1
|
Burke R, Nicotra D, Phelan J, Downey F, McCabe PF, Kacprzyk J. Spermine and spermidine inhibit or induce programmed cell death in Arabidopsis thaliana in vitro and in vivo in a dose-dependent manner. FEBS J 2024; 291:3665-3685. [PMID: 38808914 DOI: 10.1111/febs.17165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Polyamines are ubiquitous biomolecules with a number of established functions in eukaryotic cells. In plant cells, polyamines have previously been linked to abiotic and biotic stress tolerance, as well as to the modulation of programmed cell death (PCD), with contrasting reports on their pro-PCD and pro-survival effects. Here, we used two well-established platforms for the study of plant PCD, Arabidopsis thaliana suspension cultures cells and the root hair assay, to examine the roles of the polyamines spermine and spermidine in the regulation of PCD. Using these systems for precise quantification of cell death rates, we demonstrate that both polyamines can trigger PCD when applied exogenously at higher doses, whereas at lower concentrations they inhibit PCD induced by both biotic and abiotic stimuli. Furthermore, we show that concentrations of polyamines resulting in inhibition of PCD generated a transient ROS burst in our experimental system, and activated the expression of oxidative stress- and pathogen response-associated genes. Finally, we examined PCD responses in existing Arabidopsis polyamine synthesis mutants, and identified a subtle PCD phenotype in Arabidopsis seedlings deficient in thermo-spermine. The presented data show that polyamines can have a role in PCD regulation; however, that role is dose-dependent and consequently they may act as either inhibitors, or inducers, of PCD in Arabidopsis.
Collapse
Affiliation(s)
- Rory Burke
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Daniele Nicotra
- School of Biology and Environmental Science, University College Dublin, Ireland
- Department of Agriculture, Food and Environment, University of Catania, Italy
| | - Jim Phelan
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Frances Downey
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Paul F McCabe
- School of Biology and Environmental Science, University College Dublin, Ireland
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, University College Dublin, Ireland
| |
Collapse
|
2
|
Banerjee S, Mondal S, Islam J, Sarkar R, Saha B, Sen A. Rhizospheric nano-remediation salvages arsenic genotoxicity: Zinc-oxide nanoparticles articulate better oxidative stress management, reduce arsenic uptake, and increase yield in Pisum sativum (L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169493. [PMID: 38151134 DOI: 10.1016/j.scitotenv.2023.169493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Pea (Pisum sativum L.), a legume, has a high nutritional content, but arsenic (As) in the agro-ecosystem poses a significant bottleneck to its yield, especially in South East Asia, by severely hampering ontogeny. The present study proposes a rhizospheric nano-remediation strategy to evade As-genotoxicity and improve crop yield using biogenic zinc-oxide nanoparticles (ZnONPs). Similar to any other source of environmental stress, As-toxicity caused rapid oxidative bursts with deterioration in morpho-physiological attributes (germination rate, shoot length, and root length decreased by 62 %, 16 %, and 14.9 % respectively in the negative control, over normal control). Reactive oxygen species (ROS) accumulation (12.8 and 9-fold increase in leaves and roots) overburdened antioxidative defense, and loss of cellular homeostasis resulted in membrane damage (82.75 % increase) and electrolyte-leakage (2.6-fold increase) in negative control. The study also reveals a significant increase in nuclear area, nuclear fragmentation, and micronuclei formation in root tip cells under As-stress, indicating severe genomic instability and increased programmed cell death (3.3-fold increase in early apoptotic cells) due to leaky plasma membrane and unrepaired DNA damage. Application of ZnONPs significantly reduced As-toxicity in peas due to its adsorption in the rhizosphere, causing diminished As-uptake and better antioxidant response. Improved phytochelatin synthesis enhanced vacuolar sequestration of arsenic, which reduced As-interference. Comparatively better flowering time (7.74-19.36 % reduction in flowering delay) with greater transcript abundance of GIGANTIA (GI), CONSTANS (CO), and FLOWERING LOCUS T (FT) genes; better photosynthetic activity (1.3-1.9-fold increased chlorophyll autofluorescence); increased pollen viability; lesser genotoxicity (decreased tail DNA in comet assay) was noticed. A maximum increase of 37.5 % in pod number and seed zinc content (1.67-fold) was observed while seed arsenic content decreased under ZnONPs treatment. However, the highest dose of ZnONPs (400 mg L-1) induced NP-toxicity in pea plants under our experimental conditions, while optimum stress-alleviation was observed up to 300 mg L-1.
Collapse
Affiliation(s)
- Swarnendra Banerjee
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Sourik Mondal
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Jarzis Islam
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Rajarshi Sarkar
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization (ARO), Ramat Yishay 3009500, Israel
| | - Arnab Sen
- Molecular Genetics Laboratory, Department of Botany, University of North Bengal, Siliguri 734013, India.
| |
Collapse
|
3
|
Krawczyk B, Zięba N, Kaźmierczak A, Czarny-Krzymińska K, Szczukocki D. Growth inhibition, oxidative stress and characterisation of mortality in green algae under the influence of beta-blockers and non-steroidal anti-inflammatory drugs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165019. [PMID: 37353012 DOI: 10.1016/j.scitotenv.2023.165019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/31/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023]
Abstract
Bisoprolol and ketoprofen are widely used pharmaceuticals in medical treatment hence these substances are occurring in wastewaters and in water environment. This research investigated the toxic effects of bisoprolol and ketoprofen on two microalgae taxa, Chlorella vulgaris and Desmodesmus armatus. The results showed that both drugs inhibited the growth of the species tested and induced a decrease in chlorophyll a content compared to controls. Ketoprofen turned out to be harmful to algae as the half maximal effective concentration (EC50) values (14 days) were 37.69 mg L-1 for C. vulgaris and 40.93 mg L-1 for D. armatus. On the other hand, for bisoprolol, the EC50 values were greater than the established NOEC, 100 mg L-1. Bisoprolol and ketoprofen induced oxidative stress in the tested microorganisms, as indicated by changes in the activities of antioxidant enzymes. Exposure to 100 mg L-1 of drugs significantly increased the activity of catalase, peroxidase and superoxide dismutase. Fluorescence microscopy showed that both medicaments changed the cells' morphology. There was atrophy of chlorophyll in the cells, moreover, dying multinuclear cells and cells without nuclei were observed. In addition, there were atrophic cells, namely cells that lacked nuclei and chlorophyll. Profile area analyses showed that bisoprolol and ketoprofen treated C. vulgaris cells were approximately 4 and 2 times greater compared to control ones. Our experimental findings highlight the ecotoxicological threats for aquatic primary producers from bisoprolol and ketoprofen and provide insight into the characteristics of their death.
Collapse
Affiliation(s)
- Barbara Krawczyk
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Lodz, Tamka 12, Poland.
| | - Natalia Zięba
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Lodz, Tamka 12, Poland
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz 90-236, Pomorska 141/143, Poland
| | - Karolina Czarny-Krzymińska
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Lodz, Tamka 12, Poland
| | - Dominik Szczukocki
- Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, 91-403 Lodz, Tamka 12, Poland
| |
Collapse
|
4
|
Sanniyasi E, Gopal RK, Damodharan R, Arumugam A, Sampath Kumar M, Senthilkumar N, Anbalagan M. In vitro anticancer potential of laminarin and fucoidan from Brown seaweeds. Sci Rep 2023; 13:14452. [PMID: 37660108 PMCID: PMC10475116 DOI: 10.1038/s41598-023-41327-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
Marine seaweeds are rich source of polysaccharides present in their cell wall and are cultivated and consumed in China, Japan, Korea, and South Asian countries. Brown seaweeds (Phaeophyta) are rich source of polysaccharides such as Laminarin and Fucoidan. In present study, both the laminarin and fucoidan were isolated was yielded higher in PP (Padina pavonica) (4.36%) and STM (Stoechospermum marginatum) (2.32%), respectively. The carbohydrate content in laminarin and fucoidan was 86.91% and 87.36%, whereas the sulphate content in fucoidan was 20.68%. Glucose and mannose were the major monosaccharide units in laminarin (PP), however, fucose, galactose, and xylose in fucoidan (STM). FT-IR down peaks represent the carbohydrate of laminarin and fucoidan except, for 1219 cm-1, and 843 cm-1, illustrating the sulphate groups of fucoidan. The molecular weight of laminarin was 3-5 kDa, and the same for fucoidan was 2-6 kDa, respectively. Both the Fucoidan and Laminarin showed null cytotoxicity on Vero cells. Contrastingly, the fucoidan possess cytotoxic activity on human liver cancer cells (HepG2) (IC50-24.4 ± 1.5 µg/mL). Simultaneously, laminarin also shown cytotoxicity on human colon cancer cells (HT-29) (IC50-57 ± 1.2 µg/mL). The AO/EB (Acriding Orange/Ethidium Bromide) assay significantly resulted in apoptosis and necrosis upon laminarin and fucoidan treatments, respectively. The DNA fragmentation results support necrotic cancer cell death. Therefore, laminarin and fucoidan from PP and STM were potential bioactive compounds for anticancer therapy.
Collapse
Affiliation(s)
- Elumalai Sanniyasi
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai, 600025, India.
| | - Rajesh Kanna Gopal
- Department of Microbiology, Saveetha Dental College and Hospitals, SIMATS, Chennai, 600077, India
| | - Rajesh Damodharan
- Department of Biotechnology, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Arthi Arumugam
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | | | | | - Monisha Anbalagan
- Department of Biotechnology, Jeppiar Engineering College, Chennai, 600119, India
| |
Collapse
|
5
|
Kaźmierczak A, Tarkowská D, Plačková L, Doniak M, Doležal K. Hormonal crosstalk controls cell death induced by kinetin in roots of Vicia faba ssp. minor seedlings. Sci Rep 2023; 13:11661. [PMID: 37468550 DOI: 10.1038/s41598-023-38641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Studies of vitality/mortality of cortex cells, as well as of the concentrations of ethylene (ETH), gibberellins (GAs), indolic compounds/auxins (ICs/AUXs) and cytokinins (CKs), were undertaken to explain the hormonal background of kinetin (Kin)-regulated cell death (RCD), which is induced in the cortex of the apical parts of roots of faba bean (Vicia faba ssp. minor) seedlings. Quantification was carried out with fluorescence microscopy, ETH sensors, spectrophotometry and ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC‒MS/MS). The results indicated that Kin was metabolized to the transport form, i.e., kinetin-9-glucoside (Kin9G) and kinetin riboside (KinR). KinR was then converted to cis-zeatin (cZ) in apical parts of roots with meristems, to cis-zeatin riboside (cZR) in apical parts of roots without meristems and finally to cis-zeatin riboside 5'-monophosphate (cZR5'MP), which is indicated to be a ligand of cytokinin-dependent receptors inducing CD. The process may be enhanced by an increase in the amount of dihydrozeatin riboside (DHZR) as a byproduct of the pathway of zeatin metabolism. It seems that crosstalk of ETH, ICs/AUXs, GAs and CKs with the cZR5'MP, the cis-zeatin-dependent pathway, but not the trans-zeatin-dependent pathway, is responsible for Kin-RCD, indicating that the process is very specific and offers a useful model for studies of CD hallmarks in plants.
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany Academy of Sciences of the Czech Republic and Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Magdalena Doniak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Karel Doležal
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
- Department of Chemical Biology and Genetics, Center of Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| |
Collapse
|
6
|
Gong P, Khattab IM, Kaźmierczak A, Metzger C, Zhu X, Liu Q, Glenz R, Waller F, Nick P. Two ways to die: Species dependent PCD modes in grapevine cells. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111695. [PMID: 37030328 DOI: 10.1016/j.plantsci.2023.111695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023]
Abstract
Programmed cell death (PCD) is considered as a hallmark of strain-specific immunity. In contrast, generic basal immunity is thought to act without PCD. This classical bifurcation has been questioned during recent years. Likewise, the role of jasmonate signalling for these two modes of innate immunity has remained ambiguous. We have addressed both questions using two closely related grapevine cell lines (V. rupestris, V. vinifera cv. 'Pinot Noir') that contrast in their cell-death response to the bacterial elicitor harpin and the hormonal trigger methyl jasmonate (MeJA). We follow different cellular (loss of membrane integrity, mortality), molecular (induction of transcripts for phytoalexin synthesis and for metacaspases), as well as metabolic (sphingolipid profiles) responses to the two triggers in the two cell lines. The role of NADPH oxidases and induction of transcripts for the class-II metacaspases MC5 differ qualitatively between the two cell lines. We tested a possible role of sphingolipid metabolism but can rule this out. We propose a model, where V. rupestris, originating from co-evolution with several biotrophic pathogens, readily activates a hypersensitive cell death in response to harpin, while the context of MeJA-induced cell death in 'Pinot Noir' might not be related to immunity at all. We propose that the underlying signalling is modular, recruiting metacaspases differently depending on upstream signalling.
Collapse
Affiliation(s)
- Peijie Gong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany; Department of Horticulture, Nanjing Agricultural University, Nanjing, China.
| | - Islam M Khattab
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany; Department of Horticulture, Faculty of Agriculture, Damanhour University, 22511 Damanhour, Egypt
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Christian Metzger
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Xin Zhu
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Qiong Liu
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - René Glenz
- Pharmaceutical Biology, Julius-von-Sachs Institute of Biosciences, Biocenter, Julius Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Frank Waller
- Pharmaceutical Biology, Julius-von-Sachs Institute of Biosciences, Biocenter, Julius Maximilians-Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany.
| |
Collapse
|
7
|
Murugadoss G, Rajesh Kumar M, Murugan D, Koutavarapu R, M Al-Ansari M, Aldawsari M. Ultra-fast photocatalytic degradation and seed germination of band gap tunable nickel doping ceria nanoparticles. CHEMOSPHERE 2023; 333:138934. [PMID: 37182707 DOI: 10.1016/j.chemosphere.2023.138934] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Doping transition metal ions into cerium oxide (CeO2) results in interesting modifications to the material, including an increase in surface area, a high isoelectric point, biocompatibility, greater ionic conductivity, and catalytic activity. Herein, various concentrations (1-5%, 10% and 20%) of nickel (Ni) doped CeO2 nanoparticle have been made by a facile chemical process. Using a variety of cutting-edge analytical techniques, the structural, optical, and photocatalytic properties of undoped and varied concentrations (1-5%, 10%, and 20%) of Ni doped CeO2 nanoparticles have been investigated. Pure cubic fluorite structure with average crystallite sizes in the region of 12-15 nm was determined by X-ray diffraction (XRD) investigation. High resolution electron microscopy (HR-TEM), which revealed highly homogeneous hexagonal shape of the particles with average size of 15 nm, was also used to determine microstructural information. According to the optical absorption, the band gaps of Ni doped and undoped CeO2 nanoparticles were found to be 2.96 eV and 1.95 eV, respectively. When exposed to sunlight, the narrow band gap Ni doped CeO2 nanoparticles worked as an active visible light catalyst to remove the dyes Rose Bengal (RB) and Direct Yellow (DY). The best photodegradation efficiencies for RB and DY dyes were found about 93% and 97%, respectively, using the 5% Ni-doped CeO2 catalyst. The apparent rate constant values of 0.039 for RB and 0.040 min-1 were attained for DY. As well, the treated, untreated dye solution and control solutions were utilized to assess the toxicity of commercially accessible Vigna Radiata seeds. In this study exhibits percentages of length and germination increased by 30-35% when compared to dye pollutant solution. The Ni doped CeO2 can provide a substantial alternative for current industrial waste management because of its quick photocatalytic activity and remarkable seed germination results.
Collapse
Affiliation(s)
- Govindhasamy Murugadoss
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, 600119, India.
| | - Manavalan Rajesh Kumar
- Institute of Natural Science and Mathematics, Ural Federal University, Yekaterinburg 620002, Russia
| | - Dakshana Murugan
- Department of Physics, Sathyabama Institute of Science and Technology, Chennai, 600119, India
| | - Ravindranadh Koutavarapu
- Department of Robotics Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Majdoleen Aldawsari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
8
|
Samperna S, Zanotti C, Scafato P, Boari A, Visconti S, Vurro M, Superchi S, Evidente A, Marra M. (±)-3-Deoxyradicinin Induces Stomata Opening and Chloroplast Oxidative Stress in Tomato ( Solanum lycopersicum L.). Int J Mol Sci 2023; 24:ijms24108467. [PMID: 37239812 DOI: 10.3390/ijms24108467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Radicinin is a phytotoxic dihydropyranopyran-4,5-dione isolated from the culture filtrates of Cochliobolus australiensis, a phytopathogenic fungus of the invasive weed buffelgrass (Cenchrus ciliaris). Radicinin proved to have interesting potential as a natural herbicide. Being interested in elucidating the mechanism of action and considering radicinin is produced in small quantities by C. australiensis, we opted to use (±)-3-deoxyradicinin, a synthetic analogue of radicinin that is available in larger quantities and shows radicinin-like phytotoxic activities. To obtain information about subcellular targets and mechanism(s) of action of the toxin, the study was carried out by using tomato (Solanum lycopersicum L.), which, apart from its economic relevance, has become a model plant species for physiological and molecular studies. Results of biochemical assays showed that (±)-3-deoxyradicinin administration to leaves induced chlorosis, ion leakage, hydrogen peroxide production, and membrane lipid peroxidation. Remarkably, the compound determined the uncontrolled opening of stomata, which, in turn, resulted in plant wilting. Confocal microscopy analysis of protoplasts treated with (±)-3-deoxyradicinin ascertained that the toxin targeted chloroplasts, eliciting an overproduction of reactive singlet oxygen species. This oxidative stress status was related by qRT-PCR experiments to the activation of transcription of genes of a chloroplast-specific pathway of programmed cell death.
Collapse
Affiliation(s)
- Simone Samperna
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Clarissa Zanotti
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Patrizia Scafato
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Angela Boari
- Institute of Sciences of Food Production, National Research Council, 70126 Bari, Italy
| | - Sabina Visconti
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council, 70126 Bari, Italy
| | - Stefano Superchi
- Department of Sciences, University of Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
| | - Mauro Marra
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
9
|
Kaźmierczak A, Siatkowska E, Li R, Bothe S, Nick P. Kinetin induces microtubular breakdown, cell cycle arrest and programmed cell death in tobacco BY-2 cells. PROTOPLASMA 2023; 260:787-806. [PMID: 36239807 PMCID: PMC10125952 DOI: 10.1007/s00709-022-01814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Plant cells can undergo regulated cell death in response to exogenous factors (often in a stress context), but also as regular element of development (often regulated by phytohormones). The cellular aspects of these death responses differ, which implies that the early signalling must be different. We use cytokinin-induced programmed cell death as paradigm to get insight into the role of the cytoskeleton for the regulation of developmentally induced cell death, using tobacco BY-2 cells as experimental model. We show that this PCD in response to kinetin correlates with an arrest of the cell cycle, a deregulation of DNA replication, a loss of plasma membrane integrity, a subsequent permeabilisation of the nuclear envelope, an increase of cytosolic calcium correlated with calcium depletion in the culture medium, an increase of callose deposition and the loss of microtubule and actin integrity. We discuss these findings in the context of a working model, where kinetin, mediated by calcium, causes the breakdown of the cytoskeleton, which, either by release of executing proteins or by mitotic catastrophe, will result in PCD.
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Faculty of Biology and Environmental Protection, Institute of Experimental Biology, Department of Cytophysiology, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Ewa Siatkowska
- Faculty of Biology and Environmental Protection, Institute of Experimental Biology, Department of Cytophysiology, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland
| | - Ruoxi Li
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Sophie Bothe
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
10
|
Lai JL, Wang Y, Li ZG, Xi HL, Luo XG. Assessing the ecological risk of tritium and Carbon-14 discharge on cyanobacteria through metabolic profiling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121279. [PMID: 36791945 DOI: 10.1016/j.envpol.2023.121279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
The ecological risk posed by tritium (T) and carbon-14 (C-14) discharge from nuclear accidents has gained attention. This study evaluated the toxic impact of T and C-14 (at a concentration of 37 kBq/L for 15 days) on the cyanobacteria (Synechococcus elongatus). The results showed that the assimilation efficiency of cyanobacteria was significantly higher for C-14 than T, and the intracellular C-14 activity reached 30.62-40.58 kBq/kg. T and C-14 exposure had no significant effect on cell proliferation but impacted photosynthesis and respiration. T exposure increased the content of Ca, Mg, Na, P, K, and Mn, while C-14 exposure primarily affected trace element absorption in cyanobacteria. 31, 27, and 58 different metabolites (DEMs) were identified under T, C-14, and combined exposure conditions. These DEMs were enriched in the amino acid biosynthesis pathway, and nitrogen assimilation was one of the crucial pathways affected by T and C-14 exposure. The absorption of mineral elements by cyanobacteria was influenced by the variation in metabolites in the ABC transporter pathway caused by T and C-14 exposure. Our findings provide insights into the metabolic response of cyanobacteria to T and C-14 exposure and will help to guide the ecological risk evaluation of nuclear accidents.
Collapse
Affiliation(s)
- Jin-Long Lai
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zhan-Guo Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Xue-Gang Luo
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
11
|
Khattab IM, Fischer J, Kaźmierczak A, Thines E, Nick P. Ferulic acid is a putative surrender signal to stimulate programmed cell death in grapevines after infection with Neofusicoccum parvum. PLANT, CELL & ENVIRONMENT 2023; 46:339-358. [PMID: 36263963 DOI: 10.1111/pce.14468] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
An apoplectic breakdown from grapevine trunk diseases (GTDs) has become a serious challenge to viticulture as a consequence of drought stress. We hypothesize that fungal aggressiveness is controlled by a chemical communication between the host and colonizing fungus. We introduce the new concept of a 'plant surrender signal' accumulating in host plants under stress and facilitating the aggressive behaviour of the strain Neofusicoccum parvum (Bt-67) causing Botryosphaeriaceae-related dieback in grapevines. Using a cell-based experimental system (Vitis cells) and bioactivity-guided fractionation, we identify trans-ferulic acid, a monolignol precursor, as a 'surrender signal'. We show that this signal specifically activates the secretion of the fungal phytotoxin fusicoccin A aglycone. We show further that this phytotoxin, mediated by 14-3-3 proteins, activates programmed cell death in Vitis cells. We arrive at a model showing a chemical communication facilitating fusicoccin A secretion that drives necrotrophic behaviour during Botryosphaeriaceae-Vitis interaction through trans-ferulic acid. We thus hypothesize that channelling the phenylpropanoid pathway from this lignin precursor to the trans-resveratrol phytoalexin could be a target for future therapy.
Collapse
Affiliation(s)
- Islam M Khattab
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Jochen Fischer
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Kaiserslautern, Germany
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Kaiserslautern, Germany
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
12
|
Venkatesh N, Sakthivel P. Efficient degradation of azo dye pollutants on Zn doped SnO2 photocatalyst under sunlight irradiation: Performance, mechanism and toxicity evaluation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
P M, Jain R SK, N P, Kumar J U S, M P, Monnenahally KH. Antiproliferative effects of Artabotrys odoratissimus fruit extract and its bioactive fraction through upregulation of p53/γH2AX signals and G2/M phase arrest in MIA PaCa-2 cells. Anticancer Agents Med Chem 2022; 22:2998-3008. [PMID: 35105296 DOI: 10.2174/1871520622666220201103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/20/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Artabotrys odoratissimus (Annonaceae) is a medicinal and ornamental plant widely cultivated in Southeast Asia for its famous ylang ylang essential oil. The fruits of this plant are used for health benefits, but very little is studied about the bioactive principles, their role in regulating oxidative stress and tumour progression. OBJECTIVE The study aimed at evaluating the antiproliferative effects of fruit extract of Artabotrys odoratissimus and its bioactive fraction using cell-based assays. METHODS The free radical scavenging and anti-proliferative effects of Artabotrys odoratissimus Fruit Ethyl acetate (FEA) extract and its bioactive fraction were evaluated using Cell viability assays, Colony formation assay, Double staining assay, Reactive Oxygen Species (ROS) assay, Comet assay, Cell cycle analysis, and Western blotting. RESULTS The extract showed phenolic content of 149.8±0.11µg/mg Gallic acid equivalents and flavonoid content of 214.47±4.18 µg/mg Quercetin. FEA showed IC50 value of 76.35 µg/ml in ABTS assay and an IC50 value of 134.3±7.8 µg/ml on MIA PaCa-2 cells. The cells treated with 125 µg/ml and 250 µg/ml FEA showed increased apoptotic cells in Double staining assay, DNA damage during comet assay, attenuated ROS and cell cycle arrest at G2M phase at 125 µg/ml and 250 µg/ml. The active fraction AF5 showed a IC50 value of 67±1.26 µg/ml on MIA PaCa-2 cells during MTT assay, displayed potential antiproliferative effects, showed marked increase in the expression of γH2AX and p53. CONCLUSION These results prove that the fruit extract and the bioactive fraction demonstrate oxidative stress mediated DNA damage leading to the apoptosis in MIA PaCa-2 cell line.
Collapse
Affiliation(s)
- Meghana P
- Department of Post Graduate Studies and Research in Biotechnology, Kuvempu University, Shankarghatta-577451, Karnataka, India
| | - Sandeep Kumar Jain R
- Department of Post Graduate Studies and Research in Biotechnology, Kuvempu University, Shankarghatta-577451, Karnataka, India
| | - Prashanth N
- Department of Post Graduate Studies and Research in Biotechnology, Kuvempu University, Shankarghatta-577451, Karnataka, India
| | - Santhosh Kumar J U
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pallavi M
- Post graduate Department of Studies and Research in Biotechnology, Molecular Biomedicine Laboratory, Sahyadri Science College, Kuvempu University, Shimoga - 577203, Karnataka, India
| | | |
Collapse
|
14
|
Kaźmierczak A, Kunikowska A, Doniak M, Kornaś A. Mechanism of kinetin-induced death of Vicia faba ssp. minor root cortex cells. Sci Rep 2021; 11:23746. [PMID: 34887458 PMCID: PMC8660813 DOI: 10.1038/s41598-021-03103-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023] Open
Abstract
Cell death (CD) may be induced by endogenous or exogenous factors and contributes to all the steps of plant development. This paper presents results related to the mechanism of CD regulation induced by kinetin (Kin) in the root cortex of Vicia faba ssp. minor. To explain the process, 6-(2-hydroxy-3-methylbenzylamino)purine (PI-55), adenine (Ad), 5'-amine-5'-deoxyadenosine (Ado) and N-(2-chloro-4-piridylo)-N'-phenylurea (CPPU) were applied to (i) block cytokinin receptors (CKs) and inhibit the activities of enzymes of CK metabolism, i.e., (ii) phosphoribosyltransferase, (iii) kinases, and (iv) oxidases, respectively. Moreover, ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), lanthanum chloride (LaCl3), ruthenium red (RRed) and cyclosporine A (CS-A) were applied to (i) chelate extracellular calcium ions (Ca2+) as well as blocks of (ii) plasma-, (iii) endoplasmic reticulum- (ER) membrane Ca2+ ion channels and (iv) mitochondria- (MIT) Ca2+ ions release by permeability transition por (PTP), respectively. The measured physiological effectiveness of these factors was the number of living and dying cortex cells estimated with orange acridine (OA) and ethidium bromide (EB), the amounts of cytosolic Ca2+ ions with chlortetracycline (CTC) staining and the intensity of chromatin and Ca2+-CTC complex fluorescence, respectively. Moreover, the role of sorafenib, an inhibitor of RAF kinase, on the vitality of cortex cells and ethylene levels as well as the activities of RAF-like kinase and MEK2 with Syntide-2 and Mek2 as substrates were studied. The results clarified the previously presented suggestion that Kin is converted to appropriate ribotides (5'-monophosphate ribonucleotides), which cooperate with the ethylene and Ca2+ ion signalling pathways to transduce the signal of kinetin-programmed cell death (Kin-PCD). Based on the present and previously published results related to Kin-PCD, the crosstalk between ethylene and MAP kinase signalling, as well as inhibitors of CK receptors and enzymes of their metabolism, is proposed.
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Anita Kunikowska
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland
| | - Magdalena Doniak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland
| | - Andrzej Kornaś
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084, Kraków, Poland
| |
Collapse
|
15
|
Vigneshwaran R, Ezhilarasan D, Rajeshkumar S. Inorganic titanium dioxide nanoparticles induces cytotoxicity in colon cancer cells. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Kaliammal R, Parvathy G, Maheshwaran G, Velsankar K, Kousalya Devi V, Krishnakumar M, Sudhahar S. Zephyranthes candida flower extract mediated green synthesis of silver nanoparticles for biological applications. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.09.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Ditty MJ, Ezhilarasan D. β-sitosterol induces reactive oxygen species-mediated apoptosis in human hepatocellular carcinoma cell line. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:541-550. [PMID: 34804892 PMCID: PMC8588954 DOI: 10.22038/ajp.2021.17746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 01/27/2023]
Abstract
Objective: It is of interest to investigate the anti-proliferative effect of β-sitosterol (BS) on human hepatocellular carcinoma (HepG2) cell line. Materials and Methods: β-sitosterol treatments (0.6 and 1.2 mM/ml) were done in HepG2 and after 24 hr, cell viability was evaluated by MTT assay. Reactive oxygen species (ROS) accumulating potential of BS was assessed by dichloro-dihydro-fluorescein diacetate staining. Morphology related to apoptosis was investigated by acridine orange and ethidium bromide dual staining. Cytochrome c and caspase 3 expressions were evaluated by immunofluorescence and western blot analyses. Results: β-sitosterol induced cytotoxicity (p<0.001) and intracellular ROS in HepG2 cells in a dose-dependent manner. BS treatments accumulated induced intracellular ROS accumulation which led to membrane damage and mitochondrial toxicity. At the molecular level, BS treatments induced cytochrome c release from mitochondria and enhanced the protein expressions (p<0.05 vs 0.6 mM/ml and p<0.001 vs 1.2 mM/ml) of both caspase 3 and cleaved caspase 3. Conclusion: β-sitosterol induced ROS accumulation which plays a critical role in apoptosis via the intrinsic pathway in HepG2 cells. The present investigation paves the way for further in vivo studies.
Collapse
Affiliation(s)
- Mary J Ditty
- Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
18
|
Zielińska KM, Kaźmierczak A, Michalska E. Short-term cell death in tissues of Pulsatilla vernalis seeds from natural and ex situ conserved populations. Sci Rep 2021; 11:16840. [PMID: 34413338 PMCID: PMC8376884 DOI: 10.1038/s41598-021-95668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022] Open
Abstract
Pulsatilla vernalis is a IUCN listed species that occurs in mountain and lowland habitats. The seeds collected from different populations are remarkably diverse in their viability depending on locality or year of collection. We aim to analyse seed viability, among others, by investigation of the percentage of alive, dying, and dead cells in embryos and endosperm when comparing the seeds from a wild lowland population and ex situ cultivation of plants of lowland and Alpine origin. The cell death was detected by staining with two fluorescence probes, one penetrating only the changed nuclear membranes, the other penetrating also the unchanged cells. 54.5% of Alpine origin seeds were presumably capable of germination if they were sown after collection, however, four months later only 36.4% had healthy embryos. In the case of lowland wild plants it was 31.8% and 18.2%, and from ex situ, 27.3% and 13.6%, respectively. 27.3% of Alpine origin seeds had embryo in torpedo stage (9.1% in the case of lowland seeds). Mean weight of the former was 2.9 mg (2.0 mg in lowland ones). Our results confirm the significance of seed origin and seed weight on viability, and that Pulsatilla seeds have a short ‘germination time window’.
Collapse
Affiliation(s)
- Katarzyna M Zielińska
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Str. 12/16, 90-237, Lodz, Poland.
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Str. 12/16, 90-237, Lodz, Poland
| | - Ewa Michalska
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Str. 12/16, 90-237, Lodz, Poland
| |
Collapse
|
19
|
Kołodziejczyk I, Kaźmierczak A, Posmyk MM. Melatonin Application Modifies Antioxidant Defense and Induces Endoreplication in Maize Seeds Exposed to Chilling Stress. Int J Mol Sci 2021; 22:ijms22168628. [PMID: 34445334 PMCID: PMC8395332 DOI: 10.3390/ijms22168628] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/23/2022] Open
Abstract
The aim of the study was to demonstrate the biostimulating effect of exogenous melatonin (MEL) applied to seeds via hydroconditioning. It was indicated that only well-chosen application technique and MEL dose guarantees success concerning seed germination and young seedlings growth under stress conditions. For maize seed, 50 μM of MEL appeared to be the optimal dose. It improved seed germination and embryonic axes growth especially during chilling stress (5 °C/14 days) and during regeneration after its subsided. Unfortunately, MEL overdosing lowered IAA level in dry seeds and could disrupt the ROS-dependent signal transduction pathways. Very effective antioxidant MEL action was confirmed by low level of protein oxidative damage and smaller quantity of lipid oxidation products in embryonic axes isolated from seeds pre-treated with MEL and then exposed to cold. The stimulatory effects of MEL on antioxidant enzymes: SOD, APX and GSH-PX and on GST-a detoxifying enzyme, was also demonstrated. It was indicated for the first time, that MEL induced defence strategies against stress at the cytological level, as appearing endoreplication in embryonic axes cells even in the seeds germinating under optimal conditions (preventive action), but very intensively in those germinating under chilling stress conditions (intervention action), and after stress removal, to improve regeneration.
Collapse
Affiliation(s)
- Izabela Kołodziejczyk
- Department of Plant Ecophisiology, Faculty of Biology and Environmental Protection, University of Lodz, 90237 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-635-44-22
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90237 Lodz, Poland;
| | - Małgorzata M. Posmyk
- Department of Plant Ecophisiology, Faculty of Biology and Environmental Protection, University of Lodz, 90237 Lodz, Poland;
| |
Collapse
|
20
|
Thakur RS, Devaraj E. Lagerstroemia speciosa (L.) Pers. triggers oxidative stress mediated apoptosis via intrinsic mitochondrial pathway in HepG2 cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:1225-1233. [PMID: 32697429 DOI: 10.1002/tox.22987] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 05/19/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma is the second leading cause of cancer-related mortality worldwide. Lagerstroemia speciosa Pers. (Lythraceae) commonly known as Banaba has been used in different forms in traditional medicinal systems for treating various diseases which include diabetes and obesity. In this study, we investigated the cytotoxic potential of ethanolic Banaba leaf extract (EBLE) in HepG2 cells. The phytochemical analysis of EBLE was performed by HPTLC. HepG2 cells were treated with EBLE at 25, 50, 100, and 150 μg/mL concentrations, and cytotoxicity was evaluated by MTT assay. Oxidative stress was assessed by the evaluation of lipid peroxidation, superoxide dismutase, and reduced glutathione. Apoptosis-related morphology was investigated by acridine orange and ethidium bromide (AO/EB) dual staining. Mitochondrial membrane potential (ΔΨm) was evaluated by JC-1 staining. Apoptosis-related marker genes were evaluated by qPCR. HPTLC analysis confirmed the presence of corosolic acid (12.87 μg/mg), berberine (3.19 μg/mg), and gallic acid (2.94 μg/mg) in EBLE. EBLE treatments caused significant and concentration-dependent cytotoxicity and oxidative stress in HepG2 cells. Dual staining with AO/EB confirmed membrane distortion and nuclear chromatin condensation upon EBLE treatments. JC-I staining revealed the loss of ΔΨm. Furthermore, at a molecular level, EBLE treatments interfere with Bax/Bcl-2 homeostasis and induced the pro-apoptotic marker genes such as cytochrome c, Apaf-1, and caspases 9 and 3. EBLE treatments caused cytotoxicity in HepG2 cells, and this could be due to the induction of oxidative stress and apoptosis via the intrinsic or mitochondrial pathway.
Collapse
Affiliation(s)
- Rohit Singh Thakur
- Department of Pharmacology, Malla Reddy Institute of Medical Sciences, Hyderabad, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Ezhilarasan Devaraj
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
21
|
Puja P, Vinita NM, Devan U, Velangani AJ, Srinivasan P, Yuvakkumar R, Arul Prakash P, Kumar P. Fluorescence microscopy‐based analysis of apoptosis induced by platinum nanoparticles against breast cancer cells. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5740] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Patel Puja
- Food Chemistry and Molecular Cancer Biology Laboratory, Department of Animal Health and ManagementAlagappa University Karaikudi Tamil Nadu 630003 India
| | - Nadar Manimaran Vinita
- Food Chemistry and Molecular Cancer Biology Laboratory, Department of Animal Health and ManagementAlagappa University Karaikudi Tamil Nadu 630003 India
| | - Umapathy Devan
- Molecular Oncology Laboratory, Department of BiochemistryBharathidasan University Tiruchirappalli Tamil Nadu 620 024 India
| | - Antony Joseph Velangani
- Molecular Oncology Laboratory, Department of BiochemistryBharathidasan University Tiruchirappalli Tamil Nadu 620 024 India
| | - Pappu Srinivasan
- Phage Therapy and Molecular Biology Laboratory, Department of Animal Health and ManagementAlagappa University Karaikudi Tamil Nadu 630003 India
| | - Rathinam Yuvakkumar
- Nanomaterials Laboratory, Department of Physics, Science CampusAlagappa University Karaikudi Tamil Nadu 630003 India
| | - Pitchan Arul Prakash
- Department of BiotechnologyNational College Tiruchirappalli Tamil Nadu 620001 India
| | - Ponnuchamy Kumar
- Food Chemistry and Molecular Cancer Biology Laboratory, Department of Animal Health and ManagementAlagappa University Karaikudi Tamil Nadu 630003 India
| |
Collapse
|
22
|
Jose A, Kannan E, Madhunapantula SV. Anti-proliferative potential of phytochemical fractions isolated from Simarouba glauca DC leaf. Heliyon 2020; 6:e03836. [PMID: 32373740 PMCID: PMC7193323 DOI: 10.1016/j.heliyon.2020.e03836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 11/22/2019] [Accepted: 04/21/2020] [Indexed: 01/22/2023] Open
Abstract
Emerging advancements in anticancer drug discovery research are leaning towards the plant-based bioactive fractions, which is a cocktail of naturally abundant two or more substances with unique proportions, exhibiting greater potential to combat cancers than the individual molecules. Thus, isolation and characterization of anti-cancer activity enriched fractions from plants is gaining scientific attention. Consistent with this view, one of the evidence-based traditional medicinal plants, well known for its anti-cancer potential, Simarouba glauca (SG) leaf has been scientifically examined to identify and isolate the potent anti-cancer fraction. The dried SG leaves were extracted successively with the solvents of increasing polarity. The phytochemical characterization of obtained extracts and fractions were carried out to determine the phenolic acid composition. All fractions were individually examined for anti-cancer property in cancer cells representing lungs, cervix, breast, colon and rectum in vitro. Among all fractions tested, the chloroform (SGC) and ethyl acetate (SGEA) extracts showed potent anti-proliferative effects by triggering apoptosis. In summary, our findings demonstrate that the extracts SGC and SGEA have potent anti-cancer activities compared to other fractions of SG leaf and thus warrant further pre-clinical studies to establish scientific basis for the anticancer potentials of SG.
Collapse
Affiliation(s)
- Asha Jose
- Department of Pharmacology, Karpagam College of Pharmacy, Othakkalmantapam, Coimbatore, Tamil Nadu, India
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Udhagamandalam, Tamil Nadu, India
| | - Elango Kannan
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Udhagamandalam, Tamil Nadu, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
- Special Interest Group on Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| |
Collapse
|
23
|
Sarheed MM, Rajabi F, Kunert M, Boland W, Wetters S, Miadowitz K, Kaźmierczak A, Sahi VP, Nick P. Cellular Base of Mint Allelopathy: Menthone Affects Plant Microtubules. FRONTIERS IN PLANT SCIENCE 2020; 11:546345. [PMID: 33042176 PMCID: PMC7524878 DOI: 10.3389/fpls.2020.546345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/12/2020] [Indexed: 05/09/2023]
Abstract
Plants can use volatiles for remote suppression of competitors. Mints produce essential oils, which are known to affect the growth of other plants. We used a comparative approach to identify allelopathic compounds from different Mints (genus Mentha, but also including Cat Mint, Nepeta cataria, and Corean Mint, Agastache rugosa, belonging to sisters clades within the Mentheae) using the standard cress germination assay as readout. To understand the mechanism behind this allelopathic effect, we investigated the response of tobacco BY-2 cell lines, expressing GFP-tagged markers for microtubules and actin filaments to these essential oils. Based on the comparison between bioactivity and chemical components, we identified menthone as prime candidate for the allelopathic effect, and confirmed this bioactivity targeted to microtubules experimentally in both, plant cells (tobaccoBY-2), and seedlings (Arabidopsis thaliana). We could show that menthone disrupted microtubules and induced mortality linked with a rapid permeabilization (less than 15 min) of the plasma membrane. This mortality was elevated in a tubulin marker line, where microtubules are mildly stabilized. Our study paves the way for the development of novel bioherbicides that would be environmentally friendly.
Collapse
Affiliation(s)
- Mohammed Mahmood Sarheed
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Fatemeh Rajabi
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Maritta Kunert
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Sascha Wetters
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Kai Miadowitz
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Vaidurya Pratap Sahi
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
- *Correspondence: Vaidurya Pratap Sahi, ;
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
24
|
Narayani SS, Saravanan S, Ravindran J, Ramasamy MS, Chitra J. In vitro anticancer activity of fucoidan extracted from Sargassum cinereum against Caco-2 cells. Int J Biol Macromol 2019; 138:618-628. [PMID: 31344415 DOI: 10.1016/j.ijbiomac.2019.07.127] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/08/2019] [Accepted: 07/21/2019] [Indexed: 12/25/2022]
Abstract
Fucoidan is a marine sulfated polysaccharide, which is extracted from brown seaweed that has a wide range of bioactivities including anti-cancer properties. However, the underlying mechanism of fucoidan on its anti-cancer and apoptotic activity against colon cancer cell line Caco-2 remains to be elucidated. Hence, the present study evaluated the cytotoxicity, apoptotic and anti-cancer activity of fucoidan extracted from brown seaweed Sargassum cinereum against Caco-2 cell line. Cytotoxicity, morphological examination of nuclei, mitochondrial membrane potential, flow cytometry, reactive oxygen species (ROS) formation and detection of apoptotic efficacy of fucoidan were assessed by different assay protocols. Fucoidan inhibited growth of Caco-2 cells in a dose-dependent manner. IC50 concentration of fucoidan was found to be 250 μg/ml. AO/EB, Hoechst and Annexin V/PI staining confirmed the apoptosis induced by fucoidan in Caco-2 cells. Fucoidan was also found to increase ROS production and augment mitochondrial membrane permeability. The findings of the study suggest that fucoidan exerts potent anti-cancer and apoptotic effect on Caco-2 cells by enhancing ROS production. Thus, fucoidan may be used as a promising therapeutic regimen against various cancer cell types.
Collapse
Affiliation(s)
| | - S Saravanan
- CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, India
| | - J Ravindran
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak, 30450 Ipoh, Malaysia
| | - M S Ramasamy
- Indian Systems of Medicine - Natural Products Laboratory, MIT Campus of Anna University, AUKBC Research Centre, Anna University, Chennai, India
| | - J Chitra
- Indian Systems of Medicine - Natural Products Laboratory, MIT Campus of Anna University, AUKBC Research Centre, Anna University, Chennai, India
| |
Collapse
|
25
|
Alzahrani FM, Katubi KMS, Ali D, Alarifi S. Apoptotic and DNA-damaging effects of yttria-stabilized zirconia nanoparticles on human skin epithelial cells. Int J Nanomedicine 2019; 14:7003-7016. [PMID: 31564862 PMCID: PMC6733180 DOI: 10.2147/ijn.s212255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background Yttria-stabilized zirconia (Y2O3/ZrO2) nanoparticles are one of the important nanoparticles extensively used in manufacturing of plastics, textiles, catalyst, etc. Still, the cytotoxic and apoptotic effects of yttria-stabilized zirconia nanoparticles have not been well identified on human skin keratinocyte (HaCaT) cells. Therefore, in this study, we have designed to examine the cytotoxic potential of yttria-stabilized zirconia nanoparticles in HaCaT cells. Methods Prior to treatment, the yttria-stabilized zirconia nanoparticles were characterized by using different advanced instruments viz. dynamic light scattering (DLS), scanning electron microscope (SEM) and transmission electron microscope (TEM). Cell viability of HaCaT cells was measured by using MTS and NRU assays and viability of cells was reduced in a dose- and time-dependent manner. Results Reduction in the viability of cells was correlated with the rise of reactive oxygen species generation, increased caspase-3, mitochondria membrane potential and evidence of DNA strand breakage. These were consistent with the possibility that mitochondria damage can play a significant role in the cytotoxic response. Moreover, the activity of oxidative enzymes such as lipid peroxide (LPO) was increased and glutathione was reduced in HaCaT cells exposed with yttria-stabilized zirconia nanoparticles. It is also important to indicate that HaCaT cells appear to be more susceptible to yttria-stabilized zirconia nanoparticles exposure after 24 hrs. Conclusion This result provides a dose- and time-dependent apoptosis and genotoxicity of yttria-stabilized zirconia nanoparticles in HaCaT cells.
Collapse
Affiliation(s)
- Fatimah Mohammed Alzahrani
- Chemistry Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Arasu MV, Madankumar A, Theerthagiri J, Salla S, Prabu S, Kim HS, Al-Dhabi NA, Arokiyaraj S, Duraipandiyan V. Synthesis and characterization of ZnO nanoflakes anchored carbon nanoplates for antioxidant and anticancer activity in MCF7 cell lines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:536-540. [DOI: 10.1016/j.msec.2019.04.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 04/01/2019] [Accepted: 04/20/2019] [Indexed: 01/20/2023]
|
27
|
Shukla A, Singh AP, Dubey T, Hemalatha S, Maiti P. Third Generation Cyclodextrin Graft with Polyurethane Embedded in Hydrogel for a Sustained Drug Release: Complete Shrinkage of Melanoma. ACS APPLIED BIO MATERIALS 2019; 2:1762-1771. [DOI: 10.1021/acsabm.9b00171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Aparna Shukla
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Akhand Pratap Singh
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Tarkeshwar Dubey
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Siva Hemalatha
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
28
|
Ezhilarasan D, Apoorva VS, Ashok Vardhan N. Syzygium cumini extract induced reactive oxygen species-mediated apoptosis in human oral squamous carcinoma cells. J Oral Pathol Med 2018; 48:115-121. [PMID: 30451321 DOI: 10.1111/jop.12806] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/17/2018] [Accepted: 11/13/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Syzygium cumini (L.) Skeels (jambolan) is commonly used in Indian traditional medicine to treat a variety of diseases such as obesity, diabetes etc. The cytotoxic potential of S. cumini (SC) against oral cancer cell line remains elusive. Therefore, in this study, we evaluated the cytotoxic effect of S. cumini in human oral squamous cell carcinoma (OSCC) cell line (SCC-25 cells). MATERIAL AND METHODS Oral squamous cell carcinoma cells are treated with different concentrations (10, 20, and 40 μg/mL) of S. cumuni for 24 hours and cytotoxicity was analyzed by MTT assay. The intracellular reactive oxygen species (ROS) was measured using the indicator dye, 2',7'-dichlorofluorescin diacetate staining. Apoptosis-related morphological changes were evaluated by dual acridine orange/ethidium bromide (AO/EB) fluorescent staining and phosphatidylserine externalization was measured by annexin V assays. The protein and gene expression of cadherin-1 was evaluated by western blotting and PCR analysis. RESULTS Syzygium cumini treatments caused cytotoxicity of OSCC cell line and induced intracellular ROS accumulation. This treatment also caused apoptosis-related morphological changes and externalization of phosphatidylserine in OSCC cells. Further, S. cumini treatments increased protein and gene expression of cadherin-1. CONCLUSION Syzygium cumini extract inhibits the proliferation of OSCC cells and induces apoptosis through ROS accumulation and therefore, it could be used for the prevention of OSCC.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India.,Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Velluru S Apoorva
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Nandhigam Ashok Vardhan
- Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| |
Collapse
|
29
|
Dixit R, Agrawal L, Singh SP, Prateeksha, Singh PC, Prasad V, Chauhan PS. Paenibacillus lentimorbus induces autophagy for protecting tomato from Sclerotium rolfsii infection. Microbiol Res 2018; 215:164-174. [PMID: 30172304 DOI: 10.1016/j.micres.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 12/12/2022]
Abstract
During biotic stress, plants use several mechanisms to protect themselves that include the production of reactive oxygen species (ROS), induction of pathogenesis-related proteins and cell death. Some plant growth promoting rhizobacteria (PGPR) are known to act as bio-control agents that protect crops against pathogens. The biocontrol activity of PGPR Paenibacillus lentimorbus (B-30488) against Sclerotium rolfsii showed previously where several defense-related genes were upregulated with ROS induction in tomato. We further evaluate the other possibility, i.e. role of autophagy in enhancing defense in tomato using PGPR. Confocal microscopy revealed the presence of an acidotropic dye Mono Dansyl Cadaverine (MDC) stained autophagosomes in B-30488 treated healthy and infected plants. These autophagosomes almost disappeared in plants treated with an autophagy inhibitor chloroquine. The results were also confirmed by ultrastructural analysis of leaf tissues using transmission electron microscopy. Enhanced expression of autophagy-related genes was also monitored in B-30488 primed fungal infected tissues as compared to control by qRT-PCR. Results of ROS accumulation, fluorescence, confocal and transmission electron microscopy and gene expression analysis revealed induction of autophagy using B-30488 as a biocontrol agent suggesting a role in enhancing disease resistance in tomato. Overall, the present study indicated a role of B-30488 as a biocontrol in enhancing disease resistance in tomato and also assists a better understanding of fungal pathogenesis that is expected to be useful in developing new strategies for disease control.
Collapse
Affiliation(s)
- Ritu Dixit
- Division of Plant-Microbe Interactions, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Lalit Agrawal
- Division of Plant-Microbe Interactions, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Surendra Pratap Singh
- Department of Botany, Dayanand Anglo-Vedic (PG) College (Affiliated to CSJM University, Kanpur), Civil Lines, Kanpur, 208001, U.P., India
| | - Prateeksha
- Division of Plant-Microbe Interactions, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Poonam C Singh
- Division of Plant-Microbe Interactions, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
| | - Vivek Prasad
- Molecular plant virology Lab, Department of Botany, Lucknow University, Lucknow, 226007, India
| | - Puneet Singh Chauhan
- Division of Plant-Microbe Interactions, Council of Scientific and Industrial Research-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
30
|
Fate of nuclear material during subsequent steps of the kinetin-induced PCD in apical parts of Vicia faba ssp. minor seedling roots. Micron 2018; 110:79-87. [PMID: 29772476 DOI: 10.1016/j.micron.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
In animals during apoptosis, the best examined type of programmed cell death (PCD), three main phases are distinguished: (i) specification (signaling), (ii) killing and (iii) execution one. It has bean postulated that plant PCD also involves three subsequent phases: (i) transmission of death signals to cells (signaling), (ii) initiation of killing processes and (iii) destruction of cells. One of the most important hallmarks of animal and plant PCD are those regarding nucleus, not thoroughly studied in plants so far. To study kinetin-induced PCD (Kin-PCD) in the context of nuclear material faith, 2-cm apical parts of Vicia faba ssp. minor seedling roots were used. Applied assays involving spectrophotometry, transmission electron microscopy, fluorescence and white light microscopy allowed to examine metabolic and cytomorphologic hallmarks such as changes in DNA content, ssDNA formation and activity of acidic and basic nucleases (DNases and RNases) as well as malformations and fragmentation of nucleoli and nuclei. The obtained results concerning the PCD hallmarks and influence of ZnSO4 on Kin-PCD allowed us to confirmed presence of specification/signaling, killing and execution/degradation phases of the process and broaden the knowledge about processes affecting nuclei during PCD.
Collapse
|
31
|
Chang Y, Li Y, Ye N, Guo X, Li Z, Sun G, Sun Y. Atorvastatin inhibits the apoptosis of human umbilical vein endothelial cells induced by angiotensin II via the lysosomal-mitochondrial axis. Apoptosis 2018; 21:977-96. [PMID: 27394920 DOI: 10.1007/s10495-016-1271-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study was aimed to evaluate lysosomes-mitochondria cross-signaling in angiotensin II (Ang II)-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and whether atorvastatin played a protective role via lysosomal-mitochondrial axis. Apoptosis was detected by flow cytometry, Hoechst 33342 and AO/EB assay. The temporal relationship of lysosomal and mitochondrial permeabilization was established. Activity of Cathepsin D (CTSD) was suppressed by pharmacological and genetic approaches. Proteins production were measured by western blotting. Our study showed that Ang II could induce the apoptosis of HUVECs in a dose-depended and time-depended manner. Exposure to 1 μM Ang II for 24 h resulted in mitochondrial depolarization, cytochrome c release, and increased ROS production. Lysosomal permeabilization and CTSD redistribution into the cytoplasm occurred several hours prior to mitochondrial dysfunction. These effects were all suppressed by atorvastatin. Either pharmacological or genetic inhibition of CTSD preserved mitochondrial function and decreased apoptosis in HUVECs. Most importantly, we found that the protective effect of atorvastatin was significantly greater than pharmacological or genetic inhibition of CTSD. Finally, overexpression of CTSD without exposure to Ang II had no effect on mitochondrial function and apoptosis. Our data strongly suggested that Ang II induced apoptosis through the lysosomal-mitochondrial axis in HUVECs. Furthermore, atorvastatin played an important role in the regulation of lysosomes and mitochondria stability, resulting in an antagonistic role against Ang II on HUVECs.
Collapse
Affiliation(s)
- Ye Chang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yuan Li
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
| | - Ning Ye
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
| | - Xiaofan Guo
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
| |
Collapse
|
32
|
Oliveira ACB, Morais TFL, Bernal C, Martins VCA, Plepis AMG, Menezes PFC, Perussi JR. Red light accelerates the formation of a human dermal equivalent. J Biomater Appl 2018; 32:1265-1275. [DOI: 10.1177/0885328218759385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Anna CB Oliveira
- Programa de Pós-Graduação Interunidades Bioengenharia - EESC/FMRP/IQSC, Universidade São Paulo-São Carlos-SP, Brazil
| | - Thayz FL Morais
- Programa de Pós-Graduação Interunidades Bioengenharia - EESC/FMRP/IQSC, Universidade São Paulo-São Carlos-SP, Brazil
| | - Claudia Bernal
- Instituto de Química de São Carlos, Universidade de São Paulo-São Carlos-SP, Brazil
| | - Virginia CA Martins
- Instituto de Química de São Carlos, Universidade de São Paulo-São Carlos-SP, Brazil
| | - Ana MG Plepis
- Programa de Pós-Graduação Interunidades Bioengenharia - EESC/FMRP/IQSC, Universidade São Paulo-São Carlos-SP, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo-São Carlos-SP, Brazil
| | - Priscila FC Menezes
- Instituto de Física de São Carlos, Universidade de São Paulo-São Carlos-SP, Brazil
| | - Janice R Perussi
- Programa de Pós-Graduação Interunidades Bioengenharia - EESC/FMRP/IQSC, Universidade São Paulo-São Carlos-SP, Brazil
- Instituto de Química de São Carlos, Universidade de São Paulo-São Carlos-SP, Brazil
| |
Collapse
|
33
|
Senapati S, Shukla R, Tripathi YB, Mahanta AK, Rana D, Maiti P. Engineered Cellular Uptake and Controlled Drug Delivery Using Two Dimensional Nanoparticle and Polymer for Cancer Treatment. Mol Pharm 2018; 15:679-694. [PMID: 29298488 DOI: 10.1021/acs.molpharmaceut.7b01119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two major problems in chemotherapy, poor bioavailability of hydrophobic anticancer drug and its adverse side effects causing nausea, are taken into account by developing a sustained drug release vehicle along with enhanced bioavailability using two-dimensional layered double hydroxides (LDHs) with appropriate surface charge and its subsequent embedment in polymer matrix. A model hydrophobic anticancer drug, raloxifene hydrochloride (RH), is intercalated into a series of zinc iron LDHs with varying anion charge densities using an ion exchange technique. To achieve significant sustained delivery, drug-intercalated LDH is embedded in poly(ε-caprolactone) (PCL) matrix to develop intravenous administration and to improve the therapeutic index of the drug. The cause of sustained release is visualized from the strong interaction between LDH and drug, as measured through spectroscopic techniques, like X-ray photoelectron spectroscopy, infrared, UV-visible spectroscopy, and thermal measurement (depression of melting temperature and considerable reduction in heat of fusion), using differential scanning calorimeter, followed by delayed diffusion of drug from polymer matrix. Interestingly, polymer nanohybrid exhibits long-term and excellent in vitro antitumor efficacy as opposed to pure drug or drug-intercalated LDH or only drug embedded PCL (conventional drug delivery vehicle) as evident from cell viability and cell adhesion experiments prompting a model depicting greater killing efficiency (cellular uptake) of the delivery vehicle (polymer nanohybrid) controlled by its better cell adhesion as noticed through cellular uptake after tagging of fluorescence rhodamine B separately to drug and LDH. In vivo studies also confirm the sustained release of drug in the bloodstream of albino rats using polymer nanohybrid (novel drug delivery vehicle) along with a healthy liver vis-à-vis burst release using pure drug/drug-intercalated LDHs with considerable damaged liver.
Collapse
Affiliation(s)
- Sudipta Senapati
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005, India
| | - Rashmi Shukla
- Department of Medicinal Chemistry, Institute of Medical Science, Banaras Hindu University , Varanasi 221 005, India
| | - Yamini Bhusan Tripathi
- Department of Medicinal Chemistry, Institute of Medical Science, Banaras Hindu University , Varanasi 221 005, India
| | - Arun Kumar Mahanta
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005, India
| | - Dipak Rana
- Industrial Membrane Research Institute, Department of Chemical and Biological Engineering, University of Ottawa , 161 Louis Pasteur St., Ottawa, ON KIN 6N5, Canada
| | - Pralay Maiti
- School of Materials Science and Technology, Indian Institute of Technology (Banaras Hindu University) , Varanasi 221 005, India
| |
Collapse
|
34
|
Kaźmierczak A, Doniak M, Kunikowska A. Proteolytic activities in cortex of apical parts of Vicia faba ssp. minor seedling roots during kinetin-induced programmed cell death. PROTOPLASMA 2017; 254:2273-2285. [PMID: 28501974 DOI: 10.1007/s00709-017-1119-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Programmed cell death (PCD) is a crucial process in plant development. In this paper, proteolytically related aspects of kinetin-induced PCD in cortex cells of Vicia faba ssp. minor seedlings were examined using morphological, fluorometric, spectrophotometric, and fluorescence microscopic analyses. Cell viability estimation after 46 μM kinetin treatment of seedling roots showed that the number of dying cortex cells increased with treatment duration, reaching maximum after 72 h. Weight of the apical root segments increased with time and was about 2.5-fold greater after 96 h, while the protein content remained unchanged, compared to the control. The total and cysteine-dependent proteolytic activities fluctuated during 1-96-h treatment, which was not accompanied by the changes in the protein amount, indicating that the absolute protein amounts decreased during kinetin-induced PCD. N-ethylmaleimide (NEM), phenylmethylsulfonyl fluoride (PMSF), and Z-Leu-Leu-Nva-H (MG115), the respective cysteine, serine, and proteasome inhibitors, suppressed kinetin-induced PCD. PMSF significantly decreased serine-dependent proteolytic activities without changing the amount of proteins, unlike NEM and MG115. More pronounced effect of PMSF over NEM indicated that in the root apical segments, the most important proteolytic activity during kinetin-induced PCD was that of serine proteases, while that of cysteine proteases may be important for protein degradation in the last phase of the process. Both NEM and PMSF inhibited apoptotic-like structure formation during kinetin-induced PCD. The level of caspase-3-like activity of β1 proteasome subunit increased after kinetin treatment. Addition of proteasome inhibitor MG-115 reduced the number of dying cells, suggesting that proteasomes might play an important role during kinetin-induced PCD.
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, The University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| | - Magdalena Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, The University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Anita Kunikowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, The University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| |
Collapse
|
35
|
Ghosh I, Mukherjee A, Mukherjee A. In planta genotoxicity of nZVI: influence of colloidal stability on uptake, DNA damage, oxidative stress and cell death. Mutagenesis 2017; 32:371-387. [PMID: 28371930 DOI: 10.1093/mutage/gex006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
Nanoremediation of soil, ground and surface water using nanoscale zerovalent iron particles (nZVI) has facilitated their direct environmental exposure posing ecotoxicological concerns. Numerous studies elucidate their phytotoxicity in terms of growth and their fate within the plant system. However, their potential genotoxicity and cytotoxicity mechanisms are not known in plants. This study encompasses the physico-chemical characterisation of two forms of nZVI (nZVI-1 and nZVI-2) with different surface chemistries and their influence on uptake, root morphology, DNA damage, oxidative stress and cell death in Allium cepa roots after 24 h. To our knowledge, this is the first report on the cyto-genotoxicity of nZVI in plants. The adsorption of nZVI on root surfaces caused root tip, epidermal and root hair damage as assessed by Scanning Electron Microscopy. nZVI-1, due to its colloidal destabilisation (low zeta potential, conductivity and high polydispersity index), smaller size and high uptake imparted enhanced DNA damage, chromosome/nuclear aberrations (CAs/NAs) and micronuclei formation compared to nZVI-2. Although nZVI-2 exhibited high zeta potential and conductivity, its higher dissolution and substantial uptake induced genotoxicity. nZVI incited the generation of reactive oxygen species (ROS) (hydrogen peroxide, superoxide and hydroxyl radicals) leading to membrane lipid peroxidation, electrolyte leakage and mitochondrial depolarisation. The inactivation of catalase and insignificant glutathione levels marked the onset of oxidative stress. Increased superoxide dismutase and guaiacol peroxidase enzyme activities, and proline content indicated the activation of antioxidant defence machinery to alleviate ROS. Moreover, ROS-mediated apoptotic and necrotic cell death occurred in both nZVI-1 and nZVI-2-treated roots. Our results open up further possibilities in the environmental safety appraisal of bare and modified nZVI in correlation with their physico-chemical characters.
Collapse
Affiliation(s)
- Ilika Ghosh
- Cell Biology and Genetic Toxicology Laboratory, Department of Botany, Centre of Advance Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India and
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu 632014, India
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Department of Botany, Centre of Advance Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata 700019, India and
| |
Collapse
|
36
|
Zhao JA, Yu HB, Zhi SC, Mao RN, Hu JY, Wang XX. Synthesis, chemical nuclease activity, and in vitro cytotoxicity of benzimidazole-based Cu(II)/Co(II) complexes. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Kaźmierczak A, Doniak M, Bernat P. Membrane-related hallmarks of kinetin-induced PCD of root cortex cells. PLANT CELL REPORTS 2017; 36:343-353. [PMID: 27942841 DOI: 10.1007/s00299-016-2085-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/24/2016] [Indexed: 05/09/2023]
Abstract
Changes in cellular membrane potential and their fluidisation are the hallmarks of cell death induction with kinetin in root cortex. Programmed cell death (PCD), one of the essential processes in plant development, is still poorly understood. In this paper, the scientific plant model, V. faba ssp. minor seedling roots after kinetin application which triggers off programmed death of cortex cells, was used to recognise membrane-related aspects of plant cell death. Spectrophotometric, reflectometric and microscopic studies showed that the PCD induced by kinetin is accompanied by higher potassium ions leakage from roots, loss of plasma and ER membrane potentials (expressed by their lower amounts and higher index of fatty acid unsaturation), malformation of nuclear envelope, lower total lipid amount and formation of their peroxides, lower amount of phospholipids and changes in their composition. The results showed that potassium ions leakage, expressed in percentage of their amounts, and loss of plasma and ER membrane potential, expressed in percentage of their fluorescence intensity, together with the nuclear chromatin double staining with ethidium bromide and acridine orange, might be direct and universal methods for detecting specific plant PCD hallmarks and estimation of PCD intensity (percentage of dying and dead cells).
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection The University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| | - Magdalena Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection The University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental ProtectionThe University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| |
Collapse
|
38
|
The relationship between vacuolation and initiation of PCD in rice (Oryza sativa) aleurone cells. Sci Rep 2017; 7:41245. [PMID: 28117452 PMCID: PMC5259747 DOI: 10.1038/srep41245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 12/19/2016] [Indexed: 02/05/2023] Open
Abstract
Vacuole fusion is a necessary process for the establishment of a large central vacuole, which is the central location of various hydrolytic enzymes and other factors involved in death at the beginning of plant programmed cell death (PCD). In our report, the fusion of vacuoles has been presented in two ways: i) small vacuoles coalesce to form larger vacuoles through membrane fusion, and ii) larger vacuoles combine with small vacuoles when small vacuoles embed into larger vacuoles. Regardless of how fusion occurs, a large central vacuole is formed in rice (Oryza sativa) aleurone cells. Along with the development of vacuolation, the rupture of the large central vacuole leads to the loss of the intact plasma membrane and the degradation of the nucleus, resulting in cell death. Stabilizing or disrupting the structure of actin filaments (AFs) inhibits or promotes the fusion of vacuoles, which delays or induces PCD. In addition, the inhibitors of the vacuolar processing enzyme (VPE) and cathepsin B (CathB) block the occurrence of the large central vacuole and delay the progression of PCD in rice aleurone layers. Overall, our findings provide further evidence for the rupture of the large central vacuole triggering the PCD in aleruone layers.
Collapse
|
39
|
Kobylińska A, Reiter RJ, Posmyk MM. Melatonin Protects Cultured Tobacco Cells against Lead-Induced Cell Death via Inhibition of Cytochrome c Translocation. FRONTIERS IN PLANT SCIENCE 2017; 8:1560. [PMID: 28959267 PMCID: PMC5603737 DOI: 10.3389/fpls.2017.01560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 08/28/2017] [Indexed: 05/03/2023]
Abstract
Melatonin was discovered in plants more than two decades ago and, especially in the last decade, it has captured the interests of plant biologists. Beyond its possible participation in photoperiod processes and its role as a direct free radical scavenger as well as an indirect antioxidant, melatonin is also involved in plant defense strategies/reactions. However, the mechanisms that this indoleamine activates to improve plant stress tolerance still require identification and clarification. In the present report, the ability of exogenous melatonin to protect Nicotiana tabacum L. line Bright Yellow 2 (BY-2) suspension cells against the toxic exposure to lead was examined. Studies related to cell proliferation and viability, DNA fragmentation, possible translocation of cytochrome c from mitochondria to cytosol, cell morphology after fluorescence staining and also the in situ accumulation of superoxide radicals measured via the nitro blue tetrazolium reducing test, were conducted. This work establishes a novel finding by correcting the inhibition of release of mitochondrial ctytocrome c in to the cytoplasm with the high accumulation of superoxide radicals. The results show that pretreatment with 200 nm of melatonin protected tobacco cells from DNA damage caused by lead. Melatonin, as an efficacious antioxidant, limited superoxide radical accumulation as well as cytochrome c release thereby, it likely prevents the activation of the cascade of processes leading to cell death. Fluorescence staining with acridine orange and ethidium bromide documented that lead-stressed cells additionally treated with melatonin displayed intact nuclei. The results revealed that melatonin at proper dosage could significantly increase BY-2 cell proliferation and protected them against death. It was proved that melatonin could function as an effective priming agent to promote survival of tobacco cells under harmful lead-induced stress conditions.
Collapse
Affiliation(s)
- Agnieszka Kobylińska
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San AntonioTX, United States
| | - Malgorzata M. Posmyk
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland
- *Correspondence: Malgorzata M. Posmyk,
| |
Collapse
|
40
|
Latrasse D, Benhamed M, Bergounioux C, Raynaud C, Delarue M. Plant programmed cell death from a chromatin point of view. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5887-5900. [PMID: 27639093 DOI: 10.1093/jxb/erw329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Programmed cell death (PCD) is a ubiquitous genetically regulated process consisting of the activation of finely controlled signalling pathways that lead to cellular suicide. PCD can be part of a developmental programme (dPCD) or be triggered by environmental conditions (ePCD). In plant cells, as in animal cells, extensive chromatin condensation and degradation of the nuclear DNA are among the most conspicuous features of cells undergoing PCD. Changes in chromatin condensation could either reflect the structural changes required for internucleosomal fragmentation of nuclear DNA or relate to large-scale chromatin rearrangements associated with a major transcriptional switch occurring during cell death. The aim of this review is to give an update on plant PCD processes from a chromatin point of view. The first part will be dedicated to chromatin conformational changes associated with cell death observed in various developmental and physiological conditions, whereas the second part will be devoted to histone dynamics and DNA modifications associated with critical changes in genome expression during the cell death process.
Collapse
Affiliation(s)
- D Latrasse
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - M Benhamed
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - C Bergounioux
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - C Raynaud
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - M Delarue
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| |
Collapse
|
41
|
Poór P, Kovács J, Borbély P, Takács Z, Szepesi Á, Tari I. Salt stress-induced production of reactive oxygen- and nitrogen species and cell death in the ethylene receptor mutant Never ripe and wild type tomato roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:313-22. [PMID: 26512971 DOI: 10.1016/j.plaphy.2015.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/12/2015] [Accepted: 10/16/2015] [Indexed: 05/25/2023]
Abstract
The salt stress triggered by sublethal, 100 mM and lethal, 250 mM NaCl induced ethylene production as well as rapid accumulation of superoxide radical and H2O2 in the root tips of tomato (Solanum lycopersicum cv. Ailsa Craig) wild type and ethylene receptor mutant, Never ripe (Nr/Nr) plants. In the wild type plants superoxide accumulation confined to lethal salt concentration while H2O2 accumulated more efficiently under sublethal salt stress. However, in Nr roots the superoxide production was higher and unexpectedly, H2O2 level was lower than in the wild type under sublethal salt stress. Nitric oxide production increased significantly under sublethal and lethal salt stress in both genotypes especially in mutant plants, while peroxynitrite accumulated significantly under lethal salt stress. Thus, the nitro-oxidative stress may be stronger in Nr roots, which leads to the programmed death of tissues, characterized by the DNA and protein degradation and loss of cell viability under moderate salt stress. In Nr mutants the cell death was induced in the absence of ethylene perception. Although wild type roots could maintain their potassium content under moderate salt stress, K(+) level significantly declined leading to small K(+)/Na(+) ratio in Nr roots. Thus Nr mutants were more sensitive to salt stress than the wild type and the viability of root cells decreased significantly under moderate salt stress. These changes can be attributed to a stronger ionic stress due to the K(+) loss from the root tissues.
Collapse
Affiliation(s)
- Péter Poór
- Department of Plant Biology, University of Szeged, Szeged, Középfasor 52, H-6726, Hungary
| | - Judit Kovács
- Department of Plant Biology, University of Szeged, Szeged, Középfasor 52, H-6726, Hungary
| | - Péter Borbély
- Department of Plant Biology, University of Szeged, Szeged, Középfasor 52, H-6726, Hungary
| | - Zoltán Takács
- Department of Plant Biology, University of Szeged, Szeged, Középfasor 52, H-6726, Hungary
| | - Ágnes Szepesi
- Department of Plant Biology, University of Szeged, Szeged, Középfasor 52, H-6726, Hungary
| | - Irma Tari
- Department of Plant Biology, University of Szeged, Szeged, Középfasor 52, H-6726, Hungary.
| |
Collapse
|
42
|
Tissue Specific Promoters in Colorectal Cancer. DISEASE MARKERS 2015; 2015:390161. [PMID: 26648599 PMCID: PMC4662999 DOI: 10.1155/2015/390161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/26/2015] [Indexed: 01/29/2023]
Abstract
Colorectal carcinoma is the third most prevalent cancer in the world. In the most advanced stages, the use of chemotherapy induces a poor response and is usually accompanied by other tissue damage. Significant progress based on suicide gene therapy has demonstrated that it may potentiate the classical cytotoxic effects in colorectal cancer. The inconvenience still rests with the targeting and the specificity efficiency. The main target of gene therapy is to achieve an effective vehicle to hand over therapeutic genes safely into specific cells. One possibility is the use of tumor-specific promoters overexpressed in cancers. They could induce a specific expression of therapeutic genes in a given tumor, increasing their localized activity. Several promoters have been assayed into direct suicide genes to cancer cells. This review discusses the current status of specific tumor-promoters and their great potential in colorectal carcinoma treatment.
Collapse
|
43
|
Rybaczek D, Musiałek MW, Balcerczyk A. Caffeine-Induced Premature Chromosome Condensation Results in the Apoptosis-Like Programmed Cell Death in Root Meristems of Vicia faba. PLoS One 2015; 10:e0142307. [PMID: 26545248 PMCID: PMC4636323 DOI: 10.1371/journal.pone.0142307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022] Open
Abstract
We have demonstrated that the activation of apoptosis-like programmed cell death (AL-PCD) was a secondary result of caffeine (CF) induced premature chromosome condensation (PCC) in hydroxyurea-synchronized Vicia faba root meristem cells. Initiation of the apoptotic-like cell degradation pathway seemed to be the result of DNA damage generated by treatment with hydroxyurea (HU) [double-stranded breaks (DSBs) mostly] and co-treatment with HU/CF [single-stranded breaks (SSBs) mainly]. A single chromosome comet assay was successfully used to study different types of DNA damage (neutral variant–DSBs versus alkaline–DSBs or SSBs). The immunocytochemical detection of H2AXS139Ph and PARP-2 were used as markers for DSBs and SSBs, respectively. Acridine orange and ethidium bromide (AO/EB) were applied for quantitative immunofluorescence measurements of dead, dying and living cells. Apoptotic-type DNA fragmentation and positive TUNEL reaction finally proved that CF triggers AL-PCD in stressed V. faba root meristem cells. In addition, the results obtained under transmission electron microscopy (TEM) further revealed apoptotic-like features at the ultrastructural level of PCC-type cells: (i) extensive vacuolization; (ii) abnormal chromatin condensation, its marginalization and concomitant degradation; (iii) formation of autophagy-like vesicles (iv) protoplast shrinkage (v) fragmentation of cell nuclei and (vi) extensive degeneration of the cells. The results obtained have been discussed with respect to the vacuolar/autolytic type of plant-specific AL-PCD.
Collapse
Affiliation(s)
- Dorota Rybaczek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
- * E-mail:
| | - Marcelina Weronika Musiałek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
44
|
Ethylacetate extract from Tetrastigma hemsleyanum induces apoptosis via the mitochondrial caspase-dependent intrinsic pathway in HepG2 cells. Tumour Biol 2015; 37:865-76. [DOI: 10.1007/s13277-015-3579-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/15/2015] [Indexed: 01/13/2023] Open
|
45
|
Impact of the antifungal protein PgAFP from Penicillium chrysogenum on the protein profile in Aspergillus flavus. Appl Microbiol Biotechnol 2015; 99:8701-15. [DOI: 10.1007/s00253-015-6731-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/24/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022]
|
46
|
Ciniglia C, Mastrobuoni F, Scortichini M, Petriccione M. Oxidative damage and cell-programmed death induced in Zea mays L. by allelochemical stress. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:926-37. [PMID: 25736610 DOI: 10.1007/s10646-015-1435-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 05/09/2023]
Abstract
The allelochemical stress on Zea mays was analyzed by using walnut husk washing waters (WHWW), a by-product of Juglans regia post-harvest process, which possesses strong allelopathic potential and phytotoxic effects. Oxidative damage and cell-programmed death were induced by WHWW in roots of maize seedlings. Treatment induced ROS burst, with excess of H2O2 content. Enzymatic activities of catalase were strongly increased during the first hours of exposure. The excess in malonildialdehyde following exposure to WHWW confirmed that oxidative stress severely damaged maize roots. Membrane alteration caused a decrease in NADPH oxidase activity along with DNA damage as confirmed by DNA laddering. The DNA instability was also assessed through sequence-related amplified polymorphism assay, thus suggesting the danger of walnut processing by-product and focusing the attention on the necessity of an efficient treatment of WHWW.
Collapse
Affiliation(s)
- Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Science and Technology Second University of Naples, Via Vivaldi 43, 81100, Caserta, Italy
| | | | | | | |
Collapse
|
47
|
The intracellular Scots pine shoot symbiont Methylobacterium extorquens DSM13060 aggregates around the host nucleus and encodes eukaryote-like proteins. mBio 2015; 6:mBio.00039-15. [PMID: 25805725 PMCID: PMC4453540 DOI: 10.1128/mbio.00039-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Endophytes are microbes that inhabit plant tissues without any apparent signs of infection, often fundamentally altering plant phenotypes. While endophytes are typically studied in plant roots, where they colonize the apoplast or dead cells, Methylobacterium extorquens strain DSM13060 is a facultatively intracellular symbiont of the meristematic cells of Scots pine (Pinus sylvestris L.) shoot tips. The bacterium promotes host growth and development without the production of known plant growth-stimulating factors. Our objective was to examine intracellular colonization by M. extorquens DSM13060 of Scots pine and sequence its genome to identify novel molecular mechanisms potentially involved in intracellular colonization and plant growth promotion. Reporter construct analysis of known growth promotion genes demonstrated that these were only weakly active inside the plant or not expressed at all. We found that bacterial cells accumulate near the nucleus in intact, living pine cells, pointing to host nuclear processes as the target of the symbiont’s activity. Genome analysis identified a set of eukaryote-like functions that are common as effectors in intracellular bacterial pathogens, supporting the notion of intracellular bacterial activity. These include ankyrin repeats, transcription factors, and host-defense silencing functions and may be secreted by a recently imported type IV secretion system. Potential factors involved in host growth include three copies of phospholipase A2, an enzyme that is rare in bacteria but implicated in a range of plant cellular processes, and proteins putatively involved in gibberellin biosynthesis. Our results describe a novel endophytic niche and create a foundation for postgenomic studies of a symbiosis with potential applications in forestry and agriculture. All multicellular eukaryotes host communities of essential microbes, but most of these interactions are still poorly understood. In plants, bacterial endophytes are found inside all tissues. M. extorquens DSM13060 occupies an unusual niche inside cells of the dividing shoot tissues of a pine and stimulates seedling growth without producing cytokinin, auxin, or other plant hormones commonly synthesized by plant-associated bacteria. Here, we tracked the bacteria using a fluorescent tag and confocal laser scanning microscopy and found that they localize near the nucleus of the plant cell. This prompted us to sequence the genome and identify proteins that may affect host growth by targeting processes in the host cytoplasm and nucleus. We found many novel genes whose products may modulate plant processes from within the plant cell. Our results open up new avenues to better understand how bacteria assist in plant growth, with broad implications for plant science, forestry, and agriculture.
Collapse
|
48
|
Pietrowska E, Różalska S, Kaźmierczak A, Nawrocka J, Małolepsza U. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures--Botrytis cinerea interaction. PROTOPLASMA 2015; 252:307-19. [PMID: 25064634 PMCID: PMC4287684 DOI: 10.1007/s00709-014-0680-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/12/2014] [Indexed: 05/09/2023]
Abstract
This article reports events connected to cell survival and Botrytis cinerea infection development in cell suspension cultures of two tomato cultivars which show different levels of susceptibility to the pathogen: cv. Corindo (more susceptible) and cv. Perkoz (less susceptible). In parallel changes in reactive oxygen (ROS) and nitrogen (RNS) species generation and in S-nitrosoglutathione reductase (GSNOR) activity were studied. In vivo staining methods with acridine orange (AO) and ethidium bromide (EB) as well as fluorescent microscopy were used to assess tomato and B. cinerea cells death. The biochemical studies of ROS and RNS concentrations in plant cell extract were complemented by in vivo ROS and nitric oxide (NO) imaging using nitro blue tetrazolium (NBT), diaminobenzidine (DAB) and diaminofluorescein diacetate (DAF-DA) staining methods, and confocal microscope technique. B. cinerea infection proceeded slower in Perkoz cell cultures. It was evidenced by measuring the pathogen conidia germination and germination tube development in which nuclei revealing cell death dominated. Two different types of tomato cell death were observed: cells with necrotic nuclei dominated in Corindo whereas in Perkoz cells with characteristic of vacuolar death type prevailed. In Perkoz cells, constitutive levels of NO and S-nitrosothiols (SNO) were significantly higher and hydrogen peroxide (H₂O₂) and superoxide anion (O₂(-)) concentrations were slightly higher as compared with Corindo cells. Moreover, increases in these molecule concentrations as a result of B. cinerea inoculation were observed in both, Perkoz and Corindo cell cultures. The enzymatic GSNOR activity seems to be an important player in controlling the SNO level in tomato cells. Involvements of the studied compounds in molecular mechanisms of tomato resistance to B. cinerea are discussed in the paper.
Collapse
Affiliation(s)
- E. Pietrowska
- Department of Plant Physiology and Biochemistry, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - S. Różalska
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - A. Kaźmierczak
- Department of Cytophysiology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - J. Nawrocka
- Department of Plant Physiology and Biochemistry, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - U. Małolepsza
- Department of Plant Physiology and Biochemistry, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
49
|
Doniak M, Barciszewska MZ, Kaźmierczak J, Kaźmierczak A. The crucial elements of the 'last step' of programmed cell death induced by kinetin in root cortex of V. faba ssp. minor seedlings. PLANT CELL REPORTS 2014; 33:2063-76. [PMID: 25213134 DOI: 10.1007/s00299-014-1681-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 05/09/2023]
Abstract
Kinetin-induced programmed cell death, manifested by condensation, degradation and methylation of DNA and fluctuation of kinase activities and ATP levels, is an autolytic and root cortex cell-specific process. The last step of programmed cell death (PCD) induced by kinetin in the root cortex of V. faba ssp. minor seedlings was explained using morphologic (nuclear chromatin/aggregation) and metabolic (DNA degradation, DNA methylation and kinases activity) analyses. This step involves: (1) decrease in nuclear DNA content, (2) increase in the number of 4',6-diamidino-2-phenylindole (DAPI)-stained chromocenters, and decrease in chromomycin A3 (CMA3)-stained chromocenters, (3) increase in fluorescence intensity of CMA3-stained chromocenters, (4) condensation of DAPI-stained and loosening of CMA3-stained chromatin, (5) fluctuation of the level of DNA methylation, (6) fluctuation of activities of exo-/endonucleolytic Zn(2+) and Ca(2+)/Mg(2+)-dependent nucleases, (7) changes in H1 and core histone kinase activities and (8) decrease in cellular ATP amount. These results confirmed that kinetin-induced PCD was a specific process. Additionally, based on data presented in this paper (DNA condensation and ATP depletion) and previous studies [increase in vacuole, increase in amount of cytosolic calcium ions, ROS production and cytosol acidification "in Byczkowska et al. (Protoplasma 250:121-128, 2013)"], we propose that the process resembles autolytic type of cell death, the most common type of death during development of plants. Lastly, the observations also suggested that regulation of these processes might be under control of epigenetic (methylation/phosphorylation) mechanisms.
Collapse
Affiliation(s)
- Magdalena Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland,
| | | | | | | |
Collapse
|
50
|
Yang G, Meng X, Sun L, Hu N, Jiang S, Sheng Y, Chen Z, Zhou Y, Chen D, Li X, Jin N. Antitumor effects of a dual cancer-specific oncolytic adenovirus on colorectal cancer in vitro and in vivo.. Exp Ther Med 2014; 9:327-334. [PMID: 25574193 PMCID: PMC4280958 DOI: 10.3892/etm.2014.2086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 09/22/2014] [Indexed: 12/15/2022] Open
Abstract
The efficacy and specificity of treatment are major challenges for cancer gene therapy. Oncolytic virotherapy is an attractive drug delivery platform for cancer gene therapy. In the present study, the dual-specific antitumor oncolytic adenovirus, Ad-Apoptin-hTERT-E1a, was used to infect SW1116 human colorectal carcinoma (CRC) cell lines and CT26 mouse-CRC-cell bearing BALB/c mouse models for testing antitumor effects in vitro and in vivo. The in vitro assays revealed that infection with Ad-Apoptin-hTERT-E1a induced a significant cytotoxic effect on the CRC cell line, SW1116; however, the normal human cell line, GES, was only slightly inhibited by the recombinant adenovirus. Acridine orange and ethidium bromide staining and an annexin V assay indicated that infection of SW1116 cells with Ad-Apoptin-hTERT-E1a resulted in a significant induction of apoptosis. Furthermore, western blotting and flow cytometry revealed a decrease in the mitochondrial membrane potential (MMP), the release of cytochrome c and the activation of caspase 3, 6 and 7 in Ad-Apoptin-hTERT-E1a-infected SW1116 cells. In the animal models, Ad-Apoptin-hTERT-E1a was shown to significantly inhibit tumor growth and extend the survival times of the animals. Therefore, the experimental results indicated that Ad-Apoptin-hTERT-E1a has potential for application in tumor gene therapy.
Collapse
Affiliation(s)
- Guohua Yang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China ; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China ; Jilin Province Qianwei Hospital, Changchun, Jilin 130031, P.R. China
| | - Xiangwei Meng
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Lili Sun
- Department of Head and Neck Surgery, Jilin Province Tumor Hospital, Changchun, Jilin 130001, P.R. China
| | - Ningning Hu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China ; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130021, P.R. China
| | - Shuang Jiang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China ; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130021, P.R. China
| | - Yuan Sheng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China ; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130021, P.R. China
| | - Zhifei Chen
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China ; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130021, P.R. China
| | - Ye Zhou
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China ; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130021, P.R. China
| | - Dexing Chen
- Jilin Province Qianwei Hospital, Changchun, Jilin 130031, P.R. China
| | - Xiao Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China ; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130021, P.R. China
| | - Ningyi Jin
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin 130122, P.R. China ; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, Jilin 130021, P.R. China
| |
Collapse
|