1
|
Yao X, Lu WH, Qiao WT, Zhang YQ, Zhang BY, Li HX, Li JL. The highly pathogenic strain of porcine deltacoronavirus disrupts the intestinal barrier and causes diarrhea in newborn piglets. Virulence 2025; 16:2446742. [PMID: 39758030 DOI: 10.1080/21505594.2024.2446742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/30/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025] Open
Abstract
Porcine deltacoronavirus (PDCoV) is increasingly prevalent in newborn piglets with diarrhea. With the development of research on the virus and the feasibility of PDCoV cross-species transmission, the biosafety and the development of pig industry have been greatly affected. In this study, a PDCoV strain CH/LNFX/2022 was isolated from diarrheal newborn piglets at a farm in China. A genome-wide based phylogenetic analysis suggests that 97.5% to 99.2% homology existed in the whole genomes of other strains. Five amino acid mutations are seen for the first time in the S protein. By constructing 3D models, it was found that the S1-NTD/CTD and S2-HR-C regions produced structural alterations. Protein functional analysis showed that the structural changes of the three regions changed the epitope of S protein, the O-GalNAc glycosylation site and the 3C-like protease cleavage site. In addition, oral administration of 107 TCID50 CH/LNFX/2022 to newborn piglets successfully reproduced obvious clinical signs of piglets, such as diarrhea and dehydration. Meanwhile, PDCoV antigen was detected by immunofluorescence in the small intestine, and microscopic lesions and intestinal mucosal barrier destruction were detected by histological observation and scanning electron microscopy. Our study confirmed that porcine coronavirus strains increased pathogenicity through evolution, damaged the intestinal barrier of newborn piglets, and caused diarrhea in pigs. This study provided the candidate strains and theoretical basis for establishing the prevention and control system of vaccine and diagnostic methods for piglet diarrhea.
Collapse
Affiliation(s)
- Xin Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Wei-Hong Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Wen-Ting Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Yu-Qian Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Bao-Ying Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
| | - Hui-Xin Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, PR China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, PR China
| |
Collapse
|
2
|
Chen J, Wang J, Zhao H, Tan X, Yan S, Zhang H, Wang T, Tang X. Molecular breeding of pigs in the genome editing era. Genet Sel Evol 2025; 57:12. [PMID: 40065264 PMCID: PMC11892312 DOI: 10.1186/s12711-025-00961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND To address the increasing demand for high-quality pork protein, it is essential to implement strategies that enhance diets and produce pigs with excellent production traits. Selective breeding and crossbreeding are the primary methods used for genetic improvement in modern agriculture. However, these methods face challenges due to long breeding cycles and the necessity for beneficial genetic variation associated with high-quality traits within the population. This limitation restricts the transfer of desirable alleles across different genera and species. This article systematically reviews past and current research advancements in porcine molecular breeding. It discusses the screening of clustered regularly interspaced short palindromic repeats (CRISPR) to identify resistance loci in swine and the challenges and future applications of genetically modified pigs. MAIN BODY The emergence of transgenic and gene editing technologies has prompted researchers to apply these methods to pig breeding. These advancements allow for alterations in the pig genome through various techniques, ranging from random integration into the genome to site-specific insertion and from target gene knockout (KO) to precise base and prime editing. As a result, numerous desirable traits, such as disease resistance, high meat yield, improved feed efficiency, reduced fat deposition, and lower environmental waste, can be achieved easily and effectively by genetic modification. These traits can serve as valuable resources to enhance swine breeding programmes. CONCLUSION In the era of genome editing, molecular breeding of pigs is critical to the future of agriculture. Long-term and multidomain analyses of genetically modified pigs by researchers, related policy development by regulatory agencies, and public awareness and acceptance of their safety are the keys to realizing the transition of genetically modified products from the laboratory to the market.
Collapse
Affiliation(s)
- Jiahuan Chen
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Jiaqi Wang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Haoran Zhao
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Xiao Tan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Shihan Yan
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Huanyu Zhang
- College of Animal Sciences, Jilin University, Changchun, 130062, China
| | - Tiefeng Wang
- College of Life Science, Baicheng Normal University, Baicheng, 137000, China.
| | - Xiaochun Tang
- College of Animal Sciences, Jilin University, Changchun, 130062, China.
| |
Collapse
|
3
|
Li J, Xiao L, Chen Z, Fan L, Wang W, Guo R, He Z, Hu H, Jiang J, Zhao L, Zhong T, Fan B, Zhu X, Li B. A spike-based mRNA vaccine that induces durable and broad protection against porcine deltacoronavirus in piglets. J Virol 2024; 98:e0053524. [PMID: 39158273 PMCID: PMC11406889 DOI: 10.1128/jvi.00535-24] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Coronaviruses (CoVs) are important pathogens for humans and other vertebrates, causing severe respiratory and intestinal infections that have become a threat to public health because of the potential for interspecies transmission between animals and humans. Therefore, the development of safe, effective vaccines remains a top priority for the control of CoV infection. The unique immunological characteristics of vaccines featuring messenger RNA (mRNA) present an advantageous tool for coronavirus vaccine development. Here, we designed two lipid nanoparticle (LNP)-encapsulated mRNA (mRNA-LNP) vaccines: one encoding full-length spike (S) protein and the other encoding the spike ectodomain (Se) from porcine deltacoronavirus (PDCoV). Fourteen days after primary immunization, both mRNA vaccines induced high levels of immunoglobulin G and neutralizing antibodies in mice, with the S vaccine showing better performance than the Se vaccine. Passive immune protection of the S mRNA vaccine in suckling piglets was confirmed by the induction of robust PDCoV-specific humoral and cellular immune responses. The S mRNA vaccine also showed better protective effects than the inactivated vaccine. Our results suggest that the novel PDCoV-S mRNA-LNP vaccine may have the potential to combat PDCoV infection. IMPORTANCE As an emerging porcine enteropathogenic coronavirus, porcine deltacoronavirus (PDCoV) has the potential for cross-species transmission, attracting extensive attention. Messenger RNA (mRNA) vaccines are a promising option for combating emerging and re-emerging infectious diseases, as evidenced by the demonstrated efficacy of the COVID-19 mRNA vaccine. Here, we first demonstrated that PDCoV-S mRNA-lipid nanoparticle (LNP) vaccines could induce potent humoral and cellular immune responses in mice. An evaluation of passive immune protection of S mRNA vaccines in suckling piglets confirmed that the protective effect of mRNA vaccine was better than that of inactivated vaccine. This study suggests that the PDCoV-S mRNA-LNP vaccine may serve as a potential and novel vaccine candidate for combating PDCoV infection.
Collapse
MESH Headings
- Animals
- Swine
- Coronavirus Infections/prevention & control
- Coronavirus Infections/immunology
- Coronavirus Infections/veterinary
- Coronavirus Infections/virology
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Mice
- Swine Diseases/prevention & control
- Swine Diseases/virology
- Swine Diseases/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- mRNA Vaccines
- Deltacoronavirus/immunology
- Deltacoronavirus/genetics
- Nanoparticles
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Mice, Inbred BALB C
- Female
- Immunity, Humoral
- Liposomes
Collapse
Affiliation(s)
- Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Li Xiao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Zhuoqi Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Liyuan Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wei Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Zhaoming He
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Hongpeng Hu
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Jianhao Jiang
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Lixiang Zhao
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Tianyi Zhong
- Suzhou Huiliao Biomedical Technology Co., Ltd., Suzhou, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xing Zhu
- College of Animal Science, Guizhou University, Guiyang, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
4
|
Chen Y, Song X, Chen W, Zhao X, Yang L, Liu D. Epitope screening and self-assembled nanovaccine molecule design of PDCoV-S protein based on immunoinformatics. Front Microbiol 2024; 15:1402963. [PMID: 38903798 PMCID: PMC11186991 DOI: 10.3389/fmicb.2024.1402963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Based on the whole virus or spike protein of pigs, δ coronavirus (PDCoV) as an immunogen may have unrelated antigenic epitope interference. Therefore, it is essential for screening and identifying advantageous protective antigen epitopes. In addition, immunoinformatic tools are described as an important aid in determining protective antigenic epitopes. In this study, the primary, secondary, and tertiary structures of vaccines were measured using ExPASy, PSIPRED 4.0, and trRosetta servers. Meanwhile, the molecular docking analysis and vector of the candidate nanovaccine were constructed. The immune response of the candidate vaccine was simulated and predicted using the C-ImmSim server. This experiment screened B cell epitopes with strong immunogenicity and high conservation, CTL epitopes, and Th epitopes with IFN-γ and IL-4 positive spike proteins. Ferritin is used as a self-assembled nanoparticle element for designing candidate nanovaccine. After analysis, it has been found to be soluble, stable, non-allergenic, and has a high affinity for its target receptor, TLR-3. The preliminary simulation analysis results show that the candidate nanovaccine has the ability to induce a humoral and cellular immune response. Therefore, it may provide a new theoretical basis for research on coronavirus self-assembled nanovaccines. It may be an effective candidate vaccine for controlling and preventing PDCoV.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongyu Liu
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
5
|
Shi Y, Li B, Cheng J, Tao J, Tang P, Jiao J, Liu H. Microbial Community and Metabolome Analysis of the Porcine Intestinal Damage Model Induced by the IPEC-J2 Cell Culture-Adapted Porcine Deltacoronavirus (PDCoV) Infection. Microorganisms 2024; 12:874. [PMID: 38792704 PMCID: PMC11124095 DOI: 10.3390/microorganisms12050874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This study was conducted to elucidate the intestinal damage induced by the IPEC-J2 cell culture-passaged PDCoV. The results showed that PDCoV disrupted the intestinal structure and increased intestinal permeability, causing abnormalities in mucosal pathology. Additionally, PDCoV induced an imbalance in the intestinal flora and disturbed its stability. Microbial community profiling revealed bacterial enrichment (e.g., Proteobacteria) and reduction (e.g., Firmicutes and Bacteroidetes) in the PDCoV-inoculated piglet model. In addition, metabolomics analysis indicated that 82 named differential metabolites were successfully quantified, including 37 up-regulated and 45 down-regulated metabolites. Chenodeoxycholic acid, sphingosine, and oleanolic aldehyde levels were reduced in PDCoV-inoculated piglets, while phenylacetylglycine and geranylgeranyl-PP levels were elevated. Correlation analysis indicated a negative correlation between Escherichia-Shigella and choline, succinic acid, creatine, phenyllactate, and hippuric acid. Meanwhile, Escherichia-Shigella was positively correlated with acetylcholine, L-Glutamicacid, and N-Acetylmuramate. Roseburia, Lachnospiraceae_UCG-010, Blautia, and Limosilactobacillus were negatively and positively correlated with sphingosine, respectively. These data suggested PDCoV-inoculated piglets exhibited significant taxonomic perturbations in the gut microbiome, which may result in a significantly altered metabolomic profile.
Collapse
Affiliation(s)
- Ying Shi
- Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Y.S.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Benqiang Li
- Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Y.S.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jinghua Cheng
- Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Y.S.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jie Tao
- Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Y.S.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Pan Tang
- Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Y.S.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Jiajie Jiao
- Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Y.S.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| | - Huili Liu
- Institute of Animal Husbandry and Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (Y.S.)
- Shanghai Key Laboratory of Agricultural Genetic Breeding, Shanghai 201106, China
- Shanghai Engineering Research Center of Pig Breeding, Shanghai 201302, China
| |
Collapse
|
6
|
Kim HR, Park J, Lee KK, Jeoung HY, Lyoo YS, Park SC, Park CK. Genetic Characterization and Evolution of Porcine Deltacoronavirus Isolated in the Republic of Korea in 2022. Pathogens 2023; 12:pathogens12050686. [PMID: 37242356 DOI: 10.3390/pathogens12050686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging coronavirus that causes diarrhea in nursing piglets. Since its first outbreak in the United States in 2014, this novel porcine coronavirus has been detected worldwide, including in Korea. However, no PDCoV case has been reported since the last report in 2016 in Korea. In June 2022, the Korean PDCoV strain KPDCoV-2201 was detected on a farm where sows and piglets had black tarry and watery diarrhea, respectively. We isolated the KPDCoV-2201 strain from the intestinal samples of piglets and sequenced the viral genome. Genetically, the full-length genome and spike gene of KPDCoV-2201 shared 96.9-99.2% and 95.8-98.8% nucleotide identity with other global PDCoV strains, respectively. Phylogenetic analysis suggested that KPDCoV-2201 belongs to G1b. Notably, the molecular evolutionary analysis indicated that KPDCoV-2201 evolved from a clade different from that of previously reported Korean PDCoV strains and is closely related to the emergent Peruvian and Taiwanese PDCoV strains. Furthermore, KPDCoV-2201 had one unique and two Taiwanese strain-like amino acid substitutions in the receptor-binding domain of the S1 region. Our findings suggest the possibility of transboundary transmission of the virus and expand our knowledge about the genetic diversity and evolution of PDCoV in Korea.
Collapse
Affiliation(s)
- Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| | - Jonghyun Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| | - Kyoung-Ki Lee
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Hye-Young Jeoung
- Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Young S Lyoo
- College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Chun Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine and Cardiovascular Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
Diagnostic Approach to Enteric Disorders in Pigs. Animals (Basel) 2023; 13:ani13030338. [PMID: 36766227 PMCID: PMC9913336 DOI: 10.3390/ani13030338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The diagnosis of enteric disorders in pigs is extremely challenging, at any age. Outbreaks of enteric disease in pigs are frequently multifactorial and multiple microorganisms can co-exist and interact. Furthermore, several pathogens, such as Clostridium perfrigens type A, Rotavirus and Lawsonia intracellularis, may be present in the gut in the absence of clinical signs. Thus, diagnosis must be based on a differential approach in order to develop a tailored control strategy, considering that treatment and control programs for enteric diseases are pathogen-specific. Correct sampling for laboratory analyses is fundamental for the diagnostic work-up of enteric disease in pigs. For example, histology is the diagnostic gold standard for several enteric disorders, and sampling must ensure the collection of representative and optimal intestinal samples. The aim of this paper is to focus on the diagnostic approach, from sampling to the aetiological diagnosis, of enteric disorders in pigs due to different pathogens during the different phases of production.
Collapse
|
8
|
Chen Y, Li P, Zhen R, Wang L, Feng J, Xie Y, Yang B, Xiong Y, Niu J, Wu Q, Jiang Z, He D, Yi H. Effects of niacin on intestinal epithelial Barrier, intestinal Immunity, and microbial community in weaned piglets challenged by PDCoV. Int Immunopharmacol 2022; 111:109054. [PMID: 35921778 DOI: 10.1016/j.intimp.2022.109054] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
|
9
|
Wang Z, Li S, Shao Y, Lu Y, Tan C, Cui Y, Ding G, Fu Y, Liu G, Chen J, Hu Y. Genomic characterization and pathogenicity analysis of a porcine deltacoronavirus strain isolated in western China. Arch Virol 2022; 167:2249-2262. [PMID: 36029354 PMCID: PMC9419129 DOI: 10.1007/s00705-022-05549-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an enteric virus that was first identified in 2012. Although PDCoV has been detected worldwide, there is little information about its circulation in western China. In this study, fecal samples were collected from piglets with watery diarrhea in western China between 2015 and 2018 for the detection of PDCoV. The positive rate was 29.9%. A PDCoV strain (CHN/CQ/BN23/2016, BN23) was isolated and selected for further investigation. Phylogenetic analysis showed that this strain formed an individual cluster between the early Chinese lineage and the Chinese lineage. RDP4 and SimPlot analysis demonstrated that strain BN23 is a recombinant of Thailand/S5015L/2015 and CHN-AH-2004. The pathogenicity of BN23 was evaluated in 3-day-old piglets. Challenged piglets developed serious clinical signs and died at 3 days post-inoculation. Our data show that PDCoV is prevalent in western China and that strain BN23 is highly pathogenic to newborn piglets. Therefore, more attention should be paid to emerging PDCoV strains in western China.
Collapse
Affiliation(s)
- Zemei Wang
- College of Veterinary Medicine, Gansu Agricultural University, Ying-Men-Cun, Yin-Tan-Lu, An-Ning District, Lanzhou, 730000, Gansu, China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China
| | - Shuxian Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Yongheng Shao
- College of Veterinary Medicine, Gansu Agricultural University, Ying-Men-Cun, Yin-Tan-Lu, An-Ning District, Lanzhou, 730000, Gansu, China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China
| | - Yabin Lu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Chen Tan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China
| | - Yaru Cui
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China
| | - Guangming Ding
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China
| | - Yuguang Fu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China
| | - Guangliang Liu
- College of Veterinary Medicine, Gansu Agricultural University, Ying-Men-Cun, Yin-Tan-Lu, An-Ning District, Lanzhou, 730000, Gansu, China.,State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China.,College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Jianing Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 1 Xu-Jia-Ping, Yan-Chang-Bu, Cheng-Guan District, Lanzhou, 730046, Gansu, China.
| | - Yonghao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Ying-Men-Cun, Yin-Tan-Lu, An-Ning District, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
10
|
Yen L, Magtoto R, Mora-Díaz JC, Carrillo-Ávila JA, Zhang J, Cheng TY, Magtoto P, Nelli RK, Baum DH, Zimmerman JJ, Giménez-Lirola LG. The N-terminal Subunit of the Porcine Deltacoronavirus Spike Recombinant Protein (S1) Does Not Serologically Cross-react with Other Porcine Coronaviruses. Pathogens 2022; 11:pathogens11080910. [PMID: 36015031 PMCID: PMC9414728 DOI: 10.3390/pathogens11080910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV), belonging to family Coronaviridae and genus Deltacoronavirus, is a major enteric pathogen in swine. Accurate PDCoV diagnosis relying on laboratory testing and antibody detection is an important approach. This study evaluated the potential of the receptor-binding subunit of the PDCoV spike protein (S1), generated using a mammalian expression system, for specific antibody detection via indirect enzyme-linked immunosorbent assay (ELISA). Serum samples were collected at day post-inoculation (DPI) −7 to 42, from pigs (n = 83) experimentally inoculated with different porcine coronaviruses (PorCoV). The diagnostic sensitivity of the PDCoV S1-based ELISA was evaluated using serum samples (n = 72) from PDCoV-inoculated animals. The diagnostic specificity and potential cross-reactivity of the assay was evaluated on PorCoV-negative samples (n = 345) and samples collected from pigs experimentally inoculated with other PorCoVs (n = 472). The overall diagnostic performance, time of detection, and detection rate over time varied across different S/P cut-offs, estimated by Receiver Operating Characteristic (ROC) curve analysis. The higher detection rate in the PDCoV group was observed after DPI 21. An S/P cut-off of 0.25 provided 100% specificity with no serological cross-reactivity against other PorCoV. These results support the use of S1 protein-based ELISA for accurate detection of PDCoV infections, transference of maternal antibodies, or active surveillance.
Collapse
Affiliation(s)
- Lu Yen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Ronaldo Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | | | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Ting-Yu Cheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Precy Magtoto
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- College of Veterinary Medicine, Pampanga State Agricultural University, Pampanga 2011, Philippines
| | - Rahul K. Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - David H. Baum
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey J. Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Luis G. Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- Correspondence:
| |
Collapse
|
11
|
Kong F, Wang Q, Kenney SP, Jung K, Vlasova AN, Saif LJ. Porcine Deltacoronaviruses: Origin, Evolution, Cross-Species Transmission and Zoonotic Potential. Pathogens 2022; 11:79. [PMID: 35056027 PMCID: PMC8778258 DOI: 10.3390/pathogens11010079] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus of swine that causes acute diarrhoea, vomiting, dehydration and mortality in seronegative neonatal piglets. PDCoV was first reported in Hong Kong in 2012 and its etiological features were first characterized in the United States in 2014. Currently, PDCoV is a concern due to its broad host range, including humans. Chickens, turkey poults, and gnotobiotic calves can be experimentally infected by PDCoV. Therefore, as discussed in this review, a comprehensive understanding of the origin, evolution, cross-species transmission and zoonotic potential of epidemic PDCoV strains is urgently needed.
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott P. Kenney
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Cruz-Pulido D, Boley PA, Ouma WZ, Alhamo MA, Saif LJ, Kenney SP. Comparative Transcriptome Profiling of Human and Pig Intestinal Epithelial Cells after Porcine Deltacoronavirus Infection. Viruses 2021; 13:v13020292. [PMID: 33668405 PMCID: PMC7918119 DOI: 10.3390/v13020292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/16/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging infectious disease of swine with zoonotic potential. Phylogenetic analysis suggests that PDCoV originated recently from a host-switching event between birds and mammals. Little is known about how PDCoV interacts with its differing hosts. Human-derived cell lines are susceptible to PDCoV infection. Herein, we compare the gene expression profiles of an established host swine cells to potential emerging host human cells after infection with PDCoV. Cell lines derived from intestinal lineages were used to reproduce the primary sites of viral infection in the host. Porcine intestinal epithelial cells (IPEC-J2) and human intestinal epithelial cells (HIEC) were infected with PDCoV. RNA-sequencing was performed on total RNA extracted from infected cells. Human cells exhibited a more pronounced response to PDCoV infection in comparison to porcine cells with more differentially expressed genes (DEGs) in human, 7486, in comparison to pig cells, 1134. On the transcriptional level, the adoptive host human cells exhibited more DEGs in response to PDCoV infection in comparison to the primary pig host cells, where different types of cytokines can control PDCoV replication and virus production. Key immune-associated DEGs and signaling pathways are shared between human and pig cells during PDCoV infection. These included genes related to the NF-kappa-B transcription factor family, the interferon (IFN) family, the protein-kinase family, and signaling pathways such as the apoptosis signaling pathway, JAK-STAT signaling pathway, inflammation/cytokine–cytokine receptor signaling pathway. MAP4K4 was unique in up-regulated DEGs in humans in the apoptosis signaling pathway. While similarities exist between human and pig cells in many pathways, our research suggests that the adaptation of PDCoV to the porcine host required the ability to down-regulate many response pathways including the interferon pathway. Our findings provide an important foundation that contributes to an understanding of the mechanisms of PDCoV infection across different hosts. To our knowledge, this is the first report of transcriptome analysis of human cells infected by PDCoV.
Collapse
Affiliation(s)
- Diana Cruz-Pulido
- Department of Veterinary Preventive Medicine, Food Animal Health Research Program (FAHRP), Wooster, OH 44691, USA; (D.C.-P.); (P.A.B.); (M.A.A.); (L.J.S.)
| | - Patricia A. Boley
- Department of Veterinary Preventive Medicine, Food Animal Health Research Program (FAHRP), Wooster, OH 44691, USA; (D.C.-P.); (P.A.B.); (M.A.A.); (L.J.S.)
| | | | - Moyasar A. Alhamo
- Department of Veterinary Preventive Medicine, Food Animal Health Research Program (FAHRP), Wooster, OH 44691, USA; (D.C.-P.); (P.A.B.); (M.A.A.); (L.J.S.)
| | - Linda J. Saif
- Department of Veterinary Preventive Medicine, Food Animal Health Research Program (FAHRP), Wooster, OH 44691, USA; (D.C.-P.); (P.A.B.); (M.A.A.); (L.J.S.)
| | - Scott P. Kenney
- Department of Veterinary Preventive Medicine, Food Animal Health Research Program (FAHRP), Wooster, OH 44691, USA; (D.C.-P.); (P.A.B.); (M.A.A.); (L.J.S.)
- Correspondence: ; Tel.: +1-330-263-3747
| |
Collapse
|
13
|
Porcine enteric coronaviruses: an updated overview of the pathogenesis, prevalence, and diagnosis. Vet Res Commun 2021; 45:75-86. [PMID: 34251560 PMCID: PMC8273569 DOI: 10.1007/s11259-021-09808-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
The recent prevalence of coronavirus (CoV) poses a serious threat to animal and human health. Currently, porcine enteric coronaviruses (PECs), including the transmissible gastroenteritis virus (TGEV), the novel emerging swine acute diarrhoea syndrome coronavirus (SADS-CoV), porcine delta coronavirus (PDCoV), and re-emerging porcine epidemic diarrhoea virus (PEDV), which infect pigs of different ages, have caused more frequent occurrences of diarrhoea, vomiting, and dehydration with high morbidity and mortality in piglets. PECs have the potential for cross-species transmission and are causing huge economic losses in the pig industry in China and the world, which therefore needs to be urgently addressed. Accordingly, this article summarises the pathogenicity, prevalence, and diagnostic methods of PECs and provides an important reference for their improved diagnosis, prevention, and control.
Collapse
|
14
|
Zappulli V, Ferro S, Bonsembiante F, Brocca G, Calore A, Cavicchioli L, Centelleghe C, Corazzola G, De Vreese S, Gelain ME, Mazzariol S, Moccia V, Rensi N, Sammarco A, Torrigiani F, Verin R, Castagnaro M. Pathology of Coronavirus Infections: A Review of Lesions in Animals in the One-Health Perspective. Animals (Basel) 2020; 10:E2377. [PMID: 33322366 PMCID: PMC7764021 DOI: 10.3390/ani10122377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) are worldwide distributed RNA-viruses affecting several species, including humans, and causing a broad spectrum of diseases. Historically, they have not been considered a severe threat to public health until two outbreaks of COVs-related atypical human pneumonia derived from animal hosts appeared in 2002 and in 2012. The concern related to CoVs infection dramatically rose after the COVID-19 global outbreak, for which a spill-over from wild animals is also most likely. In light of this CoV zoonotic risk, and their ability to adapt to new species and dramatically spread, it appears pivotal to understand the pathophysiology and mechanisms of tissue injury of known CoVs within the "One-Health" concept. This review specifically describes all CoVs diseases in animals, schematically representing the tissue damage and summarizing the major lesions in an attempt to compare and put them in relation, also with human infections. Some information on pathogenesis and genetic diversity is also included. Investigating the lesions and distribution of CoVs can be crucial to understand and monitor the evolution of these viruses as well as of other pathogens and to further deepen the pathogenesis and transmission of this disease to help public health preventive measures and therapies.
Collapse
Affiliation(s)
- Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Department of Animal Medicine, Productions and Health, University of Padua, Legnaro, 35020 Padua, Italy
| | - Ginevra Brocca
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Alessandro Calore
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Giorgia Corazzola
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Steffen De Vreese
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Laboratory of Applied Bioacoustics, Technical University of Catalunya, BarcelonaTech, Vilanova i la Geltrù, 08800 Barcelona, Spain
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Nicolò Rensi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Alessandro Sammarco
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| |
Collapse
|
15
|
Zhou X, Zhou L, Zhang P, Ge X, Guo X, Han J, Zhang Y, Yang H. A strain of porcine deltacoronavirus: Genomic characterization, pathogenicity and its full-length cDNA infectious clone. Transbound Emerg Dis 2020; 68:2130-2146. [PMID: 33012120 DOI: 10.1111/tbed.13862] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/05/2020] [Accepted: 09/25/2020] [Indexed: 12/31/2022]
Abstract
As a novel enteropathogenic coronavirus, porcine deltacoronavirus (PDCoV) warrants further investigation. In this study, a Chinese PDCoV strain, designated CHN-HN-1601, was isolated from the faeces of a diarrhoeic piglet. After plaque purification, the genome was determined which shared 97.5%-99.5% nucleotide identities with 71 representative PDCoV strains available in the GenBank. The pathogenic properties of CHN-HN-1601 were evaluated using 5-day-old piglets. All inoculated piglets developed severe diarrhoea from 2 days post-infection (dpi) onwards. To our surprise, two periods of diarrhoea starting from 2 to 7 dpi and from 13 to 19 dpi were observed in affected piglets during the experiment. Faecal viral shedding of the inoculated piglets was detected by real-time RT-PCR, with viral shedding peaked at 4 and 16 dpi, respectively. At necropsy at 5 dpi, the main gross lesions included transparent, thin-walled and gas-distended intestines containing yellow watery contents. Further histopathological examinations, including haematoxylin and eosin staining, immunohistochemistry and RNAscope in situ hybridization, revealed that the virus infection caused severe villous atrophy of the small intestines, with PDCoV antigen and RNA mainly distributed in the cytoplasm of the villous epithelial cells of jejunum and ileum in piglets. The dynamic production of PDCoV-specific IgG and neutralizing antibodies in serum of the affected piglets was also assessed using a whole virus-based ELISA and an immunofluorescence assay-based neutralization test, respectively. Furthermore, a full-length cDNA infectious clone of CHN-HN-1601 was constructed using a bacterial artificial chromosome system. The rescued virus exhibited in vitro growth and pathogenic properties similar to the parental virus. Taken together, our study not only enriches the information of PDCoV, but also provides a useful reverse genetics platform for further pathogenesis exploration of the virus.
Collapse
Affiliation(s)
- Xinrong Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Pingping Zhang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Liu S, Fang P, Ke W, Wang J, Wang X, Xiao S, Fang L. Porcine deltacoronavirus (PDCoV) infection antagonizes interferon-λ1 production. Vet Microbiol 2020; 247:108785. [PMID: 32768229 PMCID: PMC7331541 DOI: 10.1016/j.vetmic.2020.108785] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/26/2020] [Accepted: 07/01/2020] [Indexed: 01/10/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that causes watery diarrhea, vomiting and mortality in nursing piglets. Type III interferons (IFN-λs) are the major antiviral cytokines in intestinal epithelial cells, the target cells in vivo for PDCoV. In this study, we found that PDCoV infection remarkably inhibited Sendai virus-induced IFN-λ1 production by suppressing transcription factors IRF and NF-κB in IPI-2I cells, a line of porcine intestinal mucosal epithelial cells. We also confirmed that PDCoV infection impeded the activation of IFN-λ1 promoter stimulated by RIG-I, MDA5 and MAVS, but not by TBK1 and IRF1. Although the expression levels of IRF1 and MAVS were not changed, PDCoV infection resulted in reduction of the number of peroxisomes, the platform for MAVS to activate IRF1, and subsequent type III IFN production. Taken together, our study demonstrates that PDCoV suppresses type III IFN responses to circumvent the host's antiviral immunity.
Collapse
Affiliation(s)
- Shudan Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Puxian Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wenting Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Jing Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Xunlei Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, the Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
17
|
Zhao D, Gao X, Zhou P, Zhang L, Zhang Y, Wang Y, Liu X. Evaluation of the immune response in conventionally weaned pigs infected with porcine deltacoronavirus. Arch Virol 2020; 165:1653-1658. [PMID: 32399787 PMCID: PMC7215125 DOI: 10.1007/s00705-020-04590-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/14/2020] [Indexed: 12/27/2022]
Abstract
Although porcine deltacoronavirus (PDCoV) is a significant pandemic threat in the swine population and has caused significant economic losses, information regarding the immune response in conventionally weaned pigs infected with PDCoV is scarce. Hence, the immune response in conventionally weaned pigs infected with PDCoV was assessed after challenge and rechallenge. After the first challenge, obvious diarrhea and viral shedding developed successively in all pigs in the four inoculation dose groups from 3 to 14 days postinfection (dpi), and all pigs recovered (no clinical symptoms or viral shedding) by 21 dpi. All pigs in the four groups exhibited significantly increased PDCoV-specific IgG, IgA and virus-neutralizing (VN) antibody (Ab) titers and IFN-γ levels in the serum after the first challenge. All pigs were completely protected against rechallenge at 21 dpi. The serum levels of PDCoV-specific IgG, IgA, and VN Abs increased further after rechallenge. Notably, the IFN-γ level declined continuously after 7 dpi. In addition, the levels of PDCoV-specific IgG, IgA and VN Abs in saliva increased significantly after rechallenge and correlated well with the serum Ab titers. Furthermore, the appearance of clinical symptoms of PDCoV infection in conventionally weaned pigs was delayed with reduced inoculation doses. In summary, the data presented here offer important reference information for future PDCoV animal infection and vaccine-induced immunoprotection experiments.
Collapse
Affiliation(s)
- Donghong Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Xiang Gao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Peng Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Liping Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Yongguang Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Yonglu Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Xinsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| |
Collapse
|
18
|
Shchelkanov MY, Popova AY, Dedkov VG, Akimkin VG, Maleyev VV. History of investigation and current classification of coronaviruses ( Nidovirales: Coronaviridae). ACTA ACUST UNITED AC 2020. [DOI: 10.15789/2220-7619-hoi-1412] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- M. Yu. Shchelkanov
- International Scientific and Educational Center for Biological Security of Rospotrebnadzor; Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch of RAS; Center of Hygiene and Epidemiology in the Primorsky Territory
| | - A. Yu. Popova
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor); Russian Medical Academy of Continuing Professional Education
| | | | - V. G. Akimkin
- Central Research Institute of Epidemiology and Microbiology of Rospotrebnadzor
| | - V. V. Maleyev
- Central Research Institute of Epidemiology and Microbiology of Rospotrebnadzor
| |
Collapse
|
19
|
Malik YS, Singh RK, Yadav MP, Langel SN, Malik YS, Saif LJ. Porcine Coronaviruses. EMERGING AND TRANSBOUNDARY ANIMAL VIRUSES 2020. [PMCID: PMC7123000 DOI: 10.1007/978-981-15-0402-0_4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhoea virus (PEDV), and porcine deltacoronavirus (PDCoV) are enteropathogenic coronaviruses (CoVs) of swine. TGEV appearance in 1946 preceded identification of PEDV (1971) and PDCoV (2009) that are considered as emerging CoVs. A spike deletion mutant of TGEV associated with respiratory tract infection in piglets appeared in 1984 in pigs in Belgium and was designated porcine respiratory coronavirus (PRCV). PRCV is considered non-pathogenic because the infection is very mild or subclinical. Since PRCV emergence and rapid spread, most pigs have become immune to both PRCV and TGEV, which has significantly reduced the clinical and economic importance of TGEV. In contrast, PDCoV and PEDV are currently expanding their geographic distribution, and there are reports on the circulation of TGEV-PEDV recombinants that cause a disease clinically indistinguishable from that associated with the parent viruses. TGEV, PEDV and PDCoV cause acute gastroenteritis in pigs (most severe in neonatal piglets) and matches in their clinical signs and pathogenesis. Necrosis of the infected intestinal epithelial cells causes villous atrophy and malabsorptive diarrhoea. Profuse diarrhoea frequently combined with vomiting results in dehydration, which can lead to the death of piglets. Strong immune responses following natural infection protect against subsequent homologous challenge; however, these viruses display no cross-protection. Adoption of advance biosecurity measures and effective vaccines control and prevent the occurrence of diseases due to these porcine-associated CoVs. Recombination and reversion to virulence are the risks associated with generally highly effective attenuated vaccines necessitating further research on alternative vaccines to ensure their safe application in the field.
Collapse
Affiliation(s)
- Yashpal Singh Malik
- grid.417990.20000 0000 9070 5290Biological Standardization, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh India
| | - Raj Kumar Singh
- grid.417990.20000 0000 9070 5290ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh India
| | - Mahendra Pal Yadav
- grid.444573.5ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India, Sardar Vallabhbhai Patel University of Agriculture & Technology, Meerut, Uttar Pradesh India
| | | | | | | |
Collapse
|
20
|
Identification of a Novel Linear B-Cell Epitope on the Nucleocapsid Protein of Porcine Deltacoronavirus. Int J Mol Sci 2020; 21:ijms21020648. [PMID: 31963776 PMCID: PMC7013544 DOI: 10.3390/ijms21020648] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/11/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV), first identified in 2012, is a swine enteropathogen now found in many countries. The nucleocapsid (N) protein, a core component of PDCoV, is essential for virus replication and is a significant candidate in the development of diagnostics for PDCoV. In this study, monoclonal antibodies (mAbs) were generated and tested for reactivity with three truncations of the full protein (N1, N2, N3) that contained partial overlaps; of the five monoclonals chosen tested, each reacted with only the N3 truncation. The antibody designated 4E88 had highest binding affinity with the N protein and was chosen for in-depth examination. The 4E88 epitope was located to amino acids 308-AKPKQQKKPKK-318 by testing the 4E88 monoclonal for reactivity with a series of N3 truncations, then the minimal epitope, 309-KPKQQKKPK-317 (designated EP-4E88), was pinpointed by testing the 4E88 monoclonal for reactivity with a series of synthetic peptides of this region. Homology analysis showed that the EP-4E88 sequence is highly conserved among PDCoV strains, and also shares high similarity with sparrow coronavirus (HKU17), Asian leopard cat coronavirus (ALCCoV), quail coronavirus (UAE-HKU30), and sparrow deltacoronavirus (SpDCoV). Of note, the PDCoV EP-4E88 sequence shared very low similarity (<22.2%) with other porcine coronaviruses (PEDV, TGEV, PRCV, SADS-CoV, PHEV), demonstrating that it is an epitope that can be used for distinguishing PDCoV and other porcine coronavirus. 3D structural analysis revealed that amino acids of EP-4E88 were in close proximity and may be exposed on the surface of the N protein.
Collapse
|
21
|
Zhang F, Luo S, Gu J, Li Z, Li K, Yuan W, Ye Y, Li H, Ding Z, Song D, Tang Y. Prevalence and phylogenetic analysis of porcine diarrhea associated viruses in southern China from 2012 to 2018. BMC Vet Res 2019; 15:470. [PMID: 31881873 PMCID: PMC6935106 DOI: 10.1186/s12917-019-2212-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/10/2019] [Indexed: 11/10/2022] Open
Abstract
Background In China, large-scale outbreaks of severe diarrhea caused by viruses have occurred in pigs since late 2010. To investigate the prevalence and genetic evolution of diarrhea-associated viruses responsible for the outbreaks, a total of 2987 field diarrheal samples collected from 168 pig farms in five provinces in Southern China during 2012–2018 were tested. Results Porcine epidemic diarrhea virus (PEDV) was most frequently detected virus with prevalence rates between 50.21 and 62.10% in samples, and 96.43% (162/168) in premises, respectively. Porcine deltacoronavirus (PDCoV) was the second prevalent virus with prevalence rates ranging from 19.62 to 29.19% in samples, and 70.24% (118/168) in premises, respectively. Both transmissible gastroenteritis virus (TGEV) and porcine rotavirus (PoRV) were detected at low prevalence rates of < 3% in samples and 10.12% in premises. In this study, we identified a newly emerged swine acute diarrhea syndrome coronavirus (SADS-CoV) in diarrheal samples of piglets from Fujian province in Southern China, and the prevalence rate of SADS-CoV was 10.29% (7/68). Co-infections of these diarrhea-associated viruses were common. The most frequent co-infection was PEDV with PDCoV, with an average detection rate of 12.72% (380/2987, ranging from 8.26–17.33%). Phylogenetic analysis revealed that PEDVs circulating in Southern China during the last 7 years were clustered with the variant strains of PEDV in genotype IIa. The most frequent mutations were present in the collagenase equivalent (COE) and epitope regions of the spike gene of the PEDVs currently circulating in the field. Genetic relationships of PDCoVs were closely related with Chinese strains, other than those present in the USA, South Korea, Thailand and Lao’s public. Conclusions The findings of this study indicated that variant PEDV, PDCoV, and SADS-CoV were leading etiologic agents of porcine diarrhea, and either mono-infections or co-infections of pathogenic enteric CoVs were common in pigs in Southern China during 2012–2018. Thus, significant attention should be paid in order to effectively prevent and control porcine viral diarrhea.
Collapse
Affiliation(s)
- Fanfan Zhang
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, 330045, Jiangxi, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Suxian Luo
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, 330045, Jiangxi, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jun Gu
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, 330045, Jiangxi, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Zhiquan Li
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, 330045, Jiangxi, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Kai Li
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, 330045, Jiangxi, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Weifeng Yuan
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, 330045, Jiangxi, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Yu Ye
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, 330045, Jiangxi, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Hao Li
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, 330045, Jiangxi, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Zhen Ding
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, 330045, Jiangxi, China.,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Deping Song
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, 330045, Jiangxi, China. .,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| | - Yuxin Tang
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, 330045, Jiangxi, China. .,Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
22
|
Zhang J, Chen J, Liu Y, Da S, Shi H, Zhang X, Liu J, Cao L, Zhu X, Wang X, Ji Z, Feng L. Pathogenicity of porcine deltacoronavirus (PDCoV) strain NH and immunization of pregnant sows with an inactivated PDCoV vaccine protects 5-day-old neonatal piglets from virulent challenge. Transbound Emerg Dis 2019; 67:572-583. [PMID: 31541590 PMCID: PMC7168751 DOI: 10.1111/tbed.13369] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/14/2023]
Abstract
In this study, the pathogenicity of porcine deltacoronavirus (PDCoV) strain NH (passage 10, P10) was evaluated. We found that PDCoV strain NH is enteropathogenic in 5-day-old pigs. Pathogenicity experiments provided a challenge model for studying the protection efficiency of passive immunity. In order to investigate the protective efficacy of passive immunity in newborn piglets, pregnant sows were vaccinated with either a PDCoV-inactivated vaccine at the Houhai acupoint (n = 5) or DMEM as a negative control (n = 2) using a prime/boost strategy 20 and 40 days before delivery. PDCoV spike (S)-specific IgG and neutralizing antibody (NA) responses were detected in immunized sows and piglets born to immunized sows. PDCoV spike (S)-specific sIgA was also detected in the colostrum and milk of immunized sows. Five days post-farrowing, piglets were orally challenged with PDCoV strain NH (105 TCID50 /piglet). Severe diarrhoea, high levels of viral RNA copies and substantial intestinal villus atrophy were detected in piglets born to unimmunized sows. Only 4 of 31 piglets (12.9%) born to immunized sows in the challenge group displayed mild to moderate diarrhoea, lower viral RNA copies and minor intestinal villi damage compared to piglets born to unimmunized sows post-challenge. Mock piglets exhibited no typical clinical symptoms. The challenge experiment results indicated that the inactivated PDCoV vaccine exhibited 87.1% protective efficacy in the piglets. These findings suggest that the inactivated PDCoV vaccine has the potential to be an effective vaccine, providing protection against virulent PDCoV.
Collapse
Affiliation(s)
- Jialin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ye Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shi Da
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianbo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liyan Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiangdong Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaobo Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoyang Ji
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
23
|
Porcine deltacoronavirus nsp15 antagonizes interferon-β production independently of its endoribonuclease activity. Mol Immunol 2019; 114:100-107. [PMID: 31351410 PMCID: PMC7112593 DOI: 10.1016/j.molimm.2019.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 11/24/2022]
Abstract
PDCoV nsp15 antagonizes IFN-β production. PDCoV nsp15 suppresses NF-κB activation other than IRF3 activation. The endoribonuclease activity is not essential for PDCoV nsp15 to antagonize IFN-β.
Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus causing diarrhea and intestinal damage in nursing piglets. Previous work showed that PDCoV infection inhibits type I interferon (IFN) production. To further identify and characterize the PDCoV-encoded IFN antagonists will broaden our understanding of its pathogenesis. Nonstructural protein 15 (nsp15) encodes an endoribonuclease that is highly conserved among vertebrate nidoviruses (coronaviruses and arteriviruses) and plays a critical role in viral replication and transcription. Here, we found that PDCoV nsp15 significantly inhibits Sendai virus (SEV)-induced IFN-β production. PDCoV nsp15 disrupts the phosphorylation and nuclear translocation of NF-κB p65 subunit, but not antagonizes the activation of transcription factor IRF3. Interestingly, site-directed mutagenesis found that PDCoV nsp15 mutants (H129A, H234A, K269A) lacking endoribonuclease activity also suppress SEV-induced IFN-β production and NF-κB activation, suggesting that the endoribonuclease activity is not required for its ability to antagonize IFN-β production. Taken together, our results demonstrate that PDCoV nsp15 is an IFN antagonist and it inhibits interferon-β production via an endoribonuclease activity-independent mechanism.
Collapse
|
24
|
|
25
|
Wu JL, Mai KJ, Li D, Wu RT, Wu ZX, Tang XY, Li QN, Sun Y, Lan T, Zhang XB, Ma JY. Expression profile analysis of 5-day-old neonatal piglets infected with porcine Deltacoronavirus. BMC Vet Res 2019; 15:117. [PMID: 30992015 PMCID: PMC6469071 DOI: 10.1186/s12917-019-1848-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 03/18/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine deltacoronavirus (PDCoV) is a novel coronavirus that can cause diarrhea in nursing piglets. This study was aimed to investigate the roles of host differentially expressed genes on metabolic pathways in PDCoV infections. RESULTS Twenty thousand six hundred seventy-four differentially expressed mRNAs were identified in 5-day-old piglets responded to PDCoV experimental infections. Many of these genes were correlated to the basic metabolism, such as the peroxisome proliferator-activated receptor (PPAR) signaling pathway which plays a critical role in digestion. At the same time, in the PPAR pathway genes of fatty acid-binding protein (FABP) family members were observed with remarkably differential expressions. The differential expressed genes were associated with appetite decrease and weight loss of PDCoV- affected piglets. DISCUSSION Fatty acid-binding protein 1 (FABP1) and fatty acid-binding protein 3 (FABP3) were found to be regulated by PDCoV. These two genes not only mediate fatty acid transportation to different cell organelles such as mitochondria, peroxisome, endoplasmic reticulum and nucleus, but also modulate fatty acid metabolism and storage as a signaling molecule outside the cell. Therefore, it can be preliminarily concluded that PPAR differential expression caused by PDCoV was mostly associated with weight loss and death from emaciation. CONCLUSIONS The host differentially expressed genes were associated with infection response, metabolism signaling and organismal systems signaling pathways. The genes of FABP family members in the PPAR signaling pathway were the most highly altered and played important roles in metabolism. Alteration of these genes were most likely the reason of weight loss and other clinical symptoms. Our results provided new insights into the metabolic mechanisms and pathogenesis of PDCoV infection. METHODS Animal experiment, Determination of viral growth by real-time RT-PCR, Histopathology, Immunohistochemical staining, Microarray analysis.
Collapse
Affiliation(s)
- Jiao L Wu
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Kai J Mai
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Di Li
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Rui T Wu
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Zi X Wu
- Guangdong Wen's Foodstuffs Group CO., Ltd., Guangzhou, Guangdong, China
| | - Xiao Y Tang
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Qian N Li
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Yuan Sun
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Tian Lan
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China
| | - Xiang B Zhang
- Guangdong Wen's Foodstuffs Group CO., Ltd., Guangzhou, Guangdong, China
| | - Jing Y Ma
- College of Animal Science, South China Agricultural University, Tianhe District, Wushan Road 483, Guangzhou, 510642, China. .,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, Guangdong, China.
| |
Collapse
|
26
|
Ma L, Zeng F, Huang B, Zhu Y, Wu M, Xu F, Xiao L, Huang R, Ma J, Cong F, Guo P. Point-of-care diagnostic assay for rapid detection of porcine deltacoronavirus using the recombinase polymerase amplification method. Transbound Emerg Dis 2019; 66:1324-1331. [PMID: 30801935 PMCID: PMC7168525 DOI: 10.1111/tbed.13155] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/24/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022]
Abstract
Porcine deltacoronavirus (PDCoV) has emerged and spread throughout the porcine industry in many countries over the last 6 years. PDCoV caused watery diarrhoea, vomiting and dehydration in newborn piglets. A sensitive diagnostic method would be beneficial to the prevention and control of PDCoV infection. Recombinase polymerase amplification (RPA) is an isothermal amplification method which has been widely used for virus detection. A probe-based reverse transcription RPA (RT-RPA) assay was developed for real-time detection of PDCoV. The amplification can be finished in 20 min and fluorescence monitoring was performed by a portable device. The lowest detection limit of the PDCoV RT-RPA assay was 100 copies of RNA molecules per reaction; moreover, the RT-RPA assay had no cross-reaction with other common swine viruses. The clinical performance of the RT-RPA assay was evaluated using 108 clinical samples (54 intestine specimens and 54 faecal swab specimens). The coincidence rate of the detection results for clinical samples between RT-RPA and RT-qPCR was 97.2%. In summary, the real-time RT-RPA assay offers a promising alternative to RT-qPCR for point-of-care detection of PDCoV.
Collapse
Affiliation(s)
- Lei Ma
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Fanwen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Bihong Huang
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Yujun Zhu
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Miaoli Wu
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Fengjiao Xu
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Li Xiao
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Ren Huang
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Feng Cong
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Pengju Guo
- Guangdong Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| |
Collapse
|
27
|
Koonpaew S, Teeravechyan S, Frantz PN, Chailangkarn T, Jongkaewwattana A. PEDV and PDCoV Pathogenesis: The Interplay Between Host Innate Immune Responses and Porcine Enteric Coronaviruses. Front Vet Sci 2019; 6:34. [PMID: 30854373 PMCID: PMC6395401 DOI: 10.3389/fvets.2019.00034] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/28/2019] [Indexed: 12/24/2022] Open
Abstract
Enteropathogenic porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV), members of the coronavirus family, account for the majority of lethal watery diarrhea in neonatal pigs in the past decade. These two viruses pose significant economic and public health burdens, even as both continue to emerge and reemerge worldwide. The ability to evade, circumvent or subvert the host’s first line of defense, namely the innate immune system, is the key determinant for pathogen virulence, survival, and the establishment of successful infection. Unfortunately, we have only started to unravel the underlying viral mechanisms used to manipulate host innate immune responses. In this review, we gather current knowledge concerning the interplay between these viruses and components of host innate immunity, focusing on type I interferon induction and signaling in particular, and the mechanisms by which virus-encoded gene products antagonize and subvert host innate immune responses. Finally, we provide some perspectives on the advantages gained from a better understanding of host-pathogen interactions. This includes their implications for the future development of PEDV and PDCoV vaccines and how we can further our knowledge of the molecular mechanisms underlying virus pathogenesis, virulence, and host coevolution.
Collapse
Affiliation(s)
- Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Samaporn Teeravechyan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Phanramphoei Namprachan Frantz
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| |
Collapse
|
28
|
Li D, Feng H, Liu Y, Chen Y, Wei Q, Wang J, Liu D, Huang H, Su Y, Wang D, Cui Y, Zhang G. Molecular evolution of porcine epidemic diarrhea virus and porcine deltacoronavirus strains in Central China. Res Vet Sci 2018; 120:63-69. [PMID: 30265872 PMCID: PMC7111851 DOI: 10.1016/j.rvsc.2018.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 03/28/2018] [Accepted: 06/10/2018] [Indexed: 01/05/2023]
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine deltacoronavirus (PDCoV) are epizootic swine viruses. To detect and study the evolution of PEDV and PDCoV in central China (Shanxi, Henan, Hubei province), 70 clinical intestinal and fecal samples from piglets with severe watery diarrhea during August 2015 and June 2016 were collected, tested and analyzed. PEDV was more frequently detected by PCR than PDCoV. Phylogenetic analysis of S genes showed that the 10 PEDV strains from this study clustered into G2a (n = 7) and G2b (n = 3) groups. Additionally, the three G2b strains (PEDV S2△) contained the same specific 3 nt deletion in S2 as other reference strains in G2b. Interestingly, complete genome analysis indicated that CH/hubei/2016 was closer to the US INDEL strain and G2a group. CH/hubei/2016 had one recombination event in S2 gene which may have resulted from AH2012-12 (from G2b group) and CH-ZMDZY-11 (from G2a group). Furthermore, 10 purifying selection sites in S gene indicated an adaptive evolution of PEDV in central China swine herds. These results suggested that Pandemic G2a and G2b are predominant PEDV genotype circulating in central China. In addition, the deletion and recombination identified in S gene suggested PEDV strains of central exhibited an evolutionary variety. However, whether these changes affect the pathogenicity and antigenicity of wild PEDV is unknown and is worth for further investigation. PEDV (84.2%) infection could be more commonly detected than PDCoV (2.9%) in central China. A specific 3 nt-deletion in S2 gene was firstly reported in PEDV strains of central China. The further analyses provided evidence of the relationship between PEDV S2△ and previous PEDV stains (3-deletion in S2).
Collapse
Affiliation(s)
- Dongliang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China
| | - Hua Feng
- Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China
| | - Yunchao Liu
- Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiang Wei
- Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China
| | - Juan Wang
- Henan Zhongze Biological Engineering Co., Ltd., Zhengzhou 450019, China
| | - Dongmin Liu
- Henan Zhongze Biological Engineering Co., Ltd., Zhengzhou 450019, China
| | - Huimin Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yunfang Su
- Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China; College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shanxi 712100, China
| | - Dongyu Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yinglei Cui
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Provincial Key Laboratory of Animal immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450000, Henan, China; College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling, Shanxi 712100, China.
| |
Collapse
|
29
|
Chen Q, Wang L, Yang C, Zheng Y, Gauger PC, Anderson T, Harmon KM, Zhang J, Yoon KJ, Main RG, Li G. The emergence of novel sparrow deltacoronaviruses in the United States more closely related to porcine deltacoronaviruses than sparrow deltacoronavirus HKU17. Emerg Microbes Infect 2018; 7:105. [PMID: 29872066 PMCID: PMC5988828 DOI: 10.1038/s41426-018-0108-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/26/2018] [Accepted: 05/09/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Qi Chen
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Leyi Wang
- Department of Veterinary Clinical Medicine and the Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois, Urbana, IL, 61802, USA
| | - Chenghuai Yang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Ying Zheng
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Tavis Anderson
- National Animal Disease Center, USDA-ARS, Ames, IA, 50010, USA
| | - Karen M Harmon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Jianqiang Zhang
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Rodger G Main
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50010, USA.
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, China.
| |
Collapse
|
30
|
Zhang F, Ye Y, Song D, Guo N, Peng Q, Li A, Zhou X, Chen Y, Zhang M, Huang D, Tang Y. A simple and rapid identification method for newly emerged porcine Deltacoronavirus with loop-mediated isothermal amplification. Biol Res 2017; 50:30. [PMID: 28934984 PMCID: PMC5607838 DOI: 10.1186/s40659-017-0135-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 08/08/2017] [Indexed: 11/18/2022] Open
Abstract
Background Porcine Deltacoronavirus (PDCoV) is a newly emerged enteropathogenic coronavirus that causes diarrhea and mortality in neonatal piglets. PDCoV has spread to many countries around the world, leading to significant economic losses in the pork industry. Therefore, a rapid and sensitive method for detection of PDCoV in clinical samples is urgently needed. Results In this study, we developed a single-tube one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay specific for nucleocapsid gene to diagnose and monitor PDCoV infections. The detection limit of RT-LAMP assay was 1 × 101 copies of PDCoV, which was approximately 100-fold more sensitive than gel-based one-step reverse transcription polymerase chain reaction (RT-PCR). This assay could specifically amplify PDCoV and had no cross amplification with porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine kobuvirus (PKoV), porcine astrovirus (PAstV), porcine reproductive and respiratory syndrome virus (PRRSV), classic swine fever virus (CSFV), and porcine circovirus type 2 (PCV2). By screening a panel of clinical specimens (N = 192), this method presented a similar sensitivity with nested RT-PCR and was 1–2 log more sensitive than conventional RT-PCR in detection of PDCoV. Conclusions The RT-LAMP assay established in this study is a potentially valuable tool, especially in low-resource laboratories and filed settings, for a rapid diagnosis, surveillance, and molecular epidemiology investigation of PDCoV infections. To the best of our knowledge, this is the first work for detection of newly emerged PDCoV with LAMP technology. Electronic supplementary material The online version of this article (doi:10.1186/s40659-017-0135-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fanfan Zhang
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Ye
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Deping Song
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Nannan Guo
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Qi Peng
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Anqi Li
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xingrong Zhou
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yanjun Chen
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Min Zhang
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dongyan Huang
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yuxin Tang
- Department of Veterinary Preventive Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
31
|
Jang G, Lee KK, Kim SH, Lee C. Prevalence, complete genome sequencing and phylogenetic analysis of porcine deltacoronavirus in South Korea, 2014-2016. Transbound Emerg Dis 2017; 64:1364-1370. [PMID: 28758347 PMCID: PMC7169712 DOI: 10.1111/tbed.12690] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Indexed: 01/15/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a newly emerged enterotropic swine coronavirus that causes enteritis and diarrhoea in piglets. Here, a nested reverse transcription (RT)‐PCR approach for the detection of PDCoV was developed to identify and characterize aetiologic agent(s) associated with diarrhoeal diseases in piglets in South Korea. A PCR‐based method was applied to investigate the presence of PDCoV in 683 diarrhoeic samples collected from 449 commercial pig farms in South Korea from January 2014 to December 2016. The molecular‐based survey indicated a relatively high prevalence of PDCoV (19.03%) in South Korea. Among those, the monoinfection of PDCoV (9.66%) and co‐infection of PDCoV (6.30%) with porcine epidemic diarrhoea (PEDV) were predominant in diarrhoeal samples. The full‐length genomes or the complete spike genes of the most recent strains identified in 2016 (KNU16‐07, KNU16‐08 and KNU16‐11) were sequenced and analysed to characterize PDCoV currently prevalent in South Korea. We found a single insertion‐deletion signature and dozens of genetic changes in the spike (S) genes of the KNU16 isolates. Phylogenetic analysis based on the entire genome and spike protein sequences of these strains indicated that they are most closely related to other Korean isolates grouped with the US strains. However, Korean PDCoV strains formed different branches within the same cluster, implying continuous evolution in the field. Our data will advance the understanding of the molecular epidemiology and evolutionary characteristics of PDCoV circulating in South Korea.
Collapse
Affiliation(s)
- G Jang
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - K-K Lee
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - S-H Kim
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon, Korea
| | - C Lee
- Animal Virology Laboratory, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| |
Collapse
|
32
|
Woo PC, Lau SK, Tsang CC, Lau CC, Wong PC, Chow FW, Fong JY, Yuen KY. Coronavirus HKU15 in respiratory tract of pigs and first discovery of coronavirus quasispecies in 5'-untranslated region. Emerg Microbes Infect 2017. [PMID: 28634353 PMCID: PMC5584481 DOI: 10.1038/emi.2017.37] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Coronavirus HKU15 is a deltacoronavirus that was discovered in fecal samples of pigs in Hong Kong in 2012. Over the past three years, Coronavirus HKU15 has been widely detected in pigs in East/Southeast Asia and North America and has been associated with fatal outbreaks. In all such epidemiological studies, the virus was generally only detected in fecal/intestinal samples. In this molecular epidemiology study, we detected Coronavirus HKU15 in 9.6% of the nasopharyngeal samples obtained from 249 pigs in Hong Kong. Samples that tested positive were mostly collected during winter. Complete genome sequencing of the Coronavirus HKU15 in two nasopharyngeal samples revealed quasispecies in one of the samples. Two of the polymorphic sites involved indels, but the other two involved transition substitutions. Phylogenetic analysis showed that the two nasopharyngeal strains in the present study were most closely related to the strains PDCoV/CHJXNI2/2015 from Jiangxi, China, and CH/Sichuan/S27/2012 from Sichuan, China. The outbreak strains in the United States possessed highly similar genome sequences and were clustered monophyletically, whereas the Asian strains were more diverse and paraphyletic. The detection of Coronavirus HKU15 in respiratory tracts of pigs implies that in addition to enteric infections, Coronavirus HKU15 may be able to cause respiratory infections in pigs and that in addition to fecal-oral transmission, the virus could possibly spread through the respiratory route. The presence of the virus in respiratory samples provides an alternative clinical sample to confirm the diagnosis of Coronavirus HKU15 infection. Quasispecies were unprecedentedly observed in the 5′-untranslated region of coronavirus genomes.
Collapse
Affiliation(s)
- Patrick Cy Woo
- Department of Microbiology, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Susanna Kp Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| | - Chi-Ching Tsang
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Candy Cy Lau
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Po-Chun Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Franklin Wn Chow
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Jordan Yh Fong
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, The University of Hong Kong, Hong Kong, China.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
33
|
Vitosh-Sillman S, Loy JD, Brodersen B, Kelling C, Doster A, Topliff C, Nelson E, Bai J, Schirtzinger E, Poulsen E, Meadors B, Anderson J, Hause B, Anderson G, Hesse R. Experimental infection of conventional nursing pigs and their dams with Porcine deltacoronavirus. J Vet Diagn Invest 2017; 28:486-97. [PMID: 27578872 DOI: 10.1177/1040638716654200] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a newly identified virus that has been detected in swine herds of North America associated with enteric disease. The aim of this study was to demonstrate the pathogenicity, course of infection, virus kinetics, and aerosol transmission of PDCoV using 87 conventional piglets and their 9 dams, including aerosol and contact controls to emulate field conditions. Piglets 2-4 days of age and their dams were administered an oronasal PDCoV inoculum with a quantitative real-time reverse transcription (qRT)-PCR quantification cycle (Cq) value of 22 that was generated from a field sample having 100% nucleotide identity to USA/Illinois121/2014 determined by metagenomic sequencing and testing negative for other enteric disease agents using standard assays. Serial samples of blood, serum, oral fluids, nasal and fecal swabs, and tissues from sequential autopsy, conducted daily on days 1-8 and regular intervals thereafter, were collected throughout the 42-day study for qRT-PCR, histopathology, and immunohistochemistry. Diarrhea developed in all inoculated and contact control pigs, including dams, by 2 days post-inoculation (dpi) and in aerosol control pigs and dams by 3-4 dpi, with resolution occurring by 12 dpi. Mild to severe atrophic enteritis with PDCoV antigen staining was observed in the small intestine of affected piglets from 2 to 8 dpi. Mesenteric lymph node and small intestine were the primary sites of antigen detection by immunohistochemistry, and virus RNA was detected in these tissues to the end of the study. Virus RNA was detectable in piglet fecal swabs to 21 dpi, and dams to 14-35 dpi.
Collapse
Affiliation(s)
- Sarah Vitosh-Sillman
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| | - John Dustin Loy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| | - Bruce Brodersen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| | - Clayton Kelling
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| | - Alan Doster
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| | - Christina Topliff
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| | - Eric Nelson
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| | - Jianfa Bai
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| | - Erin Schirtzinger
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| | - Elizabeth Poulsen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| | - Barbara Meadors
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| | - Joseph Anderson
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| | - Benjamin Hause
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| | - Gary Anderson
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| | - Richard Hesse
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE (Vitosh-Sillman, Loy, Brodersen, Kelling, Doster, Topliff)Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD (Nelson)Kansas State Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Manhattan, KS (Bai, Schirtzinger, Poulsen, Meadors, J Anderson, Hause, G Anderson, Hesse)
| |
Collapse
|
34
|
Dong N, Fang L, Yang H, Liu H, Du T, Fang P, Wang D, Chen H, Xiao S. Isolation, genomic characterization, and pathogenicity of a Chinese porcine deltacoronavirus strain CHN-HN-2014. Vet Microbiol 2016; 196:98-106. [PMID: 27939164 PMCID: PMC7117368 DOI: 10.1016/j.vetmic.2016.10.022] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine coronavirus that causes diarrhea in piglets. Since the first outbreak of PDCoV in the United States in 2014, this novel porcine coronavirus has been detected in South Korea, Canada, Mexico, Thailand, and China. In this study, a Chinese PDCoV strain, designated CHN-HN-2014, was isolated from piglets with severe diarrhea on a pig farm in Henan Province, China, and examined with a specific immunofluorescence assay and electron microscopy. Genomic analysis showed that CHN-HN-2014 shares 91.6%-99.4% nucleotide identity with other known PDCoV strains. The pathogenicity of CHN-HN-2014 was further investigated in 5-day-old and 21-day-old piglets. Both kinds of piglets developed clear clinical symptoms, including vomiting, anorexia, lethargy, and severe diarrhea, by 2days postinoculation (DPI), and diarrhea persisted for about 5-6 days. Viral shedding was detected in rectal swabs until 14 DPI in challenged 5-day-old pigs and until 18 DPI in challenged 21-day-old pigs. At necropsy at 4 DPI, macroscopic and microscopic lesions were observed and viral antigen was detected in the small intestines with immunohistochemical staining. These data demonstrate that Chinese PDCoV strain CHN-HN-2014 shares high nucleotide identity with previously reported PDCoV strains and is pathogenic in 5-day-old and 21-day-old piglets.
Collapse
Affiliation(s)
- Nan Dong
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Hao Yang
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Han Liu
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ting Du
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Puxian Fang
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dang Wang
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Huanchun Chen
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Shaobo Xiao
- Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
35
|
Zhai SL, Wei WK, Li XP, Wen XH, Zhou X, Zhang H, Lv DH, Li F, Wang D. Occurrence and sequence analysis of porcine deltacoronaviruses in southern China. Virol J 2016; 13:136. [PMID: 27496131 PMCID: PMC4974758 DOI: 10.1186/s12985-016-0591-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
Background Following the initial isolation of porcine deltacoronavirus (PDCoV) from pigs with diarrheal disease in the United States in 2014, the virus has been detected on swine farms in some provinces of China. To date, little is known about the molecular epidemiology of PDCoV in southern China where major swine production is operated. Results To investigate the prevalence of PDCoV in this region and compare its activity to other enteric disease of swine caused by porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis coronavirus (TGEV), and porcine rotavirus group C (Rota C), 390 fecal samples were collected from swine of various ages from 15 swine farms with reported diarrhea. Fecal samples were tested by reverse transcription-PCR (RT-PCR) that targeted PDCoV, PEDV, TGEV, and Rota C, respectively. PDCoV was detected exclusively from nursing piglets with an overall prevalence of approximate 1.28 % (5/390), not in suckling and fattening piglets. Interestingly, all of PDCoV-positive samples were from 2015 rather than 2012–2014. Despite a low detection rate, PDCoV emerged in each province/region of southern China. In addition, compared to TGEV (1.54 %, 5/390) or Rota C (1.28 %, 6/390), there were highly detection rates of PEDV (22.6 %, 88/390) in those samples. Notably, all five PDCoV-positive piglets were co-infected by PEDV. Furthermore, phylogenetic analysis of spike (S) and nucleocapsid (N) gene sequences of PDCoVs revealed that currently circulating PDCoVs in southern China were more closely related to other Chinese strains of PDCoVs than to those reported in United States, South Korea and Thailand. Conclusions This study demonstrated that PDCoV was present in southern China despite the low prevalence, and supported an evolutionary theory of geographical clustering of PDCoVs. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0591-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shao-Lun Zhai
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China
| | - Wen-Kang Wei
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China
| | - Xiao-Peng Li
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China
| | - Xiao-Hui Wen
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China
| | - Xia Zhou
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China
| | - He Zhang
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China
| | - Dian-Hong Lv
- Animal Disease Diagnostic Center, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Disease Prevention, Guangdong Open Laboratory of Veterinary Public Health, Guangzhou, 510640, China.
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.,Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
36
|
Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution. Virus Res 2016; 226:71-84. [PMID: 27270129 PMCID: PMC7114555 DOI: 10.1016/j.virusres.2016.05.028] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 05/27/2016] [Accepted: 05/30/2016] [Indexed: 12/25/2022]
Abstract
Porcine deltacoronavirus (PDCoV) was first reported in Hong Kong, China in 2012 and reported in United States swine in February 2014. PDCoV has subsequently been detected in South Korea, mainland China, and Thailand. PDCoV has been experimentally confirmed to cause diarrhea in inoculated pigs and need to be differentially diagnosed from porcine epidemic diarrhea virus and transmissible gastroenteritis virus in the field. Rapid diagnosis is critical for the implementation of efficient control strategies against PDCoV. Developing high-quality diagnostic methods and understanding PDCoV infection dynamics to collect appropriate specimens at the appropriate time window are important to obtain reliable diagnostic results. Among the virological methods, PDCoV-specific RT-PCR remains the method of choice for the detection of PDCoV; immunohistochemistry combined with hematoxylin and eosin staining has also been commonly used to examine histopathological lesions caused by PDCoV. Serological assays can provide information about previous exposure to PDCoV and also determine antibody responses to infection or vaccination. Prevalence of PDCoV is lower compared to that of PEDV. However, among PDCoV-positive samples, co-infection with other enteric pathogen e.g. PEDV is common. It is also important to understand molecular epidemiology of PDCoV and genetic relationships of global PDCoVs. This review discusses PDCoV infection dynamics and appropriate sample collection for diagnostic testing, the commonly used virological and serological methods for PDCoV diagnosis, prevalence and genetic evolution of PDCoVs.
Collapse
|
37
|
Lee JH, Chung HC, Nguyen VG, Moon HJ, Kim HK, Park SJ, Lee CH, Lee GE, Park BK. Detection and Phylogenetic Analysis of Porcine Deltacoronavirus in Korean Swine Farms, 2015. Transbound Emerg Dis 2016; 63:248-52. [PMID: 26968326 PMCID: PMC7169800 DOI: 10.1111/tbed.12490] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Indexed: 02/03/2023]
Abstract
This study applied molecular-based method to investigate the presence of porcine deltacoronavirus (PDCoV) in 59 commercial pig farms in South Korea. The results of RT-PCR screening on a relatively large collection of faeces samples (n = 681) from January 2013 to March 2015 did not reveal the presence of PDCoV until the end of 2014. However, on March 2015, PDCoV-positive samples (SL2, SL5) were detected from SL swine farm in Gyeongbuk province. The phylogenetic trees based on the complete spike- and nucleocapsid protein-coding genes showed that SL2 and SL5 closely related to the US PDCoV strains rather than those in China. Thought Korean strains of PDCoV isolated in 2014 (KNU14.04) and in 2015 (SL2 and SL5) grouped within US PDCoV cluster, the reconstruction of ancestral amino acid changes suggested that they are different.
Collapse
Affiliation(s)
- J. H. Lee
- Department of Veterinary Medicine Virology LabCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversitySeoulKorea
| | - H. C. Chung
- Department of Veterinary Medicine Virology LabCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversitySeoulKorea
| | - V. G. Nguyen
- Department of Veterinary Microbiology and Infectious DiseasesFaculty of Veterinary MedicineVietnam National University of AgricultureHanoiVietnam
| | - H. J. Moon
- Research UnitGreen Cross Veterinary ProductsYonginKorea
| | - H. K. Kim
- Viral Infectious Disease Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
| | - S. J. Park
- Forensic Medicine DivisionDaegu InstituteNational Forensic ServiceChilgokKorea
| | - C. H. Lee
- Department of Veterinary Medicine Virology LabCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversitySeoulKorea
| | - G. E. Lee
- Department of Veterinary Medicine Virology LabCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversitySeoulKorea
| | - B. K. Park
- Department of Veterinary Medicine Virology LabCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National UniversitySeoulKorea
| |
Collapse
|
38
|
Porcine deltacoronavirus infection: Etiology, cell culture for virus isolation and propagation, molecular epidemiology and pathogenesis. Virus Res 2016; 226:50-59. [PMID: 27086031 PMCID: PMC7114557 DOI: 10.1016/j.virusres.2016.04.009] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 11/21/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus. The etiology and molecular epidemiology of PDCoV are described. The cell culture for PDCoV isolation and propagation are demonstrated. The disease mechanisms and pathogenesis of PDCoV are reviewed.
Porcine deltacoronavirus (PDCoV) (family Coronaviridae, genus Deltacoronavirus) is a novel swine enteropathogenic coronavirus that causes acute diarrhea/vomiting, dehydration and mortality in seronegative neonatal piglets. PDCoV diarrhea was first reported in the US in early 2014, concurrently with co-circulation of porcine epidemic diarrhea virus (PEDV) (family Coronaviridae, genus Alphacoronavirus). The origin of PDCoV in pigs and also its sudden emergence or route of introduction into the US still remains unclear. In the US, since 2013–2014, the newly emerged PDCoV and PEDV have spread nationwide, causing a high number of pig deaths and significant economic impacts. The current US PDCoV strains are enteropathogenic and infect villous epithelial cells of the entire small and large intestines although the jejunum and ileum are the primary sites of infection. Similar to PEDV infections, PDCoV infections also cause acute, severe atrophic enteritis accompanied by transient viremia (viral RNA) that leads to severe diarrhea and/or vomiting, followed by dehydration as the potential cause of death in nursing piglets. At present, differential diagnosis of PDCoV, PEDV, and transmissible gastroenteritis virus (TGEV) is essential to control viral diarrheas in US swine. Cell culture-adapted US PDCoV (TC-PDCoV) strains have been isolated and propagated by us and in several other laboratories. TC-PDCoV strains will be useful to develop serologic assays and to evaluate if serial cell-culture passage attenuates TC-PDCoV as a potential vaccine candidate strain. A comprehensive understanding of the pathogenesis and epidemiology of epidemic PDCoV strains is currently needed to prevent and control the disease in affected regions and to develop an effective vaccine. This review focuses on the etiology, cell culture isolation and propagation, molecular epidemiology, disease mechanisms and pathogenesis of PDCoV infection.
Collapse
|