1
|
Yang T, Wang J, Guo H, Zhao Y, Tian H, Li Y, Teng G, Liu N. Rich nutrition decreases the concentration of metals in Chaeturichthys stigmatias. MARINE POLLUTION BULLETIN 2024; 209:117104. [PMID: 39393242 DOI: 10.1016/j.marpolbul.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Metals play a vital role in living organisms, serving as cofactors for enzymes, structural components of proteins, and participants in signaling pathways. However, the relationship between metal content and nutrient levels in organisms has not been thoroughly elucidated, which is the major barrier to regulate metal levels in organisms. In this study, we investigated the association between muscle metal concentration and external nutritional conditions, as well as intrinsic nutrient requirements in Chaeturichthys stigmatias. The results demonstrated a negative correlation between muscle metal levels and body mass index (BMI). Furthermore, our investigation unveiled a negative correlation between metal levels and zooplankter abundance, as well as a positive correlation with the abundance of underlying phytoplankton and chlorophyll. Moreover, metal levels gradually increased during the development of gonads, particularly in female individuals. As the gonads matured and ovulated, metal levels gradually decreased. The same trends were observed in Mouse erythroleukemia cells (MEL) when different concentrations of FBS were added. Collectively, these findings highlight the inherent connection between metal levels and nutrition, and offer potential guidance for regulating metal homeostasis in organisms, as well as reducing the exposure of organisms to toxic heavy metals in the environment. SYNOPSIS: With an increase in the level of external nutrients and a decrease in intrinsic nutrient requirements, the level of metals in the organism gradually decreases.
Collapse
Affiliation(s)
- Tao Yang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210024, China.
| | - Jinghua Wang
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hua Guo
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Yongsong Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Shandong Changdao National Observation and Research Station for Fishery Resources, Yantai 265800, China
| | - Haozhong Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingying Li
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guangliang Teng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Shandong Changdao National Observation and Research Station for Fishery Resources, Yantai 265800, China
| | - Ning Liu
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| |
Collapse
|
2
|
Wang B, Zhang C, Shi C, Zhai T, Zhu J, Wei D, Shen J, Liu Z, Jia K, Zhao L. Mechanisms of oral microflora in Parkinson's disease. Behav Brain Res 2024; 474:115200. [PMID: 39134178 DOI: 10.1016/j.bbr.2024.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease with complex pathogenesis and no effective treatment. Recent studies have shown that dysbiosis of the oral microflora is closely related to the development of PD. The abnormally distributed oral microflora of PD patients cause degenerative damage and necrosis of dopamine neurons by releasing their own components and metabolites, intervening in the oral-gut-brain axis, crossing the biofilm, inducing iron dysregulation, activating inter-microflora interactions, and through the mediation of saliva,ultimately influencing the development of the disease. This article reviews the structure of oral microflora in patients with PD, the mechanism of development of PD caused by oral microflora, and the potential value of targeting oral microflora in developing a new strategy for PD prevention, diagnosis and treatment.
Collapse
Affiliation(s)
- Bingbing Wang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Can Zhang
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Caizhen Shi
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Tianyu Zhai
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Jinghui Zhu
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Dongmin Wei
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Juan Shen
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Zehao Liu
- Medical School of Yan'an University, Yan'an, Shaanxi, China
| | - Kunpeng Jia
- Yan'an University Affiliated Hospital, Yan'an, Shaanxi, China.
| | - Lin Zhao
- Medical School of Yan'an University, Yan'an, Shaanxi, China.
| |
Collapse
|
3
|
Tang Z, Chen Z, Guo M, Peng Y, Xiao Y, Guan Z, Ni R, Qi X. NRF2 Deficiency Promotes Ferroptosis of Astrocytes Mediated by Oxidative Stress in Alzheimer's Disease. Mol Neurobiol 2024; 61:7517-7533. [PMID: 38401046 DOI: 10.1007/s12035-024-04023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
Oxidative stress is involved in the pathogenesis of Alzheimer's disease (AD), which is linked to reactive oxygen species (ROS), lipid peroxidation, and neurotoxicity. Emerging evidence suggests a role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a major source of antioxidant response elements in AD. The molecular mechanism of oxidative stress and ferroptosis in astrocytes in AD is not yet fully understood. Here, we aimed to investigate the mechanism by which Nrf2 regulates the ferroptosis of astrocytes in AD. We found decreased expression of Nrf2 and upregulated expression of the ROS marker NADPH oxidase 4 (NOX4) in the frontal cortex from patients with AD and in the cortex of 3×Tg mice compared to wildtype mice. We demonstrated that Nrf2 deficiency led to ferroptosis-dependent oxidative stress-induced ROS with downregulated heme oxygenase-1 and glutathione peroxidase 4 and upregulated cystine glutamate expression. Moreover, Nrf2 deficiency increased lipid peroxidation, DNA oxidation, and mitochondrial fragmentation in mouse astrocytes (mAS, M1800-57). In conclusion, these results suggest that Nrf2 deficiency promotes ferroptosis of astrocytes involving oxidative stress in AD.
Collapse
Affiliation(s)
- Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Zhuyi Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Min Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou, 550004, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
4
|
Khoshdooz S, Abbasi H, Abbasi MM. Iron-Status Indicators and HFE Gene Polymorphisms in Individuals with Amyotrophic Lateral Sclerosis: An Umbrella Review of Meta-analyses and Systematic Reviews. Biol Trace Elem Res 2024:10.1007/s12011-024-04391-2. [PMID: 39317854 DOI: 10.1007/s12011-024-04391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive loss of motor neurons. Recent meta-analyses and systematic reviews suggest that HFE gene polymorphisms and iron-associated biomarkers may play a key role in the risk and occurrence of ALS. This umbrella study aimed to explore the roles of HFE gene polymorphisms and iron-associated biomarkers in individuals with ALS. A thorough search of three online scientific databases, namely Scopus, Web of Science, and PubMed, was conducted from their inception until September 13, 2024. The screening and selection processes were executed based on the PICO framework and eligibility criteria, followed by two independent reviewers. The Assessment of Multiple Systematic Reviews (AMSTAR)-2 and GRADE tools were utilized to assess the methodological quality and the certainty of evidence. Through an advanced search, 101 records were retrieved, of which eight meta-analyses and systematic reviews were selected for this umbrella review. A significant increase in iron concentrations was found in individuals with ALS compared to healthy controls (SMD, 0.26; 95% CI - 0.05, 0.57). Conversely, selected meta-analyses reported that serum transferrin concentrations in ALS patients were lower compared to healthy controls (SMD, - 0.15; 95% CI - 0.36, 0.05). Furthermore, mutations in H63D polymorphisms resulted in a 13% significant increase in the risk of ALS (OR, 1.13; 95% CI 1.05, 1.22). Our umbrella study of meta-analyses and systematic reviews reveals that individuals with ALS have lower serum concentrations of transferrin compared to healthy controls. Additionally, the H63D polymorphism in the HFE gene is associated with a slight increase in the risk of ALS. Future research should investigate broader aspects of iron-related biomarkers and HFE genes to elucidate their roles in ALS pathogenesis. Registration: Our umbrella study was registered in the International Prospective Register of Systematic Reviews (PROSPERO) with the identification number CRD42024559032 ( https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024559032 ).
Collapse
Affiliation(s)
- Sara Khoshdooz
- Faculty of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Hamid Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan, Iran.
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Mehdi Abbasi
- Student Research Committee, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Świątczak M, Raczak A, Świątczak A, Młodziński K, Sikorska K, Jaźwińska A, Kaufmann D, Daniłowicz-Szymanowicz L. Fatigue Assessment in Patients with Hereditary Hemochromatosis: First Use of the Popular Diagnostic Tools. J Clin Med 2024; 13:5544. [PMID: 39337031 PMCID: PMC11432497 DOI: 10.3390/jcm13185544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Hereditary hemochromatosis (HH) is a genetic condition with fatigue as an essential but not precisely assessed symptom. While some well-specified scales for fatigue assessment in some pathologies exist, data on their usefulness in HH need to be collected. This research aimed to evaluate fatigue in HH using the Fatigue Assessment Scale (FAS), Fatigue Severity Scale (FSS), and Chalder Fatigue Scale (CFQ). Methodology: Seventy-nine HH patients underwent a questionnaire containing items about detailed medical history and the FAS, FSS, and CFQ scales. Twenty-five sex- and age-matched healthy persons constituted the control group (controls); additionally, thirty blood donors (donors) were compared. Results: The fatigue indices were significantly worse in the HH patients than in the controls and donors (HH vs. controls p-value: FAS = 0.003, FSS < 0.001, and CFQ = 0.003; HH vs. donors p-value: FAS = 0.025, FSS < 0.001, and CFQ = 0.041). There were no differences between the severity of fatigue and the specific genotype or the age of the patients. The HH women presented more severe fatigue than the men. High internal consistency and reliability for each scale were revealed: the Cronbach alpha values were as follows: FAS 0.92, FSS 0.95, and CFQ 0.93. Additionally, the construct validity and factorial validity of the implemented scales were confirmed. Conclusions: The HH patients exhibited significantly worse fatigue across all the scales. The FAS, FSS, and CFQ are simple and reliable diagnostic tools for assessing and quantifying fatigue for clinical and research purposes.
Collapse
Affiliation(s)
- Michał Świątczak
- Department of Cardiology and Electrotherapy, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdańsk, Poland
| | - Alicja Raczak
- Clinical Psychology Department, Faculty of Health Sciences, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Agata Świątczak
- Department of Pediatrics, Hematology and Oncology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Krzysztof Młodziński
- Department of Cardiology and Electrotherapy, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdańsk, Poland
| | - Katarzyna Sikorska
- Department of Tropical Medicine and Epidemiology, Faculty of Health Sciences, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Anna Jaźwińska
- Regional Blood Donation and Hemotherapy Center, 80-210 Gdańsk, Poland
| | - Damian Kaufmann
- Department of Cardiology and Electrotherapy, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdańsk, Poland
| | - Ludmiła Daniłowicz-Szymanowicz
- Department of Cardiology and Electrotherapy, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214 Gdańsk, Poland
| |
Collapse
|
6
|
Pan S, Hale AT, Lemieux ME, Raval DK, Garton TP, Sadler B, Mahaney KB, Strahle JM. Iron homeostasis and post-hemorrhagic hydrocephalus: a review. Front Neurol 2024; 14:1287559. [PMID: 38283681 PMCID: PMC10811254 DOI: 10.3389/fneur.2023.1287559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/21/2023] [Indexed: 01/30/2024] Open
Abstract
Iron physiology is regulated by a complex interplay of extracellular transport systems, coordinated transcriptional responses, and iron efflux mechanisms. Dysregulation of iron metabolism can result in defects in myelination, neurotransmitter synthesis, and neuronal maturation. In neonates, germinal matrix-intraventricular hemorrhage (GMH-IVH) causes iron overload as a result of blood breakdown in the ventricles and brain parenchyma which can lead to post-hemorrhagic hydrocephalus (PHH). However, the precise mechanisms by which GMH-IVH results in PHH remain elusive. Understanding the molecular determinants of iron homeostasis in the developing brain may lead to improved therapies. This manuscript reviews the various roles iron has in brain development, characterizes our understanding of iron transport in the developing brain, and describes potential mechanisms by which iron overload may cause PHH and brain injury. We also review novel preclinical treatments for IVH that specifically target iron. Understanding iron handling within the brain and central nervous system may provide a basis for preventative, targeted treatments for iron-mediated pathogenesis of GMH-IVH and PHH.
Collapse
Affiliation(s)
- Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mackenzie E. Lemieux
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Dhvanii K. Raval
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Thomas P. Garton
- Department of Neurology, Johns Hopkins University School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Brooke Sadler
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Hematology and Oncology, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Kelly B. Mahaney
- Department of Neurosurgery, Stanford University School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Orthopedic Surgery, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
7
|
Wang S, Chen X, Liu Z, Yu S, Fu J, Zeng X. Rhodamine-based Fluorescent Probe With Quick Response and High Selectivity for Imaging Labile Ferrous Iron in Living Cells and Zebrafish. J Fluoresc 2023:10.1007/s10895-023-03551-2. [PMID: 38157085 DOI: 10.1007/s10895-023-03551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
The transition between its various oxidation states of Iron plays a crucial part in various chemical transformation of cells. Misregulation of iron can give rise to the iron-catalyzed reactive oxygen species disorder which have been linked to a variety of diseases, so it is crucial to monitor the labile iron pool in vivo for clinical diagnosis. According to iron autoxidation and hydrogen abstraction reaction, we reported a novel "off-on" fluorescent probe to response to ferrous (Fe2+) both in solutions and biological systems. The probe responds to Fe2+ with good selectivity toward competing metal ions. What's more, the probe presents significant fluorescent enhancement to Fe2+ in less than 1 min, making real-time sensing in biological system possible. The applications of the probe in bioimaging revealed the changes in labile iron pool by iron autoxidation or diverse stimuli.
Collapse
Affiliation(s)
- Shanshan Wang
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Xin Chen
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Zhigang Liu
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Shihua Yu
- School of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, People's Republic of China
| | - Jing Fu
- Jinan Stomatol Hosp, Periodont & Oral Med Dept, Jinan, Shandong, People's Republic of China.
| | - Xiaodan Zeng
- Center of Characterization and Analysis, Jilin Institute of Chemical Technology, Jilin, People's Republic of China.
| |
Collapse
|
8
|
Bachrata B, Bollmann S, Jin J, Tourell M, Dal-Bianco A, Trattnig S, Barth M, Ropele S, Enzinger C, Robinson SD. Super-resolution QSM in little or no additional time for imaging (NATIve) using 2D EPI imaging in 3 orthogonal planes. Neuroimage 2023; 283:120419. [PMID: 37871759 DOI: 10.1016/j.neuroimage.2023.120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
Quantitative Susceptibility Mapping has the potential to provide additional insights into neurological diseases but is typically based on a quite long (5-10 min) 3D gradient-echo scan which is highly sensitive to motion. We propose an ultra-fast acquisition based on three orthogonal (sagittal, coronal and axial) 2D simultaneous multi-slice EPI scans with 1 mm in-plane resolution and 3 mm thick slices. Images in each orientation are corrected for susceptibility-related distortions and co-registered with an iterative non-linear Minimum Deformation Averaging (Volgenmodel) approach to generate a high SNR, super-resolution data set with an isotropic resolution of close to 1 mm. The net acquisition time is 3 times the volume acquisition time of EPI or about 12 s, but the three volumes could also replace "dummy scans" in fMRI, making it feasible to acquire QSM in little or No Additional Time for Imaging (NATIve). NATIve QSM values agreed well with reference 3D GRE QSM in the basal ganglia in healthy subjects. In patients with multiple sclerosis, there was also a good agreement between the susceptibility values within lesions and control ROIs and all lesions which could be seen on 3D GRE QSMs could also be visualized on NATIve QSMs. The approach is faster than conventional 3D GRE by a factor of 25-50 and faster than 3D EPI by a factor of 3-5. As a 2D technique, NATIve QSM was shown to be much more robust to motion than the 3D GRE and 3D EPI, opening up the possibility of studying neurological diseases involving iron accumulation and demyelination in patients who find it difficult to lie still for long enough to acquire QSM data with conventional methods.
Collapse
Affiliation(s)
- Beata Bachrata
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria; Department of Medical Engineering, Carinthia University of Applied Sciences, Klagenfurt, Austria
| | - Steffen Bollmann
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Jin Jin
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; Siemens Healthcare Pty Ltd, Australia
| | - Monique Tourell
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, Australia
| | - Assunta Dal-Bianco
- Department of Neurology, Medical University of Vienna, Austria; Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal Imaging, Vienna, Austria
| | - Markus Barth
- Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria
| | | | - Simon Daniel Robinson
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Centre of Advanced Imaging, University of Queensland, Brisbane, Australia; Department of Neurology, Medical University of Graz, Austria.
| |
Collapse
|
9
|
Yu X, Xiao Z, Xie J, Xu H. Ferritin Is Secreted from Primary Cultured Astrocyte in Response to Iron Treatment via TRPML1-Mediated Exocytosis. Cells 2023; 12:2519. [PMID: 37947597 PMCID: PMC10650167 DOI: 10.3390/cells12212519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
Impaired iron homeostasis has been proven to be one of the critical contributors to the pathology of Parkinson's disease (PD). Ferritin is considered an intracellular protein responsible for storing cytosolic iron. Recent studies have found that ferritin can be secreted from cells independent of the classical endoplasmic reticulum-Golgi system. However, the precise mechanisms underlying the secretion of ferritin in the brain were not elucidated. In the present study, we demonstrated that the primary cultured astrocytes do have the ability to secrete ferritin, which is enhanced by iron treatment. Increased ferritin secretion was accompanied by increased protein expression of ferritin response to iron stimulation. Further study showed that iron-induced expression and secretion of ferritin could be inhibited by CQ or 3-MA pretreatment. In addition, the knockdown of transient receptor potential mucolipin 1 (TRPML1) antagonized iron-induced ferritin secretion, accompanied by further increased intracellular protein levels of ferritin. Further study demonstrated that ferritin colocalized with LAMP1 in iron-treated astrocytes. On the contrary, ras-associated protein 27a (Rab27a) knockdown further enhanced iron-induced ferritin secretion and decreased intracellular protein levels of ferritin. Furthermore, we also showed that the secretory autophagy protein tripartite motif containing 16 (TRIM16) and sec22b decreased in iron-treated astrocytes. These results suggested that astrocytes might secrete ferritin via TRPML1-mediated exocytosis. This provides new evidence for the mechanisms underlying the secretion of ferritin in primary cultured astrocytes under a high iron environment.
Collapse
Affiliation(s)
- Xiaoqi Yu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Zhixin Xiao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| | - Huamin Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao 266071, China
| |
Collapse
|
10
|
Aygun A, Sahin G, Tiri RNE, Tekeli Y, Sen F. Colorimetric sensor based on biogenic nanomaterials for high sensitive detection of hydrogen peroxide and multi-metals. CHEMOSPHERE 2023; 339:139702. [PMID: 37553042 DOI: 10.1016/j.chemosphere.2023.139702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/27/2023] [Accepted: 07/30/2023] [Indexed: 08/10/2023]
Abstract
Hydrogen peroxide (H2O2) and heavy metals, which are among the wastes of the industrial sector, become a threat to living things and the environment above certain concentrations. Therefore, the detection of both H2O2 and heavy metals with simple, low-cost, and fast analytical methods has gained great importance. The use of nanoparticles in colorimetric sensor technology for the detection of these analytes provides great advantages. In recent years, green synthesis of nanomaterials with products that can be considered biowaste is among the popular topics. In this study, silver/silver chloride nanoparticles (Ag@AgCl NPs) were synthesized using the green synthesis method as an eco-friendly and cheap method, the green algae extract was used as a reducing agent. The characterization of Ag@AgCl nanoparticles and green algae extract was carried out with several techniques such as Transmission Electron Microscopy (TEM), UV-Visible spectrometry (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction patterns (XRD) methods were used for characterization. According to TEM analysis, the Ag@AgCl NPs typically spherical in form and range in size from 4 to 10 nm, and UV-vis showed the formation of surface plasmon resonance (SPR) of the Ag@AgCl between 400 and 450 nm. In addition, its activity as a colorimetric sensor for hydrogen peroxide (H2O2) and multi-metal detection was evaluated. Interestingly, Ag/AgCl NPs caused different color formations for 3 metals simultaneously in the sensor study for heavy metal detection, and Fe3+, Cu2+, and Cr6+ ions were detected. The R2 values for H2O2, Fe3+, Cu2+, and Cr6+ were 0.9360, 0.9961, 0.9787, and 0.9625 the limit of detection (LOD) was 43.75, 1.69, 3.18, and 5.05 ppb (ng/mL), respectively. It was determined that Ag@AgCl NPs have the potential to be used as a colorimetric sensor for the detection of H2O2 and heavy metals from wastewater.
Collapse
Affiliation(s)
- Aysenur Aygun
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkiye; SRG Incorporated Company, Kutahya Design & Technopole, Calca OSB Neighbourhood, 43100 Kutahya, Turkiye
| | - Gulsade Sahin
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkiye
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkiye; SRG Incorporated Company, Kutahya Design & Technopole, Calca OSB Neighbourhood, 43100 Kutahya, Turkiye
| | - Yener Tekeli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Adiyaman University, Adiyaman University Central Campus, 02040, Adiyaman, Turkiye
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkiye; SRG Incorporated Company, Kutahya Design & Technopole, Calca OSB Neighbourhood, 43100 Kutahya, Turkiye.
| |
Collapse
|
11
|
Kulkarni N, Gadde R, Betharia S. Dithiolethiones D3T and ACDT Protect Against Iron Overload-Induced Cytotoxicity and Serve as Ferroptosis Inhibitors in U-87 MG Cells. Neurochem Res 2023:10.1007/s11064-023-03927-7. [PMID: 37061657 DOI: 10.1007/s11064-023-03927-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/17/2023]
Abstract
Iron overload-induced oxidative stress is implicated in various neurodegenerative disorders. Given the numerous adverse effects associated with current iron chelators, natural antioxidants are being explored as alternative therapeutic options. Dithiolethiones found in cruciferous vegetables have emerged as promising candidates against a wide range of toxicants owing to their lipophilic and cytoprotective properties. Here, we test the dithiolethiones 3H-1,2-dithiole-3-thione (D3T) and 5-amino-3-thioxo-3H-(1,2) dithiole-4-carboxylic acid ethyl ester (ACDT) against ferric ammonium citrate (FAC)-induced toxicity in U-87 MG astrocytoma cells. Exposure to 15 mM FAC for 24 h resulted in 54% cell death. A 24-h pretreatment with 50 μM D3T and ACDT prevented this cytotoxicity. Both dithiolethiones exhibited antioxidant effects by activating the nuclear factor erythroid 2-related factor-2 (Nrf2) transcription factor and upregulating levels of intracellular glutathione (GSH). This resulted in the successful inhibition of FAC-induced reactive oxygen species, lipid peroxidation, and cell death. Additionally, D3T and ACDT upregulated expression of the Nrf2-mediated iron storage protein ferritin which consequently reduced the total labile iron pool. A 24-h pretreatment with D3T and ACDT also prevented cell death induced by the ferroptosis inducer erastin by upregulating the transmembrane cystine/glutamate antiporter (xCT) expression. The resulting increase in intracellular GSH and alleviation of lipid peroxidation was comparable to that caused by ferrostatin-1, a specific ferroptosis inhibitor. Collectively, our findings demonstrate that dithiolethiones may show promise as potential therapeutic options for the treatment of iron overload disorders.
Collapse
Affiliation(s)
- Neha Kulkarni
- Department of Pharmaceutical Sciences, School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Rajitha Gadde
- Department of Pharmaceutical Sciences, School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Avenue, Boston, MA, 02115, USA
| | - Swati Betharia
- Department of Pharmaceutical Sciences, School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Chua JJE. HEBP1 - An early trigger for neuronal cell death and circuit dysfunction in Alzheimer's disease. Semin Cell Dev Biol 2023; 139:102-110. [PMID: 35842370 DOI: 10.1016/j.semcdb.2022.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that gradually impairs memory, cognition and the ability to perform simple daily tasks. It is the most prevalent form of dementia in the elderly and its incidence increases exponentially with age. Neuronal and synapse loss, key hallmarks of the disorder, are widely regarded to occur early during the onset of AD, and the extent of this loss closely correlates with the progression of cognitive decline and dysfunction of the underlying neuronal circuity. Nevertheless, the mechanisms driving neuronal and synapse loss during early AD remains poorly understood. This review focuses on Heme-binding protein 1 (HEBP1), a mitochondrial-associated protein that has recently emerged as an important mediator of neuronal cell death during early AD pathogenesis. Acting downstream of Aβ and heme, HEBP1-mediated apoptosis contributes to neuronal loss and neuronal circuit dysfunction. Deleting HEBP1 expression in neurons protects them from heme- and Aβ-induced apoptosis, both of which are mechanisms implicated in neurodegeneration. HEBP1 participates in heme metabolism and binds to heme to modulate mitochondrial dynamics vital to the maintenance of neural circuitry that is affected in AD. HEBP1 elevation is also associated with AGE/RAGE-related neuronal damage, further implicating its involvement in neuronal loss during early AD. Moreover, F2L, a cleavage product of HEBP1 modulates inflammation. Collectively, these findings highlight the importance of HEBP1 in the disruption of neural circuits during early AD.
Collapse
Affiliation(s)
- John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute for Health Innovation and Technology, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A⁎STAR), Singapore.
| |
Collapse
|
13
|
Dimiza F, Barmpa A, Chronakis A, Hatzidimitriou AG, Sanakis Y, Papadopoulos AN, Psomas G. Iron(III) Complexes with Non-Steroidal Anti-Inflammatory Drugs: Structure, Antioxidant and Anticholinergic Activity, and Interaction with Biomolecules. Int J Mol Sci 2023; 24:ijms24076391. [PMID: 37047364 PMCID: PMC10094617 DOI: 10.3390/ijms24076391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
One the main research goals of bioinorganic chemists is the synthesis of novel coordination compounds possessing biological potency. Within this context, three novel iron(III) complexes with the non-steroidal anti-inflammatory drugs diflunisal and diclofenac in the presence or absence of the nitrogen donors 1,10-phenanthroline or pyridine were isolated and characterized by diverse techniques. The complexes were evaluated for their ability to scavenge in vitro free radicals such as hydroxyl, 1,1-diphenyl-2-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radicals, revealing their selective potency towards hydroxyl radicals. The in vitro inhibitory activity of the complexes towards the enzymes acetylcholinesterase and butyrylcholinesterase was evaluated, and their potential to achieve neuroprotection appeared promising. The interaction of the complexes with calf-thymus DNA was examined in vitro, revealing their ability to intercalate in-between DNA nucleobases. The affinity of the complexes for serum albumins was evaluated in vitro and revealed their tight and reversible binding.
Collapse
|
14
|
Zhao D, Huang Y, Wang B, Chen H, Pan W, Yang M, Xia Z, Zhang R, Yuan C. Dietary Intake Levels of Iron, Copper, Zinc, and Manganese in Relation to Cognitive Function: A Cross-Sectional Study. Nutrients 2023; 15:nu15030704. [PMID: 36771411 PMCID: PMC9921562 DOI: 10.3390/nu15030704] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Background: Previous studies have related circulating levels of trace metal elements, of which dietary intake is the major source, to cognitive outcomes. However, there are still relatively few studies evaluating the associations of dietary intake levels of iron, copper, zinc, and manganese with cognitive function (CF). Methods: We leveraged the data of 6863 participants (mean [standard deviation] age = 66.7 [10.5] years) in the Health and Retirement Study (2013/2014). Dietary intake levels of iron, copper, zinc, and manganese were calculated from a semi-quantitative food frequency questionnaire. CF was assessed using the 27-point modified Telephone Interview for Cognitive Status (TICS). We used linear regression models to calculate the mean differences in global CF scores by quintiles of dietary intake levels of trace metal elements. Results: Among the study participants, the mean (SD) values of daily dietary intake were 13.3 (6.3) mg for iron, 1.4 (0.7) mg for copper, 10.7 (4.6) mg for zinc, and 3.3 (1.6) mg for manganese. Compared with the lowest quintile of dietary iron intake (<8.1 mg), the highest quintile (≥17.7 mg) was associated with a lower cognitive score (-0.50, -0.94 to -0.06, P-trend = 0.007). Higher dietary copper was significantly associated with poorer CF (P-trend = 0.002), and the mean difference in cognitive score between extreme quintiles (≥1.8 vs. <0.8 mg) was -0.52 (95% confidence interval: -0.94 to -0.10) points. We did not observe significant associations for dietary intake of zinc (P-trend = 0.785) and manganese (P-trend = 0.368). Conclusion: In this cross-sectional study, higher dietary intake of iron and copper was related to worse CF, but zinc and manganese intake levels were not significantly associated with CF.
Collapse
Affiliation(s)
- Dong Zhao
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yilun Huang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310051, China
- College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou 310051, China
| | - Binghan Wang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310051, China
| | - Hui Chen
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310051, China
| | - Wenfei Pan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310051, China
| | - Min Yang
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310051, China
| | - Zhidan Xia
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310051, China
| | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
- Correspondence: (R.Z.); (C.Y.)
| | - Changzheng Yuan
- School of Public Health, Zhejiang University School of Medicine, Hangzhou 310051, China
- Correspondence: (R.Z.); (C.Y.)
| |
Collapse
|
15
|
Fernandes S, Tlemçani M, Bortoli D, Feliciano M, Lopes ME. A Portable Measurement Device Based on Phenanthroline Complex for Iron Determination in Water. SENSORS (BASEL, SWITZERLAND) 2023; 23:1058. [PMID: 36772098 PMCID: PMC9919581 DOI: 10.3390/s23031058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
In this work, a newly developed self-contained, portable, and compact iron measurement system (IMS) based on spectroscopy absorption for determination of Fe2+ in water is presented. One of the main goals of the IMS is to operate the device in the field as opposed to instruments commonly used exclusively in the laboratory. In addition, the system has been tuned to quantify iron concentrations in accordance with the values proposed by the regulations for human consumption. The instrument uses the phenanthroline standard method for iron determination in water samples. This device is equipped with an optical sensing system consisting of a light-emitting diode paired with a photodiode to measure absorption radiation through ferroin complex medium. To assess the sensor response, four series of Fe2+ standard samples were prepared with different iron concentrations in various water matrices. Furthermore, a new solid reagent prepared in-house was investigated, which is intended as a "ready-to-use" sample pre-treatment that optimizes work in the field. The IMS showed better analytical performance compared with the state-of-the-art instrument. The sensitivity of the instrument was found to be 2.5 µg Fe2+/L for the measurement range established by the regulations. The linear response of the photodiode was determined for concentrations between 25 and 1000 µg Fe2+/L, making this device suitable for assessing iron in water bodies.
Collapse
Affiliation(s)
- Samuel Fernandes
- Department of Mechatronics Engineering, School of Science and Technology, Universidade de Évora, 7000-671 Évora, Portugal
- Instrumentation and Control Laboratory (ICL), Insititute of Earth Sciences (ICT), Universidade de Évora, 7000-671 Évora, Portugal
| | - Mouhaydine Tlemçani
- Department of Mechatronics Engineering, School of Science and Technology, Universidade de Évora, 7000-671 Évora, Portugal
- Instrumentation and Control Laboratory (ICL), Insititute of Earth Sciences (ICT), Universidade de Évora, 7000-671 Évora, Portugal
| | - Daniele Bortoli
- Instrumentation and Control Laboratory (ICL), Insititute of Earth Sciences (ICT), Universidade de Évora, 7000-671 Évora, Portugal
- Physics Department, School of Science and Technology (ECT), Universidade de Évora, 7000-671 Évora, Portugal
- Earth Remote Sensing Laboratory (EaRSLab), Institute of Earth Sciences (ICT), Universidade de Évora, 7000-671 Évora, Portugal
| | - Manuel Feliciano
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Elmina Lopes
- Department of Chemistry and Biochemistry, School of Science and Technology (ECT), Universidade de Évora, 7000-671 Evora, Portugal
| |
Collapse
|
16
|
Chen L, Zhao Q, Du X, Chen X, Jiao Q, Jiang H. Effects of oxidative stress caused by iron overload on arachidonic acid metabolites in MES23.5 cells. J Biosci 2022. [DOI: 10.1007/s12038-022-00321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Zhang N, Yu X, Song L, Xiao Z, Xie J, Xu H. Ferritin confers protection against iron-mediated neurotoxicity and ferroptosis through iron chelating mechanisms in MPP +-induced MES23.5 dopaminergic cells. Free Radic Biol Med 2022; 193:751-763. [PMID: 36395957 DOI: 10.1016/j.freeradbiomed.2022.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Ferritin is the main iron storage protein and plays an important role in maintaining iron homeostasis. In a previous study, we reported that apoferritin exerted a neuroprotective effect against MPTP by regulation of brain iron metabolism and ferroptosis. However, the precise cellular mechanisms of extracellular ferritin underlying this protection are not fully elucidated. Ferritin was reported to be localized in different intracellular compartments, cytoplasm or released outside cells. Here we demonstrated that the intracellular iron increased after iron treatment in primary cultured astrocytes. These iron-loaded astrocytes released more ferritin in order to buffer extracellular iron. Using co-culture system of primary cultured astrocytes and MES23.5 dopaminergic cells, we showed that ferritin released by astrocytes could enter MES23.5 dopaminergic cells. And primary cultured astrocytes protected MES23.5 dopaminergic cells against 1-methyl-4-phenylpyridinium ion (MPP+)-induced neurotoxicity and ferroptosis. In addition, we found that exogenous Apoferritin or Ferritin pretreatment could significantly inhibit MPP+-induced cell damage by restoring the cell viability and mitochondrial transmembrane potential (ΔΨm). Furthermore, exogenous Apoferritin and Ferritin might also protect MES23.5 dopaminergic cells against MPP+ by decreasing reactive oxygen species (ROS) and inhibiting the increase of the labile iron pool (LIP). This suggests that astrocytes increased ferritin release to respond to iron overload, which might inhibit iron-mediated oxidative damage and ferroptosis of dopamine (DA) neurons in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Na Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaoqi Yu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Limei Song
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhixin Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| | - Huamin Xu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
18
|
Iron-Sulfur Clusters: A Key Factor of Regulated Cell Death in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7449941. [PMID: 36338346 PMCID: PMC9629928 DOI: 10.1155/2022/7449941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022]
Abstract
Iron-sulfur clusters are ancient cofactors that play crucial roles in myriad cellular functions. Recent studies have shown that iron-sulfur clusters are closely related to the mechanisms of multiple cell death modalities. In addition, numerous previous studies have demonstrated that iron-sulfur clusters play an important role in the development and treatment of cancer. This review first summarizes the close association of iron-sulfur clusters with cell death modalities such as ferroptosis, cuprotosis, PANoptosis, and apoptosis and their potential role in cancer activation and drug resistance. This review hopes to generate new cancer therapy ideas and overcome drug resistance by modulating iron-sulfur clusters.
Collapse
|
19
|
Association between egg consumption and cognitive function among Chinese adults: long-term effect and interaction effect of iron intake. Br J Nutr 2022; 128:1180-1189. [PMID: 34736543 DOI: 10.1017/s0007114521004402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The association between egg consumption and cognitive function is inclusive. We aimed to assess the association between egg consumption and cognitive function in Chinese adults and tested the interaction between egg consumption and Fe intake. The data used were from a nationwide sample (n 4852, age ≥ 55 years) from the China Health and Nutrition Survey between 1991 and 2006. Assessment of cognitive function was conducted in 1997, 2000, 2004 and 2006. Dietary egg intake was obtained by 24-h dietary recalls of 3 consecutive days during home visits between 1991 and 2006. Multivariable mixed linear regression and logistic regression were used. Egg intake was positively associated with global cognitive function. In fully adjusted models, across the quartiles of egg intake the regression coefficients were 0, 0·11 (95 % CI -0·28, 0·51), 0·79 (95 % CI 0·36, 1·22) and 0·92 (95 % CI 0·43, 1·41), respectively. There was a significant interaction between egg intake and Fe intake. The association between high egg intake and cognitive function was stronger among those with low Fe intake than those with high Fe intake. In addition, there was a significant interaction between egg consumption and sex, with the association mainly observed in women but not men. Furthermore, compared with non-consumers, those with higher egg consumption (Q4) had the OR of 0·93 (95 % CI 0·74, 1·19), 0·84 (95 % CI 0·69, 1·02) for self-reported poor memory and self-reported memory decline, respectively. Higher egg intake is associated with better cognition in Chinese adults among those with low Fe intake.
Collapse
|
20
|
Sukik L, Liu J, Shi Z. Tea Consumption Is Associated with Reduced Cognitive Decline and Interacts with Iron Intake: A Population-Based Longitudinal Study on 4,820 Old Adults. J Alzheimers Dis 2022; 90:271-282. [DOI: 10.3233/jad-220344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background: Previous studies suggest a positive effect of tea intake on cognition. Additional micronutrients that may moderate this association was not previously examined. Objective: To examine the association between tea consumption and cognition and explore the interaction between tea consumption and iron intake. Methods: Data from the China Health and Nutrition Survey between 1997 and 2011 was used. 4,820 individuals (≥55 years) were included in the analyses. Measurement of cognitive function was conducted in 1997, 2000, 2004, and 2006. Tea consumption was self-reported. Food intake was assessed by 24-hour dietary recalls of three consecutive days during home visits between 1997 and 2011. Multivariable mixed linear regression and logistic regression was used to assess the association. Results: Tea consumption was associated with reduced global cognitive function decline. In fully adjusted models, regression coefficients (95% CIs) for those who consumed 0 cups/day,<2 cups/day, 2–3.9 cups/day, and≥4 cups/day of tea were 0, –0.09 (–0.55–0.37), 0.05 (–0.34–0.45), and 0.87 (0.46–1.29), respectively. This effect was stronger in adults > 60 years. Tea consumption of≥4 cups/day was inversely associated with self-reported poor memory (OR 0.70 (95% CI 0.56–0.86)) and memory decline (OR, 0.73 (95% CI 0.62–0.87)). There was a significant interaction between tea consumption and iron intake in relation to cognition. High iron intake was inversely associated with cognition in non-consumers of tea but not in tea consumers. Conclusion: Higher tea intake is associated with reduced cognitive decline in adults and inhibits the adverse effect of high iron intake.
Collapse
Affiliation(s)
- Layan Sukik
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Jianghong Liu
- University of Pennsylvania School of Nursing, Philadelphia, PA, USA
| | - Zumin Shi
- Department of Human Nutrition, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
21
|
Ajith MP, Pardhiya S, Prabhakar AK, Rajamani P. Ag@CDs nanohybrid: Fabrication, design of a multi-mode chemosensory probe for selective Fe 3+ detection and logic gate operation. CHEMOSPHERE 2022; 303:135090. [PMID: 35660397 DOI: 10.1016/j.chemosphere.2022.135090] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
In this study, we propose a unique use of silver-carbon dot nanohybrid (Ag@CDs) with an average size of 16 nm as a multi-mode sensor for the selective detection of Fe3+ and the construction of logic gates based on these unique detection properties. The Ag NPs exhibit colourimetric sensing and fluorescence quenching in response to Fe3+ in the concentration range of 10-100 ppm, with the carbon dots acting as the fluorescent entity. Surprisingly, the nanohybrid was shown to have excellent sensitivity to Fe3+, resulting in aggregation and formation of yellowish-brown clumps. When the reaction mixture was treated with Fe3+, there was a discernible change in the colour of the assay mixture and fluorescence quenching. That is, the Ag@CDs acted as a calorimetric and fluorescence multi-mode sensor. Even in interfering groups in the natural river water sample, the produced nanohybrid displayed good selectivity towards Fe3+, with a minimum LOD of 0.76 ppm. Further, we constructed an advanced logic system, IMP-OR gate, by using additional inputs - ascorbic acid and urea.
Collapse
Affiliation(s)
- M P Ajith
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Arun Kumar Prabhakar
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
22
|
Zhai X, Shan S, Wan J, Tian H, Wang J, Xin L. Silver Nanoparticles Induce a Size-dependent Neurotoxicity to SH-SY5Y Neuroblastoma Cells via Ferritinophagy-mediated Oxidative Stress. Neurotox Res 2022; 40:1369-1379. [PMID: 36040578 DOI: 10.1007/s12640-022-00570-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used in a variety of consumer products because of their antibacterial and antifungal characteristics, but little is known about their toxicity to the brain. In this study, we investigated AgNP-induced neurotoxicity using the human neuroblastoma cancer (SH-SY5Y) cell line. After a 24 h treatment of AgNPs with two primary sizes (5 and 50 nm labeled as Ag-5 and Ag-50, respectively), a series of toxicological endpoints including cell viability, expression of proteins and genes in amyloid precursor protein (APP) amyloid hydrolysis process and ferritinophagy signaling pathways, oxidative stress, intracellular iron levels, and molecular regulators of iron metabolism were evaluated. Our results showed that both Ag-5 and Ag-50 induced notable neurotoxic effects on SH-SY5Y cells indicated by cell proliferation inhibition, increased BACE1 protein expression, and decreased APP and ADAM10 gene expression. Activation of nuclear receptor coactivator 4-mediated ferritinophagy and blockade of autophagic flux were induced by AgNPs, accompanied by intracellular iron accumulation and overexpression of divalent metal-ion transporter-1 and ferroportin1 in SH-SY5Y cells. In addition, AgNPs significantly decreased glutathione peroxidase 4 protein expression but increased malondialdehyde concentration, suggesting that AgNP-induced iron accumulation may trigger oxidative stress by disruption of the intracellular oxidant and antioxidant systems. In addition, compared with Ag-50, Ag-5 with higher cellular uptake efficiency caused more detrimental effects on SH-SY5Y cells. In conclusion, our findings demonstrated a size-dependent neurotoxicity in SH-SY5Y cells by AgNPs via ferritinophagy-mediated oxidative stress.
Collapse
Affiliation(s)
- Xuedi Zhai
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Shan Shan
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Jianmei Wan
- Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Hailin Tian
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Jianshu Wang
- Suzhou Center for Disease Prevention and Control, 72 Sanxiang Road, Suzhou, Jiangsu, 215004, China.
| | - Lili Xin
- School of Public Health, Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
23
|
Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Mar Drugs 2022; 20:md20060362. [PMID: 35736165 PMCID: PMC9227170 DOI: 10.3390/md20060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Currently, there is no known cure for neurodegenerative disease. However, the available therapies aim to manage some of the symptoms of the disease. Human neurodegenerative diseases are a heterogeneous group of illnesses characterized by progressive loss of neuronal cells and nervous system dysfunction related to several mechanisms such as protein aggregation, neuroinflammation, oxidative stress, and neurotransmission dysfunction. Neuroprotective compounds are essential in the prevention and management of neurodegenerative diseases. This review will focus on the neurodegeneration mechanisms and the compounds (proteins, polyunsaturated fatty acids (PUFAs), polysaccharides, carotenoids, phycobiliproteins, phenolic compounds, among others) present in seaweeds that have shown in vivo and in vitro neuroprotective activity. Additionally, it will cover the recent findings on the neuroprotective effects of bioactive compounds from macroalgae, with a focus on their biological potential and possible mechanism of action, including microbiota modulation. Furthermore, gastrointestinal digestion, absorption, and bioavailability will be discussed. Moreover, the clinical trials using seaweed-based drugs or extracts to treat neurodegenerative disorders will be presented, showing the real potential and limitations that a specific metabolite or extract may have as a new therapeutic agent considering the recent approval of a seaweed-based drug to treat Alzheimer’s disease.
Collapse
|
24
|
A Review of Diagnostic Imaging Approaches to Assessing Parkinson's Disease. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Srivastava S, Thakur N, Nayak N, Garg N, Pandey R. Development of ferrocene‐appended benzimidazopyridine and pyrroloquinoxaline probes for structure regulated distinct signalling of Fe
3+
in aqueous media and HeLa cells. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Suman Srivastava
- Department of Applied Sciences National Institute of Technology Delhi
| | - Neha Thakur
- Department of Chemistry National Institute of Technology Uttarakhand India
| | - Namyashree Nayak
- School of Basic Sciences Indian Institute of Technology Mandi Mandi Himachal Pradesh India
| | - Neha Garg
- Department of Medicinal chemistry, Institute of Medical Sciences Banaras Hindu University Varanasi Uttar Pradesh India
| | - Rampal Pandey
- Department of Chemistry National Institute of Technology Uttarakhand India
| |
Collapse
|
26
|
Salkov VN, Khudoerkov RM, Voronkov DN, Sobolev VB. [Morphochemical study of alpha-synuclein, iron and iron-containing proteins in the substantia nigra of the brain in Parkinson's disease]. Arkh Patol 2022; 84:13-19. [PMID: 35417944 DOI: 10.17116/patol20228402113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study, using a complex morphochemical approach, the localization of alpha-synuclein, iron compounds and iron-containing proteins in the structures of the substantia nigra of the brain in Parkinson's disease (PD). MATERIAL AND METHODS Histochemistry and immunohistochemistry methods have been used to study the localization of pathological alpha-synuclein (α-Syn-p129), iron compounds and iron-containing proteins - transferrin receptor and ferritin in neurons and neuroglia in the substantia nigra of the brain of deceased PD patients and persons with no neurological symptoms detected during life (control). RESULTS In the substantia nigra of PD patients, in comparison with the control, a stable accumulation of pathological alpha-synuclein (α-Syn-p129) in the bodies and processes of neurons was found, and in the neuroglia and neuropil - the accumulation of iron (II) and ferritin heavy chain, the reaction of microglia to protein CD68 was moderately elevated. The transmembrane protein CD71 was detected equally in the brains of PD patients and in controls. CONCLUSION Synaptic protein alpha-synuclein in PD turns into a pathological metabolite that accumulates in the structures of substantia nigra, and probably disrupts the conduction of nervous excitation. Excessive accumulation of the ferritin heavy chain in neuroglia can increase the concentration of reactive forms of iron and increase neurotoxicity. The uniform distribution of the transmembrane glycoprotein CD71 in the of substantia nigra structures both in the control and in PD patients indicates the preservation of non-heme iron transport during the neurodegenerative process.
Collapse
Affiliation(s)
- V N Salkov
- Research Center of Neurology, Moscow, Russia
| | | | | | - V B Sobolev
- Research Center of Neurology, Moscow, Russia
| |
Collapse
|
27
|
Terry LR, Sanders S, Potoff RH, Kruel JW, Jain M, Guo H. Applications of surface-enhanced Raman spectroscopy in environmental detection. ANALYTICAL SCIENCE ADVANCES 2022; 3:113-145. [PMID: 38715640 PMCID: PMC10989676 DOI: 10.1002/ansa.202200003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/11/2024]
Abstract
As the human population grows, the anthropogenic impacts from various agricultural and industrial processes produce unwanted contaminants in the environment. The accurate, sensitive and rapid detection of such contaminants is vital for human health and safety. Surface-enhanced Raman spectroscopy (SERS) is a valuable analytical tool with wide applications in environmental contaminant monitoring. The aim of this review is to summarize recent advancements within SERS research as it applies to environmental detection, with a focus on research published or accessible from January 2021 through December 2021 including early-access publications. Our goal is to provide a wide breadth of information that can be used to provide background knowledge of the field, as well as inform and encourage further development of SERS techniques in protecting environmental quality and safety. Specifically, we highlight the characteristics of effective SERS nanosubstrates, and explore methods for the SERS detection of inorganic, organic, and biological contaminants including heavy metals, pharmaceuticals, plastic particles, synthetic dyes, pesticides, viruses, bacteria and mycotoxins. We also discuss the current limitations of SERS technologies in environmental detection and propose several avenues for future investigation. We encourage researchers to fill in the identified gaps so that SERS can be implemented in a real-world environment more effectively and efficiently, ultimately providing reliable and timely data to help and make science-based strategies and policies to protect environmental safety and public health.
Collapse
Affiliation(s)
- Lynn R. Terry
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Sage Sanders
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Rebecca H. Potoff
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Jacob W. Kruel
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Manan Jain
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Huiyuan Guo
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| |
Collapse
|
28
|
Seaweed Exhibits Therapeutic Properties against Chronic Diseases: An Overview. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052638] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Seaweeds or marine macroalgae are known for producing potentially bioactive substances that exhibit a wide range of nutritional, therapeutic, and nutraceutical properties. These compounds can be applied to treat chronic diseases, such as cancer, cardiovascular disease, osteoporosis, neurodegenerative diseases, and diabetes mellitus. Several studies have shown that consumption of seaweeds in Asian countries, such as Japan and Korea, has been correlated with a lower incidence of chronic diseases. In this study, we conducted a review of published papers on seaweed consumption and chronic diseases. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) method for this study. We identified and screened research articles published between 2000 and 2021. We used PubMed and ScienceDirect databases and identified 107 articles. This systematic review discusses the potential use of bioactive compounds of seaweed to treat chronic diseases and identifies gaps where further research in this field is needed. In this review, the therapeutic and nutraceutical properties of seaweed for the treatment of chronic diseases such as neurodegenerative diseases, obesity, diabetes, cancer, liver disease, cardiovascular disease, osteoporosis, and arthritis were discussed. We concluded that further study on the identification of bioactive compounds of seaweed, and further study at a clinical level, are needed.
Collapse
|
29
|
Yan L, Guo MS, Zhang Y, Yu L, Wu JM, Tang Y, Ai W, Zhu FD, Law BYK, Chen Q, Yu CL, Wong VKW, Li H, Li M, Zhou XG, Qin DL, Wu AG. Dietary Plant Polyphenols as the Potential Drugs in Neurodegenerative Diseases: Current Evidence, Advances, and Opportunities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5288698. [PMID: 35237381 PMCID: PMC8885204 DOI: 10.1155/2022/5288698] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD), are characterized by the progressive degeneration of neurons. Although the etiology and pathogenesis of neurodegenerative diseases have been studied intensively, the mechanism is still in its infancy. In general, most neurodegenerative diseases share common molecular mechanisms, and multiple risks interact and promote the pathologic process of neurogenerative diseases. At present, most of the approved drugs only alleviate the clinical symptoms but fail to cure neurodegenerative diseases. Numerous studies indicate that dietary plant polyphenols are safe and exhibit potent neuroprotective effects in various neurodegenerative diseases. However, low bioavailability is the biggest obstacle for polyphenol that largely limits its adoption from evidence into clinical practice. In this review, we summarized the widely recognized mechanisms associated with neurodegenerative diseases, such as misfolded proteins, mitochondrial dysfunction, oxidative damage, and neuroinflammatory responses. In addition, we summarized the research advances about the neuroprotective effect of the most widely reported dietary plant polyphenols. Moreover, we discussed the current clinical study and application of polyphenols and the factors that result in low bioavailability, such as poor stability and low permeability across the blood-brain barrier (BBB). In the future, the improvement of absorption and stability, modification of structure and formulation, and the combination therapy will provide more opportunities from the laboratory into the clinic for polyphenols. Lastly, we hope that the present review will encourage further researches on natural dietary polyphenols in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lu Yan
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Min-Song Guo
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yue Zhang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Wei Ai
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Feng-Dan Zhu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Chen
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Department of Nursing, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chong-Lin Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hua Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Mao Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy; Education Ministry Key Laboratory of Medical Electrophysiology, College of Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
30
|
Howard CM, Jain S, Cook AD, Packard LE, Mullin HA, Chen N, Liu C, Song AW, Madden DJ. Cortical iron mediates age-related decline in fluid cognition. Hum Brain Mapp 2022; 43:1047-1060. [PMID: 34854172 PMCID: PMC8764476 DOI: 10.1002/hbm.25706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/19/2023] Open
Abstract
Brain iron dyshomeostasis disrupts various critical cellular functions, and age-related iron accumulation may contribute to deficient neurotransmission and cell death. While recent studies have linked excessive brain iron to cognitive function in the context of neurodegenerative disease, little is known regarding the role of brain iron accumulation in cognitive aging in healthy adults. Further, previous studies have focused primarily on deep gray matter regions, where the level of iron deposition is highest. However, recent evidence suggests that cortical iron may also contribute to cognitive deficit and neurodegenerative disease. Here, we used quantitative susceptibility mapping (QSM) to measure brain iron in 67 healthy participants 18-78 years of age. Speed-dependent (fluid) cognition was assessed from a battery of 12 psychometric and computer-based tests. From voxelwise QSM analyses, we found that QSM susceptibility values were negatively associated with fluid cognition in the right inferior temporal gyrus, bilateral putamen, posterior cingulate gyrus, motor, and premotor cortices. Mediation analysis indicated that susceptibility in the right inferior temporal gyrus was a significant mediator of the relation between age and fluid cognition, and similar effects were evident for the left inferior temporal gyrus at a lower statistical threshold. Additionally, age and right inferior temporal gyrus susceptibility interacted to predict fluid cognition, such that brain iron was negatively associated with a cognitive decline for adults over 45 years of age. These findings suggest that iron may have a mediating role in cognitive decline and may be an early biomarker of neurodegenerative disease.
Collapse
Affiliation(s)
- Cortney M. Howard
- Center for Cognitive NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Shivangi Jain
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Present address:
Department of Psychological and Brain SciencesUniversity of IowaIowa CityIowaUSA
| | - Angela D. Cook
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Lauren E. Packard
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Hollie A. Mullin
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Nan‐kuei Chen
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Present address:
Department of Biomedical EngineeringUniversity of ArizonaTucsonArizonaUSA
| | - Chunlei Liu
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Present address:
Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Allen W. Song
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
| | - David J. Madden
- Center for Cognitive NeuroscienceDuke UniversityDurhamNorth CarolinaUSA
- Brain Imaging and Analysis CenterDuke University Medical CenterDurhamNorth CarolinaUSA
- Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
31
|
Folarin OR, Olopade FE, Olopade JO. Essential Metals in the Brain and the Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for their Detection. Niger J Physiol Sci 2021; 36:123-147. [PMID: 35947740 DOI: 10.54548/njps.v36i2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 06/15/2023]
Abstract
Metals are natural component of the ecosystem present throughout the layers of atmosphere; their abundant expression in the brain indicates their importance in the central nervous system (CNS). Within the brain tissue, their distribution is highly compartmentalized, the pattern of which is determined by their primary roles. Bio-imaging of the brain to reveal spatial distribution of metals within specific regions has provided a unique understanding of brain biochemistry and architecture, linking both the structures and the functions through several metal mediated activities. Bioavailability of essential trace metal is needed for normal brain function. However, disrupted metal homeostasis can influence several biochemical pathways in different fields of metabolism and cause characteristic neurological disorders with a typical disease process usually linked with aberrant metal accumulations. In this review we give a brief overview of roles of key essential metals (Iron, Copper and Zinc) including their molecular mechanisms and bio-distribution in the brain as well as their possible involvement in the pathogenesis of related neurodegenerative diseases. In addition, we also reviewed recent applications of Laser Ablation Inductively Couple Plasma Mass Spectrophotometry (LA-ICP-MS) in the detection of both toxic and essential metal dyshomeostasis in neuroscience research and other related brain diseases.
Collapse
|
32
|
Gonet T, Maher BA, Nyirő-Kósa I, Pósfai M, Vaculík M, Kukutschová J. Size-resolved, quantitative evaluation of the magnetic mineralogy of airborne brake-wear particulate emissions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117808. [PMID: 34329055 DOI: 10.1016/j.envpol.2021.117808] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 05/24/2023]
Abstract
Exposure to particulate air pollution has been associated with a variety of respiratory, cardiovascular and neurological problems, resulting in increased morbidity and mortality worldwide. Brake-wear emissions are one of the major sources of metal-rich airborne particulate pollution in roadside environments. Of potentially bioreactive metals, Fe (especially in its ferrous form, Fe2+) might play a specific role in both neurological and cardiovascular impairments. Here, we collected brake-wear particulate emissions using a full-scale brake dynamometer, and used a combination of magnetic measurements and electron microscopy to make quantitative evaluation of the magnetic composition and particle size of airborne emissions originating from passenger car brake systems. Our results show that the concentrations of Fe-rich magnetic grains in airborne brake-wear emissions are very high (i.e., ~100-10,000 × higher), compared to other types of particulate pollutants produced in most urban environments. From magnetic component analysis, the average magnetite mass concentration in total PM10 of brake emissions is ~20.2 wt% and metallic Fe ~1.6 wt%. Most brake-wear airborne particles (>99 % of particle number concentration) are smaller than 200 nm. Using low-temperature magnetic measurements, we observed a strong superparamagnetic signal (indicative of ultrafine magnetic particles, < ~30 nm) for all of the analysed size fractions of airborne brake-wear particles. Transmission electron microscopy independently shows that even the larger size fractions of airborne brake-wear emissions dominantly comprise agglomerates of ultrafine (<100 nm) particles (UFPs). Such UFPs likely pose a threat to neuronal and cardiovascular health after inhalation and/or ingestion. The observed abundance of ultrafine magnetite particles (estimated to constitute ~7.6 wt% of PM0.2) might be especially hazardous to the brain, contributing both to microglial inflammatory action and excess generation of reactive oxygen species.
Collapse
Affiliation(s)
- Tomasz Gonet
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| | - Barbara A Maher
- Centre for Environmental Magnetism & Palaeomagnetism, Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Ilona Nyirő-Kósa
- MTA-PE Air Chemistry Research Group, 10 Egyetem Street, H-8200, Veszprém, Hungary
| | - Mihály Pósfai
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprém, H8200, Hungary
| | - Miroslav Vaculík
- Nanotechnology Centre, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic; Centre for Advanced Innovative Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
| | - Jana Kukutschová
- Centre for Advanced Innovative Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic; Faculty of Materials Science and Technology, VSB-Technical University of Ostrava, 708 00, Ostrava, Czech Republic
| |
Collapse
|
33
|
Bossoni L, Hegeman-Kleinn I, van Duinen SG, Bulk M, Vroegindeweij LHP, Langendonk JG, Hirschler L, Webb A, van der Weerd L. Off-resonance saturation as an MRI method to quantify mineral- iron in the post-mortem brain. Magn Reson Med 2021; 87:1276-1288. [PMID: 34655092 PMCID: PMC9293166 DOI: 10.1002/mrm.29041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022]
Abstract
Purpose To employ an off‐resonance saturation method to measure the mineral‐iron pool in the postmortem brain, which is an endogenous contrast agent that can give information on cellular iron status. Methods An off‐resonance saturation acquisition protocol was implemented on a 7 Tesla preclinical scanner, and the contrast maps were fitted to an established analytical model. The method was validated by correlation and Bland‐Altman analysis on a ferritin‐containing phantom. Mineral‐iron maps were obtained from postmortem tissue of patients with neurological diseases characterized by brain iron accumulation, that is, Alzheimer disease, Huntington disease, and aceruloplasminemia, and validated with histology. Transverse relaxation rate and magnetic susceptibility values were used for comparison. Results In postmortem tissue, the mineral‐iron contrast colocalizes with histological iron staining in all the cases. Iron concentrations obtained via the off‐resonance saturation method are in agreement with literature. Conclusions Off‐resonance saturation is an effective way to detect iron in gray matter structures and partially mitigate for the presence of myelin. If a reference region with little iron is available in the tissue, the method can produce quantitative iron maps. This method is applicable in the study of diseases characterized by brain iron accumulation and can complement existing iron‐sensitive parametric methods.
Collapse
Affiliation(s)
- Lucia Bossoni
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Bulk
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Neurology, Alzheimer Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lena H P Vroegindeweij
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Janneke G Langendonk
- Department of Internal Medicine, Center for Lysosomal and Metabolic Diseases, Porphyria Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lydiane Hirschler
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew Webb
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Louise van der Weerd
- C. J. Gorter Center for High field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
34
|
Altalhi TA, Ibrahim MM, Mersal GAM, Alsawat M, Mahmoud MHH, Kumeria T, Shahat A, El-Bindary MA. Mesopores silica nanotubes-based sensors for the highly selective and rapid detection of Fe 2+ ions in wastewater, boiler system units and biological samples. Anal Chim Acta 2021; 1180:338860. [PMID: 34538337 DOI: 10.1016/j.aca.2021.338860] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/04/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023]
Abstract
Mesopores silica nanotubes (MSNTs)-based chemical sensors for the rapid detection and of highly selective Fe2+ ions have been prepared. The novel nanosensors were prepared via immobilization of 1,10-phenanthroline-5-amine (PA) and bathophenanthroline (BP) onto the MSNTs. The resultant PA and BP sensors display high sensitivity for detection the Fe2+ ions in tap water, river water, sea water, two units in simple cycle power station, and biological samples. More interestingly, upon meeting ultra-trace amount of Fe2+ ions, a red complex appears at once. Color changes can be seen from the naked eye and tracked with a smartphone or spectrophotometric techniques. The response time that is necessary to achieve a stable signal was less than 15 s. The Univariate (Univar) calibration technique had been utilized for the determination of figures of merits. The detection limit obtained from the digital image analysis was 19 ppb (7.04 × 10-7 M) for Fe2+ ions, while the obtained from the spectrophotometric method was 6.7 ppb (2.48 × 10-7 M). Therefore, the two sensors had been successfully used in the determination of Fe2+ in several real samples with high sensitivity and selectivity. In addition, they can be used as a simple, rapid, and portable method to detect and quantify the pre rust in any cooler system.
Collapse
Affiliation(s)
- Tariq A Altalhi
- Chemistry Department, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohamed M Ibrahim
- Chemistry Department, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Gaber A M Mersal
- Chemistry Department, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammed Alsawat
- Chemistry Department, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - M H H Mahmoud
- Chemistry Department, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ahmed Shahat
- Chemistry Department, Faculty of Science, Suez University, Suez, 43518, Egypt.
| | - M A El-Bindary
- Basic Science Department, Higher Institute of Engineering and Technology, Damietta, 34517, Egypt
| |
Collapse
|
35
|
Chae JB, Heo JS, Kim C. Crown‐Ether Type Chemosensor for the Determination of Fe
3+/2+
by a Colorimetric Method. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ju Byeong Chae
- Department of Fine Chemistry and Department of New and Renewable Energy Convergence Seoul National University of Science and Technology Seoul 129‐742 South Korea
| | - Jae Sung Heo
- Department of Fine Chemistry and Department of New and Renewable Energy Convergence Seoul National University of Science and Technology Seoul 129‐742 South Korea
| | - Cheal Kim
- Department of Fine Chemistry and Department of New and Renewable Energy Convergence Seoul National University of Science and Technology Seoul 129‐742 South Korea
| |
Collapse
|
36
|
Synthesis of environment-friendly and label-free SERS probe for Iron(III) detection in integrated circuit cleaning solution waste. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Mertens C, Marques O, Horvat NK, Simonetti M, Muckenthaler MU, Jung M. The Macrophage Iron Signature in Health and Disease. Int J Mol Sci 2021; 22:ijms22168457. [PMID: 34445160 PMCID: PMC8395084 DOI: 10.3390/ijms22168457] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Throughout life, macrophages are located in every tissue of the body, where their main roles are to phagocytose cellular debris and recycle aging red blood cells. In the tissue niche, they promote homeostasis through trophic, regulatory, and repair functions by responding to internal and external stimuli. This in turn polarizes macrophages into a broad spectrum of functional activation states, also reflected in their iron-regulated gene profile. The fast adaptation to the environment in which they are located helps to maintain tissue homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Christina Mertens
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| | - Oriana Marques
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Natalie K. Horvat
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Collaboration for Joint PhD Degree between EMBL and the Faculty of Biosciences, University of Heidelberg, 69117 Heidelberg, Germany
| | - Manuela Simonetti
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, INF 366, 69120 Heidelberg, Germany;
| | - Martina U. Muckenthaler
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany; (O.M.); (N.K.H.); (M.U.M.)
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
- Correspondence: (C.M.); (M.J.); Tel.: +(49)-622-156-4582 (C.M.); +(49)-696-301-6931 (M.J.)
| |
Collapse
|
38
|
Fischer JAJ, Sasai CS, Karakochuk CD. Iron-Containing Oral Contraceptives and Their Effect on Hemoglobin and Biomarkers of Iron Status: A Narrative Review. Nutrients 2021; 13:nu13072340. [PMID: 34371850 PMCID: PMC8308850 DOI: 10.3390/nu13072340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/02/2022] Open
Abstract
Oral contraceptive use has been associated with decreased menstrual blood losses; thus, can independently reduce the risk of anemia and iron deficiency in women. Manufacturers have recently started to include supplemental iron in the non-hormonal placebo tablets of some contraceptives. The aims of this narrative review are: (i) to describe the relationship between oral contraceptive use and both anemia and iron status in women; (ii) to describe the current formulations of iron-containing oral contraceptives (ICOC) available on the market; and (iii) to systematically review the existing literature on the effect of ICOC on biomarkers of anemia and iron status in women. We discovered 21 brands of ICOC, most commonly including 25 mg elemental iron as ferrous fumarate, for seven days, per monthly tablet package. Our search identified one randomized trial evaluating the effectiveness of ICOC use compared to two non-ICOC on increasing hemoglobin (Hb) and iron status biomarker concentrations in women; whereafter 12 months of contraception use, there were no significant differences in Hb concentration nor markers of iron status between the groups. ICOC has the potential to be a cost-effective solution to address both family planning needs and iron deficiency anemia. Yet, more rigorous trials evaluating the effectiveness of ICOC on improving markers of anemia and iron deficiency, as well as investigating the safety of its consumption among iron-replete populations, are warranted.
Collapse
Affiliation(s)
- Jordie A. J. Fischer
- Food, Nutrition and Health, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada; (J.A.J.F.); (C.S.S.)
- Healthy Starts, BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
| | - Carolina S. Sasai
- Food, Nutrition and Health, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada; (J.A.J.F.); (C.S.S.)
| | - Crystal D. Karakochuk
- Food, Nutrition and Health, University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada; (J.A.J.F.); (C.S.S.)
- Healthy Starts, BC Children’s Hospital Research Institute, 938 West 28th Ave, Vancouver, BC V5Z 4H4, Canada
- Correspondence:
| |
Collapse
|
39
|
Abbasi U, Abbina S, Gill A, Takuechi LE, Kizhakkedathu JN. Role of Iron in the Molecular Pathogenesis of Diseases and Therapeutic Opportunities. ACS Chem Biol 2021; 16:945-972. [PMID: 34102834 DOI: 10.1021/acschembio.1c00122] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Iron is an essential mineral that serves as a prosthetic group for a variety of proteins involved in vital cellular processes. The iron economy within humans is highly conserved in that there is no proper iron excretion pathway. Therefore, iron homeostasis is highly evolved to coordinate iron acquisition, storage, transport, and recycling efficiently. A disturbance in this state can result in excess iron burden in which an ensuing iron-mediated generation of reactive oxygen species imparts widespread oxidative damage to proteins, lipids, and DNA. On the contrary, problems in iron deficiency either due to genetic or nutritional causes can lead to a number of iron deficiency disorders. Iron chelation strategies have been in the works since the early 1900s, and they still remain the most viable therapeutic approach to mitigate the toxic side effects of excess iron. Intense investigations on improving the efficacy of chelation strategies while being well tolerated and accepted by patients have been a particular focus for many researchers over the past 30 years. Moreover, recent advances in our understanding on the role of iron in the pathogenesis of different diseases (both in iron overload and iron deficiency conditions) motivate the need to develop new therapeutics. We summarized recent investigations into the role of iron in health and disease conditions, iron chelation, and iron delivery strategies. Information regarding small molecule as well as macromolecular approaches and how they are employed within different disease pathogenesis such as primary and secondary iron overload diseases, cancer, diabetes, neurodegenerative diseases, infections, and in iron deficiency is provided.
Collapse
Affiliation(s)
- Usama Abbasi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Arshdeep Gill
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Lily E. Takuechi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
- The School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
40
|
Complexation of ferrous ions by ferrozine, 2,2'-bipyridine and 1,10-phenanthroline: Implication for the quantification of iron in biological systems. J Inorg Biochem 2021; 220:111460. [PMID: 33866045 DOI: 10.1016/j.jinorgbio.2021.111460] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 11/21/2022]
Abstract
Iron is an essential nutrient for virtually all forms of life. Because of its redox properties and involvement in a wide range of biological processes, a number of qualitative and quantitative chemical tools have been developed to detect reduced (Fe2+) and oxidized (Fe3+) forms of iron in biomolecules. These types of measurements are not only important in detecting iron species in solution, but also in understanding iron distribution, accumulation, and role in physiological and pathological processes. Here, we use UV-vis spectrophotometry and three common chromogenic reagents, ferrozine, 2,2'-bipyridine, and 1,10-phenanthroline to detect and quantify the concentration of ferrous ions in aqueous solutions, owing to the unique absorption spectra, specific molar absorptivity, and characteristic colors of these Fe2+-chelator complexes. Our results show that the kinetics of the formation of the {Fe2+-(ferrozine)3} complex, but not the{Fe2+-(bipyridine)3} or the {Fe(II)-(phenanthroline)3} complexes depend on the concentration of the iron chelator, requiring up to 20 min to complete when close to stoichiometric ratios are employed. The molar absorptivity values of these complexes under excess chelator concentrations were ~ 10% to 15% higher than reported literature values (i.e. 31,500 ± 1500 M-1 cm-1 for ferrozine at 562 nm, 9950 ± 100 M-1 cm-1 for 2,2'-bipyridine at 522 nm, and 12,450 ± 370 M-1 cm-1 for 1,10-phenanthroline at 510 nm). Our results have important implications when quantifying iron in biological systems and reveal optimal experimental conditions that must be employed for the accurate measurements of ferrous ions, whether free in solution, or after reduction of protein-bound ferric ions.
Collapse
|
41
|
Cong Y, So V, Tijssen MAJ, Verbeek DS, Reggiori F, Mauthe M. WDR45, one gene associated with multiple neurodevelopmental disorders. Autophagy 2021; 17:3908-3923. [PMID: 33843443 PMCID: PMC8726670 DOI: 10.1080/15548627.2021.1899669] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The WDR45 gene is localized on the X-chromosome and variants in this gene are linked to six different neurodegenerative disorders, i.e., ß-propeller protein associated neurodegeneration, Rett-like syndrome, intellectual disability, and epileptic encephalopathies including developmental and epileptic encephalopathy, early-onset epileptic encephalopathy and West syndrome and potentially also specific malignancies. WDR45/WIPI4 is a WD-repeat β-propeller protein that belongs to the WIPI (WD repeat domain, phosphoinositide interacting) family. The precise cellular function of WDR45 is still largely unknown, but deletions or conventional variants in WDR45 can lead to macroautophagy/autophagy defects, malfunctioning mitochondria, endoplasmic reticulum stress and unbalanced iron homeostasis, suggesting that this protein functions in one or more pathways regulating directly or indirectly those processes. As a result, the underlying cause of the WDR45-associated disorders remains unknown. In this review, we summarize the current knowledge about the cellular and physiological functions of WDR45 and highlight how genetic variants in its encoding gene may contribute to the pathophysiology of the associated diseases. In particular, we connect clinical manifestations of the disorders with their potential cellular origin of malfunctioning and critically discuss whether it is possible that one of the most prominent shared features, i.e., brain iron accumulation, is the primary cause for those disorders. Abbreviations: ATG/Atg: autophagy related; BPAN: ß-propeller protein associated neurodegeneration; CNS: central nervous system; DEE: developmental and epileptic encephalopathy; EEG: electroencephalograph; ENO2/neuron-specific enolase, enolase 2; EOEE: early-onset epileptic encephalopathy; ER: endoplasmic reticulum; ID: intellectual disability; IDR: intrinsically disordered region; MRI: magnetic resonance imaging; NBIA: neurodegeneration with brain iron accumulation; NCOA4: nuclear receptor coactivator 4; PtdIns3P: phosphatidylinositol-3-phosphate; RLS: Rett-like syndrome; WDR45: WD repeat domain 45; WIPI: WD repeat domain, phosphoinositide interacting
Collapse
Affiliation(s)
- Yingying Cong
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent So
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dineke S Verbeek
- Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario Mauthe
- Department of Biomedical Sciences of Cells & Systems, Molecular Cell Biology Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Expertise Center Movement Disorders Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Molz P, de Freitas BS, Uberti VH, da Costa KM, Kist LW, Bogo MR, Schröder N. Effects of lipoic acid supplementation on age- and iron-induced memory impairment, mitochondrial DNA damage and antioxidant responses. Eur J Nutr 2021; 60:3679-3690. [PMID: 33738535 DOI: 10.1007/s00394-021-02541-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 03/11/2021] [Indexed: 01/17/2023]
Abstract
PURPOSE To investigate the effects of lipoic acid (LA) supplementation during adulthood combined with supplementation later in life or LA administration only at old age on age-induced cognitive dysfunction, mitochondrial DNA deletions, caspase 3 and antioxidant response enzymes expression in iron-treated rats. METHODS Male rats were submitted to iron treatment (30 mg/kg body wt of Carbonyl iron) from 12 to 14th post-natal days. Iron-treated rats received LA supplementation (50 mg/kg, daily) in adulthood and old age or at old age only for 21 days. Memory, mitochondrial DNA (mtDNA) complex I deletions, caspase 3 mRNA expression and antioxidant response enzymes mRNA expression were analyzed in the hippocampus. RESULTS LA administration in adulthood combined with treatment later in life was able to reverse age-induced effects on object recognition and inhibitory avoidance memory, as well as on mtDNA deletions, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression, and antioxidant enzymes disruption induced by iron in aged rats. LA treatment only at old age reversed iron-induced effects to a lesser extent when compared to the combined treatment. CONCLUSION The present findings support the view that LA supplementation may be considered as an adjuvant against mitochondrial damage and cognitive decline related to aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Patrícia Molz
- Laboratory of Genomics and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Betânia Souza de Freitas
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanise Hallas Uberti
- Neurobiology and Developmental Biology Laboratory, Faculty of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Kesiane Mayra da Costa
- Laboratory of Genomics and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luiza Wilges Kist
- Laboratory of Genomics and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maurício Reis Bogo
- Laboratory of Genomics and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Science and Technology for Brain Diseases, Excitotoxicity and Neuroprotection (INCT-EN), Porto Alegre, Brazil
| | - Nadja Schröder
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasília, Brazil. .,Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, Brazil.
| |
Collapse
|
43
|
Shah BR, Holcomb JM, Davenport EM, Lack CM, McDaniel JM, Imphean DM, Xi Y, Rosenbaum DA, Urban JE, Wagner BC, Powers AK, Whitlow CT, Stitzel JD, Maldjian JA. Prevalence and Incidence of Microhemorrhages in Adolescent Football Players. AJNR Am J Neuroradiol 2020; 41:1263-1268. [PMID: 32661051 DOI: 10.3174/ajnr.a6618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE SWI is an advanced imaging modality that is especially useful in cerebral microhemorrhage detection. Such microhemorrhages have been identified in adult contact sport athletes, and the sequelae of these focal bleeds are thought to contribute to neurodegeneration. The purpose of this study was to utilize SWI to determine whether the prevalence and incidence of microhemorrhages in adolescent football players are significantly greater than those of adolescent noncontact athletes. MATERIALS AND METHODS Preseason and postseason SWI was performed and evaluated on 78 adolescent football players. SWI was also performed on 27 adolescent athletes who reported no contact sport history. Two separate one-tailed Fisher exact tests were performed to determine whether the prevalence and incidence of microhemorrhages in adolescent football players are greater than those of noncontact athlete controls. RESULTS Microhemorrhages were observed in 12 football players. No microhemorrhages were observed in any controls. Adolescent football players demonstrated a significantly greater prevalence of microhemorrhages than adolescent noncontact controls (P = .02). Although 2 football players developed new microhemorrhages during the season, microhemorrhage incidence during 1 football season was not statistically greater in the football population than in noncontact control athletes (P = .55). CONCLUSIONS Adolescent football players have a greater prevalence of microhemorrhages compared with adolescent athletes who have never engaged in contact sports. While microhemorrhage incidence during 1 season is not significantly greater in adolescent football players compared to adolescent controls, there is a temporal association between playing football and the appearance of new microhemorrhages.
Collapse
Affiliation(s)
- B R Shah
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - J M Holcomb
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - E M Davenport
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - C M Lack
- Departments of Radiology (C.M.L., C.T.W.)
| | - J M McDaniel
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - D M Imphean
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - Y Xi
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - J E Urban
- Biomedical Engineering (J.E.U., J.D.S.)
| | - B C Wagner
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| | - A K Powers
- Neurosurgery (A.K.P.), Wake Forest School of Medicine, Winston-Salem, North Carolina
| | | | | | - J A Maldjian
- From the Department of Radiology (B.R.S., J.M.H., E.M.D., J.M.M., D.M.I., Y.X., B.C.W., J.A.M.), University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
44
|
Boyacioglu R, Wang C, Ma D, McGivney DF, Yu X, Griswold MA. 3D magnetic resonance fingerprinting with quadratic RF phase. Magn Reson Med 2020; 85:2084-2094. [PMID: 33179822 DOI: 10.1002/mrm.28581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/25/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE To implement 3D magnetic resonance fingerprinting (MRF) with quadratic RF phase (qRF-MRF) for simultaneous quantification of T1 , T2 , ΔB0 , and T 2 ∗ . METHODS 3D MRF data with effective undersampling factor of 3 in the slice direction were acquired with quadratic RF phase patterns for T1 , T2 , and T 2 ∗ sensitivity. Quadratic RF phase encodes the off-resonance by modulating the on-resonance frequency linearly in time. Transition to 3D brings practical limitations for reconstruction and dictionary matching because of increased data and dictionary sizes. Randomized singular value decomposition (rSVD)-based compression in time and reduction in dictionary size with a quadratic interpolation method are combined to be able to process prohibitively large data sets in feasible reconstruction and matching times. RESULTS Accuracy of 3D qRF-MRF maps in various resolutions and orientations are compared to 3D fast imaging with steady-state precession (FISP) for T1 and T2 contrast and to 2D qRF-MRF for T 2 ∗ contrast and ΔB0 . The precision of 3D qRF-MRF was 1.5-2 times higher than routine clinical scans. 3D qRF-MRF ΔB0 maps were further processed to highlight the susceptibility contrast. CONCLUSION Natively co-registered 3D whole brain T1 , T2 , T 2 ∗ , ΔB0 , and QSM maps can be acquired in as short as 5 min with 3D qRF-MRF.
Collapse
Affiliation(s)
- Rasim Boyacioglu
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Charlie Wang
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dan Ma
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Debra F McGivney
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark A Griswold
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
45
|
The Nrf2 induction prevents ferroptosis in Friedreich's Ataxia. Redox Biol 2020; 38:101791. [PMID: 33197769 PMCID: PMC7677700 DOI: 10.1016/j.redox.2020.101791] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is an iron-dependent cell death caused by impaired glutathione metabolism, lipid peroxidation and mitochondrial failure. Emerging evidences report a role for ferroptosis in Friedreich's Ataxia (FRDA), a neurodegenerative disease caused by the decreased expression of the mitochondrial protein frataxin. Nrf2 signalling is implicated in many molecular aspects of ferroptosis, by upstream regulating glutathione homeostasis, mitochondrial function and lipid metabolism. As Nrf2 is down-regulated in FRDA, targeting Nrf2-mediated ferroptosis in FRDA may be an attractive option to counteract neurodegeneration in such disease, thus paving the way to new therapeutic opportunities. In this study, we evaluated ferroptosis hallmarks in frataxin-silenced mouse myoblasts, in hearts of a frataxin Knockin/Knockout (KIKO) mouse model, in skin fibroblasts and blood of patients, particularly focusing on ferroptosis-driven gene expression, mitochondrial impairment and lipid peroxidation. The efficacy of Nrf2 inducers to neutralize ferroptosis has been also evaluated.
Collapse
|
46
|
Salkov VN, Khudoyerkov RM. [Changes in iron content in brain structures during aging and associated neurodegenerative diseases]. Arkh Patol 2020; 82:73-78. [PMID: 33054036 DOI: 10.17116/patol20208205173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The literature data on changes in the content of iron and its metabolites in brain structures during aging and neurodegenerative diseases (Parkinson's disease - PD and Alzheimer's disease - AD) are analyzed. It was revealed that with aging, the iron content in nigrostriatal formations of brain changes: the level of non-heme iron and ferritin increases and neuromelanin also accumulates in neurons of black substance. The accumulation of neuromelanin in combination with increase in ferritin content can be considered as a morphochemical sign of neuroprotective effect of nervous tissue during aging. The iron level in PD and AD compared with that during physiological aging continues to increase, and the ability of chelating agents to bind iron decreases (ferritin in neuroglia cells and neuromelanin in neurons), which activates the mechanisms of cell destruction. As a result, in PD, the aggregation of α-synuclein is disrupted, which leads to the formation of Levi bodies, and in AD, the amyloid beta precursor protein (APP) undergoes proteolysis and this leads to the formation of amyloid plaques, which triggers subsequent neurodegenerative changes, including the death of neurons.
Collapse
Affiliation(s)
- V N Salkov
- Scientific Center of Neurology, Moscow, Russia
| | | |
Collapse
|
47
|
Jiang X, Zhou T, Bai R, Xie Y. Hydroxypyridinone-Based Iron Chelators with Broad-Ranging Biological Activities. J Med Chem 2020; 63:14470-14501. [PMID: 33023291 DOI: 10.1021/acs.jmedchem.0c01480] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron plays an essential role in all living cells because of its unique chemical properties. It is also the most abundant trace element in mammals. However, when iron is present in excess or inappropriately located, it becomes toxic. Excess iron can become involved in free radical formation, resulting in oxidative stress and cellular damage. Iron chelators are used to treat serious pathological disorders associated with systemic iron overload. Hydroxypyridinones stand out for their outstanding chelation properties, including high selectivity for Fe3+ in the biological environment, ease of derivatization, and good biocompatibility. Herein, we overview the potential for multifunctional hydroxypyridinone-based chelators to be used as therapeutic agents against a wide range of diseases associated either with systemic or local elevated iron levels.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, P.R. China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Yuanyuan Xie
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P.R. China.,College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| |
Collapse
|
48
|
Fischer JA, Pei LX, Goldfarb DM, Albert A, Elango R, Kroeun H, Karakochuk CD. Is untargeted iron supplementation harmful when iron deficiency is not the major cause of anaemia? Study protocol for a double-blind, randomised controlled trial among non-pregnant Cambodian women. BMJ Open 2020; 10:e037232. [PMID: 32801202 PMCID: PMC7430471 DOI: 10.1136/bmjopen-2020-037232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION The WHO recommends daily oral iron supplementation for 12 weeks in women and adolescents where anaemia prevalence is greater than 40%. However, if iron deficiency is not a major cause of anaemia, then, at best, untargeted iron supplementation is a waste of resources; at worst, it could cause harm. Further, different forms of iron with varying bioavailability may present greater risks of harm. METHODS AND ANALYSIS A 12-week three-arm, double-blind, randomised controlled supplementation trial was conducted in Cambodia to determine if there is potential harm associated with untargeted iron supplementation. We will recruit and randomise 480 non-pregnant women (ages 18-45 years) to receive one of three interventions: 60 mg elemental iron as ferrous sulfate (the standard, commonly used form), 18 mg ferrous bisglycinate (a highly bioavailable iron amino acid chelate) or placebo. We will measure ferritin concentrations (to evaluate non-inferiority between the two forms of iron), as well as markers of potential harm in blood and stool (faecal calprotectin, gut pathogen abundance and DNA damage) at baseline and 12 weeks. Mixed-effects generalised linear models will be used to assess the effect of iron on ferritin concentration and markers of potential harm at 12 weeks. ETHICS AND DISSEMINATION Ethical approval was obtained from the University of British Columbia Clinical Research Ethics Board (H18-02610), the Children's and Women's Health Centre of British Columbia Research Ethics Board (H18-02610) and the National Ethics Committee for Health Research in Cambodia (273-NECHR). Findings will be published in peer-reviewed journals, presented to stakeholders and policymakers globally and shared within participants' communities. TRIAL REGISTRATION NUMBER ClinicalTrials.gov Registry (NCT04017598).
Collapse
Affiliation(s)
- Jordie Aj Fischer
- Department of Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Lulu X Pei
- Department of Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - David M Goldfarb
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Arianne Albert
- Department of Biostatistics, Women's Health Research Institute, Vancouver, British Columbia, Canada
| | - Rajavel Elango
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hou Kroeun
- Helen Keller International Cambodia, Phnom Penh, British Columbia, Cambodia
| | - Crystal D Karakochuk
- Department of Food, Nutrition and Health, The University of British Columbia, Vancouver, British Columbia, Canada
- Healthy Starts, British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
49
|
Rodríguez LR, Lapeña T, Calap-Quintana P, Moltó MD, Gonzalez-Cabo P, Navarro Langa JA. Antioxidant Therapies and Oxidative Stress in Friedreich´s Ataxia: The Right Path or Just a Diversion? Antioxidants (Basel) 2020; 9:E664. [PMID: 32722309 PMCID: PMC7465446 DOI: 10.3390/antiox9080664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022] Open
Abstract
Friedreich´s ataxia is the commonest autosomal recessive ataxia among population of European descent. Despite the huge advances performed in the last decades, a cure still remains elusive. One of the most studied hallmarks of the disease is the increased production of oxidative stress markers in patients and models. This feature has been the motivation to develop treatments that aim to counteract such boost of free radicals and to enhance the production of antioxidant defenses. In this work, we present and critically review those "antioxidant" drugs that went beyond the disease´s models and were approved for its application in clinical trials. The evaluation of these trials highlights some crucial aspects of the FRDA research. On the one hand, the analysis contributes to elucidate whether oxidative stress plays a central role or whether it is only an epiphenomenon. On the other hand, it comments on some limitations in the current trials that complicate the analysis and interpretation of their outcome. We also include some suggestions that will be interesting to implement in future studies and clinical trials.
Collapse
Affiliation(s)
- Laura R. Rodríguez
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
| | - Tamara Lapeña
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Pablo Calap-Quintana
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - María Dolores Moltó
- Department of Genetics, Universitat de València-INCLIVA, 46100 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 46100 Valencia, Spain
| | - Pilar Gonzalez-Cabo
- Department of Physiology, Faculty of Medicine and Dentistry, Universitat de València-INCLIVA, 46010 Valencia, Spain; (L.R.R.); (T.L.); (P.C.-Q.)
- Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | | |
Collapse
|
50
|
Jiang X, Guo J, Lv Y, Yao C, Zhang C, Mi Z, Shi Y, Gu J, Zhou T, Bai R, Xie Y. Rational design, synthesis and biological evaluation of novel multitargeting anti-AD iron chelators with potent MAO-B inhibitory and antioxidant activity. Bioorg Med Chem 2020; 28:115550. [PMID: 32503694 DOI: 10.1016/j.bmc.2020.115550] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
A series of (3-hydroxypyridin-4-one)-coumarin hybrids were developed and investigated as potential multitargeting candidates for the treatment of Alzheimer's disease (AD) through the incorporation of iron-chelating and monoamine oxidase B (MAO-B) inhibition. This combination endowed the hybrids with good capacity to inhibit MAO-B as well as excellent iron-chelating effects. The pFe3+ values of the compounds were ranging from 16.91 to 20.16, comparable to more potent than the reference drug deferiprone (DFP). Among them, compound 18d exhibited the most promising activity against MAO-B, with an IC50 value of 87.9 nM. Moreover, compound 18d exerted favorable antioxidant activity, significantly reversed the amyloid-β1-42 (Aβ1-42) induced PC12 cell damage. More importantly, 18d remarkably ameliorated the cognitive dysfunction in a scopolamine-induced mice AD model. In brief, a series of hybrids with potential anti-AD effect were successfully obtained, indicating that the design of iron chelators with MAO-B inhibitory and antioxidant activities is an attractive strategy against AD progression.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chuansheng Yao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Changjun Zhang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China
| | - Zhisheng Mi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan Shi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jinping Gu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, PR China
| | - Renren Bai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yuanyuan Xie
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, PR China; College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|