1
|
Wang X, Yang S, Li B, Chen C, Li J, Wang Y, Du Q, Li M, Wang H, Li J, Wang J, Xiao H. Exogenous 5-aminolevulinic acid enhanced saline-alkali tolerance in pepper seedlings by regulating photosynthesis, oxidative damage, and glutathione metabolism. PLANT CELL REPORTS 2024; 43:267. [PMID: 39425750 DOI: 10.1007/s00299-024-03352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
KEY MESSAGE A plant growth regulator, 5-aminolevulinic acid, enhanced the saline-alkali tolerance via photosynthetic, oxidative-reduction, and glutathione metabolism pathways in pepper seedlings. Saline-alkali stress is a prominent environmental problem, hindering growth and development of pepper. 5-Aminolevulinic acid (ALA) application effectively improves plant growth status under various abiotic stresses. Here, we evaluated morphological, physiological, and transcriptomic differences in saline-alkali-stressed pepper seedlings after ALA application to explore the impact of ALA on saline-alkali stress. The results indicated that saline-alkali stress inhibited plant growth, decreased biomass and photosynthesis, altered the osmolyte content and antioxidant system, and increased reactive oxygen species (ROS) accumulation and proline content in pepper seedlings. Conversely, the application of exogenous ALA alleviated this damage by increasing the photosynthetic rate, osmolyte content, antioxidant enzyme activity, and antioxidants, including superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase, and reducing glutathione to reduce ROS accumulation and malonaldehyde content. Moreover, the transcriptomic analysis revealed the differentially expressed genes were mainly associated with photosynthesis, oxidation-reduction process, and glutathione metabolism in saline-alkali stress + ALA treatment compared to saline-alkali treatment. Among them, the change in expression level in CaGST, CaGR, and CaGPX was close to the variation of corresponding enzyme activity. Collectively, our findings revealed the alleviating effect of ALA on saline-alkali stress in pepper seedlings, broadening the application of ALA and providing a feasible strategy for utilize saline-alkali soil.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sizhen Yang
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Baixue Li
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chunlin Chen
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jinling Li
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yichao Wang
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qingjie Du
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Research Center of Protected Horticulture Engineering Technology, Zhengzhou, 450046, China
| | - Meng Li
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Research Center of Protected Horticulture Engineering Technology, Zhengzhou, 450046, China
| | - Hu Wang
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Research Center of Protected Horticulture Engineering Technology, Zhengzhou, 450046, China
| | - Juanqi Li
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Research Center of Protected Horticulture Engineering Technology, Zhengzhou, 450046, China
| | - Jiqing Wang
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Research Center of Protected Horticulture Engineering Technology, Zhengzhou, 450046, China.
| | - HuaiJuan Xiao
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Research Center of Protected Horticulture Engineering Technology, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Wu L, Song L, Cao L, Meng L. Alleviation of Shade Stress in Chinese Yew ( Taxus chinensis) Seedlings with 5-Aminolevulinic Acid (ALA). PLANTS (BASEL, SWITZERLAND) 2023; 12:2333. [PMID: 37375957 DOI: 10.3390/plants12122333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
5-aminolevulinic acid (ALA) is a novel regulator that can promote plant growth, nitrogen uptake, and abiotic stress tolerance. Its underlying mechanisms, however, have not been fully investigated. In this study, the effects of ALA on morphology, photosynthesis, antioxidant systems, and secondary metabolites in two cultivars of 5-year-old Chinese yew (Taxus chinensis) seedlings, 'Taihang' and 'Fujian', were examined under shade stress (30% light for 30 days) using different doses of ALA (0, 30, and 60 mg/L). The findings from our study show that shade stress significantly reduced plant height, stem thickness, and crown width and increased malondialdehyde (MDA) levels. However, the application of 30 mg/L ALA effectively mitigated these effects, which further induced the activity of antioxidant enzymes under shade stress, resulting in the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) being increased by 10%, 16.4%, and 42.1%, and 19.8%, 20.1%, and 42% in 'Taihang' and 'Fujian', respectively. It also promoted their role in the absorption, conversion, and efficient use of light energy. Additionally, the use of 30 mg/L ALA caused a significant increase in the concentration of secondary metabolites, including polysaccharide (PC), carotenoid (CR), and flavonoids (FA), with increases of up to 46.1%, 13.4%, and 35.6% and 33.5%, 7.5%, and 57.5% in both yew cultivars, respectively, contributing to nutrient uptake. With ALA treatment, the yew seedlings showed higher chlorophyll (total chlorophyll, chlorophyll a and b) levels and photosynthesis rates than the seedlings that received the shade treatment alone. To conclude, the application of 30 mg/L ALA alleviated shade stress in yew seedlings by maintaining redox balance, protecting the photorespiratory system, and increasing organic metabolites, thus increasing the number of new branches and shoots and significantly promoting the growth of the seedlings. Spraying with ALA may be a sustainable strategy to improve the shade-resistant defense system of yew. As these findings increase our understanding of this shade stress response, they may have considerable implications for the domestication and cultivation of yew.
Collapse
Affiliation(s)
- Liuliu Wu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Linlin Song
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lifan Cao
- Engineering and Technology Research Center of Paper Mulberry Industry, Henan Academy of Sciences, Zhengzhou 451451, China
| | - Li Meng
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| |
Collapse
|
3
|
Liu H, Sun J, Zou J, Li B, Jin H. MeJA-mediated enhancement of salt-tolerance of Populus wutunensis by 5-aminolevulinic acid. BMC PLANT BIOLOGY 2023; 23:185. [PMID: 37024791 PMCID: PMC10077631 DOI: 10.1186/s12870-023-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND 5-Aminolevulinic acid (ALA) is a natural and environmentally benign multifunctional plant growth regulator involved in the regulation of plant tolerance to various environmental stresses. This research aimed to explore the molecular mechanisms of salt tolerance in Populus wutunensis induced by exogenous ALA using physiological and transcriptomic analyses. RESULTS Physiological results showed that 50 mg·L- 1 ALA-treatment significantly reduced the malondialdehyde (MDA) content and the relative electrical conductivity (REC) and enhanced antioxidant activities of enzymes such as SOD, POD and CAT in salt-stressed P. wutunensis seedlings. Transcriptome analysis identified ALA-induced differentially expressed genes (DEGs) associating with increased salt-tolerance in P. wutunensis. GO and KEGG enrichment analyses showed that ALA activated the jasmonic acid signaling and significantly enhanced the protein processing in endoplasmic reticulum and the flavonoid biosynthesis pathways. Results of the hormone-quantification by LC-MS/MS-based assays showed that ALA could increase the accumulation of methyl jasmonate (MeJA) in salt-stressed P. wutunensis. Induced contents of soluble proteins and flavonoids by exogenous ALA in salt-treated seedlings were also correlated with the MeJA content. CONCLUSION 5-aminolevulinic acid improved the protein-folding efficiency in the endoplasmic reticulum and the flavonoid-accumulation through the MeJA-activated jasmonic acid signaling, thereby increased salt-tolerance in P. wutunensis.
Collapse
Affiliation(s)
- Huan Liu
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| | - Jingliang Sun
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| | - Jixiang Zou
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| | - Baisheng Li
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| | - Hua Jin
- College of Environment and Bioresource, Dalian Minzu University, No 18, Liaohexi Road, 116600 Dalian, Liaoning China
| |
Collapse
|
4
|
Cui T, Wang Y, Niu K, Dong W, Zhang R, Ma H. Auxin alleviates cadmium toxicity by increasing vacuolar compartmentalization and decreasing long-distance translocation of cadmium in Poa pratensis. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153919. [PMID: 36706576 DOI: 10.1016/j.jplph.2023.153919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/10/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Kentucky bluegrass (Poa pratensis L.) hyperaccumulates cadmium (Cd) and exhibits a hypertolerance. Thus, it has potential for the phytoremediation of Cd-containing soil. Auxin signaling is involved in the response to Cd stress. However, the mechanisms of auxin-mediated detoxification and Cd translocation in plants remain unclear. This study aimed to investigate the effects of exogenous application of indole-3-acetic acid (IAA) on the Cd translocation, subcellular Cd distribution, chemical forms of Cd, and transcriptional regulation of Kentucky bluegrass. The results showed that the exogenous application of IAA increased the amount of organelle-bound Cd and vacuole-compartmentalized Cd in root cells, reduced the Cd concentration in the leaf tissues (epidermis, mesophyll, and vascular bundle) and root tissues (rhizodermis and cortex) but increased in the stele, and alleviate Cd-induced leaf chlorosis and growth inhibition. The expression of genes associated with Cd transporters (ABCs, ZIPs, NASs, OPTs, and YSLs), phosphatases, oxalate decarboxylases and lignin biosynthesis were significantly regulated by exogenous IAA under Cd stress. A positive regulation of phosphatases and oxalate decarboxylases genes related to an increase in phosphate- and oxalate-bound Cd, as well as a decrease in pectate- and protein-bound Cd and inorganic Cd, thereby contributing to a decrease in Cd phytotoxicity. The significant regulation of Cd transporters associated with decreasing the long-distance translocation of Cd, and the activation of lignin biosynthesis may contribute to the development of root endodermal barriers and increase the deposition of undissolved Cd phosphates and oxalate-bound Cd in the stele. These results revealed the important role of auxin in Cd detoxification and translocation in Kentucky bluegrass and they provide a theoretical basis for the phytoremediation of Cd-containing soil.
Collapse
Affiliation(s)
- Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Wenke Dong
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Ran Zhang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
5
|
Niu K, Zhu R, Wang Y, Zhao C, Ma H. 24-epibrassinolide improves cadmium tolerance and lateral root growth associated with regulating endogenous auxin and ethylene in Kentucky bluegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114460. [PMID: 38321679 DOI: 10.1016/j.ecoenv.2022.114460] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/08/2024]
Abstract
The application of phytohormones is a viable technique to increase the efficiency of phytoremediation in heavy metal-contaminated soils. The objective of this study was to determine how the application of 24-epibrassinolide (EBR), a brassinosteroid analog, could regulate root growth and tolerance to cadmium (Cd) stress in Kentucky bluegrass. As a result, the number of lateral root primordia and total root length in the Cd-treated seedlings decreased by 33.1 % and 56.5 %, respectively. After the application of EBR, Cd accumulation in roots and leaves, and the negative effect of Cd on root growth were reduced under Cd stress. Additionally, the expression of the brassinosteroid signaling gene PpBRI1 was significantly upregulated by exogenous EBR. Moreover, exogenous EBR upregulated the expression of genes encoding antioxidant enzymes and improved the activity of antioxidant enzymes, thereby reduced oxidative stress in roots. Finally, targeted hormonomics analysis highlighted the utility of the application of EBR to alleviate the effect of Cd on the reduction in auxin (IAA) content and the increase in ethylene (ACC) content. These were known to be associated with the upregulation in the expression of auxin biosynthesis gene PpYUCCA1 and downregulation in the expression of ethylene biosynthesis gene PpACO1 in the roots treated with Cd stress. Overall, the application of EBR alleviated Cd-induced oxidative stress in addition to improving root elongation and lateral root growth crosstalk with auxin and ethylene in Kentucky bluegrass subjected to Cd stress. This study further highlights the potential role of brassinosteroids in improving the efficiency of phytoremediation for Cd-contaminated soils.
Collapse
Affiliation(s)
- Kuiju Niu
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Ruiting Zhu
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Wang
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Chunxu Zhao
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Huiling Ma
- College of Grassland Science, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Wang J, Gao X, Wang X, Song W, Wang Q, Wang X, Li S, Fu B. Exogenous melatonin ameliorates drought stress in Agropyron mongolicum by regulating flavonoid biosynthesis and carbohydrate metabolism. FRONTIERS IN PLANT SCIENCE 2022; 13:1051165. [PMID: 36600908 PMCID: PMC9806343 DOI: 10.3389/fpls.2022.1051165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Drought is one of the most common abiotic stressors in plants. Melatonin (MT) is a high-efficiency and low-toxicity growth regulator that plays an important role in plant responses to drought stress. As a wild relative of wheat, Agropyron mongolicum has become an important species for the improvement of degraded grasslands and the replanting of sandy grasslands. However, the physiological and molecular mechanisms by which exogenous MT regulates drought stress in A. mongolicum remain unclear. To assess the effectiveness of MT intervention (100 mg·L-1), polyethylene glycol 6000 was used to simulate drought stress, and its ameliorating effects on drought stress in A. mongolicum seedlings were investigated through physiology, transcriptomics, and metabolomics. Physiological analysis indicated that MT treatment increased the relative water content and chlorophyll content and decreased the relative conductivity of A. mongolicum seedlings. Additionally, MT decreased malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation by enhancing antioxidant enzyme activities. The transcriptome and metabolite profiling analysis of A. mongolicum seedlings treated with and without MT under drought stress identified the presence of 13,466 differentially expressed genes (DEGs) and 271 differentially expressed metabolites (DEMs). The integrated analysis of transcriptomics and metabolomics showed that DEGs and DEMs participated in diverse biological processes, such as flavonoid biosynthesis and carbohydrate metabolism. Moreover, MT may be involved in regulating the correlation of DEGs and DEMs in flavonoid biosynthesis and carbohydrate metabolism during drought stress. In summary, this study revealed the physiological and molecular regulatory mechanisms of exogenous MT in alleviating drought stress in A. mongolicum seedlings, and it provides a reference for the development and utilization of MT and the genetic improvement of drought tolerance in plants from arid habitats.
Collapse
Affiliation(s)
- Jing Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xueqin Gao
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
| | - Xing Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Wenxue Song
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Qin Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Xucheng Wang
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
| | - Shuxia Li
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
| | - Bingzhe Fu
- School of Agriculture, Ningxia University, Yinchuan, Ningxia, China
- Ningxia Grassland and Animal Husbandry Engineering Technology Research Center, Yinchuan, Ningxia, China
- Key Laboratory for Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Yinchuan, Ningxia, China
| |
Collapse
|
7
|
Long S, Liu B, Gong J, Wang R, Gao S, Zhu T, Guo H, Liu T, Xu Y. 5-Aminolevulinic acid promotes low-light tolerance by regulating chloroplast ultrastructure, photosynthesis, and antioxidant capacity in tall fescue. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:248-261. [PMID: 36152510 DOI: 10.1016/j.plaphy.2022.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The vital signaling molecule 5-Aminolevulinic acid (ALA) plays critical roles in signal transduction and biological modulation under abiotic stresses. In this study, we explored the effects of exogenous ALA on low-light (LL) stress-induced photosynthesis and antioxidant system damage in tall fescue (Festuca arundinacea Schreb.) seedlings. LL stress decreased morphological index values and chlorophyll contents, while also reduced net photosynthetic rate (Pn) and the maximum quantum yield of photosystem II photochemistry (Fv/Fm). Notably, these restrictions were substantially alleviated by exogenous ALA. Moreover, the contents of chlorophyll and its synthetic precursors were significantly increased after ALA treatment. Meanwhile, ALA observably enhanced expression level of FaCHLG, FaHEMA, FaPOR, and FaCAO, which encode the chlorophyll precursors biosynthesis enzymes. Exogenous ALA repaired the damage to the chloroplast ultrastructure caused by LL stress and promoted the formation of ordered thylakoids and grana lamella. ALA also improved Rubisco activity and expression level of the photosynthetic enzyme genes FaRuBP, FaPRK, and FaGADPH. Additionally, application of exogenous ALA decreased relative electrolytic leakage and the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide radicals (O2∙-), and increased the gene expression levels and activity of antioxidant enzymes. The ratios of ascorbic acid (AsA) to dehydroascorbic acid (DHA) and reduced glutathione (GSH) to oxidized glutathione (GSSG) were also increased significantly by application of ALA. Furthermore, all responses could be reversed by treatment with levulinic acid (LA). Thus, these results indicated that ALA protects tall fescue from LL stress through scavenging ROS, improving photosynthetic enzyme activity levels, increasing photosynthetic pigments contents, repairing chloroplast damage, and enhancing the photosynthesis rate.
Collapse
Affiliation(s)
- Si Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Bowen Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Jiongjiong Gong
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Ruijia Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Shuanghong Gao
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Tianqi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Huan Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China
| | - Tieyuan Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China.
| |
Collapse
|
8
|
Melatonin Enhances Drought Tolerance in Rice Seedlings by Modulating Antioxidant Systems, Osmoregulation, and Corresponding Gene Expression. Int J Mol Sci 2022; 23:ijms232012075. [PMID: 36292930 PMCID: PMC9603070 DOI: 10.3390/ijms232012075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/19/2022] Open
Abstract
Rice is the third largest food crop in the world, especially in Asia. Its production in various regions is affected to different degrees by drought stress. Melatonin (MT), a novel growth regulator, plays an essential role in enhancing stress resistance in crops. Nevertheless, the underlying mechanism by which melatonin helps mitigate drought damage in rice remains unclear. Therefore, in the present study, rice seedlings pretreated with melatonin (200 μM) were stressed with drought (water potential of −0.5 MPa). These rice seedlings were subsequently examined for their phenotypes and physiological and molecular properties, including metabolite contents, enzyme activities, and the corresponding gene expression levels. The findings demonstrated that drought stress induced an increase in malondialdehyde (MDA) levels, lipoxygenase (LOX) activity, and reactive oxygen species (ROS, e.g., O2− and H2O2) in rice seedlings. However, the melatonin application significantly reduced LOX activity and the MDA and ROS contents (O2− production rate and H2O2 content), with a decrease of 29.35%, 47.23%, and (45.54% and 49.33%), respectively. It activated the expression of ALM1, OsPOX1, OsCATC, and OsAPX2, which increased the activity of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), respectively. Meanwhile, the melatonin pretreatment enhanced the proline, fructose, and sucrose content by inducing OsP5CS, OsSUS7, and OsSPS1 gene expression levels. Moreover, the melatonin pretreatment considerably up-regulated the expression levels of the melatonin synthesis genes TDC2 and ASMT1 under drought stress by 7-fold and 5-fold, approximately. These improvements were reflected by an increase in the relative water content (RWC) and the root-shoot ratio in the drought-stressed rice seedlings that received a melatonin application. Consequently, melatonin considerably reduced the adverse effects of drought stress on rice seedlings and improved rice’s ability to tolerate drought by primarily boosting endogenous antioxidant enzymes and osmoregulation abilities.
Collapse
|
9
|
Liu H, Wang Q, Wang J, Liu Y, Renzeng W, Zhao G, Niu K. Key factors for differential drought tolerance in two contrasting wild materials of Artemisia wellbyi identified using comparative transcriptomics. BMC PLANT BIOLOGY 2022; 22:445. [PMID: 36114467 PMCID: PMC9482295 DOI: 10.1186/s12870-022-03830-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Drought is a significant condition that restricts vegetation growth on the Tibetan Plateau. Artemisia wellbyi is a unique semi-shrub-like herb in the family Compositae, which distributed in northern and northwest of Tibetan Plateau. It is a dominant species in the community that can well adapt to virous environment stress, such as drought and low temperature. Therefore, A. wellbyi. has a potential ecological value for soil and water conservation of drought areas. Understanding the molecular mechanisms of A. wellbyi. that defense drought stress can acquire the key genes for drought resistance breeding of A. wellbyi. and provide a theoretical basis for vegetation restoration of desertification area. However, they remain unclear. Thus, our study compared the transcriptomic characteristics of drought-tolerant "11" and drought-sensitive "6" material of A. wellbyi under drought stress. RESULTS A total of 4875 upregulated and 4381 downregulated differentially expressed genes (DEGs) were induced by drought in the tolerant material; however, only 1931 upregulated and 4174 downregulated DEGs were induced by drought in the sensitive material. The photosynthesis and transcriptional regulation differed significantly with respect to the DEGs number and expression level. We found that CDPKs (calmodulin-like domain protein kinases), SOS3 (salt overly sensitive3), MAPKs (mitogen-activated protein kinase cascades), RLKs (receptor like kinase), and LRR-RLKs (repeat leucine-rich receptor kinase) were firstly involved in response to drought stress in drought tolerant A. wellbyi. Positive regulation of genes associated with the metabolism of ABA (abscisic acid), ET (ethylene), and IAA (indole acetic acid) could play a crucial role in the interaction with other transcriptional regulatory factors, such as MYBs (v-myb avian myeloblastosis viral oncogene homolog), AP2/EREBPs (APETALA2/ethylene-responsive element binding protein family), WRKYs, and bHLHs (basic helix-loop-helix family members) and receptor kinases, and regulate downstream genes for defense against drought stress. In addition, HSP70 (heat shock protein70) and MYB73 were considered as the hub genes because of their strong association with other DEGs. CONCLUSIONS Positive transcriptional regulation and negative regulation of photosynthesis could be associated with better growth performance under drought stress in the drought-tolerant material. In addition, the degradation of sucrose and starch in the tolerant A. wellbyi to alleviate osmotic stress and balance excess ROS. These results highlight the candidate genes that are involved in enhancing the performance of drought-tolerant A. wellbyi and provide a theoretical basis for improving the performance of drought-resistant A. wellbyi.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| | - Qiyu Wang
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jinglong Wang
- Tibet Grassland Science Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000 China
| | - Yunfei Liu
- Tibet Grassland Science Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000 China
| | - Wangdui Renzeng
- Tibet Grassland Science Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850000 China
| | - Guiqin Zhao
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| | - Kuiju Niu
- Key Laboratory of Grassland Ecosystems, College of Grassland Science, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
10
|
Yang L, Wu Y, Wang X, Lv J, Tang Z, Hu L, Luo S, Wang R, Ali B, Yu J. Physiological Mechanism of Exogenous 5-Aminolevulinic Acid Improved the Tolerance of Chinese Cabbage ( Brassica pekinensis L.) to Cadmium Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:845396. [PMID: 35720555 PMCID: PMC9199490 DOI: 10.3389/fpls.2022.845396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/04/2022] [Indexed: 06/15/2023]
Abstract
The 5-aminolevulinic acid (ALA), a new type of plant growth regulator, can relieve the toxicity of cadmium (Cd) to plants. However, its mechanism has not been thoroughly studied. In the study, the roles of ALA have been investigated in the tolerance of Chinese cabbage (Brassica pekinensis L.) seedlings to Cd stress. The results showed that Cd significantly reduced the biomass and the length of the primary root of seedlings but increased the malondialdehyde (MDA) and the hydrogen peroxide (H2O2) contents. These can be effectively mitigated through the application of ALA. The ALA can further induce the activities of antioxidant enzymes in the ascorbate-glutathione (AsA-GSH) cycle under Cd stress, which resulted in high levels of both GSH and AsA. Under ALA + Cd treatment, the seedlings showed a higher chlorophyll content and photosynthetic performance in comparison with Cd treatment alone. Microscopic analysis results confirmed that ALA can protect the cell structure of shoots and roots, i.e., stabilizing the morphological structure of chloroplasts in leaf mesophyll cells. The qRT-PCR results further reported that ALA downregulated the expressions of Cd absorption and transport-related genes in shoots (HMA2 and HMA4) and roots (IRT1, IRT2, Nramp1, and Nramp3), which resulted in the low Cd content in the shoots and roots of cabbage seedlings. Taken together, the exogenous application of ALA alleviates Cd stress through maintaining redox homeostasis, protecting the photosynthetic system, and regulating the expression of Cd transport-related genes in Chinese cabbage seedlings.
Collapse
Affiliation(s)
- Lijing Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Shilei Luo
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ruidong Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Basharat Ali
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
11
|
Cheng Y, Zhang J, Gao F, Xu Y, Wang C. Protective effects of 5-aminolevulinic acid against toxicity induced by alpha-cypermethrin to the liver-gut-microbiota axis in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113422. [PMID: 35305352 DOI: 10.1016/j.ecoenv.2022.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/24/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
To explore whether and how 5-aminolevulinic acid (ALA) can relieve the toxicity to the liver-gut-microbiota axis caused by alpha-cypermethrin (α-CP), adult zebrafish were exposed to α-CP (1.0 µg L-1) with or without 5.0 mg L-1 ALA supplementation. In the present work, the calculated LC50 of α-CP+ALA was 1.15 μg L-1, increasing about 1.16-fold compared with that of α-CP group (0.99 μg L-1), which indicated that ALA can alleviate the toxicity of α-CP. ALA also alleviated the histopathological lesions in the liver and gut induced by α-CP. Transcriptome sequencing of the liver showed that ALA rescues the differential expression of genes involved in the oxidation-reduction, heme metabolism, and complement activation pathways associated with dysfunctions induced by α-CP, and these findings were verified by RT-qPCR analysis and detection of the activities of enzymes in the liver-gut axis. The gut microbiota 16S rRNA sequencing results showed that α-CP alone induced gut microbial dysbiosis, which was efficiently antagonized by ALA due to decreasing the relative abundances of Cetobacterium and 3 major pathogens, and increasing the relative abundances of beneficial genera. Taken together, the results indicate that ALA might be a promising candidate for attenuating the adverse effects caused by pesticide-induced environmental pollution.
Collapse
Affiliation(s)
- Yi Cheng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Jie Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Fei Gao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Yong Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Helaly MN, El-Hoseiny HM, Elsheery NI, Kalaji HM, de los Santos-Villalobos S, Wróbel J, Hassan IF, Gaballah MS, Abdelrhman LA, Mira AM, Alam-Eldein SM. 5-Aminolevulinic Acid and 24-Epibrassinolide Improve the Drought Stress Resilience and Productivity of Banana Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:743. [PMID: 35336624 PMCID: PMC8949027 DOI: 10.3390/plants11060743] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 05/14/2023]
Abstract
Plant growth, development, and productivity are adversely affected under drought conditions. Previous findings indicated that 5-aminolevulinic acid (ALA) and 24-epibrassinolide (EBL) play an important role in the plant response to adverse environmental conditions. This study demonstrated the role of ALA and EBL on oxidative stress and photosynthetic capacity of drought-stressed 'Williams' banana grown under the Egyptian semi-arid conditions. Exogenous application of either ALA or EBL at concentrations of 15, 30, and 45 mg·L-1 significantly restored plant photosynthetic activity and increased productivity under reduced irrigation; this was equivalent to 75% of the plant's total water requirements. Both compounds significantly reduced drought-induced oxidative damages by increasing antioxidant enzyme activities (superoxide dismutase 'SOD', catalase 'CAT', and peroxidase 'POD') and preserving chloroplast structure. Lipid peroxidation, electrolyte loss and free non-radical H2O2 formation in the chloroplast were noticeably reduced compared to the control, but chlorophyll content and photosynthetic oxygen evolution were increased. Nutrient uptake, auxin and cytokinin levels were also improved with the reduced abscisic acid levels. The results indicated that ALA and EBL could reduce the accumulation of reactive oxygen species and maintain the stability of the chloroplast membrane structure under drought stress. This study suggests that the use of ALA or EBL at 30 mg·L-1 can promote the growth, productivity and fruit quality of drought-stressed banana plants.
Collapse
Affiliation(s)
- Mohamed N. Helaly
- Agricultural Botany Department, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt;
| | - Hanan M. El-Hoseiny
- Horticulture Department, Faculty of Desert and Environmental Agriculture, Matrouh University, Fouka 51511, Egypt;
| | - Nabil I. Elsheery
- Agricultural Botany Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, 02-776 Warsaw, Poland; or
- Institute of Technology and Life Sciences, National Research Institute, Falenty, Al.Hrabska 3, 05-090 Pruszków, Poland
| | | | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology, 71-434 Szczecin, Poland;
| | - Islam F. Hassan
- Water Relations and Field Irrigation Department, Agricultural and Biological Research Institute, National Research Center, Giza 12622, Egypt; (I.F.H.); (M.S.G.)
| | - Maybelle S. Gaballah
- Water Relations and Field Irrigation Department, Agricultural and Biological Research Institute, National Research Center, Giza 12622, Egypt; (I.F.H.); (M.S.G.)
| | - Lamyaa A. Abdelrhman
- Soil, Water and Environment Research Institute (SWERI), Agricultural Research Center, Giza 12619, Egypt;
| | - Amany M. Mira
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| | - Shamel M. Alam-Eldein
- Department of Horticulture, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
13
|
Shariatipour N, Heidari B, Shams Z, Richards C. Assessing the potential of native ecotypes of Poa pratensis L. for forage yield and phytochemical compositions under water deficit conditions. Sci Rep 2022; 12:1121. [PMID: 35064142 PMCID: PMC8782833 DOI: 10.1038/s41598-022-05024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/06/2022] [Indexed: 12/02/2022] Open
Abstract
Evaluation of forage yield and antioxidant activity in Poa pratensis with high quality and good spring green-up forage might help variety improvement for use under water deficit condition. Germplasm and phenotypic diversity evaluations lay a foundation for genotype selection and improvement of varieties for drought tolerance in P. pratensis. The present study was conducted to assess the genetic potential of a collection of P. pratensis accessions for drought stress and to identify the association between polyphenol compounds and forage yield traits. Vegetative clone samples of 100 accessions collected from a diverse geographical area of Iran were clonally propagated in a greenhouse and evaluated in the field under two moisture regimes (non-stress and drought stress) in 2018 and 2019. Drought stress had negative effects on fresh and dry forage yields and reduced phenotypic variances. On average, drought stress reduced fresh and dry forage yields by 45% and 28%, respectively. The results of Mantel test showed no significant correlation between forage yield traits and geographical distances. Genetic coefficients of variation for forage yield and most of the phytochemicals were lower under drought stress, suggesting that deficit irrigation may reduce genetic variation for the tested traits. The estimates of heritability were higher under non-stress conditions than under drought stress treatment for forage yield traits and few polyphenols. However, the majority of polyphenol compounds had higher heritability than forage yield traits under drought stress, which suggests the potential for indirect selection. The 'Ciakhor', 'Damavand', 'Karvandan', 'Abrumand', and 'Abr2' accessions had high quantities for polyphenols and yield traits under both moisture regimes. These accessions are promising candidates for use in variety crossing programs and for developing high-yielding varieties under water-deficit conditions.
Collapse
Affiliation(s)
- Nikwan Shariatipour
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, 7144165186, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, 7144165186, Shiraz, Iran.
| | - Zahra Shams
- Department of Horticulture Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher Richards
- USDA ARS National Laboratory for Genetic Resources Preservation, Fort Collins, CO, USA
| |
Collapse
|
14
|
Tan S, Cao J, Xia X, Li Z. Advances in 5-Aminolevulinic Acid Priming to Enhance Plant Tolerance to Abiotic Stress. Int J Mol Sci 2022; 23:ijms23020702. [PMID: 35054887 PMCID: PMC8775977 DOI: 10.3390/ijms23020702] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Priming is an adaptive strategy that improves plant defenses against biotic and abiotic stresses. Stimuli from chemicals, abiotic cues, and pathogens can trigger the establishment of priming state. Priming with 5-aminolevulinic acid (ALA), a potential plant growth regulator, can enhance plant tolerance to the subsequent abiotic stresses, including salinity, drought, heat, cold, and UV-B. However, the molecular mechanisms underlying the remarkable effects of ALA priming on plant physiology remain to be elucidated. Here, we summarize recent progress made in the stress tolerance conferred by ALA priming in plants and provide the underlying molecular and physiology mechanisms of this phenomenon. Priming with ALA results in changes at the physiological, transcriptional, metabolic, and epigenetic levels, and enhances photosynthesis and antioxidant capacity, as well as nitrogen assimilation, which in turn increases the resistance of abiotic stresses. However, the signaling pathway of ALA, including receptors as well as key components, is currently unknown, which hinders the deeper understanding of the defense priming caused by ALA. In the future, there is an urgent need to reveal the molecular mechanisms by which ALA regulates plant development and enhances plant defense with the help of forward genetics, multi-omics technologies, as well as genome editing technology.
Collapse
|
15
|
Lu X, Min W, Shi Y, Tian L, Li P, Ma T, Zhang Y, Luo C. Exogenous Melatonin Alleviates Alkaline Stress by Removing Reactive Oxygen Species and Promoting Antioxidant Defence in Rice Seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:849553. [PMID: 35356121 PMCID: PMC8959771 DOI: 10.3389/fpls.2022.849553] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/07/2022] [Indexed: 05/05/2023]
Abstract
Saline-alkali stress seriously restricts rice growth, development, and production in northern China. The damage of alkaline stress on rice is much greater than that of salt due to ion toxicity, osmotic stress, and especially high pH. As a signal molecule, melatonin (N-acetyl-5-methoxytryptamine, MT) mediates many physiological processes in rice and participates in protecting rice from abiotic stress. The potential mechanism of exogenous melatonin-mediated alkaline stress tolerance is still largely unknown. In this study, the effects of melatonin on the morphological change, physiological property, and corresponding genes expression in rice seedlings were analyzed under alkaline stress (20 mmol L-1, pH 9.55). The results showed that the expression levels of MT synthesis genes (TDC2, T5H, SNAT, ASMT1, and ASMT2) were induced by both exogenous MT and alkaline stress treatment. The cell membrane was protected by MT, and the MT furtherly play role in scavenging reactive oxygen species (ROS), reducing lipoxygenase (LOX) activity, and malondialdehyde (MDA) content. The scavenging of ROS by melatonin is attributed to the coupling of the improvement of redox homeostasis and the enhancement of antioxidant enzyme activity and antioxidant content by upregulating the transcriptional levels of antioxidase genes. In the meantime, MT pretreatment promoted the accumulation of free proline, sucrose, and fructose by regulating the OsP5CS, OsSUS7, and OsSPS1 gene expression level and increased chlorophyll content upregulating the expression of chlorophyll synthesis-related genes. Ultimately, the alleviating effect of exogenous melatonin on alkaline stress was reflected in increasing the leaf relative water content (RWC) and root-shoot ratio and reducing the leaf tip wilt index (TWI) through a series of physiological and biochemical changes. Melatonin pretreatment changed the expression level of MT synthesis genes which might contribute to MT synthesis in rice, consequently, activated the ROS scavenging system and alleviating the damage of alkaline stress on rice seedlings. Our study comprehensively understands the alleviating effect of exogenous melatonin on rice under alkaline stress.
Collapse
|
16
|
Rhaman MS, Imran S, Karim MM, Chakrobortty J, Mahamud MA, Sarker P, Tahjib-Ul-Arif M, Robin AHK, Ye W, Murata Y, Hasanuzzaman M. 5-aminolevulinic acid-mediated plant adaptive responses to abiotic stress. PLANT CELL REPORTS 2021; 40:1451-1469. [PMID: 33839877 DOI: 10.1007/s00299-021-02690-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/23/2021] [Indexed: 05/27/2023]
Abstract
5-aminolevulinic acid (ALA) modulates various defense systems in plants and confers abiotic stress tolerance. Enhancement of crop production is a challenge due to numerous abiotic stresses such as, salinity, drought, temperature, heavy metals, and UV. Plants often face one or more abiotic stresses in their life cycle because of the challenging growing environment which results in reduction of growth and yield. Diverse studies have been conducted to discern suitable mitigation strategies to enhance crop production by minimizing abiotic stress. Exogenous application of different plant growth regulators is a well-renowned approach to ameliorate adverse effects of abiotic stresses on crop plants. Among the numerous plant growth regulators, 5-aminolevulinic acid (ALA) is a novel plant growth regulator, also well-known to alleviate the injurious effects of abiotic stresses in plants. ALA enhances abiotic stress tolerance as well as growth and yield by regulating photosynthetic and antioxidant machineries and nutrient uptake in plants. However, the regulatory roles of ALA in plants under different stresses have not been studied and assembled systematically. Also, ALA-mediated abiotic stress tolerance mechanisms have not been fully elucidated yet. Therefore, this review discusses the role of ALA in crop growth enhancement as well as its ameliorative role in abiotic stress mitigation and also discusses the ALA-mediated abiotic stress tolerance mechanisms and its limitation and future promises for sustainable crop production.
Collapse
Affiliation(s)
- Mohammad Saidur Rhaman
- Department of Seed Science and Technology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shahin Imran
- Department of Agronomy, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Md Masudul Karim
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jotirmoy Chakrobortty
- Department of Soil Science, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Md Asif Mahamud
- Department of Agricultural Chemistry, Khulna Agricultural University, Khulna, 9100, Bangladesh
| | - Prosenjit Sarker
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
- Department of Bio-Functional Chemistry, Okayama University, Okayama, Japan
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Wenxiu Ye
- Department of Plant Science, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yoshiyuki Murata
- Department of Bio-Functional Chemistry, Okayama University, Okayama, Japan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, 1207, Bangladesh.
| |
Collapse
|
17
|
Xian J, Wang Y, Niu K, Ma H, Ma X. Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa Pratensis. CHEMOSPHERE 2020; 250:126158. [PMID: 32092564 DOI: 10.1016/j.chemosphere.2020.126158] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Kentucky bluegrass has good capability to absorb and accumulate cadmium (Cd) through developed root system, thus having potential phytoremediation function in Cd contaminated soils. Understanding the molecular mechanisms of Cd tolerance and accumulation in this species will be crucial to generating novel Cd-tolerance cultivars through genetic improvement, while it has not well documented yet. In the present study, comparative transcriptome analysis was performed for the seedlings of high Cd-tolerant genotype (M) and low Cd-tolerant genotype (R) under Cd stress. A total of 7022 up-regulated and 1033 down-regulated transcripts were identified in M genotype, whereas, only 850 up-regulated and 846 down-regulated transcripts were detected in R. Further transcriptional regulation analysis in M genotype showed that Dof, MADS25, BBR-BPC, B3, bZIP23 and MYB30 might be the hub transcription factors in response to Cd stress due to the orchestrated multiple functional genes associated with carbohydrate, lipid and secondary metabolism, as well as signal transduction. Differential expressed genes involved in auxin, ethylene, brassinosteroid and ABA signalling formed signal transduction cascades, which interacted with hub transcription factors, thereby finally orchestrated the expression of multiple genes associated with cell wall and membrane stability, cell elongation and Cd tolerance, including IAAs, ARFs, SnRK2, PP2C, PIFs, BES1/BZR1, CCR, CAD, FATB, fabF and HACD. Additionally, post-transcriptional modification of CIPKs, MAPKs, WAXs, UBCs, and E3 ubiquitin ligases were identified and also involved in plant signalling pathways and abiotic resistance. The study could contribute to our understanding the transcriptional regulation and complex internal network associated with Cd tolerance in Kentucky bluegrass.
Collapse
Affiliation(s)
- Jingping Xian
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China; School of Science and Technology, Xinxiang University, Xinxiang, Henan, 453000, China
| | - Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| | - Xiang Ma
- Academy of Animal Sciences and Veterinary, Qinghai University, Xining, 810016, PR China; Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan Plateau, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, 810016, China
| |
Collapse
|
18
|
Cai C, He S, An Y, Wang L. Exogenous 5-aminolevulinic acid improves strawberry tolerance to osmotic stress and its possible mechanisms. PHYSIOLOGIA PLANTARUM 2020; 168:948-962. [PMID: 31621913 DOI: 10.1111/ppl.13038] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/14/2019] [Indexed: 05/14/2023]
Abstract
Cultivated strawberry, one of the major fruit crops worldwide, is an evergreen plant with shallow root system, and thus sensitive to environmental changes, including drought stress. To investigate the effect of 5-aminolevulinic acid (ALA), a new environment-friendly plant growth regulator, on strawberry drought tolerance and its possible mechanisms, we treated strawberry (Fragaria × annanasa Duch. cv. 'Benihoppe') with 15% polyethylene glycol 6000 to simulate osmotic stress with or without 10 mg l-1 ALA. We found that ALA significantly alleviated PEG-inhibited plant growth and improved water absorption and xylem sap flux, indicating ALA mitigates the adverse effect of osmotic stress on strawberry plants. Gas exchange and chlorophyll fluorescence analysis showed that ALA mitigated PEG-induced decreases of Pn , Gs , Tr , Pn /Ci , photosystem I and II reaction center activities, electron transport activity, and photosynthetic performance indexes. Equally important, ALA promoted PEG-increased antioxidant enzyme activities and repressed PEG-increased malondialdehyde and superoxide anion in both leaves and roots. Specially, ALA repressed H2 O2 increase in leaves, but stimulated it in roots. Furthermore, ALA repressed abscisic acid (ABA) biosynthesis and signaling gene expressions in leaves, but promoted those in roots. In addition, ALA blocked PEG-downregulated expressions of plasmalemma and tonoplast aquaporin genes PIP and TIP in both leaves and roots. Taken together, ALA effectively enhances strawberry drought tolerance and the mechanism is related to the improvement of water absorption and conductivity. The tissue-specific responses of ABA biosynthesis, ABA signaling, and H2 O2 accumulation to ALA in leaves and roots play key roles in ALA-improved strawberry tolerance to osmotic stress.
Collapse
Affiliation(s)
- Changyu Cai
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shasha He
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyan An
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
19
|
Wang Y, Li X, Liu N, Wei S, Wang J, Qin F, Suo B. The iTRAQ-based chloroplast proteomic analysis of Triticum aestivum L. leaves subjected to drought stress and 5-aminolevulinic acid alleviation reveals several proteins involved in the protection of photosynthesis. BMC PLANT BIOLOGY 2020; 20:96. [PMID: 32131734 PMCID: PMC7057492 DOI: 10.1186/s12870-020-2297-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/20/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUNDS The perturbance of chloroplast proteins is a major cause of photosynthesis inhibition under drought stress. The exogenous application of 5-aminolevulinic acid (ALA) mitigates the damage caused by drought stress, protecting plant growth and development, but the regulatory mechanism behind this process remains obscure. RESULTS Wheat seedlings were drought treated, and the iTRAQ-based proteomic approach was employed to assess the difference in chloroplast protein content caused by exogenous ALA. A total of 9499 peptides, which could be classified into 2442 protein groups, were identified with ≤0.01 FDR. Moreover, the contents of 87 chloroplast proteins was changed by drought stress alone compared to that of the drought-free control, while the contents of 469 was changed by exogenous ALA application under drought stress compared to that of drought stress alone. The Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results suggested that the ALA pretreatment adjusted some biological pathways, such as metabolic pathways and pathways involved in photosynthesis and ribosomes, to enhance the drought resistance of chloroplasts. Furthermore, the drought-promoted H2O2 accumulation and O2- production in chloroplasts were alleviated by the exogenous pretreatment of ALA, while peroxidase (POD) and glutathione peroxidase (GPX) activities were upregulated, which agreed with the chloroplast proteomic data. We suggested that ALA promoted reactive oxygen species (ROS) scavenging in chloroplasts by regulating enzymatic processes. CONCLUSIONS Our results from chloroplast proteomics extend the understanding of the mechanisms employed by exogenous ALA to defend against drought stress in wheat.
Collapse
Affiliation(s)
- Yuexia Wang
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Xiaoyan Li
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Nana Liu
- College of Science, China Agricultural University, Beijing, 100193 China
| | - Shimei Wei
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Jianan Wang
- College of Life Sciences, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| | - Fujun Qin
- Department of Pathology, University of Virginia, Charlottesville, VA 22908 USA
| | - Biao Suo
- College of Food Science and Technology, Henan Agricultural University, No. 63, Nongye Rd., Zhengzhou, 450002 Henan Province China
| |
Collapse
|
20
|
An Y, Xiong L, Hu S, Wang L. PP2A and microtubules function in 5-aminolevulinic acid-mediated H 2 O 2 signaling in Arabidopsis guard cells. PHYSIOLOGIA PLANTARUM 2020; 168:709-724. [PMID: 31381165 DOI: 10.1111/ppl.13016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
5-aminolevulinic acid (ALA), a plant growth regulator with great application potential in agriculture and horticulture, induces stomatal opening and inhibits stomatal closure by decreasing guard cell H2 O2 . However, the mechanisms behind ALA-decreased H2 O2 in guard cells are not fully understood. Here, using type 2A protein phosphatase (PP2A) inhibitors, microtubule-stabilizing/disrupting drugs and green fluorescent protein-tagged α-tubulin 6 transgenic Arabidopsis (GFP-TUA6), we find that PP2A and cortical microtubules (MTs) are involved in ALA-regulated stomatal movement. Then, we analyze stomatal responses of Arabidopsis overexpressing C2 catalytic subunit of PP2A (PP2A-C2) and pp2a-c2 mutant to ALA and abscisic acid (ABA) under both light and dark conditions, and show that PP2A-C2 participates in ALA-induced stomatal movement. Furthermore, using pharmacological methods and confocal studies, we reveal that PP2A and MTs function upstream and downstream, respectively, of H2 O2 in guard cell signaling. Finally, we demonstrate the role of H2 O2 -mediated microtubule arrangement in ALA inhibiting ABA-induced stomatal closure. Our findings indicate that MTs regulated by PP2A-mediated H2 O2 decreasing play an important role in ALA guard cell signaling, revealing new insights into stomatal movement regulation.
Collapse
Affiliation(s)
- Yuyan An
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lijun Xiong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
21
|
Liu T, Du Q, Li S, Yang J, Li X, Xu J, Chen P, Li J, Hu X. GSTU43 gene involved in ALA-regulated redox homeostasis, to maintain coordinated chlorophyll synthesis of tomato at low temperature. BMC PLANT BIOLOGY 2019; 19:323. [PMID: 31319801 PMCID: PMC6639942 DOI: 10.1186/s12870-019-1929-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Exogenous 5-aminolevulinic acid (ALA) positively regulates plants chlorophyll synthesis and protects them against environmental stresses, although the protection mechanism is not fully clear. Here, we explored the effects of ALA on chlorophyll synthesis in tomato plants, which are sensitive to low temperature. We also examined the roles of the glutathione S-transferase (GSTU43) gene, which is involved in ALA-induced tolerance to oxidation stress and regulation of chlorophyll synthesis under low temperature. RESULTS Exogenous ALA alleviated low temperature caused chlorophyll synthesis obstacle of uroporphyrinogen III (UROIII) conversion to protoporphyrin IX (Proto IX), and enhanced the production of chlorophyll and its precursors, including endogenous ALA, Proto IX, Mg-protoporphyrin IX (Mg-proto IX), and protochlorophyll (Pchl), under low temperature in tomato leaves. However, ALA did not regulate chlorophyll synthesis at the level of transcription. Notably, ALA up-regulated the GSTU43 gene and protein expression and increased GST activity. Silencing of GSTU43 with virus-induced gene silencing reduced the activities of GST, superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase, and increased the membrane lipid peroxidation; while fed with ALA significant increased all these antioxidase activities and antioxidant contents, and alleviated the membrane damage. CONCLUSIONS ALA triggered GST activity encoded by GSTU43, and increased tomato tolerance to low temperature-induced oxidative stress, perhaps with the assistance of ascorbate- and/or a glutathione-regenerating cycles, and actively regulated the plant redox homeostasis. This latter effect reduced the degree of membrane lipid peroxidation, which was essential for the coordinated synthesis of chlorophyll.
Collapse
Affiliation(s)
- Tao Liu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Qingjie Du
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Suzhi Li
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Jianyu Yang
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Xiaojing Li
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Jiaojiao Xu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Pengxiang Chen
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Jianming Li
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| | - Xiaohui Hu
- College of Horticulture, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, 712100 Shaanxi China
- Shaanxi Protected Agriculture Research Centre, Yangling, 712100 Shaanxi China
| |
Collapse
|