1
|
Goraichuk IV, Davis JF, Afonso CL, Suarez DL. Sequencing of historic samples provides complete coding sequences of chicken calicivirus from the United States. Microbiol Resour Announc 2024; 13:e0077724. [PMID: 39264163 PMCID: PMC11465789 DOI: 10.1128/mra.00777-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Here, we report the coding-complete genomic sequences of two chicken caliciviruses from US poultry flocks in 2003 and 2004. They show the same genomic organization as that of other members of the Bavovirus genus and have the highest nucleotide identity (~88%) with strains from clinically normal chickens from Germany in 2004 and Netherlands in 2019.
Collapse
Affiliation(s)
- Iryna V. Goraichuk
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, Georgia, USA
| | - James F. Davis
- Georgia Poultry Laboratory Network, Gainesville, Georgia, USA
| | - Claudio L. Afonso
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, Georgia, USA
| | - David L. Suarez
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, ARS, USDA, Athens, Georgia, USA
| |
Collapse
|
2
|
Arhab Y, Pestova TV, Hellen CUT. Translation of Overlapping Open Reading Frames Promoted by Type 2 IRESs in Avian Calicivirus Genomes. Viruses 2024; 16:1413. [PMID: 39339889 PMCID: PMC11436067 DOI: 10.3390/v16091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Caliciviruses have positive-sense RNA genomes, typically with short 5'-untranslated regions (5'UTRs) that precede the long open reading frame 1 (ORF1). Exceptionally, some avian caliciviruses have long 5'UTRs containing a picornavirus-like internal ribosomal entry site (IRES), which was likely acquired by horizontal gene transfer. Here, we identified numerous additional avian calicivirus genomes with IRESs, predominantly type 2, and determined that many of these genomes contain a ~200-300 codon-long ORF (designated ORF1*) that overlaps the 5'-terminal region of ORF1. The activity of representative type 2 IRESs from grey teal calicivirus (GTCV) and Caliciviridae sp. isolate yc-13 (RaCV1) was confirmed by in vitro translation. Toeprinting showed that in cell-free extracts and in vitro reconstituted reactions, ribosomal initiation complexes assembled on the ORF1* initiation codon and at one or two AUG codons in ORF1 at the 3'-border and/or downstream of the IRES. Initiation at all three sites required eIF4A and eIF4G, which bound to a conserved region of the IRES; initiation on the ORF1* and principal ORF1 initiation codons involved eIF1/eIF1A-dependent scanning from the IRES's 3'-border. Initiation on these IRESs was enhanced by the IRES trans-acting factors (ITAFs) Ebp1/ITAF45, which bound to the apical subdomain Id of the IRES, and PTB (GTCV) or PCBP2 (RaCV1).
Collapse
Affiliation(s)
- Yani Arhab
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| |
Collapse
|
3
|
Liu J, Li X, Song W, Zeng X, Li H, Yang L, Wang D. The Multi-Kingdom Microbiome of Wintering Migratory Birds in Poyang Lake, China. Viruses 2024; 16:396. [PMID: 38543762 PMCID: PMC10974949 DOI: 10.3390/v16030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Wild birds are a natural reservoir for zoonotic viruses. To clarify the role of migratory birds in viruses spread in Poyang Lake, we investigated the microbiome of 250 wild bird samples from 19 species in seven orders. The bacterial and viral content abundance and diversity were preliminarily evaluated by Kraken2 and Bracken. After de novo assembly by Megahit and Vamb, viral contigs were identified by CheckV. The reads remapped to viral contigs were quantified using Bowtie2. The bacterial microbiome composition of the samples covers 1526 genera belonging to 175 bacterial orders, while the composition of viruses covers 214 species belonging to 22 viral families. Several taxonomic biomarkers associated with avian carnivory, oral sampling, and raptor migration were identified. Additionally, 17 complete viral genomes belonging to Astroviridae, Caliciviridae, Dicistroviridae, Picornaviridae, and Tombusviridae were characterized, and their phylogenetic relationships were analyzed. This pioneering metagenomic study of migratory birds in Poyang Lake, China illuminates the diverse microbial landscape within these birds. It identifies potential pathogens, and uncovers taxonomic biomarkers relevant to varied bird habitats, feeding habits, ecological classifications, and sample types, underscoring the public health risks associated with wintering migratory birds.
Collapse
Affiliation(s)
- Jia Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| | - Wentao Song
- School of Public Health, Xiamen University, Xiamen 361005, China;
| | - Xiaoxu Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| | - Hui Li
- Nanchang Center for Disease Prevention and Control, Nanchang 330038, China;
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.L.); (X.L.); (X.Z.); (L.Y.)
| |
Collapse
|
4
|
Williams RAJ, Sánchez-Llatas CJ, Doménech A, Madrid R, Fandiño S, Cea-Callejo P, Gomez-Lucia E, Benítez L. Emerging and Novel Viruses in Passerine Birds. Microorganisms 2023; 11:2355. [PMID: 37764199 PMCID: PMC10536639 DOI: 10.3390/microorganisms11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
There is growing interest in emerging viruses that can cause serious or lethal disease in humans and animals. The proliferation of cloacal virome studies, mainly focused on poultry and other domestic birds, reveals a wide variety of viruses, although their pathogenic significance is currently uncertain. Analysis of viruses detected in wild birds is complex and often biased towards waterfowl because of the obvious interest in avian influenza or other zoonotic viruses. Less is known about the viruses present in the order Passeriformes, which comprises approximately 60% of extant bird species. This review aims to compile the most significant contributions on the DNA/RNA viruses affecting passerines, from traditional and metagenomic studies. It highlights that most passerine species have never been sampled. Especially the RNA viruses from Flaviviridae, Orthomyxoviridae and Togaviridae are considered emerging because of increased incidence or avian mortality/morbidity, spread to new geographical areas or hosts and their zoonotic risk. Arguably poxvirus, and perhaps other virus groups, could also be considered "emerging viruses". However, many of these viruses have only recently been described in passerines using metagenomics and their role in the ecosystem is unknown. Finally, it is noteworthy that only one third of the viruses affecting passerines have been officially recognized.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
| | - Ana Doménech
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Ricardo Madrid
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Sergio Fandiño
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo Cea-Callejo
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Esperanza Gomez-Lucia
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| |
Collapse
|
5
|
Porcine sapovirus-induced RIPK1-dependent necroptosis is proviral in LLC-PK cells. PLoS One 2023; 18:e0279843. [PMID: 36735696 PMCID: PMC9897573 DOI: 10.1371/journal.pone.0279843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/15/2022] [Indexed: 02/04/2023] Open
Abstract
Sapoviruses belonging to the genus Sapovirus within the family Caliciviridae are commonly responsible for severe acute gastroenteritis in both humans and animals. Caliciviruses are known to induce intrinsic apoptosis in vitro and in vivo, however, calicivirus-induced necroptosis remains to be fully elucidated. Here, we demonstrate that infection of porcine kidney LLC-PK cells with porcine sapovirus (PSaV) Cowden strain as a representative of caliciviruses induces receptor-interacting protein kinase 1 (RIPK1)-dependent necroptosis and acts as proviral compared to the antiviral function of PSaV-induced apoptosis. Infection of LLC-PK cells with PSaV Cowden strain showed that the interaction of phosphorylated RIPK1 (pRIPK1) with RIPK3 (pRIPK3), mixed lineage kinase domain-like protein (pMLKL) increased in a time-dependent manner, indicating induction of PSaV-induced RIPK1-dependent necroptosis. Interfering of PSaV-infected cells with each necroptotic molecule (RIPK1, RIPK3, or MLKL) by treatment with each specific chemical inhibitor or knockdown with each specific siRNA significantly reduced replication of PSaV but increased apoptosis and cell viability, implying proviral action of PSaV-induced necroptosis. In contrast, treatment of PSaV-infected cells with pan-caspase inhibitor Z-VAD-FMK increased PSaV replication and necroptosis, indicating an antiviral action of PSaV-induced apoptosis. These results suggest that PSaV-induced RIPK1-dependent necroptosis and apoptosis‒which have proviral and antiviral effects, respectively‒counterbalanced each other in virus-infected cells. Our study contributes to understanding the nature of PSaV-induced necroptosis and apoptosis and will aid in developing efficient and affordable therapies against PSaV and other calicivirus infections.
Collapse
|
6
|
Kwok KTT, de Rooij MMT, Messink AB, Wouters IM, Smit LAM, Cotten M, Heederik DJJ, Koopmans MPG, Phan MVT. Establishing farm dust as a useful viral metagenomic surveillance matrix. Sci Rep 2022; 12:16308. [PMID: 36175536 PMCID: PMC9521564 DOI: 10.1038/s41598-022-20701-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Farm animals may harbor viral pathogens, some with zoonotic potential which can possibly cause severe clinical outcomes in animals and humans. Documenting the viral content of dust may provide information on the potential sources and movement of viruses. Here, we describe a dust sequencing strategy that provides detailed viral sequence characterization from farm dust samples and use this method to document the virus communities from chicken farm dust samples and paired feces collected from the same broiler farms in the Netherlands. From the sequencing data, Parvoviridae and Picornaviridae were the most frequently found virus families, detected in 85-100% of all fecal and dust samples with a large genomic diversity identified from the Picornaviridae. Sequences from the Caliciviridae and Astroviridae familes were also obtained. This study provides a unique characterization of virus communities in farmed chickens and paired farm dust samples and our sequencing methodology enabled the recovery of viral genome sequences from farm dust, providing important tracking details for virus movement between livestock animals and their farm environment. This study serves as a proof of concept supporting dust sampling to be used in viral metagenomic surveillance.
Collapse
Affiliation(s)
- Kirsty T T Kwok
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Myrna M T de Rooij
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Aniek B Messink
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Inge M Wouters
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Lidwien A M Smit
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Matthew Cotten
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Dick J J Heederik
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - My V T Phan
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands.
- London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
7
|
Characterization of a Novel RNA Virus Causing Massive Mortality in Yellow Catfish, Pelteobagrus fulvidraco, as an Emerging Genus in Caliciviridae ( Picornavirales). Microbiol Spectr 2022; 10:e0062422. [PMID: 35924844 PMCID: PMC9431444 DOI: 10.1128/spectrum.00624-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An emerging disease in farmed yellow catfish (Pelteobagrus fulvidraco) causing massive mortality broke out in 2020 in Hubei, China. Histopathological examination indicated significant changes in kidneys and spleens of diseased fish. Electron microscopy revealed large numbers of viral particles in the kidneys and spleens. These particles were spherical with a diameter of approximately 35 nm. By using RNA sequencing and rapid identification of cDNA ends, the full nucleotide sequence of the virus was identified. The viral genome comprises 7,432 bp and contains three open reading frames sharing no nucleotide sequence similarity with other viruses; however, the amino acid sequence partially matched that of the nonstructural (NS) proteins from viruses in the order Picornavirales. Combined with the phylogenetic analysis, the conserved amino acid motifs and the domains of the viral genome predict a genome order typical of a calicivirus. Therefore, this virus was tentatively named yellow catfish calicivirus (YcCV). Cell culture showed that YcCV could cause a cytopathic effect in the channel catfish kidney cell line (CCK) at early passages. In artificial infection, this virus could infect healthy yellow catfish and led to clinical symptoms similar to those that occurred naturally. In situ hybridization analysis detected positive signals of the virus in kidney, spleen, liver, heart, and gill tissues of diseased fish. This study represents the first report of calicivirus infection in yellow catfish and provides a solid basis for future studies on the control of this viral disease. IMPORTANCE Caliciviruses are rapidly evolving viruses that cause pandemic outbreaks associated with significant morbidity and mortality globally. A novel calicivirus identified from yellow catfish also causes substantial mortality. Using an RNA sequencing (RNA-seq) and rapid amplification of cDNA ends (RACE) method, the full nucleotide sequence was identified and characterized, and this virus was tentatively named yellow catfish calicivirus (YcCV). A nucleotide sequence similarity search found no match with other viruses, and an amino acid sequence comparison indicated approximately 23.3% amino acid homology with the viruses in the order Picornavirales. These findings may represent a new avenue to explain virus evolution and suggest a need to further study the pathogenesis of calicivirus and characterize possible interactions among interspecific viruses in the aquaculture environment.
Collapse
|
8
|
Matsvay A, Dyachkova M, Sai A, Burskaia V, Artyushin I, Shipulin G. Complete Genome Sequence, Molecular Characterization and Phylogenetic Relationships of a Temminck's Stint Calicivirus: Evidence for a New Genus within Caliciviridae Family. Microorganisms 2022; 10:1540. [PMID: 36013958 PMCID: PMC9416405 DOI: 10.3390/microorganisms10081540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Caliciviridae is a family of viral pathogens that naturally infects vertebrates, including humans, and causes a range of highly contagious infectious diseases. Caliciviruses are not well studied because of the lack of a universal approach to their cultivation; however, the development of molecular genetics and bioinformatics methods can shed light on their genetic architecture and evolutionary relationships. Here, we present and characterize the complete genome sequence of calicivirus isolated from a sandpiper-Temminck's stint (Calidris temminckii), preliminarily named Temminck's stint calicivirus (TsCV). Its genome is a linear, non-segmented, single-stranded (+sense) RNA with genome organization typical of avian caliciviruses. Comparative studies have shown significant divergence of the nucleotide sequence of the TsCV genome, as well as the amino acid sequence of the major capsid protein from all publicly available genomic and protein sequences, with the highest genome sequence similarity to unclassified Ruddy turnstone calicivirus A (43.68%) and the lowest pairwise divergence of the major capsid protein with unclassified goose calicivirus (57.44%). Phylogenetic analysis, as well as a comparative analysis of the homologous proteins, showed evidence of another separate genus within the Caliciviridae family-previously proposed, but not yet accepted by International Committee on Taxonomy of Viruses (ICTV)-the Sanovirus genus, which combines seven previously unclassified genomic sequences of avian caliciviruses, including the newly discovered TsCV, which we propose to consider as a separate species.
Collapse
Affiliation(s)
- Alina Matsvay
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia; (M.D.); (A.S.); (G.S.)
| | - Marina Dyachkova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia; (M.D.); (A.S.); (G.S.)
| | - Anna Sai
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia; (M.D.); (A.S.); (G.S.)
| | - Valentina Burskaia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia;
| | - Ilya Artyushin
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - German Shipulin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia; (M.D.); (A.S.); (G.S.)
| |
Collapse
|
9
|
A novel calicivirus discovered in trumpeter swans (Cygnus buccinator) expands the richness of known avian caliciviruses. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100169. [DOI: 10.1016/j.crmicr.2022.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Van Borm S, Steensels M, Mathijs E, Vandenbussche F, van den Berg T, Lambrecht B. Metagenomic sequencing determines complete infectious bronchitis virus (avian Gammacoronavirus) vaccine strain genomes and associated viromes in chicken clinical samples. Virus Genes 2021; 57:529-540. [PMID: 34626348 PMCID: PMC8501334 DOI: 10.1007/s11262-021-01872-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022]
Abstract
Infectious bronchitis virus (IBV, genus Gammacoronavirus) causes an economically important and highly contagious disease in chicken. Random primed RNA sequencing was applied to two IBV positive clinical samples and one in ovo-passaged virus. The virome of a cloacal swab pool was dominated by IBV (82% of viral reads) allowing de novo assembly of a GI-13 lineage complete genome with 99.95% nucleotide identity to vaccine strain 793B. In addition, substantial read counts (16% of viral reads) allowed the assembly of a near-complete chicken astrovirus genome, while lower read counts identified the presence of chicken calicivirus and avian leucosis virus. Viral reads in a respiratory/intestinal tissue pool were distributed between IBV (22.53%), Sicinivirus (Picornaviridae, 24%), and avian leucosis virus (37.04%). A complete IBV genome with 99.95% nucleotide identity to vaccine strain H120 (lineage GI-1), as well as a near-complete avian leucosis virus genome and a partial Sicinivirus genome were assembled from the tissue sample data. Lower read counts identified chicken calicivirus, Avibirnavirus (infectious bursal disease virus, assembling to 98.85% of segment A and 69.66% of segment B closely related to D3976/1 from Germany, 2017) and avian orthoreovirus, while three avian orthoavulavirus 1 reads confirmed prior real-time RT-PCR result. IBV sequence variation analysis identified both fixed and minor frequency variations in the tissue sample compared to its in ovo-passaged virus. Metagenomic methods allow the determination of complete coronavirus genomes from clinical chicken samples while providing additional insights in RNA virus sequence diversity and coinfecting viruses potentially contributing to pathogenicity.
Collapse
Affiliation(s)
- Steven Van Borm
- Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium.
| | - Mieke Steensels
- Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | - Elisabeth Mathijs
- Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium
| | | | | | | |
Collapse
|
11
|
Smertina E, Hall RN, Urakova N, Strive T, Frese M. Calicivirus Non-structural Proteins: Potential Functions in Replication and Host Cell Manipulation. Front Microbiol 2021; 12:712710. [PMID: 34335548 PMCID: PMC8318036 DOI: 10.3389/fmicb.2021.712710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
The Caliciviridae are a family of viruses with a single-stranded, non-segmented RNA genome of positive polarity. The ongoing discovery of caliciviruses has increased the number of genera in this family to 11 (Norovirus, Nebovirus, Sapovirus, Lagovirus, Vesivirus, Nacovirus, Bavovirus, Recovirus, Salovirus, Minovirus, and Valovirus). Caliciviruses infect a wide range of hosts that include fishes, amphibians, reptiles, birds, and marine and land mammals. All caliciviruses have a genome that encodes a major and a minor capsid protein, a genome-linked viral protein, and several non-structural proteins. Of these non-structural proteins, only the helicase, protease, and RNA-dependent RNA polymerase share clear sequence and structural similarities with proteins from other virus families. In addition, all caliciviruses express two or three non-structural proteins for which functions have not been clearly defined. The sequence diversity of these non-structural proteins and a multitude of processing strategies suggest that at least some have evolved independently, possibly to counteract innate and adaptive immune responses in a host-specific manner. Studying these proteins is often difficult as many caliciviruses cannot be grown in cell culture. Nevertheless, the study of recombinant proteins has revealed many of their properties, such as intracellular localization, capacity to oligomerize, and ability to interact with viral and/or cellular proteins; the release of non-structural proteins from transfected cells has also been investigated. Here, we will summarize these findings and discuss recent in silico studies that identified previously overlooked putative functional domains and structural features, including transmembrane domains that suggest the presence of viroporins.
Collapse
Affiliation(s)
- Elena Smertina
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Robyn N. Hall
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Centre for Invasive Species Solutions, Canberra, ACT, Australia
| | - Nadya Urakova
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Centre for Invasive Species Solutions, Canberra, ACT, Australia
| | - Michael Frese
- Commonwealth Scientific and Industrial Research Organization, Health and Biosecurity, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
12
|
Porcine Sapovirus-Induced Tight Junction Dissociation via Activation of RhoA/ROCK/MLC Signaling Pathway. J Virol 2021; 95:JVI.00051-21. [PMID: 33692204 PMCID: PMC8139687 DOI: 10.1128/jvi.00051-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tight junctions (TJs) are a major barrier and also an important portal of entry for different pathogens. Porcine sapovirus (PSaV) induces early disruption of the TJ integrity of polarized LLC-PK cells, allowing it to bind to the buried occludin co-receptors hidden beneath the TJs on the basolateral surface. However, the signaling pathways involved in the PSaV-induced TJ dissociation are not yet known. Here, we found that the RhoA/ROCK/MLC signaling pathway was activated in polarized LLC-PK cells during the early infection of PSaV Cowden strain in the presence of bile acid. Specific inhibitors of RhoA, ROCK, and MLC restored PSaV-induced reduction of transepithelial resistance, increase of paracellular flux, intracellular translocation of occludin, and lateral membrane lipid diffusion. Moreover, each inhibitor significantly reduced PSaV replication, as evidenced by a reduction in viral protein synthesis, genome copy number, and progeny viruses. The PKC/MLCK and RhoA/ROCK/MYPT signaling pathways, known to dissociate TJs, were not activated during early PSaV infection. Among the above signaling pathways, the RhoA/ROCK/MLC signaling pathway was only activated by PSaV in the absence of bile acid, and specific inhibitors of this signaling pathway restored early TJ dissociation. Our findings demonstrate that PSaV binding to cell surface receptors activates the RhoA/ROCK/MLC signaling pathway, which in turn disrupts TJ integrity via the contraction of the actomyosin ring. Our study contributes to understanding how PSaV enters the cells and will aid in developing efficient and affordable therapies against PSaV and other calicivirus infections.IMPORTANCEPorcine sapovirus (PSaV), one of the most important enteric pathogens, is known to disrupt tight junction (TJ) integrity to expose its buried co-receptor occludin in polarized LLC-PK cells. However, the cellular signaling pathways that facilitate TJ dissociation are not yet completely understood. Here, we demonstrate that early infection of PSaV in polarized LLC-PK cells in either the presence or absence of bile acids activates the RhoA/ROCK/MLC signaling pathway, whose inhibitors reverse the early PSaV infection-induced early dissociation of TJs and reduce PSaV replication. However, early PSaV infection did not activate the PKC/MLCK and RhoA/ROCK/MYPT signaling pathways, which are also known to dissociate TJs. This study provides a better understanding of the mechanism involved in early PSaV infection-induced disruption of TJs, which is important for controlling or preventing PSaV and other calicivirus infections.
Collapse
|
13
|
Zheng M, Lin S, Zhang S, Chen X, Jiang D, Chen S, Wang S, Chen S. Rapid detection of H146-like goose calicivirus using a TaqMan-based real-time PCR assay. Poult Sci 2020; 100:482-487. [PMID: 33518100 PMCID: PMC7858078 DOI: 10.1016/j.psj.2020.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/01/2022] Open
Abstract
H146-like goose-origin calicivirus (H146-like GCV) is a novel Caliciviridae family member in the Sanovirus genus that was recently discovered and proposed to cause runting-stunting syndrome and urate deposition in geese. At present, however, there is a lack of epidemiological information pertaining to the dynamics and distribution of H146-like GCV. The development of novel molecular diagnostic approaches capable of rapidly and accurately detecting this virus would support the strengthening, the prevention, and control of H146-like GCV infection. In the present study, we therefore used a TaqMan probe and primers specific for the viral nonstructural (NS) gene to develop a highly sensitive and specific PCR assay capable of detecting this H146-like GCV. The assay reproducibly detected 5.07 × 102 copies of a recombinant DNA plasmid containing the NS gene, with a dynamic range of 8 orders of magnitude (102-109 copies). Importantly, no cross-reactivity was observed with common viruses that affected waterfowl, and when we used this assay to evaluate clinical samples, we found it to be more sensitive and faster than traditional PCR. In summary, herein, we developed a novel TaqMan-based real-time PCR approach that could reliably detect and diagnose H146-like GCV. This tool will allow for the real-time diagnosis of H146-like GCV infections, enabling researchers to better understand the epidemiology and clinical presentation of this disease.
Collapse
Affiliation(s)
- Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Su Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Shizhong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Xiuqin Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Dandan Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agriculture Sciences, Fuzhou, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agriculture Sciences, Fuzhou, China.
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, China; Fujian Animal Diseases Control Technology Development Center, Fujian Academy of Agriculture Sciences, Fuzhou, China.
| |
Collapse
|
14
|
Zheng M, Lin S, Zhang S, Chen X, Jiang D, Chen S, Wang S, Chen S. Rapid detection of H146-like goose calicivirus using real-time RT-PCR with a Taqman minor groove binder probe. J Virol Methods 2020; 285:113956. [PMID: 32814077 DOI: 10.1016/j.jviromet.2020.113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 11/28/2022]
Abstract
H146-like goose-origin calicivirus (H146-like GCV) is a novel Caliciviridae family member in the Sanovirus genus that was associated with gosling growth retardation syndrome growth retardation syndrome complicated by visceral urate deposition. However, there is no accurate and high throughput real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) available for the rapid and highly sensitive identification of H146-like GCV. In this study, a pair of specific primers and a TaqMan minor groove binder (MGB) probe were designed based on a conserved region in the nonstructural (NS) gene sequence. The TaqMan-MGB probe-based one-step qRT-PCR assay was capable of detecting quite low number of targeting nucleic acid as low as 5.07 copies/μL and had excellent intra-assay and inter-assay repeatability with the coefficient of variation (CV) value from 0.558% to 1.293%. The assay was highly specific for H146-like GCV, without cross-reactions with other non-targeted goose-origin viruses, and 62 suspicious tissue samples infected with H146-like GCV from different regions of Fujian Province were used in this study to verify the feasibility and effectiveness of this assay in clinical diagnosis. The results indicated that our assay for the diagnosis and quantification of H146-like GCV was highly sensitive and specific, and should provide a reliable real-time tool for epidemiological and pathogenetic study of H146-like GCV infection, enabling researchers to better understand the epidemiology and clinical presentation of this disease.
Collapse
Affiliation(s)
- Min Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Su Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Shizhong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Xiuqin Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Dandan Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China.
| | - Shilong Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou 350013, China.
| |
Collapse
|
15
|
Lin S, Zhang S, Wang S, Xie K, Jiang D, Xiao S, Chen X, Chen S. Development of an EvaGreen based real-time RT-PCR assay for rapid detection, quantitation and diagnosis of goose calicivirus. Mol Cell Probes 2019; 49:101489. [PMID: 31747564 DOI: 10.1016/j.mcp.2019.101489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/01/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023]
Abstract
An unclassified calicivirus (CV) detected in geese was recently reported and proposed as a new member of the family Caliciviridae. There is limited information about the epidemiology, etiology and detection method of goose-origin CV (GCV) to date. In this study, an EvaGreen based fluorescence quantitative real-time RT-PCR assay was developed and optimized for the detection of GCVs. The assay sensitively detected GCV RNA template with a good linear standard curve. We also demonstrated the specificity and reproducibility of the detection method for GCVs. Thus, the method developed in this study will benefit the investigation of possible sporadic outbreaks of CV infections in geese, as well as epidemiological and etiological studies of GCVs.
Collapse
Affiliation(s)
- Su Lin
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350003, China.
| | - Shizhong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350003, China.
| | - Shao Wang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350003, China.
| | - Kaichun Xie
- Animal Veterinary and Aquatic Product Bureau, Nanping, 353000, China.
| | - Dandan Jiang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350003, China.
| | - Shifeng Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350003, China.
| | - Xiuqin Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350003, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China.
| | - Shaoying Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, 350003, China; Fujian Animal Diseases Control Technology Development Center, Fuzhou, 350013, China.
| |
Collapse
|
16
|
Canuti M, Kroyer ANK, Ojkic D, Whitney HG, Robertson GJ, Lang AS. Discovery and Characterization of Novel RNA Viruses in Aquatic North American Wild Birds. Viruses 2019; 11:E768. [PMID: 31438486 PMCID: PMC6784231 DOI: 10.3390/v11090768] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 12/25/2022] Open
Abstract
Wild birds are recognized viral reservoirs but our understanding about avian viral diversity is limited. We describe here three novel RNA viruses that we identified in oropharyngeal/cloacal swabs collected from wild birds. The complete genome of a novel gull metapneumovirus (GuMPV B29) was determined. Phylogenetic analyses indicated that this virus could represent a novel avian metapneumovirus (AMPV) sub-group, intermediate between AMPV-C and the subgroup of the other AMPVs. This virus was detected in an American herring (1/24, 4.2%) and great black-backed (4/26, 15.4%) gulls. A novel gull coronavirus (GuCoV B29) was detected in great black-backed (3/26, 11.5%) and American herring (2/24, 8.3%) gulls. Phylogenetic analyses of GuCoV B29 suggested that this virus could represent a novel species within the genus Gammacoronavirus, close to other recently identified potential novel avian coronaviral species. One GuMPV-GuCoV co-infection was detected. A novel duck calicivirus (DuCV-2 B6) was identified in mallards (2/5, 40%) and American black ducks (7/26, 26.9%). This virus, of which we identified two different types, was fully sequenced and was genetically closest to other caliciviruses identified in Anatidae, but more distant to other caliciviruses from birds in the genus Anas. These discoveries increase our knowledge about avian virus diversity and host distributions.
Collapse
Affiliation(s)
- Marta Canuti
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John's, NL A1B 3X9, Canada.
| | - Ashley N K Kroyer
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John's, NL A1B 3X9, Canada
| | - Davor Ojkic
- Animal Health Laboratory, Laboratory Services Division, University of Guelph, 419 Gordon St., Guelph, ON N1H 6R8, Canada
| | - Hugh G Whitney
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John's, NL A1B 3X9, Canada
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, 6 Bruce Street, Mount Pearl, NL A1N 4T3, Canada
| | - Andrew S Lang
- Department of Biology, Memorial University of Newfoundland, 232 Elizabeth Ave., St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
17
|
de Souza WM, Fumagalli MJ, de Araujo J, Ometto T, Modha S, Thomazelli LM, Durigon EL, Murcia PR, Figueiredo LTM. Discovery of novel astrovirus and calicivirus identified in ruddy turnstones in Brazil. Sci Rep 2019; 9:5556. [PMID: 30944402 PMCID: PMC6447618 DOI: 10.1038/s41598-019-42110-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023] Open
Abstract
Birds are the natural reservoir of viruses with zoonotic potential, as well as contributing to the evolution, emergence, and dissemination of novel viruses. In this study, we applied a high-throughput screening approach to identify the diversity of viruses in 118 samples of birds captured between October 2006 to October 2010 in the North and Northeast regions of Brazil. We found nearly complete genomes of novel species of astrovirus and calicivirus in cloacal swabs of ruddy turnstones (Arenaria interpres) collected in Coroa do Avião islet, Pernambuco State. These viruses are positive-sense single-stranded RNA with a genome of ~7 to 8 kb, and were designated as Ruddy turnstone astrovirus (RtAstV) and Ruddy turnstone calicivirus (RTCV), respectively. Phylogenetic analysis showed that RtAstV and RTCV grouped in a monophyletic clade with viruses identified from poultry samples (i.e., chicken, goose, and turkey), including viruses associated with acute nephritis in chickens. Attempts of viral propagation in monkey and chicken cell lines for both viruses were unsuccessful. Also, we found genomes related with viral families that infect invertebrates and plants, suggesting that they might be ingested in the birds' diet. In sum, these findings shed new light on the diversity of viruses in migratory birds with the notable characterization of a novel astrovirus and calicivirus.
Collapse
Affiliation(s)
- William Marciel de Souza
- Virology Research Center, School of Medicine of Ribeirão Preto of University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil.
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, United Kingdom.
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, 13083-862, Campinas, São Paulo, Brazil.
| | - Marcílio Jorge Fumagalli
- Virology Research Center, School of Medicine of Ribeirão Preto of University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| | - Jansen de Araujo
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Tatiana Ometto
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Sejal Modha
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, United Kingdom
| | | | - Edison Luís Durigon
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-900, SP, Brazil
| | - Pablo Ramiro Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, United Kingdom
| | - Luiz Tadeu Moraes Figueiredo
- Virology Research Center, School of Medicine of Ribeirão Preto of University of São Paulo, Ribeirão Preto, 14049-900, SP, Brazil
| |
Collapse
|
18
|
Desselberger U. Caliciviridae Other Than Noroviruses. Viruses 2019; 11:v11030286. [PMID: 30901945 PMCID: PMC6466229 DOI: 10.3390/v11030286] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/24/2022] Open
Abstract
Besides noroviruses, the Caliciviridae family comprises four other accepted genera: Sapovirus, Lagovirus, Vesivirus, and Nebovirus. There are six new genera proposed: Recovirus, Valovirus, Bavovirus, Nacovirus, Minovirus, and Salovirus. All Caliciviridae have closely related genome structures, but are genetically and antigenically highly diverse and infect a wide range of mammalian host species including humans. Recombination in nature is not infrequent for most of the Caliciviridae, contributing to their diversity. Sapovirus infections cause diarrhoea in pigs, humans and other mammalian hosts. Lagovirus infections cause systemic haemorrhagic disease in rabbits and hares, and vesivirus infections lead to lung disease in cats, vesicular disease in swine, and exanthema and diseases of the reproductive system in large sea mammals. Neboviruses are an enteric pathogen of cattle, differing from bovine norovirus. At present, only a few selected caliciviruses can be propagated in cell culture (permanent cell lines or enteroids), and for most of the cultivatable caliciviruses helper virus-free, plasmid only-based reverse genetics systems have been established. The replication cycles of the caliciviruses are similar as far as they have been explored: viruses interact with a multitude of cell surface attachment factors (glycans) and co-receptors (proteins) for adsorption and penetration, use cellular membranes for the formation of replication complexes and have developed mechanisms to circumvent innate immune responses. Vaccines have been developed against lagoviruses and vesiviruses, and are under development against human noroviruses.
Collapse
Affiliation(s)
- Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
19
|
Early Porcine Sapovirus Infection Disrupts Tight Junctions and Uses Occludin as a Coreceptor. J Virol 2019; 93:JVI.01773-18. [PMID: 30463963 PMCID: PMC6364031 DOI: 10.1128/jvi.01773-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022] Open
Abstract
The genus Sapovirus belongs to the family Caliciviridae, and its members are common causative agents of severe acute gastroenteritis in both humans and animals. Some caliciviruses are known to use either terminal sialic acids or histo-blood group antigens as attachment factors and/or cell surface proteins, such as CD300lf, CD300ld, and junctional adhesion molecule 1 of tight junctions (TJs), as receptors. However, the roles of TJs and their proteins in sapovirus entry have not been examined. In this study, we found that porcine sapovirus (PSaV) significantly decreased transepithelial electrical resistance and increased paracellular permeability early in infection of LLC-PK cells, suggesting that PSaV dissociates TJs of cells. This led to the interaction between PSaV particles and occludin, which traveled in a complex into late endosomes via Rab5- and Rab7-dependent trafficking. Inhibition of occludin using small interfering RNA (siRNA), a specific antibody, or a dominant-negative mutant significantly blocked the entry of PSaV. Transient expression of occludin in nonpermissive Chinese hamster ovary (CHO) cells conferred susceptibility to PSaV, but only for a limited time. Although claudin-1, another TJ protein, neither directly interacted nor was internalized with PSaV particles, it facilitated PSaV entry and replication in the LLC-PK cells. We conclude that PSaV particles enter LLC-PK cells by binding to occludin as a coreceptor in PSaV-dissociated TJs. PSaV and occludin then form a complex that moves to late endosomes via Rab5- and Rab7-dependent trafficking. In addition, claudin-1 in the TJs opened by PSaV infection facilitates PSaV entry and infection as an entry factor.IMPORTANCE Sapoviruses (SaVs) cause severe acute gastroenteritis in humans and animals. Although they replicate in intestinal epithelial cells, which are tightly sealed by apical-junctional complexes, such as tight junctions (TJs), the mechanisms by which SaVs hijack TJs and their proteins for successful entry and infection remain largely unknown. Here, we demonstrate that porcine SaVs (PSaVs) induce early dissociation of TJs, allowing them to bind to the TJ protein occludin as a functional coreceptor. PSaVs then travel in a complex with occludin into late endosomes through Rab5- and Rab7-dependent trafficking. Claudin-1, another TJ protein, does not directly interact with PSaV but facilitates the entry of PSaV into cells as an entry factor. This work contributes to our understanding of the entry of SaV and other caliciviruses into cells and may aid in the development of efficient and affordable drugs to treat SaV infections.
Collapse
|
20
|
Wille M, Eden JS, Shi M, Klaassen M, Hurt AC, Holmes EC. Virus-virus interactions and host ecology are associated with RNA virome structure in wild birds. Mol Ecol 2018; 27:5263-5278. [PMID: 30375075 PMCID: PMC6312746 DOI: 10.1111/mec.14918] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Little is known about the factors that shape the ecology of RNA viruses in nature. Wild birds are an important case in point, as other than influenza A virus, avian samples are rarely tested for viruses, especially in the absence of overt disease. Using bulk RNA-sequencing ("meta-transcriptomics"), we revealed the viral diversity present in Australian wild birds through the lens of the ecological factors that may determine virome structure and abundance. A meta-transcriptomic analysis of four Anseriformes (waterfowl) and Charadriiformes (shorebird) species sampled in temperate and arid Australia revealed the presence of 27 RNA virus genomes, 18 of which represent newly described species. The viruses identified included a previously described gammacoronavirus and influenza A viruses. Additionally, we identified novel virus species from the families Astroviridae, Caliciviridae, Reoviridae, Rhabdoviridae, Picobirnaviridae and Picornaviridae. We noted differences in virome structure that reflected underlying differences in location and influenza A infection status. Red-necked Avocets (Recurvirostra novaehollandiae) from Australia's arid interior possessed the greatest viral diversity and abundance, markedly higher than individuals sampled in temperate Australia. In Ruddy Turnstones (Arenaria interpres) and dabbling ducks (Anas spp.), viral abundance and diversity were higher and more similar in hosts that were positive for influenza A infection compared to those that were negative for this virus, despite samples being collected on the same day and from the same location. This study highlights the extent and diversity of RNA viruses in wild birds and lays the foundation for understanding the factors that determine virome structure in wild populations.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Centre for Virus Research, Sydney, New South Wales, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Soliman M, Kim DS, Kim C, Seo JY, Kim JY, Park JG, Alfajaro MM, Baek YB, Cho EH, Park SI, Kang MI, Chang KO, Goodfellow I, Cho KO. Porcine sapovirus Cowden strain enters LLC-PK cells via clathrin- and cholesterol-dependent endocytosis with the requirement of dynamin II. Vet Res 2018; 49:92. [PMID: 30223898 PMCID: PMC6142377 DOI: 10.1186/s13567-018-0584-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022] Open
Abstract
Caliciviruses in the genus Sapovirus are a significant cause of viral gastroenteritis in humans and animals. However, the mechanism of their entry into cells is not well characterized. Here, we determined the entry mechanism of porcine sapovirus (PSaV) strain Cowden into permissive LLC-PK cells. The inhibition of clathrin-mediated endocytosis using chlorpromazine, siRNAs, and a dominant negative (DN) mutant blocked entry and infection of PSaV Cowden strain, confirming a role for clathrin-mediated internalization. Entry and infection were also inhibited by the cholesterol-sequestering drug methyl-β-cyclodextrin and was restored by the addition of soluble cholesterol, indicating that cholesterol also contributes to entry and infection of this strain. Furthermore, the inhibition of dynamin GTPase activity by dynasore, siRNA depletion of dynamin II, or overexpression of a DN mutant of dynamin II reduced the entry and infection, suggesting that dynamin mediates the fission and detachment of clathrin- and cholesterol-pits for entry of this strain. In contrast, the inhibition of caveolae-mediated endocytosis using nystatin, siRNAs, or a DN mutant had no inhibitory effect on entry and infection of this strain. It was further determined that cell entry of PSaV Cowden strain required actin rearrangements for vesicle internalization, endosomal trafficking from early to late endosomes through microtubules, and late endosomal acidification for uncoating. We conclude that PSaV strain Cowden is internalized into LLC-PK cells by clathrin- and cholesterol-mediated endocytosis that requires dynamin II and actin rearrangement, and that the uncoating occurs in the acidified late endosomes after trafficking from the early endosomes through microtubules.
Collapse
Affiliation(s)
- Mahmoud Soliman
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Deok-Song Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Chonsaeng Kim
- Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Ja-Young Seo
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Yun Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jun-Gyu Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mia Madel Alfajaro
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Hyo Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mun-Il Kang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
22
|
Alfajaro MM, Cho EH, Park JG, Kim JY, Soliman M, Baek YB, Kang MI, Park SI, Cho KO. Feline calicivirus- and murine norovirus-induced COX-2/PGE2 signaling pathway has proviral effects. PLoS One 2018; 13:e0200726. [PMID: 30021004 PMCID: PMC6051663 DOI: 10.1371/journal.pone.0200726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Cyclooxygenases (COXs)/prostaglandin E2 (PGE2) signaling pathways are known to modulate a variety of homeostatic processes and are involved in various pathophysiological conditions. COXs/PGE2 signaling pathways have also been demonstrated to have proviral or antiviral effects, which appeared different even in the same virus family. A porcine sapovirus Cowden strain, a member of genus Sapovirus within the Caliciviridae family, induces strong COX-2/PGE2 but transient COX-1/PGE2 signaling to enhance virus replication. However, whether infections of other viruses in the different genera activate COXs/PGE2 signaling, and thus affect the replication of viruses, remains unknown. In the present study, infections of cells with the feline calicivirus (FCV) F9 strain in the genus Vesivirus and murine norovirus (MNV) CW-1 strain in the genus Norovirus only activated the COX-2/PGE2 signaling in a time-dependent manner. Treatment with pharmacological inhibitors or transfection of small interfering RNAs (siRNAs) against COX-2 enzyme significantly reduced the production of PGE2 as well as FCV and MNV replications. The inhibitory effects of these pharmacological inhibitors against COX-2 enzyme on the replication of both viruses were restored by the addition of PGE2. Silencing of COX-1 via siRNAs and inhibition of COX-1 via an inhibitor also decrease the production of PGE2 and replication of both viruses, which can be attributed to the inhibition COX-1/PGE2 signaling pathway. These data indicate that the COX-2/PGE2 signaling pathway has proviral effects for the replication of FCV and MNV, and pharmacological inhibitors against these enzymes serve as potential therapeutic candidates for treating FCV and MNV infections.
Collapse
Affiliation(s)
- Mia Madel Alfajaro
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Hyo Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jun-Gyu Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Ji-Yun Kim
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mahmoud Soliman
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Bin Baek
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Mun-Il Kang
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sang-Ik Park
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Kyoung-Oh Cho
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
23
|
Bovine Nebovirus Interacts with a Wide Spectrum of Histo-Blood Group Antigens. J Virol 2018; 92:JVI.02160-17. [PMID: 29467317 PMCID: PMC5899197 DOI: 10.1128/jvi.02160-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/06/2018] [Indexed: 11/20/2022] Open
Abstract
Some viruses within the Caliciviridae family initiate their replication cycle by attachment to cell surface carbohydrate moieties, histo-blood group antigens (HBGAs), and/or terminal sialic acids (SAs). Although bovine nebovirus (BNeV), one of the enteric caliciviruses, is an important causative agent of acute gastroenteritis in cattle, its attachment factors and possibly other cellular receptors remain unknown. Using a comprehensive series of protein-ligand biochemical assays, we sought to determine whether BNeV recognizes cell surface HBGAs and/or SAs as attachment factors. It was found that BNeV virus-like particles (VLPs) bound to A type/H type 2/Ley HBGAs expressed in the bovine digestive tract and are related to HBGAs expressed in humans and other host species, suggesting a wide spectrum of HBGA recognition by BNeV. BNeV VLPs also bound to a large variety of different bovine and human saliva samples of all ABH and Lewis types, supporting previously obtained results and suggesting a zoonotic potential of BNeV transmission. Removal of α1,2-linked fucose and α1,3/4-linked fucose epitopes of target HBGAs by confirmation-specific enzymes reduced the binding of BNeV VLPs to synthetic HBGAs, bovine and human saliva, cultured cell lines, and bovine small intestine mucosa, further supporting a wide HBGA binding spectrum of BNeV through recognition of α1,2-linked fucose and α1,3/4-linked fucose epitopes of targeted HBGAs. However, removal of terminal α2,3- and α2,6-linked SAs by their specific enzyme had no inhibitory effects on binding of BNeV VLPs, indicating that BNeV does not use terminal SAs as attachment factors. Further details of the binding specificity of BNeV remain to be explored. IMPORTANCE Enteric caliciviruses such as noroviruses, sapoviruses, and recoviruses are the most important etiological agents of severe acute gastroenteritis in humans and many other mammalian host species. They initiate infection by attachment to cell surface carbohydrate moieties, HBGAs, and/or terminal SAs. However, the attachment factor(s) for BNeV, a recently classified enteric calicivirus genus/type species, remains unexplored. Here, we demonstrate that BNeV VLPs have a wide spectrum of binding to synthetic HBGAs, bovine and human saliva samples, and bovine duodenal sections. We further discovered that α1,2-linked fucose and α1,3/4-linked fucose epitopes are essential for binding of BNeV VLPs. However, BNeV VLPs do not bind to terminal SAs on cell carbohydrates. Continued investigation regarding the proteinaceous receptor(s) will be necessary for better understanding of the tropism, pathogenesis, and host range of this important viral genus.
Collapse
|
24
|
Mor SK, Phelps NBD, Ng TFF, Subramaniam K, Primus A, Armien AG, McCann R, Puzach C, Waltzek TB, Goyal SM. Genomic characterization of a novel calicivirus, FHMCV-2012, from baitfish in the USA. Arch Virol 2017; 162:3619-3627. [PMID: 28815386 DOI: 10.1007/s00705-017-3519-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/20/2017] [Indexed: 11/25/2022]
Abstract
During regulatory sampling of fathead minnows (Pimephales promelas), a novel calicivirus was isolated from homogenates of kidney and spleen inoculated into bluegill fry (BF-2) cells. Infected cell cultures exhibiting cytopathic effects were screened by PCR-based methods for selected fish viral pathogens. Illumina HiSeq next generation sequencing of the total RNA revealed a novel calicivirus genome that showed limited protein sequence similarity to known homologs in a BLASTp search. The complete genome of this fathead minnow calicivirus (FHMCV) is 6564 nt long, encoding a polyprotein of 2114 aa in length. The complete polyprotein shared only 21% identity with Atlantic salmon calicivirus,followed by 11% to 14% identity with mammalian caliciviruses. A molecular detection assay (RT-PCR) was designed from this sequence for screening of field samples for FHMCV in the future. This virus likely represents a prototype species of a novel genus in the family Caliciviridae, tentatively named "Minovirus".
Collapse
Affiliation(s)
- Sunil Kumar Mor
- Minnesota Veterinary Diagnostic Laboratory, Department of Veterinary Population Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN, 55108, USA.
| | - Nicholas B D Phelps
- Minnesota Aquatic Invasive Species Research Center, Department of Fisheries, Wildlife, and Conservation Biology, College of Food, Agriculture, and Natural Resource Sciences, University of Minnesota, St. Paul, MN, 55108, USA
| | - Terry Fei Fan Ng
- College of Veterinary Medicine, University of Georgia, 501 D. W. Brooks Drive, Athens, GA, 30602, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Alexander Primus
- Minnesota Veterinary Diagnostic Laboratory, Department of Veterinary Population Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Anibal G Armien
- Minnesota Veterinary Diagnostic Laboratory, Department of Veterinary Population Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Rebekah McCann
- US Fish and Wildlife Service, La Crosse Fish Health Center, 555 Lester Avenue, Onalaska, WI, 54650, USA
| | - Corey Puzach
- US Fish and Wildlife Service, La Crosse Fish Health Center, 555 Lester Avenue, Onalaska, WI, 54650, USA
| | - Thomas B Waltzek
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Sagar M Goyal
- Minnesota Veterinary Diagnostic Laboratory, Department of Veterinary Population Medicine, University of Minnesota, 1333 Gortner Avenue, St. Paul, MN, 55108, USA
| |
Collapse
|
25
|
Lima DA, Cibulski SP, Finkler F, Teixeira TF, Varela APM, Cerva C, Loiko MR, Scheffer CM, Dos Santos HF, Mayer FQ, Roehe PM. Faecal virome of healthy chickens reveals a large diversity of the eukaryote viral community, including novel circular ssDNA viruses. J Gen Virol 2017; 98:690-703. [PMID: 28100302 DOI: 10.1099/jgv.0.000711] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study is focused on the identification of the faecal virome of healthy chickens raised in high-density, export-driven poultry farms in Brazil. Following high-throughput sequencing, a total of 7743 de novo-assembled contigs were constructed and compared with known nucleotide/amino acid sequences from the GenBank database. Analyses with blastx revealed that 279 contigs (4 %) were related to sequences of eukaryotic viruses. Viral genome sequences (total or partial) indicative of members of recognized viral families, including Adenoviridae, Caliciviridae, Circoviridae, Parvoviridae, Picobirnaviridae, Picornaviridae and Reoviridae, were identified, some of those representing novel genotypes. In addition, a range of circular replication-associated protein encoding DNA viruses were also identified. The characterization of the faecal virome of healthy chickens described here not only provides a description of the viruses encountered in such niche but should also represent a baseline for future studies comparing viral populations in healthy and diseased chicken flocks. Moreover, it may also be relevant for human health, since chickens represent a significant proportion of the animal protein consumed worldwide.
Collapse
Affiliation(s)
- Diane A Lima
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Samuel P Cibulski
- Laboratório de Virologia, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil
| | - Fabrine Finkler
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Thais F Teixeira
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Ana Paula M Varela
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Cristine Cerva
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Márcia R Loiko
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Camila M Scheffer
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Helton F Dos Santos
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| | - Fabiana Q Mayer
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil
| | - Paulo M Roehe
- FEPAGRO Saúde Animal - Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Rio Grande do Sul, Brazil.,Laboratório de Virologia, Departamento de Microbiologia, Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rio Grande do Sul, Brazil
| |
Collapse
|
26
|
Wang F, Wang M, Dong Y, Zhang B, Zhang D. Genetic characterization of a novel calicivirus from a goose. Arch Virol 2017; 162:2115-2118. [PMID: 28289976 DOI: 10.1007/s00705-017-3302-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/13/2017] [Indexed: 11/28/2022]
Abstract
A novel calicivirus (strain H146) was detected in a goose and sequenced. The H146 genome consisted of two open reading frames (ORFs) with an 8-nucleotide (nt) overlap between the two ORFs, similar to what has been found in the bat sapovirus TLC58. The virus was most closely related to nacoviruses when comparing the complete genome sequence (49% identity), non-structural region (NS; 31-34% amino acid [aa] sequence identity), and major structural VP1 region (28-30% aa identity), whereas both goose calicivirus N and feline calicivirus were the closest relatives of H146 in the VP2 region (20% aa sequence identity). The levels of divergence between H146 and its closest relatives in different genomic regions are comparable to those between some members of different genera. Phylogenetic analysis based on the NS and VP1 amino acid sequences clearly demonstrated that H146 formed a separate clade. Thus, calicivirus H146 was identified as a founding member of a novel genus for which we propose the name "Sanovirus".
Collapse
Affiliation(s)
- Fumin Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Minghang Wang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yunhan Dong
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Bing Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| | - Dabing Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
27
|
Abstract
Sapoviruses cause acute gastroenteritis in humans and animals. They belong to the genus Sapovirus within the family Caliciviridae. They infect and cause disease in humans of all ages, in both sporadic cases and outbreaks. The clinical symptoms of sapovirus gastroenteritis are indistinguishable from those caused by noroviruses, so laboratory diagnosis is essential to identify the pathogen. Sapoviruses are highly diverse genetically and antigenically. Currently, reverse transcription-PCR (RT-PCR) assays are widely used for sapovirus detection from clinical specimens due to their high sensitivity and broad reactivity as well as the lack of sensitive assays for antigen detection or cell culture systems for the detection of infectious viruses. Sapoviruses were first discovered in 1976 by electron microscopy in diarrheic samples of humans. To date, sapoviruses have also been detected from several animals: pigs, mink, dogs, sea lions, and bats. In this review, we focus on genomic and antigenic features, molecular typing/classification, detection methods, and clinical and epidemiological profiles of human sapoviruses.
Collapse
|
28
|
Chan JFW, To KKW, Chen H, Yuen KY. Cross-species transmission and emergence of novel viruses from birds. Curr Opin Virol 2015; 10:63-9. [PMID: 25644327 PMCID: PMC7102742 DOI: 10.1016/j.coviro.2015.01.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/29/2014] [Accepted: 01/09/2015] [Indexed: 12/29/2022]
Abstract
The role of birds in cross-species transmission and emergence of novel viruses such as avian influenza A viruses are discussed. The novel avian viruses identified between 2012 and 2014 are summarized. The concept of ‘pathogen augmentation’ is introduced.
Birds, the only living member of the Dinosauria clade, are flying warm-blooded vertebrates displaying high species biodiversity, roosting and migratory behavior, and a unique adaptive immune system. Birds provide the natural reservoir for numerous viral species and therefore gene source for evolution, emergence and dissemination of novel viruses. The intrusions of human into natural habitats of wild birds, the domestication of wild birds as pets or racing birds, and the increasing poultry consumption by human have facilitated avian viruses to cross species barriers to cause zoonosis. Recently, a novel adenovirus was exclusively found in birds causing an outbreak of Chlamydophila psittaci infection among birds and humans. Instead of being the primary cause of an outbreak by jumping directly from bird to human, a novel avian virus can be an augmenter of another zoonotic agent causing the outbreak. A comprehensive avian virome will improve our understanding of birds’ evolutionary dynamics.
Collapse
Affiliation(s)
- Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, and Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
29
|
Day JM, Oakley BB, Seal BS, Zsak L. Comparative analysis of the intestinal bacterial and RNA viral communities from sentinel birds placed on selected broiler chicken farms. PLoS One 2015; 10:e0117210. [PMID: 25635690 PMCID: PMC4311960 DOI: 10.1371/journal.pone.0117210] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/21/2014] [Indexed: 12/28/2022] Open
Abstract
There is a great deal of interest in characterizing the complex microbial communities in the poultry gut, and in understanding the effects of these dynamic communities on poultry performance, disease status, animal welfare, and microbes with human health significance. Investigations characterizing the poultry enteric virome have identified novel poultry viruses, but the roles these viruses play in disease and performance problems have yet to be fully characterized. The complex bacterial community present in the poultry gut influences gut development, immune status, and animal health, each of which can be an indicator of overall performance. The present metagenomic investigation was undertaken to provide insight into the colonization of specific pathogen free chickens by enteric microorganisms under field conditions and to compare the pre-contact intestinal microbiome with the altered microbiome following contact with poultry raised in the field. Analysis of the intestinal virome from contact birds ("sentinels") placed on farms revealed colonization by members of the Picornaviridae, Picobirnaviridae, Reoviridae, and Astroviridae that were not present in pre-contact birds or present in proportionally lower numbers. Analysis of the sentinel gut bacterial community revealed an altered community in the post-contact birds, notably by members of the Lachnospiracea/Clostridium and Lactobacillus families and genera. Members of the avian enteric Reoviridae and Astroviridae have been well-characterized and have historically been implicated in poultry enteric disease; members of the Picobirnaviridae and Picornaviridae have only relatively recently been described in the poultry and avian gut, and their roles in the recognized disease syndromes and in poultry performance in general have not been determined. This metagenomic analysis has provided insight into the colonization of the poultry gut by enteric microbes circulating in commercial broiler flocks, and has identified enteric viruses and virus communities that warrant further study in order to understand their role(s) in avian gut health and disease.
Collapse
Affiliation(s)
- J. Michael Day
- United States Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA, United States of America
| | - Brian B. Oakley
- United States Department of Agriculture, Agricultural Research Service, Poultry Microbiological Safety Research Unit, Athens, GA, United States of America
| | - Bruce S. Seal
- United States Department of Agriculture, Agricultural Research Service, Poultry Microbiological Safety Research Unit, Athens, GA, United States of America
| | - Laszlo Zsak
- United States Department of Agriculture, Agricultural Research Service, Southeast Poultry Research Laboratory, Athens, GA, United States of America
| |
Collapse
|
30
|
Mikalsen AB, Nilsen P, Frøystad-Saugen M, Lindmo K, Eliassen TM, Rode M, Evensen Ø. Characterization of a novel calicivirus causing systemic infection in atlantic salmon (Salmo salar L.): proposal for a new genus of caliciviridae. PLoS One 2014; 9:e107132. [PMID: 25203050 PMCID: PMC4159302 DOI: 10.1371/journal.pone.0107132] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/11/2014] [Indexed: 12/30/2022] Open
Abstract
The Caliciviridae is a family of viruses infecting humans, a wide range of animals, birds and marine fish and mammals, resulting in a wide spectrum of diseases. We describe the identification and genetic characterization of a novel calicivirus replicating in Atlantic salmon. The virus has a high prevalence in farmed salmon and is found in fish suffering from several diseases and conditions and also in presumable healthy fish. A challenge and vaccination trial shows that the calicivirus replicates in Atlantic salmon and establishes a systemic infection, which can be reduced by vaccination with formalin-inactivated virus preparation. The virus, named Atlantic salmon calicivirus (ASCV), is found in two genetically distinct variants, a cell culture isolated and a variant sequenced directly from field material. The genomes are 7,4 kb and contain two open reading frames where typical conserved amino acid motifs and domains predict a gene order reminiscent of calicivirus genomes. Phylogenetic analysis performed on extracted capsid amino acid sequences segregated the two ASCV variants in a unique cluster sharing root with the branch of noroviruses infecting humans and the unassigned Tulane virus and St-Valérien like viruses, infecting rhesus monkey and pig, respectively, with relatively large distance to the marine calicivirus subgroup of vesiviruses. Based on the analyses presented, the ASCV is predicted to represent a new genus of Caliciviridae for which we propose the name Salovirus.
Collapse
Affiliation(s)
- Aase B. Mikalsen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, Dept. of Basic Sciences and Aquatic Medicine, Oslo, Norway
- * E-mail:
| | | | | | | | | | | | - Øystein Evensen
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine and Biosciences, Dept. of Basic Sciences and Aquatic Medicine, Oslo, Norway
| |
Collapse
|
31
|
Complete genome sequence of a novel calicivirus from a goose. Arch Virol 2014; 159:2529-31. [PMID: 24756346 DOI: 10.1007/s00705-014-2083-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
Abstract
A novel goose calicivirus (GoCV) was sequenced. The 8013-nt-long genome was organized into two open reading frames that were in the same frame and separated by 3 nucleotides. This feature is similar to what has been observed in turkey calicivirus (TuCV). Comparison of GoCV with other caliciviruses showed that it shared the highest amino acid sequence identities of 62, 38, and 52% in the nonstructural protein, VP1, and VP2, respectively, with TuCV. Phylogenetic analysis based on the amino acid sequences of nonstructural protein and VP1 demonstrated that GoCV was most closely related to but distinct from TuCV. Thus, GoCV was identified as a novel member in the proposed genus Nacovirus.
Collapse
|
32
|
The simultaneous occurrence of human norovirus and hepatitis E virus in a Norway rat (Rattus norvegicus). Arch Virol 2013; 158:1575-8. [DOI: 10.1007/s00705-013-1646-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/21/2013] [Indexed: 02/06/2023]
|
33
|
Stals A, Mathijs E, Baert L, Botteldoorn N, Denayer S, Mauroy A, Scipioni A, Daube G, Dierick K, Herman L, Van Coillie E, Thiry E, Uyttendaele M. Molecular detection and genotyping of noroviruses. FOOD AND ENVIRONMENTAL VIROLOGY 2012; 4:153-67. [PMID: 23412888 DOI: 10.1007/s12560-012-9092-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 10/06/2012] [Indexed: 05/13/2023]
Abstract
Noroviruses (NoVs) are a major cause of gastroenteritis worldwide in humans and animals and are known as very infectious viral agents. They are spread through feces and vomit via several transmission routes involving person-to-person contact, food, and water. Investigation of these transmission routes requires sensitive methods for detection of NoVs. As NoVs cannot be cultivated to date, detection of these viruses relies on the use of molecular methods such as (real-time) reverse transcriptase polymerase chain reaction (RT-PCR). Regardless of the matrix, detection of NoVs generally requires three subsequent steps: a virus extraction step, RNA purification, and molecular detection of the purified RNA, occasionally followed by molecular genotyping. The current review mainly focused on the molecular detection and genotyping of NoVs. The most conserved region in the genome of human infective NoVs is the ORF1/ORF2 junction and has been used as a preferred target region for molecular detection of NoVs by methods such as (real-time) RT-PCR, NASBA, and LAMP. In case of animal NoVs, broad range molecular assays have most frequently been applied for molecular detection. Regarding genotyping of NoVs, five regions situated in the polymerase and capsid genes have been used for conventional RT-PCR amplification and sequencing. As the expected levels of NoVs on food and in water are very low and inhibition of molecular methods can occur in these matrices, quality control including adequate positive and negative controls is an essential part of NoV detection. Although the development of molecular methods for NoV detection has certainly aided in the understanding of NoV transmission, it has also led to new problems such as the question whether low levels of human NoV detected on fresh produce and shellfish could pose a threat to public health.
Collapse
Affiliation(s)
- Ambroos Stals
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|