1
|
Zhao Y, Zhu X, Zhang Z, Chen J, Chen Y, Hu C, Chen X, Robertson ID, Guo A. The Prevalence and Molecular Characterization of Bovine Leukemia Virus among Dairy Cattle in Henan Province, China. Viruses 2024; 16:1399. [PMID: 39339874 PMCID: PMC11437460 DOI: 10.3390/v16091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Enzootic bovine leukosis, a neoplastic disease caused by the bovine leukemia virus (BLV), was the primary cancer affecting cattle in China before 1985. Although its prevalence decreased significantly between 1986 and 2000, enzootic bovine leukosis has been re-emerging since 2000. This re-emergence has been largely overlooked, possibly due to the latent nature of BLV infection or the perceived lack of sufficient evidence. This study investigated the molecular epidemiology of BLV infections in dairy cattle in Henan province, Central China. Blood samples from 668 dairy cattle across nine farms were tested using nested polymerase chain reaction assays targeting the partial envelope (env) gene (gp51 fragment). Twenty-three samples tested positive (animal-level prevalence of 3.4%; 95% confidence interval: 2.2, 5.1). The full-length env gene sequences from these positive samples were obtained and phylogenetically analyzed, along with previously reported sequences from the GenBank database. The sequences from positive samples were clustered into four genotypes (1, 4, 6, and 7). The geographical annotation of the maximum clade credibility trees suggested that the two genotype 1 strains in Henan might have originated from Japan, while the genotype 7 strain is likely to have originated from Moldova. Subsequent Bayesian stochastic search variable selection analysis further indicated a strong geographical association between the Henan strains and Japan, as well as Moldova. The estimated substitution rate for the env gene ranged from 4.39 × 10-4 to 2.38 × 10-3 substitutions per site per year. Additionally, codons 291, 326, 385, and 480 were identified as positively selected sites, potentially associated with membrane fusion, epitope peptide vaccine design, and transmembrane signal transduction. These findings contribute to the broader understanding of BLV epidemiology in Chinese dairy cattle and highlight the need for measures to mitigate further BLV transmission within and between cattle herds in China.
Collapse
Affiliation(s)
- Yuxi Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Xiaojie Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia
| | - Zhen Zhang
- Henan Province Seed Industry Development Center, Department of Agriculture and Rural Affairs of Henan Province, Zhengzhou 450045, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Ian D. Robertson
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| |
Collapse
|
2
|
Watanuki S, Shoji K, Izawa M, Okami M, Ye Y, Bao A, Liu Y, Saitou E, Sugiyama K, Endo M, Matsumoto Y, Aida Y. Development of Dry and Liquid Duplex Reagent Mix-Based Polymerase Chain Reaction Assays as Novel Tools for the Rapid and Easy Quantification of Bovine Leukemia Virus (BLV) Proviral Loads. Viruses 2024; 16:1016. [PMID: 39066179 PMCID: PMC11281531 DOI: 10.3390/v16071016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Bovine leukemia virus (BLV) is prevalent worldwide, causing serious problems in the cattle industry. The BLV proviral load (PVL) is a useful index for estimating disease progression and transmission risk. We previously developed a quantitative real-time PCR (qPCR) assay to measure the PVL using the coordination of common motif (CoCoMo) degenerate primers. Here, we constructed a novel duplex BLV-CoCoMo qPCR assay that can amplify two genes simultaneously using a FAM-labeled MGB probe for the BLV LTR gene and a VIC-labeled MGB probe for the BoLA-DRA gene. This liquid duplex assay maintained its original sensitivity and reproducibility in field samples. Furthermore, we developed a dry duplex assay composed of PCR reagents necessary for the optimized liquid duplex assay. We observed a strong positive correlation between the PVLs measured using the dry and liquid duplex assays. Validation analyses showed that the sensitivity of the dry duplex assay was slightly lower than that of the other methods for the detection of a BLV molecular clone, but it showed similar sensitivity to the singleplex assay and slightly higher sensitivity than the liquid duplex assay for the PVL quantification of 82 field samples. Thus, our liquid and dry duplex assays are useful for measuring the BLV PVL in field samples, similar to the original singleplex assay.
Collapse
Affiliation(s)
- Sonoko Watanuki
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Kazuyuki Shoji
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Masaki Izawa
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Mitsuaki Okami
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Yingbao Ye
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Aronggaowa Bao
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Yulin Liu
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Etsuko Saitou
- Hyogo Prefectural Awaji Meat Inspection Center, 49-18 Shitoorinagata, Minamiawaji 656-0152, Japan
| | | | - Michiru Endo
- Kumagaya Livestock Hygiene Service Center, Kumagaya 360-0813, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| |
Collapse
|
3
|
Wang J, Sun C, Hu Z, Wang F, Chang J, Gao M, Ye D, Jia Q, Zou H, Willems L, Jiang Z, Yin X. Development of a novel monoclonal antibody-based competitive ELISA for antibody detection against bovine leukemia virus. Int J Biol Macromol 2024; 267:131446. [PMID: 38621561 DOI: 10.1016/j.ijbiomac.2024.131446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/17/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
Infection with bovine leukemia virus (BLV) leads to enzootic bovine leukosis, the most prevalent neoplastic disease in cattle. Due to the lack of commercially available vaccines, reliable eradication of the disease can be achieved through the testing and elimination of BLV antibody-positive animals. In this study, we developed a novel competitive ELISA (cELISA) to detect antibodies against BLV capsid protein p24. Recombinant p24 protein expressed by Escherichia coli, in combination with the monoclonal antibody 2G11 exhibiting exceptional performance, was used for the establishment of the cELISA. Receiver-operating characteristic curve analysis showed that the sensitivity and specificity of the assay were 98.85 % and 98.13 %, respectively. Furthermore, the established cELISA was specific for detecting BLV-specific antibodies, without cross-reactivity to antisera for six other bovine viruses. Significantly, experimental infection of cattle and sheep with BLV revealed that the cELISA accurately monitors seroconversion. In a performance evaluation, the established cELISA displayed a high agreement with Western blotting and the commercial BLV gp51 cELISA kit in the detection of 242 clinical samples, respectively. In conclusion, the novel p24 cELISA exhibited the potential to be a reliable and efficient diagnostic tool for BLV serological detection with a broad application prospect.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Chao Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhe Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Fang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jitao Chang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; Institute of Western Agriculture, the Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Ming Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dandan Ye
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qi Jia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hui Zou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Luc Willems
- Laboratory of Molecular and Cellular Epigenetics, Grappe Interdisciplinaire de Génoprotéomique Appliquée, University of Liège, 4000 Liège, Belgium; Molecular Biology, Teaching and Research Center, University of Liège, 5030 Gembloux, Belgium
| | - Zhigang Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
4
|
Lv G, Wang J, Lian S, Wang H, Wu R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals (Basel) 2024; 14:297. [PMID: 38254466 PMCID: PMC10812804 DOI: 10.3390/ani14020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the United States. BLV imposes a substantial economic burden on the cattle industry, particularly in dairy farming, as it leads to a decline in animal production performance and increases the risk of disease. Moreover, trade restrictions on diseased animals and products between countries and regions further exacerbate the problem. Recent studies have also identified fragments of BLV nucleic acid in human breast cancer tissues, raising concerns for public health. Due to the absence of an effective vaccine, controlling the disease is challenging. Therefore, it is crucial to accurately detect and diagnose BLV at an early stage to control its spread and minimize economic losses. This review provides a comprehensive examination of BLV, encompassing its genomic structure, epidemiology, modes of transmission, clinical symptoms, detection methods, hazards, and control strategies. The aim is to provide strategic information for future BLV research.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
5
|
Rahman A, Kashif M, Nasir A, Ehtisham-Ul-Haque S, Ullah H, Sikandar A, Ahmed I, Rehman AU, Saeed MA, Nazar MW, Rizwan M, Saher S, Abbas A. Seroprevalence and haemato-biochemical effects of bovine leucosis in buffalo, Punjab, Pakistan. VET MED-CZECH 2023; 68:385-391. [PMID: 38028205 PMCID: PMC10666657 DOI: 10.17221/57/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
Enzootic bovine leucosis is caused by bovine leukaemia virus (BLV), a Deltaretrovirus belonging to the family Retroviridae. BLV causes huge economic losses to the dairy industry in the form of decreased milk production, premature culling, and poor reproductive performance of the animals. The aim of the present study was to determine the seroprevalence of BLV infection in buffalo in two districts of Punjab, Pakistan. A total of 384 samples were collected and analysed using a commercial indirect enzyme-linked immunosorbent assay (ELISA) to investigate the seroprevalence of BLV through the detection of the anti-BLV gp51 antibody. A predesigned data questionnaire proforma was employed to find out the association of risk factors with disease. Overall, 18.2% of buffaloes were seropositive for BLV in the study population. The results revealed a significant association (P < 0.05) of age with BLV infection. Furthermore, milk yield and pregnancy had a significant association with the seroprevalence of BLV infection in buffalo whereas no significant association was found with sex, breeding, and health status. Biochemical and oxidative stress markers revealed a significant decrease in liver enzymes alanine transaminase (ALT) and aspartate transaminase (AST), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in seropositive animals as compared to healthy animals. It is concluded that BLV has a considerable prevalence in buffalo in Punjab, Pakistan and there is a dire need to investigate the disease epidemiology at both national and international levels and strategies should be developed to implement an effective control program.
Collapse
Affiliation(s)
- Abdul Rahman
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Muhammad Kashif
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Amar Nasir
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Syed Ehtisham-Ul-Haque
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Habib Ullah
- Faculty of Veterinary and Animal Sciences, Gomal University, D.I. Khan, Khyber Pakhtunkhwa, Pakistan
| | - Arbab Sikandar
- Department of Basic Sciences, University of Veterinary and Animal Sciences Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Ishtiaq Ahmed
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Aziz Ur Rehman
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Muhammad Adnan Saeed
- Department of Pathobiology, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Muhammad Waseem Nazar
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| | - Muhammad Rizwan
- Department of Clinical Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sidra Saher
- Department of Clinical Sciences, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Arshad Abbas
- Department of Clinical Sciences, University of Veterinary and Animal Sciences, Lahore, Sub-campus, Jhang, Punjab, Pakistan
| |
Collapse
|
6
|
Kohara J, Bai L, Takeshima SN, Matsumoto Y, Hirai T, Aida Y. Correlation between the Biodistribution of Bovine Leukemia Virus in the Organs and the Proviral Load in the Peripheral Blood during Early Stages of Experimentally Infected Cattle. Pathogens 2023; 12:130. [PMID: 36678478 PMCID: PMC9867250 DOI: 10.3390/pathogens12010130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis. However, the propagation and distribution of BLV after primary infection still need to be fully elucidated. Here, we experimentally infected seven cattle with BLV and analyzed the BLV proviral load (PVL) in the blood and various organs. BLV was first detected in the blood of the cattle after one week, and the blood PVL increased for three weeks after infection. The PVL was maintained at a high level in five cattle, while it decreased to a low or medium level in two cattle. BLV was distributed in various organs, such as the heart, lung, liver, kidney, abomasum, and thymus, and, notably, in the spleen and lymph nodes. In cattle with a high blood PVL, BLV was detected in organs other than the spleen and lymph nodes, whereas in those with a low blood PVL, BLV was only detected in the spleen and lymph nodes. The amount of BLV in the organs was comparable to that in the blood. Our findings point to the possibility of estimating the distribution of BLV provirus in organs, lymph nodes, and body fluids by measuring the blood PVL, as it was positively correlated with the biodistribution of BLV provirus in the body of BLV infection during early stages.
Collapse
Affiliation(s)
- Junko Kohara
- Animal Health Group, Animal Research Center, Hokkaido Research Organization, Shintoku 081-0038, Japan
| | - Lanlan Bai
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Graduate School of Science and Engineering, Iwate University, Morioka 020-8551, Japan
| | - Shin-nosuke Takeshima
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Department of Food and Nutrition, Jumonji University, 2-1-28 Sugasawa, Niiza 352-8510, Japan
| | - Yuki Matsumoto
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tsunao Hirai
- Animal Health Group, Animal Research Center, Hokkaido Research Organization, Shintoku 081-0038, Japan
| | - Yoko Aida
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
Bai L, Soya M, Ichikawa M, Matsuura R, Arimura Y, Wada S, Aida Y. Antigenicity of subregions of recombinant bovine leukemia virus (BLV) glycoprotein gp51 for antibody detection. J Virol Methods 2023; 311:114644. [PMID: 36332713 DOI: 10.1016/j.jviromet.2022.114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Bovine leukemia virus (BLV) is an enveloped virus, found worldwide that can infect cattle and induce many subclinical symptoms and malignant tumors. BLV infection causes severe economic losses in the cattle industry. The identification of BLV-infected cattle for segregation or elimination would be the most effective way to halt the spread of BLV infection on farms, owing to the lack of effective treatments and vaccines. Therefore, antibody detection against the viral glycoprotein gp51 is an effective method for diagnosing BLV-infected animals. In this study, ten different subregions of gp51 containing a common B cell epitope are vital for developing antigens as epitope-driven vaccine design and immunological assays. Such antigens were produced in Escherichia coli expression system to react with antibodies in the serum from BLV-infected cattle and compete for antigenicity. Recombinant His-gp5156-110 and gp5133-301(full) had the same sensitivity in BLV-positive sera, indicating that antibodies responded to the limited subregion of viral gp51, a common B cell epitope. This finding provides significant information for antigen selection in BLV to use in antibody detection assays. Further studies are needed to evaluate the antigenicity of His-gp5156-110 and gp5133-301(full) as antigens for antibody detection assays using a larger number of bovine serum samples.
Collapse
Affiliation(s)
- Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 3510198, Japan; Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Saitama 3510198, Japan; Graduate School of Science and Engineering, Iwate University, Morioka, Iwate 0208551, Japan
| | - Mariko Soya
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 3510198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 1138657, Japan
| | - Minori Ichikawa
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 3510198, Japan; Host Defense for Animals. Nippon Veterinary and Life Science University, Musashino, Tokyo 1808602, Japan
| | - Ryosuke Matsuura
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 3510198, Japan; Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Saitama 3510198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 1138657, Japan
| | - Yutaka Arimura
- Host Defense for Animals. Nippon Veterinary and Life Science University, Musashino, Tokyo 1808602, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Saitama 3510198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 3510198, Japan; Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Saitama 3510198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-Ku, Tokyo 1138657, Japan.
| |
Collapse
|
8
|
LE DT, NGUYEN SV, LE TAN, NGUYEN VH, LE PD, DINH DV, DUONG HT, VU HV, FUJIMOTO Y, KUNIEDA T, HAGA T. Detection of bovine leukemia virus in beef cattle kept in the Central Coast Regions of Vietnam. J Vet Med Sci 2023; 85:111-116. [PMID: 36450501 PMCID: PMC9887213 DOI: 10.1292/jvms.22-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Bovine leukemia virus (BLV) is the etiologic agent of enzootic bovine leucosis. Our previous study showed the BLV existence in cattle kept in the Red River Delta Region of Vietnam. However, no positive samples were identified in beef cattle. Besides, information related to the BLV circulation in the remained parts of Vietnam is limited. Therefore, we tested the existence of BLV in 48 beef cattle kept in the Central Coast Regions. Nested PCR targeting the BLV-env-gp51 confirmed the prevalence of 14.6% in investigated regions. Phylogenetic analysis suggested the co-existence of genotypes 1 and 10. The close relationship between strains found in Vietnam, Thailand, Myanmar, and China was revealed suggesting the possibility of BLV transmission through the movement of live cattle.
Collapse
Affiliation(s)
- Dung Thi LE
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Son Vu NGUYEN
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Thu Anh Nu LE
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam,Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Van Huu NGUYEN
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Phung Dinh LE
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Dung Van DINH
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Hai Thanh DUONG
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Hai Van VU
- Faculty of Animal Science and Veterinary, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Yuri FUJIMOTO
- Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo,
Japan
| | - Tetsuo KUNIEDA
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Takeshi HAGA
- Division of Infection Control and Disease Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of OSG Veterinary Science for Global Disease Management, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo,
Japan,Correspondence to: Haga T: , Division of Infection Control and Disease
Prevention, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
9
|
Nakatsuchi A, Bao A, Watanuki S, Matsuura R, Borjigin L, Bai L, Kuroda M, Matsumoto Y, Kohara J, Aida Y. Anti-BLV antibodies in whey correlate with bovine leukemia virus disease progression and BoLA-DRB3 polymorphism. Front Vet Sci 2022; 9:1038101. [PMID: 36504869 PMCID: PMC9732667 DOI: 10.3389/fvets.2022.1038101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/10/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction Bovine leukemia virus (BLV) belongs to the family Retroviridae and is a causative agent for enzootic bovine leucosis, the most common neoplastic disease affecting cattle worldwide. BLV proviral load (PVL) is associated with disease progression and transmission risk but requires blood collection and quantitative PCR testing. Anti-BLV antibodies in whey have been used as a diagnostic tool for BLV infection; however, quantitative utilization has not been fully investigated. Furthermore, bovine leukocyte antigen (BoLA)-DRB3 is a polymorphic gene associated with BLV infectivity and PVL, but its effect on anti-BLV antibody levels in whey from BLV infected dams is unknown. Therefore, we aimed to investigate whether it is possible to correctly predict PVL in the blood and milk based on the amount of anti-BLV antibodies in milk, and whether the BoLA-DRB3 alleles associate with the amount of anti-BLV antibodies in milk. Methods We examined whey from 442 dams from 11 different dairy farms located in 6 prefectures in Japan, including susceptible dams carrying at least one BoLA-DRB3* 012:01 or * 015:01 allele related with high PVL, resistant dams carrying at least one BoLA-DRB3 * 002:01, * 009:02, or * 014:01:01 allele related with low PVL, and neutral dams carrying other alleles. Results First, our results provided compelling evidence that anti-BLV antibody levels in whey were positively correlated with the anti-BLV antibody levels in serum and with BLV PVL in blood and milk, indicating the possibility of estimating BLV PVL in blood and milk by measuring anti-BLV antibody levels in whey. Thus, our results showed that antibody titers in milk might be effective for estimating BLV transmission risk and disease progression in the field. Second, we demonstrated that anti-BLV antibody levels in whey from BLV resistant dams were significantly lower than those from susceptible and neutral dams. Discussion This is the first report suggesting that the BoLA-DRB3 polymorphism affects anti-BLV antibody levels in whey from BLV-infected dams. Taken together, our results suggested that anti-BLV antibody levels in whey, measured by enzyme-linked immunosorbent assay, may be a useful marker to diagnose the risk of BLV infection and estimate PVL in blood and milk.
Collapse
Affiliation(s)
- Ayumi Nakatsuchi
- Institute of Animal Health, JA Zen-Noh (National Federation of Agricultural Cooperative Associations), Sakura, Japan,Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Aronggaowa Bao
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Sonoko Watanuki
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryosuke Matsuura
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, Wako, Japan
| | - Maho Kuroda
- Institute of Animal Health, JA Zen-Noh (National Federation of Agricultural Cooperative Associations), Sakura, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Junko Kohara
- Agriculture Research Department, Animal Research Center, Hokkaido Research Organization, Shintoku, Japan,Junko Kohara
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan,Viral Infectious Diseases Unit, RIKEN, Wako, Japan,*Correspondence: Yoko Aida
| |
Collapse
|
10
|
Visualization of clonal expansion after massive depletion of cells carrying the bovine leukemia virus (BLV) integration sites during the course of disease progression in a BLV naturally-infected cow: a case report. Retrovirology 2022; 19:24. [PMID: 36329491 PMCID: PMC9635170 DOI: 10.1186/s12977-022-00609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
Bovine leukemia virus (BLV) infects cattle, integrates into host DNA as a provirus, and induces malignant B-cell lymphoma. Previous studies have addressed the impact of proviral integration of BLV on BLV-induced leukemogenesis. However, no studies have monitored sequential changes in integration sites in which naturally infected BLV individuals progress from the premalignant stage to the terminal disease. Here, we collected blood samples from a single, naturally infected Holstein cow at three disease progression stages (Stage I: polyclonal stage, Stage II: polyclonal toward oligoclonal stage, Stage III: oligoclonal stage) and successfully visualized the kinetics of clonal expansion of cells carrying BLV integration sites using our BLV proviral DNA-capture sequencing method. Although 24 integration sites were detected in Stages I and II, 92% of these sites experienced massive depletion in Stage III. Of these sites, 46%, 37%, and 17% were located within introns of Refseq genes, intergenic regions, and repetitive sequences, respectively. At Stage III cattle with lymphoma, only two integration sites were generated de novo in the intergenic region of Chr1, and the intron of the CHEK2 gene on Chr17 was significantly increased. Our results are the first to demonstrate clonal expansion after the massive depletion of cells carrying BLV integration sites in a naturally infected cow.
Collapse
|
11
|
Benavides B, Monti G. Assessment of Natural Transmission of Bovine Leukemia Virus in Dairies from Southern Chile. Animals (Basel) 2022; 12:1734. [PMID: 35804632 PMCID: PMC9264828 DOI: 10.3390/ani12131734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that affects cattle worldwide. A longitudinal study was conducted with the aim to (a) estimate the incidence rate of the BLV infection of dairy farms in the regions of Los Ríos and Los Lagos (Chile), and (b) describe the frequency and epidemiological association of risk management practices related to new cases in cattle on dairy farms in Southern Chile. Infection status was based on commercial blocking ELISA results, on serum and milk. Individual information on animals and management practices was extracted from farm records, and then the most likely date of infection for new cases was estimated. The number of new infections was used to calculate the within-herd incidence rate. Adult animals had an incidence rate of 1.16 (95% CI 0.96; 1.20) cases per 100 cow-months at risk, while for young animals it was 0.64 (95% CI 0.44; 1.00) cases per 100 animal-months at risk. Rectal palpation, artificial insemination, and injections were the most common practices related to infection. Further studies are needed to determine if these are the only practices that facilitate spreading or if there are other practices that can be handled better in order to reduce the spread of BLV.
Collapse
Affiliation(s)
- Bibiana Benavides
- Animal Health Department, University of Nariño, San Juan de Pasto 52001, Colombia;
| | - Gustavo Monti
- Quantitative Veterinary Epidemiology Group, Animal Sciences Department, Wageningen University and Research, 6702 PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Nishikaku K, Yonezawa T, Nishibori M, Harada M, Kawaguchi F, Sasazaki S, Torii Y, Imakawa K, Kawai K, Liu J, Mannen H, Kobayashi T. Phylogenomics and Spatiotemporal Dynamics of Bovine Leukemia Virus Focusing on Asian Native Cattle: Insights Into the Early Origin and Global Dissemination. Front Microbiol 2022; 13:917324. [PMID: 35814709 PMCID: PMC9263593 DOI: 10.3389/fmicb.2022.917324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine leukemia virus (BLV), the causative agent of enzootic bovine leukosis, is currently one of the most important pathogens affecting the cattle industry worldwide. Determining where and in which host it originated, and how it dispersed across continents will provide valuable insights into its historical emergence as the cattle pathogen. Various species in the Bos genus were domesticated in Asia, where they also diversified. As native cattle (taurine cattle, zebu cattle, yak, and water buffalo) are indigenous and adapted to local environments, we hypothesized that Asian native cattle could have harbored BLV and, therefore, that they were important for virus emergence, maintenance, and spread. In this study, phylogeographic and ancestral trait analyses—including sequences obtained from Asian native cattle—were used to reconstruct the evolutionary history of BLV. It was shown that, since its probable emergence in Asia, the virus spread to South America and Europe via international trade of live cattle. It was inferred that zebu cattle were the hosts for the early origin of BLV, while taurine cattle played the significant role in the transmission worldwide. In addition, the results of positive selection analysis indicate that yak had a substantially minor role in the transmission of this virus. In this study, endogenous deltaretrovirus sequences in bats, collected in Asian countries, were also analyzed on whether these sequences were present in the bat genome. Endogenous deltaretrovirus sequences were detected from bat species endemic to specific regions and geographically isolated for a long time. Endogenous deltaretrovirus sequences from these geographically isolated species represent ancient exogenous deltaretroviruses distributions. The phylogenetic analysis revealed that these newly obtained endogenous deltaretrovirus sequences were closely related to those of BLV from Asian native cattle, indicating that BLV-related ancient deltaretroviruses circulated in Asia long before the emergence of BLV. Together, our analyses provide evidence for origin and spatiotemporal dynamics of BLV.
Collapse
Affiliation(s)
- Kohei Nishikaku
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Takahiro Yonezawa
- Laboratory of Animal Genetics, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Masahide Nishibori
- Laboratory of Animal Genetics, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Masashi Harada
- Laboratory Animal Center, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Fuki Kawaguchi
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shinji Sasazaki
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yasushi Torii
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
| | - Kazuhiko Imakawa
- Laboratory of Molecular Reproduction, Research Institute of Agriculture, Tokai University, Kumamoto, Japan
| | - Kuniko Kawai
- Department of Biology, School of Biological Science, Tokai University, Sapporo, Japan
| | - Jianquan Liu
- Key Laboratory for Bio-Resource and Eco-Environment of Ministry and Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hideyuki Mannen
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Tomoko Kobayashi
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Atsugi, Japan
- *Correspondence: Tomoko Kobayashi,
| |
Collapse
|
13
|
Molecular Characterization of Bovine Leukemia Virus with the Evidence of a New Genotype Circulating in Cattle from Kazakhstan. Pathogens 2022; 11:pathogens11020180. [PMID: 35215125 PMCID: PMC8875264 DOI: 10.3390/pathogens11020180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leukosis (EBL) and has worldwide distribution. Infections with BLV have been reported in cattle from Kazakhstan but the virus has not yet been thoroughly characterized. In this study, we detect and estimate the level of BLV proviral DNA by qPCR in DNA samples from 119 cattle naturally infected with BLV, from 18 farms located in four different geographical regions of Kazakhstan. Furthermore, we conducted the phylogenetic and molecular analysis of 41 BLV env-gp51 gene sequences from BLV infected cattle. Phylogenetic analysis showed the affiliation of sequences to two already known genotypes G4 and G7 and also to a new genotype, classified as genotype G12. In addition, a multivariate method was employed for analysis of the association between proviral load and different variables such as the geographical location of the herd, cattle breeds, age of animals, and the presence of particular BLV genotypes. In summary, the results of this study provide the first evidence on molecular characterization of BLV circulating in cattle from Kazakhstan.
Collapse
|
14
|
Marawan MA, Alouffi A, El Tokhy S, Badawy S, Shirani I, Dawood A, Guo A, Almutairi MM, Alshammari FA, Selim A. Bovine Leukaemia Virus: Current Epidemiological Circumstance and Future Prospective. Viruses 2021; 13:v13112167. [PMID: 34834973 PMCID: PMC8618541 DOI: 10.3390/v13112167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bovine leukaemia virus (BLV) is a deltaretrovirus that is closely related to human T-cell leukaemia virus types 1 and 2 (HTLV-1 and -2). It causes enzootic bovine leukosis (EBL), which is the most important neoplastic disease in cattle. Most BLV-infected cattle are asymptomatic, which potentiates extremely high shedding rates of the virus in many cattle populations. Approximately 30% of them show persistent lymphocytosis that has various clinical outcomes; only a small proportion of animals (less than 5%) exhibit signs of EBL. BLV causes major economic losses in the cattle industry, especially in dairy farms. Direct costs are due to a decrease in animal productivity and in cow longevity; indirect costs are caused by restrictions that are placed on the import of animals and animal products from infected areas. Most European regions have implemented an efficient eradication programme, yet BLV prevalence remains high worldwide. Control of the disease is not feasible because there is no effective vaccine against it. Therefore, detection and early diagnosis of the disease are essential in order to diminish its spreading and the economic losses it causes. This review comprises an overview of bovine leukosis, which highlights the epidemiology of the disease, diagnostic tests that are used and effective control strategies.
Collapse
Affiliation(s)
- Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Suleiman El Tokhy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Sara Badawy
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Natural Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues Huazhong Agricultural University, Wuhan 430070, China
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad 2601, Afghanistan
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Infectious Diseases, Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Mashal M. Almutairi
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 22334, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Arar 73211, Saudi Arabia;
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| |
Collapse
|
15
|
Characterization of microRNA expression in B cells derived from Japanese black cattle naturally infected with bovine leukemia virus by deep sequencing. PLoS One 2021; 16:e0256588. [PMID: 34506539 PMCID: PMC8432782 DOI: 10.1371/journal.pone.0256588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 08/10/2021] [Indexed: 12/21/2022] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL), a malignant B cell lymphoma. However, the mechanisms of BLV-associated lymphomagenesis remain poorly understood. Here, after deep sequencing, we performed comparative analyses of B cell microRNAs (miRNAs) in cattle infected with BLV and those without BLV. In BLV-infected cattle, BLV-derived miRNAs (blv-miRNAs) accounted for 38% of all miRNAs in B cells. Four of these blv-miRNAs (blv-miR-B1-5p, blv-miR-B2-5p, blv-miR-B4-3p, and blv-miR-B5-5p) had highly significant positive correlations with BLV proviral load (PVL). The read counts of 90 host-derived miRNAs (bta-miRNAs) were significantly down-regulated in BLV-infected cattle compared to those in uninfected cattle. Only bta-miR-375 had a positive correlation with PVL in BLV-infected cattle and was highly expressed in the B cell lymphoma tissue of EBL cattle. There were a few bta-miRNAs that correlated with BLV tax/rex gene expression; however, BLV AS1 expression had a significant negative correlation with many of the down-regulated bta-miRNAs that are important for tumor development and/or tumor suppression. These results suggest that BLV promotes lymphomagenesis via AS1 and blv-miRNAs, rather than tax/rex, by down-regulating the expression of bta-miRNAs that have a tumor-suppressing function, and this downregulation is linked to increased PVL.
Collapse
|
16
|
Borjigin L, Yoneyama S, Saito S, Polat M, Inokuma M, Shinozaki Y, Tanaka N, Yamanaka R, Yasui A, Mimura M, Murakami H, Takeshima SN, Aida Y. A novel real time PCR assay for bovine leukemia virus detection using mixed probes and degenerate primers targeting novel BLV strains. J Virol Methods 2021; 297:114264. [PMID: 34411645 DOI: 10.1016/j.jviromet.2021.114264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/10/2023]
Abstract
The bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, the most common neoplastic disease in cattle. We previously developed the quantitative real-time PCR (qPCR) assay to measure the proviral loads of BLV using coordination of common motif (CoCoMo) degenerate primers. We here found four single mutations within the probe region of the original BLV-CoCoMo-qPCR assay, three of which have negative impact on its sensitivity in the probe sequences of the long terminal regions of the BLV-CoCoMo-qPCR-2 assay, using genomic DNA from 887 cows from 27 BLV-positive farms via a nationwide survey conducted in 2011 and 2017 in Japan. Therefore, the modified probes were designed to completely match the three BLV mutant strains identified here. Moreover, we examined the optimum ratio of the concentration to be mixed with the wild type and three new BLV TaqMan probes were designed here using genomic DNAs extracted from cattle naturally infected with the wild type BLV strain and three mutant strains. Finally, we successfully established an improved assay maintained the original sensitivity and reproducibility and can detect novel BLV strains.
Collapse
Affiliation(s)
- Liushiqi Borjigin
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Shuji Yoneyama
- Central Livestock Hygiene Service Center of Tochigi Prefecture, Utsunomiya, Tochigi, 321-0905, Japan
| | - Susumu Saito
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Michihito Inokuma
- Chuo Livestock Hygiene Service Center of Chiba Prefecture, Chiba, Chiba, 262-0011, Japan
| | - Yasuo Shinozaki
- Nanbu Livestock Hygiene Service Center of Chiba Prefecture, Kamogawa, Chiba, 296-0033, Japan
| | - Naoko Tanaka
- Nanbu Livestock Hygiene Service Center of Chiba Prefecture, Kamogawa, Chiba, 296-0033, Japan
| | - Risa Yamanaka
- Kumagaya Livestock Hygiene Service Center of Saitama Prefecture, Kumagaya, Saitama, 360-0813, Japan
| | - Anna Yasui
- Kumagaya Livestock Hygiene Service Center of Saitama Prefecture, Kumagaya, Saitama, 360-0813, Japan
| | - Munehito Mimura
- Kumagaya Livestock Hygiene Service Center of Saitama Prefecture, Kumagaya, Saitama, 360-0813, Japan
| | - Hironobu Murakami
- Laboratory of Animal Health Ⅱ, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Shin-Nosuke Takeshima
- Department of Food and Nutrition, Jumonji University, Niiza, Saitama, 352-8510, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan; Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
17
|
Molecular Characterization of the env Gene of Bovine Leukemia Virus in Cattle from Pakistan with NGS-Based Evidence of Virus Heterogeneity. Pathogens 2021; 10:pathogens10070910. [PMID: 34358060 PMCID: PMC8308526 DOI: 10.3390/pathogens10070910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Characterization of the global genetic diversity of the bovine leukemia virus (BLV) is an ongoing international research effort. Up to now BLV sequences have been classified into eleven distinct genotypes. Although BLV genotyping and molecular analysis of field isolates were reported in many countries, there is no report describing BLV genotypes present in cattle from Pakistan. In this study we examined 27 env gene sequences from BLV-infected cattle coming from four farms located in Khyber Pakhtunkwa, Gilgit Baltisan and Punjab provinces. Phylogenetic analyses revealed the classification of Pakistani sequences into genotypes G1 and G6. The alignment with the FLK-BLV sequence revealed the presence of 45 mutations, namely, seven in genotype G1 and 33 in genotype G6. Five mutations were found in both, G1 and G6 genotypes. Twelve amino acid substitutions were found in the analyzed sequences, of which only one P264S was specific for sequences from Pakistan. Furthermore, a certain degree of nucleotide heterogeneity was identified by NGS. These results highlight the need for further study on the importance of genetic variability of BLV, especially in the context of its pathogenicity and potential effect on serological detection.
Collapse
|
18
|
Bartlett PC, Ruggiero VJ, Hutchinson HC, Droscha CJ, Norby B, Sporer KRB, Taxis TM. Current Developments in the Epidemiology and Control of Enzootic Bovine Leukosis as Caused by Bovine Leukemia Virus. Pathogens 2020; 9:E1058. [PMID: 33352855 PMCID: PMC7766781 DOI: 10.3390/pathogens9121058] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/29/2023] Open
Abstract
Enzootic Bovine Leukosis (EBL) caused by the bovine leukemia virus (BLV) has been eradicated in over 20 countries. In contrast, the U.S. and many other nations are experiencing increasing prevalence in the absence of efforts to control transmission. Recent studies have shown that BLV infection in dairy cattle has a greater impact beyond the long-recognized lymphoma development that occurs in <5% of infected cattle. Like other retroviruses, BLV appears to cause multiple immune system disruptions, affecting both cellular and humoral immunity, which are likely responsible for increasingly documented associations with decreased dairy production and decreased productive lifespan. Realization of these economic losses has increased interest in controlling BLV using technology that was unavailable decades ago, when many nations eradicated BLV via traditional antibody testing and slaughter methods. This traditional control is not economically feasible for many nations where the average herd antibody prevalence is rapidly approaching 50%. The ELISA screening of cattle with follow-up testing via qPCR for proviral load helps prioritize the most infectious cattle for segregation or culling. The efficacy of this approach has been demonstrated in at least four herds. Breeding cattle for resistance to BLV disease progression also appears to hold promise, and several laboratories are working on BLV vaccines. There are many research priorities for a wide variety of disciplines, especially including the need to investigate the reports linking BLV and human breast cancer.
Collapse
Affiliation(s)
- Paul C. Bartlett
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (V.J.R.); (B.N.)
| | - Vickie J. Ruggiero
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (V.J.R.); (B.N.)
| | | | - Casey J. Droscha
- CentralStar Cooperative, East Lansing, MI 48910, USA; (C.J.D.); (K.R.B.S.)
| | - Bo Norby
- College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (V.J.R.); (B.N.)
| | - Kelly R. B. Sporer
- CentralStar Cooperative, East Lansing, MI 48910, USA; (C.J.D.); (K.R.B.S.)
| | - Tasia M. Taxis
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
19
|
Bai L, Hirose T, Assi W, Wada S, Takeshima SN, Aida Y. Bovine Leukemia Virus Infection Affects Host Gene Expression Associated with DNA Mismatch Repair. Pathogens 2020; 9:pathogens9110909. [PMID: 33143351 PMCID: PMC7694100 DOI: 10.3390/pathogens9110909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 01/17/2023] Open
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis, a malignant form of B-cell lymphoma, and is closely related to human T-cell leukemia viruses. We investigated whether BLV infection affects host genes associated with DNA mismatch repair (MMR). Next-generation sequencing of blood samples from five calves experimentally infected with BLV revealed the highest expression levels of seven MMR genes (EXO1, UNG, PCNA, MSH2, MSH3, MSH6, and PMS2) at the point of peak proviral loads (PVLs). Furthermore, MMR gene expression was only upregulated in cattle with higher PVLs. In particular, the expression levels of MSH2, MSH3, and UNG positively correlated with PVL in vivo. The expression levels of all seven MMR genes in pig kidney-15 cells and the levels of PMS2 and EXO1 in HeLa cells also increased tendencies after transient transfection with a BLV infectious clone. Moreover, MMR gene expression levels were significantly higher in BLV-expressing cell lines compared with those in the respective parental cell lines. Expression levels of MSH2 and EXO1 in BLV-infected cattle with lymphoma were significantly lower and higher, respectively, compared with those in infected cattle in vivo. These results reveal that BLV infection affects MMR gene expression, offering new candidate markers for lymphoma diagnosis.
Collapse
Affiliation(s)
- Lanlan Bai
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako 351-0198, Japan; (L.B.); (W.A.); (S.W.); (S.-n.T.)
- Viral Infectious Diseases Unit, RIKEN, Wako 351-0198, Japan;
| | - Tomoya Hirose
- Viral Infectious Diseases Unit, RIKEN, Wako 351-0198, Japan;
- Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Wlaa Assi
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako 351-0198, Japan; (L.B.); (W.A.); (S.W.); (S.-n.T.)
- Viral Infectious Diseases Unit, RIKEN, Wako 351-0198, Japan;
- Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako 351-0198, Japan; (L.B.); (W.A.); (S.W.); (S.-n.T.)
| | - Shin-nosuke Takeshima
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako 351-0198, Japan; (L.B.); (W.A.); (S.W.); (S.-n.T.)
- Viral Infectious Diseases Unit, RIKEN, Wako 351-0198, Japan;
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, Niiza 352-0017, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako 351-0198, Japan;
- Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Tokyo 113-8657, Japan
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako 351-0198, Japan
- Correspondence: ; Tel.: +81-48-462-4418
| |
Collapse
|
20
|
Metwally S, Hamada R, Ali AO, Mahmoud HYAH, Baker NM, Mohamed AEA, Wada S, Matsumoto Y, Aida Y. Detection and molecular characterization of bovine leukemia virus in beef cattle presented for slaughter in Egypt. J Vet Med Sci 2020; 82:1676-1684. [PMID: 33087638 PMCID: PMC7719883 DOI: 10.1292/jvms.20-0477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, the most common neoplastic disease of cattle worldwide and a serious problem
for the cattle industry. Previous studies have shown the molecular prevalence of BLV and the coexistence of BLV genotype-1 and -4 in Egyptian dairy cattle;
however, the molecular characteristics of BLV in Egyptian beef cattle are unknown. Therefore, we collected blood samples of 168 beef cattle from slaughterhouses
in three governorates in Egypt. Based on BLV-CoCoMo-qPCR-2 targeting long terminal repeats and nested PCR targeting the
env-gp51 gene, the BLV provirus infection rates were found to be 47/168 (28.0%) and 42/168 (25.0%), respectively.
Phylogenetic analysis based on 501 bp of the BLV env-gp51 gene from 42 BLV isolates revealed that at least six distinctive strains (b, e, f, g,
x, and z) were prevalent in cattle across the examined regions. Furthermore, phylogenetic analysis of the 420 bp sequence of the BLV env-gp51
region of the six strains against 11 known genotypes showed that the strains b, e, f, and g were clustered into genotype-1, and strains x and z were clustered
into genotype-4. Our results also indicated that strains b and x exist in both dairy and beef cattle in Egypt. The present study is the first to detect and
genotype BLV among beef cattle in Egypt.
Collapse
Affiliation(s)
- Samy Metwally
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour city, El Beheira 22511, Egypt
| | - Rania Hamada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Alsagher O Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Hassan Y A H Mahmoud
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Nabil M Baker
- Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour city, El Beheira 22511, Egypt
| | - Adel E A Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena City, Qena 83523, Egypt
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Aida
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
21
|
Hamada R, Metwally S, Polat M, Borjigin L, Ali AO, Abdel-Hady AAA, Mohamed AEA, Wada S, Aida Y. Detection and Molecular Characterization of Bovine Leukemia Virus in Egyptian Dairy Cattle. Front Vet Sci 2020; 7:608. [PMID: 33134337 PMCID: PMC7511665 DOI: 10.3389/fvets.2020.00608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/28/2020] [Indexed: 11/23/2022] Open
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis (EBL), the most common neoplastic disease in cattle worldwide. The first EBL outbreak in Egypt was reported in 1997. To date, there are few studies regarding BLV diagnosis using only serological detection and no studies investigating the distribution of BLV provirus, which is the retroviral genome integrated into the host genome, in Egypt. The genetic characteristics of Egyptian BLV strains are also unknown. Therefore, we aimed to detect BLV provirus and determine BLV genetic variability among dairy cattle in Egypt. We collected 270 blood samples of dairy cattle from 24 farms located in five provinces in Egypt. Out of the 270 samples, 58 (21.5%) were positive for BLV provirus. Phylogenetic analysis based on 18 420-bp selected sequences out of 50 isolates of the BLV env-gp51 gene demonstrated that Egyptian BLV isolates were clustered into genotype-1 and-4, among 11 genotypes detected worldwide. Furthermore, phylogenetic analysis and alignment of the 501-bp sequence of the env-gp51 gene revealed that at least six genetically different strains are present in Egypt. Genotype-1 isolates comprised four different strains (G1-a, G1-b, G1-c, and G1-d) and genotype-4 isolates included two different strains (G4-x and G4-y). Moreover, in one farm with 100% infection rate, we identified three isolates of G1-a strain, 35 isolates of G4-x strain, and two isolates of G4-y strain. Overall, this study provides the new report on molecular prevalence of BLV in Egypt and records the coexistence of BLV genotype-1 and-4 in Egyptian cattle.
Collapse
Affiliation(s)
- Rania Hamada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Saitama, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Samy Metwally
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Saitama, Japan.,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Meripet Polat
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Saitama, Japan
| | - Liushiqi Borjigin
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Saitama, Japan
| | - Alsagher O Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - A A A Abdel-Hady
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adel E A Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Yoko Aida
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Saitama, Japan
| |
Collapse
|
22
|
LE DT, Yamashita-Kawanishi N, Okamoto M, Nguyen SV, Nguyen NH, Sugiura K, Miura T, Haga T. Detection and genotyping of bovine leukemia virus (BLV) in Vietnamese cattle. J Vet Med Sci 2020; 82:1042-1050. [PMID: 32475959 PMCID: PMC7399327 DOI: 10.1292/jvms.20-0094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine leukemia virus (BLV) belongs to the genus, Deltaretrovirus of the family, Retroviridae and it is the causative agent of enzootic bovine leukosis. The prevalence of BLV in three provinces in the Red River Delta Region in the North of Vietnam, Hanoi, Vinhphuc and Bacninh was studied from April 2017 to June 2018. A total of 275 blood samples collected from cattle were used for serum isolation and DNA extraction. Of these samples, 266 sera were subjected to ELISA test for detecting antibody against BLV gp51 protein and 152 DNA samples were used to detect the 444 bp fragment corresponding to a part of the gp51 region of the env by nested PCR. The results showed that 16.5% (n=44) and 21.1% (n=32) of samples were positive for BLV gp51 antibody and BLV proviral DNA, respectively. Phylogenetic analysis of the partial (423 bp) and complete (913 bp) BLV env-gp51 gene indicated that Vietnamese strains were clustered into genotypes 1, 6 and 10 (G1, G6 and G10). Of those genotypes, G1 genotype was dominant; G6 strains were designated as G6e and G6f subgenotypes; the existence of genotype 10 was confirmed for the first time in Vietnam. The present study provides important information regarding the prevalence of BLV infection and genetic characteristics of BLV strains identified in Vietnam, contributing to promote the establishment of disease control and eradication strategies in Vietnam.
Collapse
Affiliation(s)
- Dung Thi LE
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nanako Yamashita-Kawanishi
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mari Okamoto
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Son Vu Nguyen
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi100000, Vietnam
| | - Nam Huu Nguyen
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi100000, Vietnam
| | - Katsuaki Sugiura
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoyuki Miura
- Research Center for Infectious Diseases, Institute for Frontier Life and Medical Science, Kyoto University, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeshi Haga
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
23
|
Sato H, Bai L, Borjigin L, Aida Y. Overexpression of bovine leukemia virus receptor SLC7A1/CAT1 enhances cellular susceptibility to BLV infection on luminescence syncytium induction assay (LuSIA). Virol J 2020; 17:57. [PMID: 32321527 PMCID: PMC7178733 DOI: 10.1186/s12985-020-01324-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/08/2020] [Indexed: 11/10/2022] Open
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis, the most common neoplastic disease in cattle. We previously reported the development and protocol of the luminescence syncytium induction assay (LuSIA), a method for evaluating BLV infectivity based on CC81-GREMG cells. These cells form syncytia expressing enhanced green fluorescent protein when co-cultured with BLV-infected cells. Recently, we confirmed CAT1/SLC7A1 functions as a receptor of BLV. Here, we focused on CAT1/SLC7A1 to increase the sensitivity of LuSIA. We constructed a bovine CAT1-expressing plasmid and established a new CC81-GREMG-derived reporter cell line highly expressing bovine CAT1 (CC81-GREMG-CAT1). The new LuSIA protocol using CC81-GREMG-CAT1 cells measures cell-to-cell infectivity and cell-free infectivity of BLV faster and with greater sensitivity than the previous protocol using CC81-GREMG. The new LuSIA protocol is quantitative and more sensitive than the previous assay based on CC81-GREMG cells and will facilitate the development of several new BLV assays.
Collapse
Affiliation(s)
- Hirotaka Sato
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Lanlan Bai
- Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Liushiqi Borjigin
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoko Aida
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Virus Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
24
|
Moe KK, Polat M, Borjigin L, Matsuura R, Hein ST, Moe HH, Aida Y. New evidence of bovine leukemia virus circulating in Myanmar cattle through epidemiological and molecular characterization. PLoS One 2020; 15:e0229126. [PMID: 32084185 PMCID: PMC7034883 DOI: 10.1371/journal.pone.0229126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/30/2020] [Indexed: 11/29/2022] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide and causes serious problems for the cattle industry. In this study, we examined the prevalence of BLV infection and the distribution of BLV genotypes in cattle in the northern, central, and southern parts of Myanmar. The prevalence of BLV infection among Myanmar cattle (37.04%) in this study was markedly higher than the prevalence (9.1%) observed in our earlier study in which BLV was detected from the limited number of cattle only from a small area of Myanmar. Phylogenetic analysis of partial env-gp51 sequence of the isolated BLV strains revealed that there are at least three BLV genotypes (genotype-1, genotype-6, and genotype-10) in Myanmar, which have also been detected in the neighboring countries. We performed this study to estimate the BLV proviral load, which is a major diagnosis index for determining the virus transmission risk. The cattle of the three test regions with warm, wet, and humid climatic conditions (upper Sagaing, Yangon, and Kayin) exhibited a high mean proviral load, while cattle of three other regions with low annual rainfall and very high temperature (Mandalay, Magway, and upper Bago) exhibited a low mean proviral load. Further, the level of proviral load and the prevalence of BLV infection in Myanmar native cattle (N = 235) were lower than that in the hybrid cattle (Holstein Friesian × Myanmar native) (N = 62). We also observed that the cattle with high risk for BLV transmission, which have high proviral load, may enhance the BLV infection rate. Hence, to control BLV transmission, it is necessary to eliminate these cattle with high-risk for BLV transmission and to diagnose BLV provirus in cattle in the remaining regions/states of Myanmar sharing a boundary with neighboring countries.
Collapse
Affiliation(s)
- Kyaw Kyaw Moe
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
- Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Meripet Polat
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
| | - Liushiqi Borjigin
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
| | - Ryosuke Matsuura
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, Japan
| | - Si Thu Hein
- Department of Anatomy, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Hla Hla Moe
- Department of Genetics and Animal Breeding, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Yoko Aida
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
25
|
Bai L, Takeshima SN, Sato M, Davis WC, Wada S, Kohara J, Aida Y. Mapping of CD4 + T-cell epitopes in bovine leukemia virus from five cattle with differential susceptibilities to bovine leukemia virus disease progression. Virol J 2019; 16:157. [PMID: 31842930 PMCID: PMC6916044 DOI: 10.1186/s12985-019-1259-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/22/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV), which is closely related to human T-cell leukemia virus, is the etiological agent of enzootic bovine leukosis, a disease characterized by a highly prolonged course involving persistent lymphocytosis and B-cell lymphoma. The bovine major histocompatibility complex class II region plays a key role in the subclinical progression of BLV infection. In this study, we aimed to evaluate the roles of CD4+ T-cell epitopes in disease progression in cattle. METHODS We examined five Japanese Black cattle, including three disease-susceptible animals, one disease-resistant animal, and one normal animal, classified according to genotyping of bovine leukocyte antigen (BoLA)-DRB3 and BoLA-DQA1 alleles using polymerase chain reaction sequence-based typing methods. All cattle were inoculated with BLV-infected blood collected from BLV experimentally infected cattle and then subjected to CD4+ T-cell epitope mapping by cell proliferation assays. RESULTS Five Japanese Black cattle were successfully infected with BLV, and CD4+ T-cell epitope mapping was then conducted. Disease-resistant and normal cattle showed low and moderate proviral loads and harbored six or five types of CD4+ T-cell epitopes, respectively. In contrast, the one of three disease-susceptible cattle with the highest proviral load did not harbor CD4+ T-cell epitopes, and two of three other cattle with high proviral loads each had only one epitope. Thus, the CD4+ T-cell epitope repertoire was less frequent in disease-susceptible cattle than in other cattle. CONCLUSION Although only a few cattle were included in this study, our results showed that CD4+ T-cell epitopes may be associated with BoLA-DRB3-DQA1 haplotypes, which conferred differential susceptibilities to BLV proviral loads. These CD4+ T-cell epitopes could be useful for the design of anti-BLV vaccines targeting disease-susceptible Japanese Black cattle. Further studies of CD4+ T-cell epitopes in other breeds and using larger numbers of cattle with differential susceptibilities are required to confirm these findings.
Collapse
Affiliation(s)
- Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Faculty of Human Life, Department of Food and Nutrition, Jumonji University, 2-1-28 Sugasawa, Niiza, Saitama, 352-0017, Japan.
| | - Masaaki Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - William C Davis
- Monoclonal antibody center, Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, WA, 99164-7040, USA
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Kohara
- Animal Research Center, Hokkaido Research Organization, 5-39-1 Shintoku, Hokkaido, 081-0038, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
26
|
Hsieh JC, Li CY, Hsu WL, Chuang ST. Molecular Epidemiological and Serological Studies of Bovine Leukemia Virus in Taiwan Dairy Cattle. Front Vet Sci 2019; 6:427. [PMID: 31867344 PMCID: PMC6908947 DOI: 10.3389/fvets.2019.00427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/13/2019] [Indexed: 11/27/2022] Open
Abstract
Bovine leukemia virus (BLV) infection results in a decrease in milk yield and quality, a compromise in immunity, and shortening in the longevity of cows. The current status of BLV infection of dairy cattle in Taiwan remains unclear. To evaluate BLV infection, anti-BLV gp51 antibody and proviral DNA were detected. Surprisingly, the seroprevalence of BLV at the animal and herd level was as high as 81.8% (540/660 cattle) and 99.1% (109/110 herds), respectively. Among 152 blood samples analyzed, 132 (86.8%) were detected as positive for BLV-proviral DNA. When the complete blood count (CBC) was taken into account, the white blood cell (WBC) number appears to be the factor with the highest predicted potential for BLV infection. Moreover, based on receiver operating characteristic (ROC) curve analysis, the sensitivity and specificity are 72.0 and 75.0%, respectively, when the cut-off value of the WBC was set at 10.215 K/μL. Despite the co-circulation of genotype 1 and 3 in Taiwan, genotype 1 was much more prevalent (29/30). Taken together, due to the high prevalence of BLV, the identification of risk factors for interrupting the routes of transmission of BLV are critical for the control and prevention of further BLV infection.
Collapse
Affiliation(s)
- Jui-Chun Hsieh
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chang-Yan Li
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Te Chuang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
27
|
Yang Y, Chen L, Dong M, Huang W, Hao X, Peng Y, Gong Z, Qin A, Shang S, Yang Z. Molecular characterization of bovine leukemia virus reveals existence of genotype 4 in Chinese dairy cattle. Virol J 2019; 16:108. [PMID: 31455344 PMCID: PMC6712836 DOI: 10.1186/s12985-019-1207-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/23/2019] [Indexed: 11/10/2022] Open
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leucosis and is widely spread worldwide, except several European countries, Australia and New Zealand. Although BLV is highly prevalent in China, information about the genetic diversity and evolutionary dynamics of BLV among Chinese dairy herds is still lacking. To determine the genetic variability of BLV, 219 cows from four cities of Ningxia province of China were screened for BLV infection by fluorescence resonance energy transfer (FRET)-PCR and sequencing, 16 selected positive samples were subjected to molecular characterization. Phylogenetic analysis using the neighbor-joining (NJ) method on complete sequences of envelope (env) gene of BLV obtained from China and those available in GenBank (representing BLV genotypes 1-10) revealed that those Chinese strains belonged to genotypes 4 and 6. Totally, 23 mutations were identified and 16 of them were determined to be unique mutations among Chinese strains. Alignment of the deduced amino acid sequences demonstrated six mutations in glycoprotein 51 (gp51) and three mutations in glycoprotein 30 (gp30) located in the identified neutralizing domain (ND), CD8+ T cell epitope, E-epitope, B-epitope, gp51N12 and cytoplasmic domain of transmembrane protein. This study reported for the first time the BLV genotype 4 in China, and further studies are warranted to compare its immunogenicity and pathogenicity with other BLV genotypes.
Collapse
Affiliation(s)
- Yi Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Lina Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Maoli Dong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Wenjiang Huang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Victor Pharmaceutical Company of Limited Liability, Zhenjiang, 212132, Jiangsu, China
| | - Xiaoli Hao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yalan Peng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zaicheng Gong
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Aijian Qin
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shaobin Shang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Zhangping Yang
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
28
|
Yu C, Wang X, Zhou Y, Wang Y, Zhang X, Zheng Y. Genotyping bovine leukemia virus in dairy cattle of Heilongjiang, northeastern China. BMC Vet Res 2019; 15:179. [PMID: 31142319 PMCID: PMC6542110 DOI: 10.1186/s12917-019-1863-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 04/05/2019] [Indexed: 12/14/2022] Open
Abstract
Background Bovine leukemia virus (BLV) causes enzootic bovine leukosis in cattle and leads to heavy economic losses in the husbandry industry. Heilongjiang Province, China, is rich in dairy cattle. However, its current BLV epidemiology and genotypes have still not been evaluated and confirmed. In this report, we investigated the BLV epidemiology in dairy cattle in the major regions of Heilongjiang Province via the nested PCR assay. Results A total of 730 blood samples were collected from nine different farms in six regions of Heilongjiang. The results showed that the infection rate of these regions ranged from null to 31%. With a clustering analysis of 60 published BLV env sequences, genotypes 1 and 6 were confirmed to be circulating in Heilongjiang. Importantly, a new genotype, 11, and a new subgenotype, 6E, were also identified in the Harbin and Daqing regions, respectively. An epitope analysis showed that a cluster of T-X-D-X-R-XXXX-A sequences in genotype 11 gp51 neutralizing domain 2 was unique among all currently known BLV isolates and was therefore a defining feature of this new genotype. Conclusions BLV epidemics and genotypes were initially investigated in dairy cattle of Heilongjiang. A relatively high infection rate was found in some regions of this province. A new genotype, G11, with a highly specific motif, was identified and thus added as a new member to the current BLV genotype family. This report provides an initial reference for future investigations and subsequent control of BLV transmission and spread in this region. Electronic supplementary material The online version of this article (10.1186/s12917-019-1863-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changqing Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Xuefeng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Zhou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xianfeng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yonghui Zheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, USA
| |
Collapse
|
29
|
Takeshima SN, Ohno A, Aida Y. Bovine leukemia virus proviral load is more strongly associated with bovine major histocompatibility complex class II DRB3 polymorphism than with DQA1 polymorphism in Holstein cow in Japan. Retrovirology 2019; 16:14. [PMID: 31096993 PMCID: PMC6524304 DOI: 10.1186/s12977-019-0476-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/08/2019] [Indexed: 01/14/2023] Open
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis and is closely related to the human T-lymphotropic virus. Bovine major histocompatibility complex (BoLAs) are used extensively as markers of disease and immunological traits in cattle. For BLV diagnosis, proviral load is a major diagnosis index for the determination of disease progression and transmission risk. Therefore, we investigated the frequency of BoLA-DRB3 alleles, BoLA-DQA1 alleles, and haplotypes of BoLA class II isolated from the heads of 910 BLV-infected cows out of 1290 cows assessed from BLV-positive farms, in a nationwide survey from 2011 to 2014 in Japan. Our aim was to identify BoLA class II polymorphisms associated with the BLV proviral load in the Holstein cow. The study examined 569 cows with a high proviral load and 341 cows with a low proviral load. Using the highest odds ratio (OR) as a comparison index, we confirmed that BoLA-DRB3 was the best marker for determining which cow spread the BLV (OR 13.9 for BoLA-DRB3, OR 11.5 for BoLA-DQA1, and OR 6.2 for BoLA class II haplotype). In addition, DRB3*002:01, *009:02, *012:01, *014:01, and *015:01 were determined as BLV provirus associated alleles. BoLA-DRB3*002:01, *009:02, and *014:01 were determined as resistant alleles (OR > 1), and BoLA-DRB3*012:01 and *015:01 were determined as susceptible alleles (OR < 1). In this study, we showed that BoLA-DRB3 was a good marker for determining which cow spread BLV, and we found not only one resistant allele (BoLA-DRB3*009:02), but also two other disease-resistant alleles and two disease-susceptible alleles. This designation of major alleles as markers of susceptibility or resistance can allow the determination of the susceptibility or resistance of most cows to disease. Overall, the results of this study may be useful in eliminating BLV from farms without having to separate cows into several cowsheds.
Collapse
Affiliation(s)
- Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan.,Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Wako, Saitama, 3510198, Japan.,Department of Food and Nutrition, Jumonji University, Niiza, Saitama, 352-8510, Japan
| | - Ayumu Ohno
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama, 351-0198, Japan. .,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
30
|
Molecular characterization of Italian bovine leukemia virus isolates reveals the presence of distinct phylogenetic clusters. Arch Virol 2019; 164:1697-1703. [DOI: 10.1007/s00705-019-04255-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 11/26/2022]
|
31
|
Yang Y, Chu S, Shang S, Yang Z, Wang C. Short communication: Genotyping and single nucleotide polymorphism analysis of bovine leukemia virus in Chinese dairy cattle. J Dairy Sci 2019; 102:3469-3473. [PMID: 30712932 DOI: 10.3168/jds.2018-15481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/05/2018] [Indexed: 11/19/2022]
Abstract
Bovine leukemia virus (BLV) causes enzootic leucosis in cattle and is classified into 10 genotypes with a worldwide distribution, except for several European countries, Australia, and New Zealand. Although BLV is widespread in Chinese cows with the positive rate of 49.1% at the individual level, very little is known about the BLV genotype in dairy cattle in China. To determine BLV genetic variability in cows in China, 112 BLV-positive samples from 5 cities in China were used for BLV molecular characterization in this study. Phylogenetic analysis using the neighbor-joining method on partial env sequence encoding gp51 obtained from 5 Chinese cities and those available in GenBank (n = 53, representing BLV genotype 1-10) revealed the Chinese strains belonged to genotype 6. Seven unique SNP were identified among Yancheng, Shanghai, and Bengbu strains out of the total 12 SNP identified in Chinese strains. The genotyping coupled with SNP analysis of BLV can serve as a useful molecular epidemiological tool for tracing the source of pathogens. This study highlights the importance of genetic analysis of geographically diverse BLV strains to understand BLV global genetic diversity.
Collapse
Affiliation(s)
- Y Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - S Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - S Shang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Z Yang
- International Corporation Laboratory of Agriculture and Agricultural Products Safety, Yangzhou University, Yangzhou 225009, Jiangsu, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - C Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| |
Collapse
|
32
|
Nieto Farias MV, Souza FN, Lendez PA, Martínez-Cuesta L, Santos KR, Della Libera AMMP, Ceriani MC, Dolcini GL. Lymphocyte proliferation and apoptosis of lymphocyte subpopulations in bovine leukemia virus-infected dairy cows with high and low proviral load. Vet Immunol Immunopathol 2018; 206:41-48. [PMID: 30502911 DOI: 10.1016/j.vetimm.2018.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022]
Abstract
Bovine leukemia virus (BLV) is one of the most important virus in dairy cattle. The infection behavior follows what we call the iceberg phenomenon: 60% of infected animals do not show clinical signs; 30% develop persistent lymphocytosis (PL); and the remaining 10%, die due to lymphosarcoma. BLV transmission depends on infected cell exchange and thus, proviral load is determinant. Understanding the mechanisms by which cattle governs the control of viral dissemination will be desirable for designing effective therapeutic or preventive strategies for BLV. The development of high proviral load (HPL) or low proviral load (LPL) might be associated to genetic factors and humoral immune responses, however cellular responses are not fully described. It is known that BLV affects cellular homeostasis: proliferation and apoptosis. It is also known that the BLV tropism is directed towards B lymphocytes, and that lymphocytotic animals have elevated amounts of these cells. Usually, when an animal is infected by BLV, the B markers that increase are CD21, CD5 and CD11b. This increase could be related to the modulation of apoptosis in these cells. This is the first work in which animals infected with BLV are classified according to their proviral load and the subpopulations of B and T lymphocytes are evaluated in terms of their percentage in peripheral blood and its stage of apoptosis and viability. PBMCs from HPL animals proliferated more than LPL and non-infected animals. CD11b+/CD5+ lymphocytes in LPL animals presented greater early and late apoptosis than HPL animals and cells of HPL animals had increased viability than LPL animals. Our results confirm that BLV alters the mechanism of apoptosis and proliferation of infected cells.
Collapse
Affiliation(s)
- María Victoria Nieto Farias
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina
| | - Fernando Nogueira Souza
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo, 05508-270, Brazil
| | - Pamela Anahí Lendez
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina
| | - Lucía Martínez-Cuesta
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina
| | - Kamila Reis Santos
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo, 05508-270, Brazil
| | - Alice Maria Melville Paiva Della Libera
- Veterinary Clinical Immunology Research Group, Departamento de Clínica Médica, Faculdade de Medicina Veterinaria e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva 87, Cidade Universitária, São Paulo, 05508-270, Brazil
| | - María Carolina Ceriani
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina
| | - Guillermina Laura Dolcini
- Laboratorio de Virología, Centro de Investigación Veterinaria de Tandil (CIVETAN, CONICET-UNCPBA-CICPBA), Facultad de Cs. Veterinarias, UNCPBA, Paraje Arroyo Seco s/n, 7000, Tandil, Argentina.
| |
Collapse
|
33
|
Bai L, Yokoyama K, Watanuki S, Ishizaki H, Takeshima SN, Aida Y. Development of a new recombinant p24 ELISA system for diagnosis of bovine leukemia virus in serum and milk. Arch Virol 2018; 164:201-211. [PMID: 30311076 DOI: 10.1007/s00705-018-4058-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis. Here, we designed a p24 enzyme-linked immunosorbent assay (ELISA) to detect antibodies specific for BLV capsid protein p24 (encoded by the gag gene) in bovine serum samples. The p24 gene was inserted into an Escherichia coli expression system, and recombinant proteins (GST-p24, p24, and His-p24) were purified. His-p24 was the most suitable antigen for using in the ELISA. The cut-off point was calculated from a receiver operating characteristic curve derived from a set of 582 field samples that previously tested positive or negative by BLV-CoCoMo-qPCR-2, which detects BLV provirus. The new p24 ELISA showed almost the same specificity and sensitivity as a commercial gp51 ELISA kit when used to test field serum samples, and allowed monitoring of p24 antibodies in raw milk and whey. Comparing the results for the p24 ELISA and gp51 ELISA revealed that p24 antibodies were detected earlier than gp51 antibodies in three out of eight calves experimentally infected with BLV, indicating improved detection without diminishing BLV serodiagnosis. Thus, the p24 ELISA is a robust and reliable assay for detecting BLV antibodies in serum or milk, making it is a useful tool for large-scale BLV screening.
Collapse
Affiliation(s)
- Lanlan Bai
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirowasa, Wako, Saitama, 3510198, Japan.,Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan
| | - Kana Yokoyama
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirowasa, Wako, Saitama, 3510198, Japan.,Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan
| | - Sonoko Watanuki
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirowasa, Wako, Saitama, 3510198, Japan.,Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan.,Laboratory of Global Animal Resource Science, Department of Global Agriculture Science, Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 1138657, Japan
| | - Hiroshi Ishizaki
- Grazing Animal Unit, Division of Grassland Farming, Institute of Livestock and Grassland Sciences, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi, 3292793, Japan
| | - Shin-Nosuke Takeshima
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirowasa, Wako, Saitama, 3510198, Japan.,Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan.,Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 1138657, Japan
| | - Yoko Aida
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirowasa, Wako, Saitama, 3510198, Japan. .,Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 3510198, Japan. .,Laboratory of Global Animal Resource Science, Department of Global Agriculture Science, Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 1138657, Japan. .,Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 1138657, Japan.
| |
Collapse
|
34
|
Kohara J, Takeuchi M, Hirano Y, Sakurai Y, Takahashi T. Vector control efficacy of fly nets on preventing bovine leukemia virus transmission. J Vet Med Sci 2018; 80:1524-1527. [PMID: 30122691 PMCID: PMC6207509 DOI: 10.1292/jvms.18-0199] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine leukemia virus (BLV) is horizontally transmitted among cattle through infected blood. This 3-year field study (2013-2016) aimed to confirm the potential of the blood-sucking stable fly as a risk factor of BLV transmission and to determine the efficacy of vector control on preventing the transmission of BLV. The BLV-positive conversion rate during summer was higher than that during winter in a model dairy farm, where many stable flies were observed during the summer. After fly nets were fixed onto the barn to prevent fly invasion, the BLV-positive conversion rate during the summer was significantly decreased compared with that in the absence of fly nets (P<0.01). These findings suggest that vector control using a fly net may inhibit BLV transmission.
Collapse
Affiliation(s)
- Junko Kohara
- Animal Research Center, Agricultural Research Department, Hokkaido Research Organization, Shintoku, Hokkaido 081-0038, Japan
| | - Miki Takeuchi
- Hokkaido Higashi Agriculture Mutual Aid Association, Tsurui, Hokkaido 085-1204, Japan
| | - Yuki Hirano
- Animal Research Center, Agricultural Research Department, Hokkaido Research Organization, Shintoku, Hokkaido 081-0038, Japan
| | - Yoshie Sakurai
- Animal Research Center, Agricultural Research Department, Hokkaido Research Organization, Shintoku, Hokkaido 081-0038, Japan
| | | |
Collapse
|
35
|
Gautam S, Mishra N, Kalaiyarasu S, Jhade SK, Sood R. Molecular Characterization of Bovine Leukaemia Virus (BLV) Strains Reveals Existence of Genotype 6 in Cattle in India with evidence of a new subgenotype. Transbound Emerg Dis 2018; 65:1968-1978. [PMID: 30044055 DOI: 10.1111/tbed.12979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/16/2018] [Accepted: 07/16/2018] [Indexed: 01/18/2023]
Abstract
Bovine leukaemia virus (BLV) causes enzootic leucosis in cattle and is prevalent worldwide. Although recent studies have shown that BLV strains can be classified into 10 distinct genotypes, no information is available regarding the BLV genotype prevalent in cattle in India. To determine the genetic variability in BLV, in this study, 118 adult dairy cows from three states of India were screened for BLV infection by env gp51-specific ELISA and nested PCR. Of the 33 cows found positive by both PCR and ELISA, 10 selected BLV strains were subjected to molecular characterization. Phylogenetic analyses of partial and full-length env gp51 gene sequences of Indian BLV strains and other geographical diverse BLV strains representing all the 10 genotypes revealed that Indian strains belonged to BLV genotype 6. Although Indian strains showed close genetic proximity with the strains circulating in South America, they were classified into a new subgenotype within genotype 6. Alignment of deduced amino acid sequences in gp51 demonstrated substitutions mainly in conformational epitope G, neutralizing domain 2 and linear epitope D, with a novel mutation (threonine to alanine at residue 252) found in D-epitope of all the Indian BLV strains. Although serological evidence of BLV infection in India has been reported earlier, this study on molecular characterization of BLV strains established the existence of BLV genotype 6 in India. Additionally, the results of this study highlight the importance of genetic analysis of geographically diverse BLV strains to understand BLV global genetic diversity and further studies are required to determine BLV genetic diversity and extent of BLV infection in cattle in India.
Collapse
Affiliation(s)
- Siddharth Gautam
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Niranjan Mishra
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Semmannan Kalaiyarasu
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Sandeep Kumar Jhade
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Richa Sood
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| |
Collapse
|
36
|
Pluta A, Albritton LM, Rola-Łuszczak M, Kuźmak J. Computational analysis of envelope glycoproteins from diverse geographical isolates of bovine leukemia virus identifies highly conserved peptide motifs. Retrovirology 2018; 15:2. [PMID: 29310678 PMCID: PMC5759284 DOI: 10.1186/s12977-017-0383-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/23/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) is a deltaretrovirus infecting bovine B cells and causing enzootic bovine leucosis. The SU or surface subunit, gp51, of its envelope glycoprotein is involved in receptor recognition and virion attachment. It contains the major neutralizing and CD4+ and CD8+ T cell epitopes found in naturally infected animals. In this study, we aimed to determine global variation and conservation within gp51 in the context of developing an effective global BLV vaccine. RESULTS A total of 256 sequences extracted from the NCBI database and collected in different parts of the world, were studied to identify conserved segments along the env gene sequences that encode the gp51 protein. Using the MEME server and the conserved DNA Region module for analysis within DnaSP, we identified six conserved segments, referred to as A-F, and five semi-conserved segments, referred to as G-K. The amino acid conservation ranged from 98.8 to 99.8% in conserved segments A to F, while segments G to K had 89.6-95.2% conserved amino acid sequence. Selection analysis of individual segments revealed that residues of conserved segments had undergone purifying selection, whereas, particular residues in the semi-conserved segments are currently undergoing positive selection, specifically at amino acid positions 48 in segment K, 74 in segment G, 82 in segment I, 133 and 142 in segment J, and residue 291 in segment H. Each of the codons for these six residues contain the most highly variable nucleotides within their respective semi-conserved segments. CONCLUSIONS The data described here show that the consensus amino acid sequence constitutes a strong candidate from which a global vaccine can be derived for use in countries where eradication by culling is not economically feasible. The most conserved segments overlap with amino acids in known immunodeterminants, specifically in epitopes D-D', E-E', CD8+ T-cell epitopes, neutralizing domain 1 and CD4+ T-cell epitopes. Two of the segments reported here represent unique segments that do not overlap with previously identified antigenic determinants. We propose that evidence of positive selection in some residues of the semi-conserved segments suggests that their variation is involved in viral strategy to escape immune surveillance of the host.
Collapse
Affiliation(s)
- Aneta Pluta
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| | - Lorraine M. Albritton
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN USA
| | - Marzena Rola-Łuszczak
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| | - Jacek Kuźmak
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
37
|
Molecular epidemiology and characterization of bovine leukemia virus in domestic yaks (Bos grunniens) on the Qinghai-Tibet Plateau, China. Arch Virol 2017; 163:659-670. [DOI: 10.1007/s00705-017-3658-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 11/09/2017] [Indexed: 11/27/2022]
|
38
|
Polat M, Takeshima SN, Aida Y. Epidemiology and genetic diversity of bovine leukemia virus. Virol J 2017; 14:209. [PMID: 29096657 PMCID: PMC5669023 DOI: 10.1186/s12985-017-0876-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 11/10/2022] Open
Abstract
Bovine leukemia virus (BLV), an oncogenic member of the Deltaretrovirus genus, is closely related to human T-cell leukemia virus (HTLV-I and II). BLV infects cattle worldwide and causes important economic losses. In this review, we provide a summary of available information about commonly used diagnostic approaches for the detection of BLV infection, including both serological and viral genome-based methods. We also outline genotyping methods used for the phylogenetic analysis of BLV, including PCR restriction length polymorphism and modern DNA sequencing-based methods. In addition, detailed epidemiological information on the prevalence of BLV in cattle worldwide is presented. Finally, we summarize the various BLV genotypes identified by the phylogenetic analyses of the whole genome and env gp51 sequences of BLV strains in different countries and discuss the distribution of BLV genotypes worldwide.
Collapse
Affiliation(s)
- Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Shin-nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Bovine Leukemia Virus Vaccine Laboratory RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Bovine Leukemia Virus Vaccine Laboratory RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| |
Collapse
|
39
|
Heinecke N, Tórtora J, Martínez HA, González-Fernández VD, Ramírez H. Detection and genotyping of bovine leukemia virus in Mexican cattle. Arch Virol 2017; 162:3191-3196. [PMID: 28689233 DOI: 10.1007/s00705-017-3477-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/05/2017] [Indexed: 02/05/2023]
Abstract
Bovine leukemia virus (BLV) was detected and genotyped in a population of 201 dairy cattle from central Mexico. Using a commercial indirect enzyme-linked immunosorbent assay (iELISA) kit, 118 polymerase chain reaction (PCR)-positive and BLV antibody-positive samples were identified; the concordance between tests was substantial. A phylogenetic study of 27 partial sequences of the env gene gp30 was performed. Four mutations were detected involving the PXXP motif in the cytoplasmic domain of the transmembrane protein. This study provided evidence of the efficacy of PCR for the detection of BLV and demonstrated the presence of genotype 1 BLV in Mexico.
Collapse
Affiliation(s)
- Nayely Heinecke
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Universidad Nacional Autónoma de México, Campus 4. Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, CP.54714, México
| | - Jorge Tórtora
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Universidad Nacional Autónoma de México, Campus 4. Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, CP.54714, México
| | - Humberto A Martínez
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Universidad Nacional Autónoma de México, Campus 4. Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, CP.54714, México
| | - Víctor D González-Fernández
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Universidad Nacional Autónoma de México, Campus 4. Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, CP.54714, México
| | - Hugo Ramírez
- Facultad de Estudios Superiores Cuautitlán, Veterinary Medicine, Virology, Genetics and Molecular Biology Laboratory, Universidad Nacional Autónoma de México, Campus 4. Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, CP.54714, México.
| |
Collapse
|
40
|
Takeshima SN, Sasaki S, Meripet P, Sugimoto Y, Aida Y. Single nucleotide polymorphisms in the bovine MHC region of Japanese Black cattle are associated with bovine leukemia virus proviral load. Retrovirology 2017; 14:24. [PMID: 28376881 PMCID: PMC5379713 DOI: 10.1186/s12977-017-0348-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/21/2017] [Indexed: 11/24/2022] Open
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, a malignant B cell lymphoma that has spread worldwide and causes serious problems for the cattle industry. The BLV proviral load, which represents the BLV genome integrated into host genome, is a useful index for estimating disease progression and transmission risk. Here, we conducted a genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with BLV proviral load in Japanese Black cattle. The study examined 93 cattle with a high proviral load and 266 with a low proviral load. Three SNPs showed a significant association with proviral load. One SNP was detected in the CNTN3 gene on chromosome 22, and two (which were not in linkage disequilibrium) were detected in the bovine major histocompatibility complex region on chromosome 23. These results suggest that polymorphisms in the major histocompatibility complex region affect proviral load. This is the first report to detect SNPs associated with BLV proviral load in Japanese Black cattle using whole genome association study, and understanding host factors may provide important clues for controlling the spread of BLV in Japanese Black cattle.
Collapse
Affiliation(s)
| | - Shinji Sasaki
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, 961-8061, Japan
| | - Polat Meripet
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoshikazu Sugimoto
- Shirakawa Institute of Animal Genetics, Japan Livestock Technology Association, Odakura, Nishigo, Fukushima, 961-8061, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
41
|
Pluta A, Rola-Łuszczak M, Kubiś P, Balov S, Moskalik R, Choudhury B, Kuźmak J. Molecular characterization of bovine leukemia virus from Moldovan dairy cattle. Arch Virol 2017; 162:1563-1576. [PMID: 28213870 PMCID: PMC5425504 DOI: 10.1007/s00705-017-3241-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/05/2017] [Indexed: 12/03/2022]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL), a disease that has worldwide distribution. Whilst it has been eradicated in most of Western Europe and Scandinavia, it remains a problem in other regions, particularly Eastern Europe and South America. For this study, in 2013, 24 cattle from three farms in three regions of Moldova were screened by ELISA and nested PCR. Of these cattle, 14 which were PCR positive, and these were molecularly characterized based on the nucleotide sequence of the env gene and the deduced amino acid sequence of the encoded gp51 protein. Our results demonstrated a low level of genetic variability (0-2.9%) among BLV field strains from Moldova, in contrast to that observed for other retroviruses, including human immunodeficiency virus (HIV) (20-38%) Mason IL (Trudy vologod moloch Inst 146–164, 1970) and equine infectious anemia virus (EIAV) (~40%) Willems L et al (AIDS Res Hum Retroviruses
16(16):1787–1795, 2000), where the envelope gene exhibits high levels of variation Polat M et al (Retrovirology
13(1):4, 2016). Sequence comparisons and phylogenetic analysis revealed that BLV genotype 7 (G7) is predominant in Moldova and that the BLV population in Moldovan cattle is a mixture of at least three new sub-genotypes: G7D, G7E and G4C. Neutrality tests revealed that negative selection was the major force operating upon the 51-kDa BLV envelope surface glycoprotein subunit gp51, although one positively selected site within conformational epitope G was detected in the N-terminal part of gp51. Furthermore, two functional domains, linear epitope B and the zinc-binding domain, were found to have an elevated ratio of nonsynonymous to synonymous codon differences. Together, these data suggest that the evolutionary constraints on epitopes G and B and the zinc-binding domains of gp51 differ from those on the other domains, with a tendency towards formation of homogenous genetic groups, which is a common concept of global BLV diversification during virus transmission that may be associated with genetic drift.
Collapse
Affiliation(s)
- Aneta Pluta
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland.
| | - Marzena Rola-Łuszczak
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| | - Piotr Kubiś
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| | - Svetlana Balov
- Republican Center for Veterinary Diagnostic, Chisinau, Moldova
| | - Roman Moskalik
- Scientific Practical Institute for Biotechnologies and Zootechny and Veterinary Medicine, Chisinau, Moldova
| | - Bhudipa Choudhury
- OIE Reference Laboratory for EBL, Department of Virology, Animal and Plant Health Agency, Weybridge, UK
| | - Jacek Kuźmak
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
42
|
Yang Y, Kelly PJ, Bai J, Zhang R, Wang C. First Molecular Characterization of Bovine Leukemia Virus Infections in the Caribbean. PLoS One 2016; 11:e0168379. [PMID: 27977761 PMCID: PMC5158060 DOI: 10.1371/journal.pone.0168379] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis. To investigate the presence and genetic variability of BLV in the Caribbean for the first time, we preformed fluorescence resonance energy transfer (FRET)-PCR for the pol of BLV on DNA from whole blood of cattle from Dominica, Montserrat, Nevis and St. Kitts. Standard PCRs with primers for the env were used for phylogenetic analysis of BLV in positive animals. We found FRET-PCR positive cattle (12.6%, 41/325) on Dominica (5.2%; 4/77) and St. Kitts (19.2%; 37/193) but not on Montserrat (0%, 0/12) or Nevis (0%, 0/43). Positive animals were cows on farms where animals were raised intensively. Phylogenetic analysis using the neighbor-joining (NJ) method on partial and full-length env sequences obtained for strains from Dominica (n = 2) and St. Kitts (n = 5) and those available in GenBank (n = 90) (genotypes 1-10) revealed the Caribbean strains belonged to genotype 1 (98-100% sequence homology). Ours is the first molecular characterization of BLV infections in the Caribbean and the first description of genotype 1 in the region.
Collapse
Affiliation(s)
- Yi Yang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
- Department of Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Kansas, Kansas, United States of America
| | - Patrick John Kelly
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Jianfa Bai
- Department of Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Kansas, Kansas, United States of America
- * E-mail: (CW); (JB)
| | - Rong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Chengming Wang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
- * E-mail: (CW); (JB)
| |
Collapse
|
43
|
Polat M, Moe HH, Shimogiri T, Moe KK, Takeshima SN, Aida Y. The molecular epidemiological study of bovine leukemia virus infection in Myanmar cattle. Arch Virol 2016; 162:425-437. [PMID: 27771791 DOI: 10.1007/s00705-016-3118-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/11/2016] [Indexed: 11/29/2022]
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide and affects both health status and productivity. However, no studies have examined the distribution of BLV in Myanmar, and the genetic characteristics of Myanmar BLV strains are unknown. Therefore, the aim of this study was to detect BLV infection in Myanmar and examine genetic variability. Blood samples were obtained from 66 cattle from different farms in four townships of the Nay Pyi Taw Union Territory of central Myanmar. BLV provirus was detected by nested PCR and real-time PCR targeting BLV long terminal repeats. Results were confirmed by nested PCR targeting the BLV env-gp51 gene and real-time PCR targeting the BLV tax gene. Out of 66 samples, six (9.1 %) were positive for BLV provirus. A phylogenetic tree, constructed using five distinct partial and complete env-gp51 sequences from BLV strains isolated from three different townships, indicated that Myanmar strains were genotype-10. A phylogenetic tree constructed from whole genome sequences obtained by sequencing cloned, overlapping PCR products from two Myanmar strains confirmed the existence of genotype-10 in Myanmar. Comparative analysis of complete genome sequences identified genotype-10-specific amino acid substitutions in both structural and non-structural genes, thereby distinguishing genotype-10 strains from other known genotypes. This study provides information regarding BLV infection levels in Myanmar and confirms that genotype-10 is circulating in Myanmar.
Collapse
Affiliation(s)
- Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan
| | - Hla Hla Moe
- Department of Animal Science, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Takeshi Shimogiri
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Kyaw Kyaw Moe
- Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
44
|
Lee E, Kim EJ, Ratthanophart J, Vitoonpong R, Kim BH, Cho IS, Song JY, Lee KK, Shin YK. Molecular epidemiological and serological studies of bovine leukemia virus (BLV) infection in Thailand cattle. INFECTION GENETICS AND EVOLUTION 2016; 41:245-254. [DOI: 10.1016/j.meegid.2016.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
|
45
|
Khudhair YI, Hasso SA, Yaseen NY, Al-Shammari AM. Serological and molecular detection of bovine leukemia virus in cattle in Iraq. Emerg Microbes Infect 2016; 5:e56. [PMID: 27273225 PMCID: PMC4932651 DOI: 10.1038/emi.2016.60] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/07/2016] [Accepted: 03/07/2016] [Indexed: 02/04/2023]
Abstract
Bovine leukemia virus (BLV) is highly endemic in many countries, including Iraq, and it impacts the beef and dairy industries. The current study sought to determine the percentage of BLV infection and persistent lymphocytosis (PL) in cattle in central Iraq. Hematological, serological, and molecular observations in cross breeds and local breeds of Iraqi cattle naturally infected with BLV were conducted in the peripheral blood mononuclear cells of 400 cattle (340 cross breed and 60 local breed) using enzyme-linked immunosorbent assay and polymerase chain reaction (PCR). On the basis of the absolute number of lymphocytes, five of the 31 positive PCR cases had PL. Among these leukemic cattle, one case exhibited overt neutrophilia. Serum samples were used to detect BLV antibodies, which were observed in 28 (7%) samples. PCR detected BLV provirus in 31 samples (7.75%). All 28 of the seropositive samples and the 3 seronegative samples were positive using PCR. Associations were observed between bovine leukosis and cattle breed, age and sex. Age-specific analysis showed that the BLV percentage increased with age in both breeds. Female cattle (29 animals; 7.34%) exhibited significantly higher infectivity than male cattle (two animals; 4.34%). In conclusion, comprehensive screening for all affected animals is needed in Iraq; programs that segregate cattle can be an effective and important method to control and/or eliminate the BLV.
Collapse
Affiliation(s)
- Yahia Ismail Khudhair
- Department of Veterinary Medicine, College of Veterinary Medicine, Al-University of Qadisiyah, Al Diwaniyah 58002, Iraq
| | - Saleem Amin Hasso
- Department of Veterinary Medicine, College of Veterinary Medicine, University of Baghdad, Baghdad 10001, Iraq
| | - Nahi Y Yaseen
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad 10001, Iraq
| | - Ahmed Majeed Al-Shammari
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad 10001, Iraq
| |
Collapse
|
46
|
Development of a direct blood-based PCR system to detect BLV provirus using CoCoMo primers. Arch Virol 2016; 161:1539-46. [PMID: 26997610 DOI: 10.1007/s00705-016-2806-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
Bovine leukemia virus (BLV), the etiologic agent of enzootic bovine leucosis, has caused pandemic outbreaks worldwide. Because transcription of the BLV is quickly blocked after infection, detecting integrated provirus at host genome is an important method of identifying whether an animal is infected. The aim of the present study was to develop a novel direct blood-based PCR system to detect the BLV provirus with high specificity and at low cost. The assay was based on the BLV-CoCoMo degenerate primers, which amplify all known BLV strains. Cattle blood samples (n = 182) were collected from the same BLV-positive farm and subjected to BLV-CoCoMo-direct-PCR to detect the BLV provirus. The proviral load was then estimated. This novel PCR method showed 100 % specificity. The BLV-CoCoMo-direct-PCR can be used in a variety of laboratory situations because it does not require expensive equipment/reagents, DNA purification, or a second round of PCR. Therefore, the method is extremely cost-effective and the risk of a false-positive result due to DNA contamination is very low.
Collapse
|
47
|
Polat M, Takeshima SN, Hosomichi K, Kim J, Miyasaka T, Yamada K, Arainga M, Murakami T, Matsumoto Y, de la Barra Diaz V, Panei CJ, González ET, Kanemaki M, Onuma M, Giovambattista G, Aida Y. A new genotype of bovine leukemia virus in South America identified by NGS-based whole genome sequencing and molecular evolutionary genetic analysis. Retrovirology 2016; 13:4. [PMID: 26754835 PMCID: PMC4709907 DOI: 10.1186/s12977-016-0239-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) is a member of retroviridae family, together with human T cell leukemia virus types 1 and 2 (HTLV-1 and -2) belonging to the genes deltaretrovirus, and infects cattle worldwide. Previous studies have classified the env sequences of BLV provirus from different geographic locations into eight genetic groups. To investigate the genetic variability of BLV in South America, we performed phylogenetic analyses of whole genome and partial env gp51 sequences of BLV strains isolated from Peru, Paraguay and Bolivia, for which no the molecular characteristics of BLV have previously been published, and discovered a novel BLV genotype, genotype-9, in Bolivia. RESULTS In Peru and Paraguay, 42.3 % (139/328) and over 50 % (76/139) of samples, respectively, were BLV positive. In Bolivia, the BLV infection rate was up to 30 % (156/507) at the individual level. In Argentina, 325/420 samples were BLV positive, with a BLV prevalence of 77.4 % at the individual level and up to 90.9 % at herd level. By contrast, relatively few BLV positive samples were detected in Chile, with a maximum of 29.1 % BLV infection at the individual level. We performed phylogenetic analyses using two different approaches, maximum likelihood (ML) tree and Bayesian inference, using 35 distinct partial env gp51 sequences from BLV strains isolated from Peru, Paraguay, and Bolivia, and 74 known BLV strains, representing eight different BLV genotypes from various geographical locations worldwide. The results indicated that Peruvian and Paraguayan BLV strains were grouped into genotypes-1, -2, and -6, while those from Bolivia were clustered into genotypes-1, -2, and -6, and a new genotype, genotype-9. Interestingly, these results were confirmed using ML phylogenetic analysis of whole genome sequences obtained by next generation sequencing of 25 BLV strains, assigned to four different genotypes (genotypes-1, -2, -6, and -9) from Peru, Paraguay, and Bolivia. Comparative analyses of complete genome sequences clearly showed some specific substitutions, in both structural and non-structural BLV genes, distinguishing the novel genotype-9 from known genotypes. CONCLUSIONS Our results demonstrate widespread BLV infection in South American cattle and the existence of a new BLV genotype-9 in Bolivia. We conclude that at least seven BLV genotypes (genotypes-1, -2, -4, -5, -6, -7, and -9) are circulating in South America.
Collapse
Affiliation(s)
- Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan.
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan.
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Takara-machi 13-1, Kanazawa, Ishikawa, 920-8640, Japan.
| | - Jiyun Kim
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Taku Miyasaka
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Kazunori Yamada
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Mariluz Arainga
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Tomoyuki Murakami
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Yuki Matsumoto
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | | | - Carlos Javier Panei
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina. .,IGEVET, CCT La Plata-CONICET, Facultad de Ciencias Veterinarias, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina.
| | - Ester Teresa González
- Department of Virology, Faculty of Veterinary Sciences, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina.
| | - Misao Kanemaki
- Institute for Animal Science, Shitara-cho, Aichi, 441-2433, Japan.
| | - Misao Onuma
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Guillermo Giovambattista
- IGEVET, CCT La Plata-CONICET, Facultad de Ciencias Veterinarias, National University of La Plata, 60 and 118, CC 296, 1900, La Plata, Argentina.
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
48
|
Bai L, Otsuki H, Sato H, Kohara J, Isogai E, Takeshima SN, Aida Y. Identification and characterization of common B cell epitope in bovine leukemia virus via high-throughput peptide screening system in infected cattle. Retrovirology 2015; 12:106. [PMID: 26715158 PMCID: PMC4696170 DOI: 10.1186/s12977-015-0233-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 01/22/2023] Open
Abstract
Background
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, the most common neoplastic disease of cattle. BLV is closely related to human T cell leukemia virus. B cell epitopes are important for the use of antibodies as therapeutic agents, the epitope-driven vaccine design, and immunological assays. A common B cell epitope for BLV has not yet been found due to individual differences in disease susceptibility. Results We used a peptide microarray with 156 synthetic 15-mer peptides covering the envelope glycoprotein gp51 and the Gag proteins p15, p24, and p12 to map B cell epitope and one B cell epitope, gp51p16, was recognized by all four cattle experimentally infected with BLV. A newly developed high-throughput peptide ELISA system revealed 590 (91.2 %) of 647 cattle naturally infected with BLV, carrying 25 different bovine leukocyte antigen class II DRB3 (BoLA-DRB3) alleles, responded to a 20-mer gp51p16-C peptide containing a C-terminal cysteine and gp51p16. Alanine mutation and comparison of the sequences at 17 amino acid positions within gp51p16-C revealed that R7, R9, F10, V16, and Y18 were the common binding sites to BLV antibodies, and two of these sites were found to be highly conserved. Transient expression in the cells of five infectious molecular clones of BLV with a single alanine mutation at five common antibody binding sites had no effect syncytia formation of the gp51 protein. In addition, the mutant proteins, R7A and R9A had no effect on the expression of gp51 protein; the gp51 protein expressions of F10A, V16A and Y18A were lower than that of the wild type protein. Conclusions This is the first report to identify a common B cell epitope in BLV by comprehensive screening of BLV-infected cattle with varied genetic backgrounds in BoLA-DRB3. Our results have important implications for disease control and diagnosis.
Collapse
Affiliation(s)
- Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 981-8555, Japan.
| | - Hiroyuki Otsuki
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Bovine Leukemia Virus Vaccine Laboratory, RIKEN Innovation Center, RIKEN, Wako, Saitama, 351-0198, Japan.
| | - Hirotaka Sato
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Bovine Leukemia Virus Vaccine Laboratory, RIKEN Innovation Center, RIKEN, Wako, Saitama, 351-0198, Japan.
| | - Junko Kohara
- Animal Research Center, Hokkaido Research Organization, Shintoku, Hokkaido, 081-0038, Japan.
| | - Emiko Isogai
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 981-8555, Japan.
| | - Shin-nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Bovine Leukemia Virus Vaccine Laboratory, RIKEN Innovation Center, RIKEN, Wako, Saitama, 351-0198, Japan.
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Bovine Leukemia Virus Vaccine Laboratory, RIKEN Innovation Center, RIKEN, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
49
|
Detection of bovine leukemia virus and identification of its genotype in Mongolian cattle. Arch Virol 2015; 161:985-91. [DOI: 10.1007/s00705-015-2676-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/04/2015] [Indexed: 11/25/2022]
|
50
|
Bai L, Takeshima SN, Isogai E, Kohara J, Aida Y. Novel CD8(+) cytotoxic T cell epitopes in bovine leukemia virus with cattle. Vaccine 2015; 33:7194-7202. [PMID: 26552001 DOI: 10.1016/j.vaccine.2015.10.128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022]
Abstract
Bovine leukemia virus (BLV) is associated with enzootic bovine leukosis and is closely related to human T cell leukemia virus (HTLV). The cytotoxic T lymphocyte (CTL) plays a key role in suppressing the progression of disease caused by BLV. T and B cell epitopes in BLV have been studied, but CD8(+) CTL epitopes remain poorly understood. We used a library of 115 synthetic peptides covering the entirety of the Env proteins (gp51 and gp30), the Gag proteins (p15, p24, and p12), and the Tax protein of BLV to identify 11 novel CD8(+) T cell epitopes (gp51N5, gp51N11, gp51N12, gp30N5, gp30N6, gp30N8, gp30N16, tax16, tax18, tax19, and tax20) in four calves experimentally infected with BLV. The number of CD8(+) T cell epitopes that could be identified in each calf correlated with the BLV proviral load. Interestingly, among the 11 epitopes identified, only gp51N11 was capable of inducing CD8(+) T cell-mediated cytotoxicity in all four calves, but it is not a suitable vaccine target because it shows a high degree of polymorphism according to the Wu-Kabat variability index. By contrast, no CTL epitopes were identified from the Gag structural protein. In addition, several epitopes were obtained from gp30 and Tax, indicating that cellular immunity against BLV is strongly targeted to these proteins. CD8(+) CTL epitopes from gp30 and Tax were less polymorphic than epitopes from. Indeed, peptides tax16, tax18, tax19, and tax20 include a leucine-rich activation domain that encompasses a transcriptional activation domain, and the gp30N16 peptide contains a proline-rich region that interacts with a protein tyrosine phosphatase SHP1 to regulate B cell activation. Moreover, at least one CD8(+) CTL epitope derived from gp30 was identified in each of the four calves. These results indicate that BLV gp30 may be the best candidate for the development of a BLV vaccine.
Collapse
Affiliation(s)
- Lanlan Bai
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan; Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | | | - Emiko Isogai
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | - Junko Kohara
- Animal Research Center, Hokkaido Research Organization, Shintoku, Hokkaido 081-0038, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, Wako, Saitama 351-0198, Japan.
| |
Collapse
|