affiliation(s)
- Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
14
|
Maternal Deprivation and Sex Alter Central Levels of Neurotrophins and Inflammatory Cytokines in Rats Exposed to Palatable Food in Adolescence. Neuroscience 2020; 428:122-131. [PMID: 31917337 DOI: 10.1016/j.neuroscience.2019.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
Maternal deprivation (MD) in rodents is used to simulate human-infant early life stress, which leads to neural, hormonal, and behavioral alterations. Palatable food (PF) can reduce the stress response, and individuals use it as a self-applied stress relief method. Thus, the present study aimed to evaluate the effect of the association between MD in the early life (P1-P10) and PF consumption (condensed milk, P21-P44) in the central neuroplasticity (BDNF/NGF levels) and central neuroinflammatory parameters (TNF-α, IL-6, and IL-10 levels) in male and female Wistar rats in the adolescence. In addition, weight-related parameters (weight gain, Lee Index, and relative adipose tissue weight) were evaluated. PF exposure increased relative adipose tissue weight; however, it did not lead to a change in animals' body weight. MD reduced hypothalamic BDNF and NGF levels, and hippocampal TNF-α levels in male and female rats. Animals of both sexes that received PF, exhibited reduced hypothalamic NGF levels. Neuroinflammatory marker evaluations showed that male rats were more susceptible to the interventions than female rats, since MD reduced their cortical IL-10 levels and PF increased their IL-6 levels. Differences in the Lee index, central BDNF, TNF-α, and IL-6levels were observed between sexes. Male animals per se presented greater Lee index. Female rats had higher BDNF and IL-6 levels in the hippocampus and hypothalamus and higher hypothalamic TNF-α levels than those observed in males. In conclusion, there were more noticeable effects of MD than PF on the variables measured in this study. Sex effect was identified as an important factor and influenced most of the neurochemical measures in this study. In this way, we suggest including both female and male animals in researches to improve the quality of translational studies.
Collapse
|
15
|
Dutcher EG, Pama EC, Lynall ME, Khan S, Clatworthy MR, Robbins TW, Bullmore ET, Dalley JW. Early-life stress and inflammation: A systematic review of a key experimental approach in rodents. Brain Neurosci Adv 2020; 4:2398212820978049. [PMID: 33447663 PMCID: PMC7780197 DOI: 10.1177/2398212820978049] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Repeated maternal separation is the most widely used pre-clinical approach to investigate the relationship between early-life chronic stress and its neuropsychiatric and physical consequences. In this systematic review, we identified 46 studies that conducted repeated maternal separation or single-episode maternal separation and reported measurements of interleukin-1b, interleukin-6, interleukin-10, tumour necrosis factor-alpha, or microglia activation and density. We report that in the short-term and in the context of later-life stress, repeated maternal separation has pro-inflammatory immune consequences in diverse tissues. Repeated maternal separation animals exhibit greater microglial activation and elevated pro-inflammatory cytokine signalling in key brain regions implicated in human psychiatric disorders. Notably, repeated maternal separation generally has no long-term effect on cytokine expression in any tissue in the absence of later-life stress. These observations suggest that the elevated inflammatory signalling that has been reported in humans with a history of early-life stress may be the joint consequence of ongoing stressor exposure together with potentiated neural and/or immune responsiveness to stressors. Finally, our findings provide detailed guidance for future studies interrogating the causal roles of early-life stress and inflammation in disorders such as major depression.
Collapse
Affiliation(s)
- Ethan G. Dutcher
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | | - Mary-Ellen Lynall
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Shahid Khan
- GlaxoSmithKline Research & Development, Stevenage, UK
| | | | | | | | - Jeffrey W. Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
16
|
Agarwal P, Palin N, Walker SL, Glasper ER. Sex-dependent effects of paternal deprivation and chronic variable stress on novel object recognition in adult California mice (Peromyscus californicus). Horm Behav 2020; 117:104610. [PMID: 31669457 DOI: 10.1016/j.yhbeh.2019.104610] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
Abstract
Early-life stress exposure can confer vulnerability for development of psychiatric illnesses and impaired cognition in adulthood. It is well-known that early-life stress can dysregulate the hypothalamic-pituitary-adrenal (HPA) axis in a sex-dependent manner. Specifically, uniparental rodent models of prolonged disrupted mother-offspring relationships (e.g., maternal separation) have demonstrated greater alterations in stress responsivity in adult males, compared to females. Also, chronic early-life stressors (e.g., limited bedding model) impair cognitive function in males more than females. However, the sex-dependent effects of early-life stress and later-life chronic HPA axis activation on cognition have not been well-characterized. Here, we utilized the biparental California mouse (Peromyscus californicus) to model the early-life adversity of paternal deprivation (PD). Fathers either remained in the nest (biparental care) or were permanently removed (PD) on postnatal day (PND) 1. Adult offspring were exposed to daily handling (control) or chronic variable stress (CVS; three stressors for seven days). Twenty-four hours after the final stressor, the novel object recognition (NOR) task commenced, followed by serum collection for corticosterone (CORT) analysis. Independent of sex or rearing, CVS increased CORT. Exploration during acquisition for the NOR task was increased as a result of CVS and PD. During NOR testing, non-stressed females exhibited greater difference scores (i.e., increased recognition memory), compared to non-stressed males. However, the addition of CVS diminished difference scores in females - an effect not observed in CVS-exposed males. Overall, these data suggest that neonatal paternal experience, sex, and chronic stress contribute to exploratory behavior, cognition, and stress hormone concentrations in a biparental species.
Collapse
Affiliation(s)
- P Agarwal
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - N Palin
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - S L Walker
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA
| | - E R Glasper
- Department of Psychology, University of Maryland, College Park, MD 20742, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
17
|
Zhang Y, Xu H, Wang J, Ren F, Shao F, Ellenbroek B, Lin W, Wang W. Transient upregulation of immune activity induced by adolescent social stress is involved in cognitive deficit in adult male mice and early intervention with minocycline. Behav Brain Res 2019; 374:112136. [DOI: 10.1016/j.bbr.2019.112136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
|
18
|
Rantala MJ, Luoto S, Krama T, Krams I. Eating Disorders: An Evolutionary Psychoneuroimmunological Approach. Front Psychol 2019; 10:2200. [PMID: 31749720 PMCID: PMC6842941 DOI: 10.3389/fpsyg.2019.02200] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Eating disorders are evolutionarily novel conditions. They lead to some of the highest mortality rates of all psychiatric disorders. Several evolutionary hypotheses have been proposed for eating disorders, but only the intrasexual competition hypothesis is extensively supported by evidence. We present the mismatch hypothesis as a necessary extension to the current theoretical framework of eating disorders. This hypothesis explains the evolutionarily novel adaptive metaproblem that has arisen when mating motives conflict with the large-scale and easy availability of hyper-rewarding but obesogenic foods. This situation is exacerbated particularly in those contemporary environments that are characterized by sedentary lifestyles, ever-present junk foods, caloric surplus and the ubiquity of social comparisons that take place via social media. Our psychoneuroimmunological model connects ultimate-level causation with proximate mechanisms by showing how the adaptive metaproblem between mating motives and food rewards leads to chronic stress and, further, to disordered eating. Chronic stress causes neuroinflammation, which increases susceptibility to OCD-like behaviors that typically co-occur with eating disorders. Chronic stress upregulates the serotonergic system and causes dysphoric mood in anorexia nervosa patients. Dieting, however, reduces serotonin levels and dysphoric mood, leading to a vicious serotonergic-homeostatic stress/starvation cycle whereby cortisol and neuroinflammation increase through stringent dieting. Our psychoneuroimmunological model indicates that between-individual and within-individual variation in eating disorders partially arises from (co)variation in gut microbiota and stress responsivity, which influence neuroinflammation and the serotonergic system. We review the advances that have been made in recent years in understanding how to best treat eating disorders, outlining directions for future clinical research. Current evidence indicates that eating disorder treatments should aim to reduce the chronic stress, neuroinflammation, stress responsivity and gut dysbiosis that fuel the disorders. Connecting ultimate causes with proximate mechanisms and treating biopsychosocial causes rather than manifest symptoms is expected to bring more effective and sophisticated long-term interventions for the millions of people who suffer from eating disorders.
Collapse
Affiliation(s)
| | - Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Auckland, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Tatjana Krama
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
| | - Indrikis Krams
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
19
|
Nist MD, Pickler RH, Steward DK, Harrison TM, Shoben AB. Inflammatory mediators of stress exposure and neurodevelopment in very preterm infants: Protocol for the stress neuro-immune study. J Adv Nurs 2019; 75:2236-2245. [PMID: 31115064 PMCID: PMC6746581 DOI: 10.1111/jan.14079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/13/2019] [Indexed: 12/27/2022]
Abstract
AIMS (a) Determine relationships among stress exposure, inflammation, and neurodevelopment in very preterm infants and determine the mediated effect of inflammation on the relationship between stress exposure and neurodevelopment; (b) describe cytokine trajectories following birth and determine the effect of stress exposure on these trajectories; and (c) examine relationships between stress exposure and chronic stress responses in very preterm infants. DESIGN Non-experimental, repeated measures. METHODS Very preterm infants born 28-31 weeks post menstrual age will be enrolled. Cumulative stress exposure over the first 14 days of life will be measured using the Neonatal Infant Stressor Scale. Blood will be collected weekly for the quantification of cytokines. Neurodevelopment will be assessed using the Neurobehavioral Assessment of the Preterm Infant and hair for quantification of hair cortisol will be collected at 35 weeks post menstrual age. Multiple linear regression and conditional process analysis will be used to analyse the relationships among stress exposure, inflammation and neurodevelopment. Linear mixed models will be used to determine inflammatory trajectories over time. IRB approval for the study was received May 2017, and funding from the National Institute of Nursing Research was awarded July 2017. DISCUSSION This study will determine the extent to which inflammation mediates the relationship between stress exposure and neurodevelopment. Interventions to attenuate inflammation in preterm infants may improve outcomes. IMPACT Determining the potentially modifiable mediators of stress exposure and neurodevelopment in preterm infants is critical to improving long-term outcomes.
Collapse
Affiliation(s)
- MD Nist
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - RH Pickler
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - DK Steward
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - TM Harrison
- College of Nursing, The Ohio State University, Columbus, Ohio
| | - AB Shoben
- College of Public Health, Division of Biostatistics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
20
|
Abstract
The developmental period constitutes a critical window of sensitivity to stress. Indeed, early-life adversity increases the risk to develop psychiatric diseases, but also gastrointestinal disorders such as the irritable bowel syndrome at adulthood. In the past decade, there has been huge interest in the gut-brain axis, especially as regards stress-related emotional behaviours. Animal models of early-life adversity, in particular, maternal separation (MS) in rodents, demonstrate lasting deleterious effects on both the gut and the brain. Here, we review the effects of MS on both systems with a focus on stress-related behaviours. In addition, we discuss more recent findings showing the impact of gut-directed interventions, including nutrition with pre- and probiotics, illustrating the role played by gut microbiota in mediating the long-term effects of MS. Overall, preclinical studies suggest that nutritional approaches with pro- and prebiotics may constitute safe and efficient strategies to attenuate the effects of early-life stress on the gut-brain axis. Further research is required to understand the complex mechanisms underlying gut-brain interaction dysfunctions after early-life stress as well as to determine the beneficial impact of gut-directed strategies in a context of early-life adversity in human subjects.
Collapse
|
21
|
Yang R, Sun H, Wu Y, Lu G, Wang Y, Li Q, Zhou J, Sun H, Sun L. Long-Lasting Sex-Specific Effects Based On Emotion- and Cognition-Related Behavioral Assessment of Adult Rats After Post-Traumatic Stress Disorder From Different Lengths of Maternal Separation. Front Psychiatry 2019; 10:289. [PMID: 31231246 PMCID: PMC6558979 DOI: 10.3389/fpsyt.2019.00289] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Adverse early life stress is a major cause of vulnerability to various mental disorders in adulthood, including post-traumatic stress disorder (PTSD). Recent studies have suggested that early life stress can help the body adapt optimally when faced with stressful trauma in adult life. An interaction may exist between early life stress (e.g., childhood trauma) and vulnerability to PTSD. This study aimed to evaluate emotion-related behaviors and verify the long-lasting effects of cognitive aspects of PTSD after exposure to severe adverse early life stress, such as long-term separation. Adverse early life stress was simulated by subjecting rats to 3 or 6 consecutive hours of maternal separation (MS) daily, from postnatal day (PND) 2 to PND 14. Single-prolonged stress (SPS) was simulated on PND 80 to imitate other adulthood stresses of PTSD with gender divisions (M-MS3h-PTSD, F-MS3h-PTSD, M-MS6h-PTSD, F-MS6h-PTSD, M-PTSD, and F-PTSD). After the MS and PTSD sessions, behavioral tests were conducted to assess the effectiveness of these treatments, which included an open field test (OFT), elevated plus maze test (EPMT), water maze test (WMT), and forced swimming test (FST) to detect anxiety-like behavior (OFT and EPMT), memory behavior (WMT), and depressive behavior (FST). The M-MS3h-PTSD group had fewer time entries into the open arms of EPMT than the F-MS3h-PTSD group, and the M-MS6h-PTSD group demonstrated fewer up-right postures in the OFT than the F-MS6h-PTSD group. The M-MS3h-PTSD group exhibited more exploratory behavior than the M-MS6h-PTSD and M-PTSD groups in the OFT. Less exploratory behavior was observed in the F-MS3h-PTSD group than in the F-MS6h-PTSD group, which demonstrated significantly increased freezing times in the FST compared to the F-PTSD group. The WMT revealed significant differences in learning and memory performance between the M-MS3h-PTSD group and other treatment groups, which were not found in the female rats. These findings demonstrate that an early stressful experience, such as MS, may be involved in helping the body adapt optimally when faced with additional trauma in adulthood, although mild early life stress might benefit learning and memory among males.
Collapse
Affiliation(s)
- Rucui Yang
- Department of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Haoran Sun
- Department of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yani Wu
- Department of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Guohua Lu
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Yanyu Wang
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Qi Li
- Department of Psychiatry and Centre for Reproduction Growth and Development, University of Hong Kong, Hong Kong, Hong Kong
| | - Jin Zhou
- College of Pharmacy, Weifang Medical University, Weifang, China
| | - Hongwei Sun
- Department of Psychology, Weifang Medical University, Weifang, China
| | - Lin Sun
- Department of Psychology, Weifang Medical University, Weifang, China
| |
Collapse
|
22
|
Rincel M, Olier M, Minni A, Monchaux de Oliveira C, Matime Y, Gaultier E, Grit I, Helbling JC, Costa AM, Lépinay A, Moisan MP, Layé S, Ferrier L, Parnet P, Theodorou V, Darnaudéry M. Pharmacological restoration of gut barrier function in stressed neonates partially reverses long-term alterations associated with maternal separation. Psychopharmacology (Berl) 2019; 236:1583-1596. [PMID: 31147734 DOI: 10.1007/s00213-019-05252-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
Abstract
RATIONALE Intestinal permeability plays an important role in gut-brain axis communication. Recent studies indicate that intestinal permeability increases in neonate pups during maternal separation (MS). OBJECTIVES The present study aims to determine whether pharmacological inhibition of myosin light chain kinase (MLCK), which regulates tight junction contraction and controls intestinal permeability, in stressed neonates, protects against the long-term effects of MS. METHODS Male Wistar rats were exposed to MS (3 h per day from post-natal day (PND)2 to PND14) or left undisturbed and received daily intraperitoneal injection of a MLCK inhibitor (ML-7, 5 mg/kg) or vehicle during the same period. At adulthood, emotional behaviors, corticosterone response to stress, and gut microbiota composition were analyzed. RESULTS ML-7 restored gut barrier function in MS rats specifically during the neonatal period. Remarkably, ML-7 prevented MS-induced sexual reward-seeking impairment and reversed the alteration of corticosterone response to stress at adulthood. The effects of ML-7 were accompanied by the normalization of the abundance of members of Lachnospiraceae, Clostridiales, Desulfovibrio, Bacteroidales, Enterorhabdus, and Bifidobacterium in the feces of MS rats at adulthood. CONCLUSIONS Altogether, our work suggests that improvement of intestinal barrier defects during development may alleviate some of the long-term effects of early-life stress and provides new insight on brain-gut axis communication in a context of stress.
Collapse
Affiliation(s)
- Marion Rincel
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Maïwenn Olier
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Amandine Minni
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | | | - Yann Matime
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Eric Gaultier
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Isabelle Grit
- UMR 1280, Institut des maladies de l'appareil digestif, PhAN, INRA, University of Nantes, Nantes, France
| | | | - Anna Maria Costa
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Amandine Lépinay
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Marie-Pierre Moisan
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Sophie Layé
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France
| | - Laurent Ferrier
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Patricia Parnet
- UMR 1280, Institut des maladies de l'appareil digestif, PhAN, INRA, University of Nantes, Nantes, France
| | - Vassilia Theodorou
- Laboratoire Toxalim, UMR 1331, University of Toulouse III (UPS), INP-EI-Purpan, INRA, Toulouse, France
| | - Muriel Darnaudéry
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, 33076, Bordeaux, France.
| |
Collapse
|
23
|
Effects of lipopolysaccharide administration and maternal deprivation on anxiety and depressive symptoms in male and female Wistar rats: Neurobehavioral and biochemical assessments. Behav Brain Res 2019; 362:46-55. [DOI: 10.1016/j.bbr.2019.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 01/06/2023]
|
24
|
Mucellini AB, Laureano DP, Silveira PP, Sanvitto GL. Maternal and post-natal obesity alters long-term memory and hippocampal molecular signaling of male rat. Brain Res 2019; 1708:138-145. [DOI: 10.1016/j.brainres.2018.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 12/15/2022]
|
25
|
Centella asiatica Prevents Increase of Hippocampal Tumor Necrosis Factor-α Independently of Its Effect on Brain-Derived Neurotrophic Factor in Rat Model of Chronic Stress. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2649281. [PMID: 30956976 PMCID: PMC6431365 DOI: 10.1155/2019/2649281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Centella asiatica ameliorates memory impairment and induces expression of hippocampal brain-derived neurotropic factor (BDNF) in chronically stressed rats. The relationship between the anti-inflammatory effect of Centella asiatica on hippocampal BDNF and the involvement of sirtuin-1, a BDNF expression regulator, in neuroprotective mechanisms of Centella asiatica warrants an investigation. We investigated the effect of Centella asiatica ethanolic extracts (CA) on TNF-α, IL-10, and SIRT1 levels and whether these predicted BDNF expression in rat hippocampus after chronic stress. For the experiments, thirty male rats (Sprague Dawley) were divided into six groups: nonstressed-control, stressed-control, nonstressed +CA 300mg/kg/d, stressed +CA 150 mg/kg/d, stressed +CA 300 mg/kg/d, and stressed +CA 600 mg/kg/d. On day 28, rats were sacrificed and hippocampus was dissected out. Hippocampal TNF-α, IL-10, SIRT1, and BDNF were measured by enzyme-linked immunosorbent assay. Hippocampal TNF-α level was significantly higher in the stressed-control compared to nonstressed-control groups. Across all stress conditions, rats receiving the highest dose of CA had the lowest mean TNF-α and highest mean BDNF. There were no significant differences in IL-10 and SIRT1 levels between groups. Hippocampal TNF-α did not predict hippocampal BDNF in a regression analysis. In conclusion, lower TNF-α and higher BDNF in the hippocampus support the hypothesis that these factors independently contribute to Centella asiatica's neuroprotective effect in chronically stressed rats.
Collapse
|
26
|
Changes in neuroplasticity following early-life social adversities: the possible role of brain-derived neurotrophic factor. Pediatr Res 2019; 85:225-233. [PMID: 30341412 DOI: 10.1038/s41390-018-0205-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Abstract
Social adversities experienced in childhood can have a profound impact on the developing brain, leading to the emergence of psychopathologies in adulthood. Despite the burden this places on both the individual and society, the neurobiological aspects mediating this transition remain unclear. Recent advances in preclinical and clinical research have begun examining neuroplasticity-the nervous system's ability to form adaptive changes in response to new experience-in the context of early-life vulnerability to social adversities and plasticity-related alterations following such traumatic events. A key mediator of plasticity-related molecular processes is the brain-derived neurotrophic factor (BDNF), which has also been implicated in various psychiatric disorders related to childhood social adversities. Preclinical and clinical data suggest early-life social adversities (ELSA) might be associated with accelerated maturation of social network circuitry, a possible ontogenic adaptation to the adverse environment. Neural plasticity decreases by adulthood, lessening the efficacy of treatment in ELSA-related psychiatric disorders. However, literature data suggest that by increasing BDNF/TrkB signalling through antidepressant treatment a juvenile-like plasticity state can be induced, which allows for reorganization of the social circuitry when guided by psychotherapy and surrounded by a safe and positive environment.
Collapse
|
27
|
Alcalde LA, de Freitas BS, Machado GDB, de Freitas Crivelaro PC, Dornelles VC, Gus H, Monteiro RT, Kist LW, Bogo MR, Schröder N. Iron chelator deferiprone rescues memory deficits, hippocampal BDNF levels and antioxidant defenses in an experimental model of memory impairment. Biometals 2018; 31:927-940. [PMID: 30117045 DOI: 10.1007/s10534-018-0135-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/12/2018] [Indexed: 12/18/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a key role in neural development and physiology, as well as in pathological states. Post-mortem studies demonstrate that BDNF is reduced in the brains of patients affected by neurodegenerative diseases. Iron accumulation has also been associated to the pathogenesis of neurodegenerative diseases. In rats, iron overload induces persistent memory deficits, increases oxidative stress and apoptotic markers, and decreases the expression of the synaptic marker, synaptophysin. Deferiprone (DFP) is an oral iron chelator used for the treatment of systemic iron overload disorders, and has recently been tested for Parkinson's disease. Here, we investigated the effects of iron overload on BDNF levels and on mRNA expression of genes encoding TrkB, p75NTR, catalase (CAT) and NQO1. We also aimed at investigating the effects of DFP on iron-induced impairments. Rats received iron or vehicle at postnatal days 12-14 and when adults, received chronic DFP or water (vehicle). Recognition memory was tested 19 days after the beginning of chelation therapy. BDNF measurements and expression analyses in the hippocampus were performed 24 h after the last day of DFP treatment. DFP restored memory and increased hippocampal BDNF levels, ameliorating iron-induced effects. Iron overload in the neonatal period reduced, while treatment with DFP was able to rescue, the expression of antioxidant enzymes CAT and NQO1.
Collapse
Affiliation(s)
- Luisa Azambuja Alcalde
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Gustavo Dalto Barroso Machado
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Pedro Castilhos de Freitas Crivelaro
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Victoria Campos Dornelles
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Henrique Gus
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Ricardo Tavares Monteiro
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil
| | - Luiza Wilges Kist
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil.,Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Mauricio Reis Bogo
- Laboratory of Genomics and Molecular Biology, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90619-900, Brazil.,Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610-000, Brazil
| | - Nadja Schröder
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil. .,National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, 71605-001, Brazil.
| |
Collapse
|
28
|
Sodium valproate ameliorates memory impairment and reduces the elevated levels of apoptotic caspases in the hippocampus of diabetic mice. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:1085-1092. [PMID: 29971457 DOI: 10.1007/s00210-018-1531-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/20/2018] [Indexed: 01/12/2023]
Abstract
Learning and memory deficits appear in chronic diabetes and valproic acid has been proved to be beneficial in neurodegenerative diseases. Hence, the current study investigated the effectiveness of chronic valproate treatment for diabetes-induced memory impairment and increased levels of hippocampal apoptotic caspases. This study was conducted in adult male C57B15/J mice. Diabetes, which was induced by alloxan (150 mg/kg; i.p.), was confirmed when fasting blood sugar (FBS) was > 200 mg/dl. Sodium valproate (100 mg/kg; i.p.) was administrated to the diabetic and non-diabetic groups, every 72 h for 2 months. Next, all groups were evaluated for memory performance using the radial maze and shuttle box. After FBS measurement, animals were killed and the hippocampus was extracted and prepared for ELISA to assess caspase levels. Diabetic animals had significantly high FBS and memory impairment 2 months after the alloxan injection. Hippocampal levels of caspases 3, 6, and 8 were significantly higher in the diabetic group than in the control group. However, valproate treatment of diabetic animals significantly improved memory performance in both the radial maze and shuttle box and reduced the elevated levels of hippocampal apoptotic caspases, in comparison with diabetic animals. Chronic administration of valproate seems to have beneficial effects on diabetic neuropathy.
Collapse
|
29
|
Sukhanova YA, Volodina MA, Sebentsova EA, Glazova NY, Manchenko DM, Inozemtseva LS, Andreeva LA, Dolotov OV, Levitskaya NG. Long-Term Changes in Behavior and the Content of BDNF in the Rat Brain Caused by Neonatal Isolation: The Effects of an Analog of ACTH(4-10) Semax. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418010154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Neuroprotective effects of valproic acid on brain ischemia are related to its HDAC and GSK3 inhibitions. Pharmacol Biochem Behav 2018; 167:17-28. [DOI: 10.1016/j.pbb.2018.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 11/22/2022]
|
31
|
Chen JJ, Wang T, An CD, Jiang CY, Zhao J, Li S. Brain-derived neurotrophic factor: a mediator of inflammation-associated neurogenesis in Alzheimer's disease. Rev Neurosci 2018; 27:793-811. [PMID: 27508959 DOI: 10.1515/revneuro-2016-0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/29/2016] [Indexed: 12/11/2022]
Abstract
In early- or late-onset Alzheimer's disease (AD), inflammation, which is triggered by pathologic conditions, influences the progression of neurodegeneration. Brain-derived neurotrophic factor (BDNF) has emerged as a crucial mediator of neurogenesis, because it exhibits a remarkable activity-dependent regulation of expression, which suggests that it may link inflammation to neurogenesis. Emerging evidence suggests that acute and chronic inflammation in AD differentially modulates neurotrophin functions, which are related to the roles of inflammation in neuroprotection and neurodegeneration. Recent studies also indicate novel mechanisms of BDNF-mediated neuroprotection, including the modulation of autophagy. Numerous research studies have demonstrated reverse parallel alterations between proinflammatory cytokines and BDNF during neurodegeneration; thus, we hypothesize that one mechanism that underlies the negative impact of chronic inflammation on neurogenesis is the reduction of BDNF production and function by proinflammatory cytokines.
Collapse
|
32
|
Banqueri M, Méndez M, Arias JL. Spatial memory-related brain activity in normally reared and different maternal separation models in rats. Physiol Behav 2017; 181:80-85. [DOI: 10.1016/j.physbeh.2017.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/04/2017] [Accepted: 09/07/2017] [Indexed: 01/31/2023]
|
33
|
Raineki C, Bodnar TS, Holman PJ, Baglot SL, Lan N, Weinberg J. Effects of early-life adversity on immune function are mediated by prenatal environment: Role of prenatal alcohol exposure. Brain Behav Immun 2017; 66:210-220. [PMID: 28698116 PMCID: PMC5650917 DOI: 10.1016/j.bbi.2017.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/06/2017] [Accepted: 07/03/2017] [Indexed: 01/07/2023] Open
Abstract
The contribution of the early postnatal environment to the pervasive effects of prenatal alcohol exposure (PAE) is poorly understood. Moreover, PAE often carries increased risk of exposure to adversity/stress during early life. Dysregulation of immune function may play a role in how pre- and/or postnatal adversity/stress alters brain development. Here, we combine two animal models to examine whether PAE differentially increases vulnerability to immune dysregulation in response to early-life adversity. PAE and control litters were exposed to either limited bedding (postnatal day [PN] 8-12) to model early-life adversity or normal bedding, and maternal behavior and pup vocalizations were recorded. Peripheral (serum) and central (amygdala) immune (cytokines and C-reactive protein - CRP) responses of PAE animals to early-life adversity were evaluated at PN12. Insufficient bedding increased negative maternal behavior in both groups. Early-life adversity increased vocalization in all animals; however, PAE pups vocalized less than controls. Early-life adversity reduced serum TNF-α, KC/GRO, and IL-10 levels in control but not PAE animals. PAE increased serum CRP, and levels were even higher in pups exposed to adversity. Finally, PAE reduced KC/GRO and increased IL-10 levels in the amygdala. Our results indicate that PAE alters immune system development and both behavioral and immune responses to early-life adversity, which could have subsequent consequences for brain development and later life health.
Collapse
Affiliation(s)
- Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | - Tamara S Bodnar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Parker J Holman
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Samantha L Baglot
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Ni Lan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
34
|
Maternal separation induces long-term effects on monoamines and brain-derived neurotrophic factor levels on the frontal cortex, amygdala, and hippocampus: differential effects after a stress challenge. Behav Pharmacol 2017; 28:545-557. [DOI: 10.1097/fbp.0000000000000324] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Wang Q, Dong X, Wang Y, Liu M, Sun A, Li N, lin Y, Geng Z, Jin Y, Li X. Adolescent escitalopram prevents the effects of maternal separation on depression‐ and anxiety‐like behaviours and regulates the levels of inflammatory cytokines in adult male mice. Int J Dev Neurosci 2017; 62:37-45. [PMID: 28778811 DOI: 10.1016/j.ijdevneu.2017.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 01/26/2023] Open
Affiliation(s)
- Qi Wang
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaomei Dong
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Yan Wang
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Mengxi Liu
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Anji Sun
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Nannan Li
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Yiwei lin
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Zhongli Geng
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Ye Jin
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaobai Li
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| |
Collapse
|
36
|
Maternal separation induces hippocampal changes in cadherin-1 ( CDH-1 ) mRNA and recognition memory impairment in adolescent mice. Neurobiol Learn Mem 2017; 141:157-167. [DOI: 10.1016/j.nlm.2017.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/16/2017] [Accepted: 04/17/2017] [Indexed: 01/09/2023]
|
37
|
Banqueri M, Méndez M, Arias JL. Behavioral effects in adolescence and early adulthood in two length models of maternal separation in male rats. Behav Brain Res 2017; 324:77-86. [DOI: 10.1016/j.bbr.2017.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/30/2017] [Accepted: 02/04/2017] [Indexed: 12/11/2022]
|
38
|
Albuquerque Filho MO, de Freitas BS, Garcia RCL, Crivelaro PCDF, Schröder N, de Lima MNM. Dual influences of early-life maternal deprivation on histone deacetylase activity and recognition memory in rats. Neuroscience 2017; 344:360-370. [DOI: 10.1016/j.neuroscience.2016.12.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 01/10/2023]
|
39
|
Valvassori SS, Resende WR, Varela RB, Arent CO, Gava FF, Peterle BR, Dal-Pont GC, Carvalho AF, Andersen ML, Quevedo J. The Effects of Histone Deacetylase Inhibition on the Levels of Cerebral Cytokines in an Animal Model of Mania Induced by Dextroamphetamine. Mol Neurobiol 2017; 55:1430-1439. [PMID: 28168425 DOI: 10.1007/s12035-017-0384-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023]
Abstract
Studies have suggested the involvement of inflammatory processes in the physiopathology of bipolar disorder. Preclinical evidences have shown that histone deacetylase inhibitors may act as mood-stabilizing agents and protect the brain in models of mania and depression. The aim of the present study was to evaluate the effects of sodium butyrate (SB) and valproate (VPA) on behavioral changes, histone deacetylase activity, and the levels of cytokines in an animal model of mania induced by dextroamphetamine (d-AMPH). Wistar rats were first given d-AMPH or saline (Sal) for a period of 14 days, and then, between the 8th and 14th days, the rats were treated with SB, VPA, or Sal. The activity of histone deacetylase and the levels of cytokines (interleukin (IL) IL-4, IL-6, and IL-10 and tumor necrosis factor-alpha (TNF-α)) were evaluated in the frontal cortex and striatum of the rats. The administration of d-AMPH increased the activity of histone deacetylase in the frontal cortex. Administration of SB or VPA decreased the levels of histone deacetylase activity in the frontal cortex and striatum of rats. SB per se increased the levels of cytokines in both of the brain structures evaluated. AMPH increased the levels of cytokines in both of the brain structures evaluated, and VPA reversed this alteration. The effects of SB on d-AMPH-induced cytokine alterations were dependent on the brain structure and the cytokine evaluated. Despite VPA and SB having a similar mechanism of action, both being histone deacetylase inhibitors, they showed different effects on the levels of cytokines. The present study reinforces the need for more research into histone deacetylase inhibitors being used as a possible target for new medications in the treatment of bipolar disorder.
Collapse
Affiliation(s)
- Samira S Valvassori
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil. .,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Wilson R Resende
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Roger B Varela
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Camila O Arent
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil
| | - Bruna R Peterle
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.,Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) Medical School, Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) Medical School, Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
40
|
Pollano A, Zalosnik MI, Durando PE, Suárez MM. Differential effects of tianeptine on the dorsal hippocampal volume of rats submitted to maternal separation followed by chronic unpredictable stress in adulthood. Stress 2016; 19:599-608. [PMID: 27604299 DOI: 10.1080/10253890.2016.1224842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Early maternal separation (MS) may produce lasting effects in the dorsal hippocampus (DH) that can change its response to chronic stress in adulthood. Chronic stress affects DH morphology and function, but tianeptine (an anti-depressant) can reverse the stress-induced morphological impairments. Morphologic alterations of hippocampus can affect contextual memory. Therefore, we evaluated the effect of tianeptine in MS and chronically stressed rats on: 1) volume of the DH and its areas using stereology and 2) hippocampal-dependent memory using a fear conditioning test. Male Wistar rats were subjected to daily MS for 4.5 h between postnatal days (PND) 1-21, or to animal facility rearing (AFR). Between (PND) days 50 and 74, rats were exposed to chronic unpredictable stress and were treated daily with tianeptine (10 mg/kg) or vehicle, providing eight groups: AFR-unstressed/vehicle (n = 5 for stereology, n = 18 for fear conditioning test); AFR unstressed/tianeptine (n = 6 and n = 10); AFR-chronic stress/vehicle (n = 6 and n = 14); AFR-chronic stress/tianeptine (n = 6 and n = 10), MS-unstressed/vehicle (n = 5 and n = 19), MS-unstressed/tianeptine (n = 6 and n = 10), MS-chronic stress/vehicle (n = 6 and n = 18), and MS-chronic stress/tianeptine (n = 6 and n = 10). MS-chronic stress/tianeptine rats showed a diminished CA1 area than the corresponding MS-unstressed/tianeptine rats. The combination of stressors produced a freezing response similar to those of the control group during postconditioning. During retrieval, MS led to a diminished freezing response compared to the AFR-unstressed groups. Tianeptine had no effect on freezing behavior. Our results show that tianeptine can affect the CA1 area volume differently depending on the nature and quantity of stressors but cannot alter freezing to context.
Collapse
Affiliation(s)
- Antonella Pollano
- a Laboratorio de Fisiología Animal, Facultad de Ciencias Exactas, Físicas y Naturales , Universidad Nacional de Córdoba , Córdoba , Argentina
| | - María I Zalosnik
- a Laboratorio de Fisiología Animal, Facultad de Ciencias Exactas, Físicas y Naturales , Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Patricia E Durando
- a Laboratorio de Fisiología Animal, Facultad de Ciencias Exactas, Físicas y Naturales , Universidad Nacional de Córdoba , Córdoba , Argentina
| | - Marta M Suárez
- a Laboratorio de Fisiología Animal, Facultad de Ciencias Exactas, Físicas y Naturales , Universidad Nacional de Córdoba , Córdoba , Argentina
| |
Collapse
|
41
|
Neuroprotective effects of various doses of topiramate against methylphenidate-induced oxidative stress and inflammation in isolated rat amygdala: the possible role of CREB/BDNF signaling pathway. J Neural Transm (Vienna) 2016; 123:1463-1477. [PMID: 27665547 DOI: 10.1007/s00702-016-1619-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/05/2016] [Indexed: 12/26/2022]
Abstract
Methylphenidate (MPH) abuse damages brain cells. The neuroprotective effects of topiramate (TPM) have been reported previously, but its exact mechanism of action still remains unclear. This study investigated the in vivo role of various doses of TPM in the protection of rat amygdala cells against methylphenidate-induced oxidative stress and inflammation. Seventy adult male rats were divided into seven groups. Groups 1 and 2 received normal saline (0.7 ml/rat) and MPH (10 mg/kg), respectively, for 21 days. Groups 3, 4, 5, 6, and 7 were concurrently treated with MPH (10 mg/kg) and TPM (10, 30, 50, 70, and 100 mg/kg), respectively, for 21 days. elevated plus maze (EPM) was used to assess motor activity disturbances. In addition, oxidative, antioxidantand inflammatory factors and CREB, Ak1, CAMK4, MAPK3, PKA, BDNF, and c FOS gene levels were measured by RT-PCR, and also, CREB and BDNF protein levels were measured by WB in isolated amygdalae. MPH significantly disturbed motor activity and TPM (70 and 100 mg/kg) neutralized its effects. MPH significantly increased lipid peroxidation, mitochondrial GSSG levels and IL-1β and TNF-α level and CAMK4 gene expression in isolated amygdala cells. In contrast, superoxide dismutase, glutathione peroxidase, and glutathione reductase activities and CREB, BDNF Ak1, MAPK3, PKA, BDNF, and c FOS expression significantly decreased. The various doses of TPM attenuated these effects of MPH. It seems that TPM can be used as a neuroprotective agent and is a good candidate against MPH-induced neurodegeneration.
Collapse
|
42
|
Grassi-Oliveira R, Honeycutt JA, Holland FH, Ganguly P, Brenhouse HC. Cognitive impairment effects of early life stress in adolescents can be predicted with early biomarkers: Impacts of sex, experience, and cytokines. Psychoneuroendocrinology 2016; 71:19-30. [PMID: 27235636 PMCID: PMC5412140 DOI: 10.1016/j.psyneuen.2016.04.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 12/27/2022]
Abstract
Childhood adversity increases vulnerability to psychiatric disorders that emerge in adolescence, in a sex-dependent manner. Early adversity modeled in rodents with maternal separation (MS) affects cognition and medial prefrontal cortex (mPFC) circuitry. Humans and animals exposed to early life adversity also display heightened circulating inflammatory cytokines, however the predictive relationship of these early measures with later behavioral deficits is unknown. Here, male and female rats were exposed to MS or control rearing during the postnatal period (P2-21). Blood samples were taken at distinct developmental time points for analysis of the pro-inflammatory cytokine IL-1β and the anti-inflammatory cytokines IL-4, and IL-10, followed by win-shift cognitive testing and analysis of mPFC parvalbumin (PVB) immunofluorescent interneurons in adolescence. Regression analyses were conducted to explore the relationship between early cytokines and adolescent behavioral measures. We observed sex- and age-dependent effects of MS on circulating cytokines. MS also yielded adolescent decreases in mPFC PVB and cognitive deficits, which were predicted by early cytokine expression in a sex- and experience-dependent manner. Taken together, the present data reveals that circulating cytokines and PVB levels are predictive of adolescent cognitive deficits, and therefore provide compelling evidence for a putative role of early biomarkers in mediating MS-induced behavioral dysfunction. Importantly, predictive relationships often depended on sex and on MS history, suggesting that early life experiences may yield individualistic mechanisms of vulnerability compared to the general population.
Collapse
Affiliation(s)
- Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul. Avenida Ipiranga, 6681, prédio 11, sala 928, Porto Alegre 90619-900, RS, Brazil
| | - Jennifer A Honeycutt
- Psychology Department, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave., Boston 02115, MA, USA
| | - Freedom H Holland
- Psychology Department, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave., Boston 02115, MA, USA
| | - Prabarna Ganguly
- Psychology Department, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave., Boston 02115, MA, USA
| | - Heather C Brenhouse
- Psychology Department, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave., Boston 02115, MA, USA.
| |
Collapse
|
43
|
Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol Psychiatry 2016; 21:642-9. [PMID: 26033244 PMCID: PMC4564950 DOI: 10.1038/mp.2015.67] [Citation(s) in RCA: 716] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/17/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Childhood trauma confers higher risk of adulthood physical and mental illness; however, the biological mechanism mediating this association remains largely unknown. Recent research has suggested dysregulation of the immune system as a possible biological mediator. The present paper conducted a meta-analysis to establish whether early-life adversity contributes to potentially pathogenic pro-inflammatory phenotypes in adult individuals. A systematic search of Pubmed, PsycINFO, EMBASE, Scopus and Medline identified 25 articles for the meta-analysis, including 18 studies encompassing a sample of 16 870 individuals for C-reactive protein (CRP), 15 studies including 3751 individuals for interleukin-6 (IL-6) and 10 studies including 881 individuals for tumour necrosis factor-α (TNF-α). Random-effects meta-analysis showed that individuals exposed to childhood trauma had significantly elevated baseline peripheral levels of CRP (Fisher's z=0.10, 95% confidence interval (CI)=0.05-0.14), IL-6 (z=0.08, 95% CI=0.03-0.14) and TNF-α (z=0.23, 95% CI=0.14-0.32). Subgroup analyses for specific types of trauma (sexual, physical or emotional abuse) revealed that these impact differentially the single inflammatory markers. Moreover, meta-regression revealed greater effect sizes in clinical samples for the association between childhood trauma and CRP but not for IL-6 or TNF-α. Age, body mass index (BMI) and gender had no moderating effects. The analysis demonstrates that childhood trauma contributes to a pro-inflammatory state in adulthood, with specific inflammatory profiles depending on the specific type of trauma.
Collapse
|
44
|
Boschen KE, Ruggiero MJ, Klintsova AY. Neonatal binge alcohol exposure increases microglial activation in the developing rat hippocampus. Neuroscience 2016; 324:355-66. [PMID: 26996510 DOI: 10.1016/j.neuroscience.2016.03.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 01/05/2023]
Abstract
Aberrant activation of the developing immune system can have long-term negative consequences on cognition and behavior. Teratogens, such as alcohol, activate microglia, the brain's resident immune cells, which could contribute to the lifelong deficits in learning and memory observed in humans with Fetal Alcohol Spectrum Disorders (FASD) and in rodent models of FASD. The current study investigates the microglial response of the brain 24 h following neonatal alcohol exposure (postnatal days (PDs) 4-9, 5.25 g/kg/day). On PD10, microglial cell counts and area of cell territory were assessed using unbiased stereology in the hippocampal subfields CA1, CA3 and dentate gyrus (DG), and hippocampal expression of pro- and anti-inflammatory genes was analyzed. A significant decrease in microglial cell counts in CA1 and DG was found in alcohol-exposed and sham-intubated (SI) animals compared to undisturbed suckle controls (SCs), suggesting overlapping effects of alcohol exposure and intubation alone on the neuroimmune response. Cell territory was decreased in alcohol-exposed animals in CA1, CA3, and DG compared to controls, suggesting the microglia have shifted to a more activated state following alcohol treatment. Furthermore, both alcohol-exposed and SI animals had increased levels of pro-inflammatory cytokines IL-1β, TNF-α, CD11b, and CCL4; in addition, CCL4 was significantly increased in alcohol-exposed animals compared to SI as well. Alcohol-exposed animals also showed increased levels of anti-inflammatory cytokine TGF-β compared to both SI and SCs. In summary, the number and activation of microglia in the neonatal hippocampus are both affected in a rat model of FASD, along with increased gene expression of pro- and anti-inflammatory cytokines. This study shows that alcohol exposure during development induces a neuroimmune response, potentially contributing to long-term alcohol-related changes to cognition, behavior and immune function.
Collapse
Affiliation(s)
- K E Boschen
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE 19716, USA.
| | - M J Ruggiero
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE 19716, USA.
| | - A Y Klintsova
- University of Delaware, Department of Psychological and Brain Sciences, 108 Wolf Hall, Newark, DE 19716, USA.
| |
Collapse
|
45
|
Wu LH, Cheng W, Yu M, He BM, Sun H, Chen Q, Dong YW, Shao XT, Cai QQ, Peng M, Wu XZ. Nr3C1-Bhlhb2 Axis Dysregulation Is Involved in the Development of Attention Deficit Hyperactivity. Mol Neurobiol 2016; 54:1196-1212. [PMID: 26820676 PMCID: PMC5310568 DOI: 10.1007/s12035-015-9679-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/23/2015] [Indexed: 11/29/2022]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a child developmental and behavioral disorder which seriously hinders their education and development. To investigate the key regulators in the prefrontal cortex (PFC), the major affected areas of ADHD, microRNA (miR)-138,138*, 34c*, 296, and 494, were noted for their significant downregulation in ADHD model rats spontaneously hypertensive rats (SHRs) compared to Wistar Kyoto (WKY) rat control. Based on promoter sequence analysis and activity assay, glucocorticoid receptor (Nr3c1) was identified for the inhibition of the promoter activity of miR-138-1, 34c*, 296, and 494 genes and their transcription. In the PFC of ADHD model rats SHR, Nr3c1 expression was abnormally elevated and reversely correlated with the levels of miR-138-1, 34c, 296, and 494 expression. Luciferase report assays indicated that all miR-138, 138*, 34c*, 296, and 494 targeted the 3′ untranslated region of transcription factor Bhlhb2 (Bhlhe40) messenger RNA (mRNA) in common and ectopic expression of miR-138,138*, 34c*, 296, and 494 further suppressed the expression of Bhlhb2 gene. Consistently, Bhlhb2 expression was significantly higher in PFC of ADHD model SHR than control. Overexpressed Bhlhb2 in vitro significantly suppressed PC12 cell differentiation, and silence of Bhlhb2 enhanced the growth of neurite axon and dendrite. To observe the roles of Bhlhb2 further in vivo, Bhlhb2 was silenced in the PFC of nine SHR rats. Interestingly, knockdown of Bhlhb2 significantly improved the hyperactivity behaviors in SHRs compared to control. These findings show that Nr3c1-Bhlhb2 axis dysregulation was involved in the development of attention deficit and hyperactivity.
Collapse
Affiliation(s)
- Li Hui Wu
- Department of Children's Health Care, The Second Affiliated Hospital & Yu Ying Children's Hospital, Wenzhou Medical University, Wenzhou, China. .,Department of Clinic Medicine, Zhejiang Medical College, 481 Binwen Road, Binjiang College Zone, Hangzhou, 310053, China.
| | - Wei Cheng
- Department of Children's Health Care, The Second Affiliated Hospital & Yu Ying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Lab of Glycoconjugate Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Mei Yu
- Department of Children's Health Care, The Second Affiliated Hospital & Yu Ying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Lab of Glycoconjugate Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Bao Mei He
- Department of Children's Health Care, The Second Affiliated Hospital & Yu Ying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Lab of Glycoconjugate Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Hui Sun
- Department of Children's Health Care, The Second Affiliated Hospital & Yu Ying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Lab of Glycoconjugate Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Qi Chen
- Department of Children's Health Care, The Second Affiliated Hospital & Yu Ying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,Key Lab of Glycoconjugate Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Yi Wei Dong
- Key Lab of Glycoconjugate Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Xiao Ting Shao
- Department of Children's Health Care, The Second Affiliated Hospital & Yu Ying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qian Qian Cai
- Key Lab of Glycoconjugate Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Min Peng
- Department of Neonatology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xing Zhong Wu
- Key Lab of Glycoconjugate Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
46
|
Daskalakis NP, De Kloet ER, Yehuda R, Malaspina D, Kranz TM. Early Life Stress Effects on Glucocorticoid-BDNF Interplay in the Hippocampus. Front Mol Neurosci 2015; 8:68. [PMID: 26635521 PMCID: PMC4644789 DOI: 10.3389/fnmol.2015.00068] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/27/2015] [Indexed: 11/19/2022] Open
Abstract
Early life stress (ELS) is implicated in the etiology of multiple psychiatric disorders. Important biological effects of ELS are manifested in stress-susceptible regions of the hippocampus and are partially mediated by long-term effects on glucocorticoid (GC) and/or neurotrophin signaling pathways. GC-signaling mediates the regulation of stress response to maintain homeostasis, while neurotrophin signaling plays a key role in neuronal outgrowth and is crucial for axonal guidance and synaptic integrity. The neurotrophin and GC-signaling pathways co-exist throughout the central nervous system (CNS), particularly in the hippocampus, which has high expression levels of glucocorticoid-receptors (GR) and mineralocorticoid-receptors (MR) as well as brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase receptor B (TrkB). This review addresses the effects of ELS paradigms on GC- and BDNF-dependent mechanisms and their crosstalk in the hippocampus, including potential implications for the pathogenesis of common stress-related disorders.
Collapse
Affiliation(s)
- Nikolaos P Daskalakis
- Traumatic Stress Studies Division and Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center Bronx, NY, USA
| | - Edo Ronald De Kloet
- Department of Medical Pharmacology, Leiden Academic Centre for Drug Research Leiden, Netherlands ; Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden University Leiden, Netherlands
| | - Rachel Yehuda
- Traumatic Stress Studies Division and Laboratory of Molecular Neuropsychiatry, Department of Psychiatry, Icahn School of Medicine at Mount Sinai New York, NY, USA ; Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center Bronx, NY, USA ; Department of Neuroscience, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Dolores Malaspina
- Department of Psychiatry, New York University School of Medicine New York, NY, USA
| | - Thorsten M Kranz
- Departments of Cell Biology, Physiology and Neuroscience, and Psychiatry, Skirball Institute of Biomolecular Medicine, New York University New York, NY, USA
| |
Collapse
|
47
|
Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 2014; 8:430. [PMID: 25565964 PMCID: PMC4273623 DOI: 10.3389/fncel.2014.00430] [Citation(s) in RCA: 338] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 11/29/2014] [Indexed: 01/06/2023] Open
Abstract
Cytokines are key regulatory mediators involved in the host response to immunological challenges, but also play a critical role in the communication between the immune and the central nervous system. For this, their expression in both systems is under a tight regulatory control. However, pathological conditions may lead to an overproduction of pro-inflammatory cytokines that may have a detrimental impact on central nervous system. In particular, they may damage neuronal structure and function leading to deficits of neuroplasticity, the ability of nervous system to perceive, respond and adapt to external or internal stimuli. In search of the mechanisms by which pro-inflammatory cytokines may affect this crucial brain capability, we will discuss one of the most interesting hypotheses: the involvement of the neurotrophin brain-derived neurotrophic factor (BDNF), which represents one of the major mediators of neuroplasticity.
Collapse
Affiliation(s)
- Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano Milan, Italy
| | - Andrea C Rossetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano Milan, Italy
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano Milan, Italy
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Research Group Animal Models in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University Mannheim, Germany
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano Milan, Italy
| | - Raffaella Molteni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano Milan, Italy
| |
Collapse
|