1
|
Wang P, Lv W, Wang H. Effects of freeze-hot air drying on physicochemical properties and anti-tyrosinase activity of quince peels. Food Chem 2024; 463:141507. [PMID: 39393110 DOI: 10.1016/j.foodchem.2024.141507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Xinjiang quince peels (XQP) are rich in bioactive compounds and have anti-tyrosinase potential. However, due to their short shelf life, effective preservation techniques are needed to retain their nutritional and medicinal properties. While freeze drying (FD) is effective, combining FD with hot air drying (HAD) offers greater efficiency. The study aimed to evaluate the effects of freeze-hot air drying on the physicochemical properties and anti-tyrosinase activity of XQP. The results showed that peels subjected to FD for 18 h followed by HAD for 0.3 h (FD18-HAD0.3) had the highest contents of total phenolics, total flavonoids, chlorogenic acid, rutin, and ascorbic acid, while reducing drying time by 25 % compared to FD alone. FD18-HAD0.3 peels also showed the highest anti-tyrosinase activity, with the smallest IC50 value (7.84 ± 0.03 mg/mL). The study concludes that FD18-HAD0.3 showed potential as the optimal drying process for XQP.
Collapse
Affiliation(s)
- Pei Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenping Lv
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| | - Hongxin Wang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China; State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
2
|
Sun S, Xia G, Pang H, Zhu J, Li L, Zang H. Phytochemical Analysis and Antioxidant Activities of Various Extracts from the Aerial Part of Anemone baicalensis Turcz.: In Vitro and In Vivo Studies. Molecules 2024; 29:4602. [PMID: 39407532 PMCID: PMC11478119 DOI: 10.3390/molecules29194602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Anemone baicalensis Turcz., a botanical species with a rich historical background in traditional medicine for detoxification and insecticidal applications, possesses a vast, yet largely unexplored, therapeutic potential. This study primarily focused on conducting a qualitative phytochemical analysis of the plant, determining the active ingredient content and antioxidant activity of various solvent extracts. The qualitative phytochemical analysis revealed the presence of 12 different types of phytochemicals within the plant. Utilizing ultraviolet-visible spectrophotometry, we identified 11 active ingredients in 4 solvent extracts. Notably, the methanol extract was found to contain high concentrations of total carbohydrate, total monoterpenoid, total phenolic, total tannin, and total triterpenoid. In the antioxidant experiment, the methanol extract demonstrated superior scavenging abilities against 1,1-diphenyl-2-picrylhydrazyl radical, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid) diammonium salt, superoxide anion radical, and hydrogen peroxide, outperforming other extracts in chelation experiments aimed at reducing iron and metal ions. Consequently, the methanol extract was selected for further investigation. Subsequent ultrahigh-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry analysis revealed that the methanol extract contained 39 compounds, primarily phenolic compounds and triterpenoid saponins. Three stability assessments confirmed the extract's stability under high temperatures, varying pH levels, and simulated gastrointestinal processes. Additionally, oil stability testing demonstrated its antioxidant capacity in extra virgin olive oil and cold-pressed sunflower seed oil media. An oral acute toxicity experiment conducted on mice not only confirmed the absence of acute toxicity in the methanol extract but also provided a dose reference for subsequent gastric protection experiments. Notably, the methanol extract exhibited significant gastroprotective effects against ethanol-induced gastric lesions in rats, as evidenced by histopathological and biochemical analyses. Specifically, the extract reduced levels of malondialdehyde, alanine aminotransferase, and aspartate aminotransferase while increasing glutathione, nitric oxide, and catalase, indicating its gastroprotective mechanism. These findings suggest that the methanol extract from the aerial part of Anemone baicalensis could be a promising therapeutic agent for conditions associated with oxidative imbalances. They underscore the plant's potential therapeutic benefits and offer valuable insights into its antioxidant properties, thereby broadening our understanding of its medicinal potential.
Collapse
Affiliation(s)
- Shuang Sun
- College of Pharmacy, Yanbian University, Yanji 133000, China; (S.S.); (G.X.)
| | - Guangqing Xia
- College of Pharmacy, Yanbian University, Yanji 133000, China; (S.S.); (G.X.)
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| | - Hao Pang
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Junyi Zhu
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| | - Li Li
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| | - Hao Zang
- College of Pharmacy, Yanbian University, Yanji 133000, China; (S.S.); (G.X.)
- School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.P.); (J.Z.)
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi 117004, China
| |
Collapse
|
3
|
Xi H, Xu W, He F, Liu Z, Wang Y, Xie J. Spatial metabolome of biosynthesis and metabolism in Cyclocarya paliurus leaves. Food Chem 2024; 443:138519. [PMID: 38301549 DOI: 10.1016/j.foodchem.2024.138519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
A large number of plant metabolites were discovered, but their biosynthetic and metabolic pathways are still largely unknown. However, the spatial distribution of metabolites and their changes in metabolic pathways can be supplemented by mass spectrometry imaging (MSI) techniques. For this purpose, the combination of desorption electrospray ionization (DESI)-MSI and non-targeted metabolomics was used to obtain the spatial distribution information of metabolites in the leaves of Cyclocarya paliurus (Batal.) Iljinskaja (C. paliurus). The sample pretreatment method was optimized to have higher detection sensitivity in DESI. The changes of metabolites in C. paliurus were analyzed in depth with the integration of the spatial distribution information of metabolites. The main pathways for biosynthesis of flavonoid precursor and the effect of changes in compound structure on the spatial distribution were found. Spatial metabolomics can provide more metabolite information and a platform for the in-depth understanding of the biosynthesis and metabolism in plants.
Collapse
Affiliation(s)
- Huiting Xi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Weixiang Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Fengxia He
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zhongwei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yuanxing Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
4
|
Dong WR, Gao X, Li CX, Song Y, Chai JH, Liang J. Detection and Characterization of the Metabolites of Ciwujianoside B in Rats Based on UPLC-Fusion Lumos Orbitrap Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2024; 2024:3187511. [PMID: 38813478 PMCID: PMC11136543 DOI: 10.1155/2024/3187511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/21/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
We previously conducted a systematic study on the metabolic process and products of hederasaponin B in rats. We hypothesized that the sugar chain structures play a key role in the metabolism of triterpenoid saponins. To verify this hypothesis, we conducted metabolic research on ciwujianoside B ascribed to the same sugar chains and a distinct aglycone and compared it with hederasaponin B. Specifically, we collected feces, urine, and plasma of rats after gavage with ciwujianoside B and identified 42 metabolites by UPLC-Fusion Lumos Orbitrap mass spectrometry. Finally, ciwujianoside B metabolism and hederasaponin B metabolism were compared, reaching the following conclusions: (i) more than 40 metabolites were identified in both, with the majority of metabolites identified in feces; (ii) the corresponding metabolic pathways in vivo were basically similar, including deglycosylation, acetylation, hydroxylation, glucuronidation, oxidation, and glycosylation; and (iii) deglycosylation was considered the main metabolic reaction, and its metabolites accounted for approximately 50% of all metabolites. Overall, this study provides a foundation for further research on the metabolism of triterpenoid saponins.
Collapse
Affiliation(s)
- Wan-Ru Dong
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Xue Gao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Chen-Xue Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yan Song
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Jun-Hong Chai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin 150040, China
| |
Collapse
|
5
|
Du Z, Gao F, Wang S, Sun S, Chen C, Wang X, Wu R, Yu X. Genome-Wide Investigation of Oxidosqualene Cyclase Genes Deciphers the Genetic Basis of Triterpene Biosynthesis in Tea Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10584-10595. [PMID: 38652774 DOI: 10.1021/acs.jafc.4c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Triterpenoids from Camellia species comprise a diverse class of bioactive compounds with great therapeutic potential. However, triterpene biosynthesis in tea plants (Camellia sinensis) remains elusive. Here, we identified eight putative 2,3-oxidosqualene cyclase (OSC) genes (CsOSC1-8) from the tea genome and characterized the functions of five through heterologous expression in yeast and tobacco and transient overexpression in tea plants. CsOSC1 was found to be a β-amyrin synthase, whereas CsOSC4, 5, and 6 exhibited multifunctional α-amyrin synthase activity. Molecular docking and site-directed mutagenesis showed that the CsOSC6M259T/W260L double mutant yielded >40% lupeol, while the CsOSC1 W259L single mutant alone was sufficient for lupeol production. The V732F mutation in CsOSC5 altered product formation from friedelin to taraxasterol and ψ-taraxasterol. The L254 M mutation in the cycloartenol synthase CsOSC8 enhanced the catalytic activity. Our findings shed light on the molecular basis governing triterpene diversity in tea plants and offer potential avenues for OSC engineering.
Collapse
Affiliation(s)
- Zhenghua Du
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fuquan Gao
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuai Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chanxin Chen
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaxia Wang
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruimei Wu
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaomin Yu
- Center for Plant Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
6
|
Jolly A, Hour Y, Lee YC. An outlook on the versatility of plant saponins: A review. Fitoterapia 2024; 174:105858. [PMID: 38365071 DOI: 10.1016/j.fitote.2024.105858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The abundance of saponin-rich plants across different ecosystems indicates their great potential as a replacement for harmful synthetic surfactants in modern commercial products. These organic saponins have remarkable biological and surface-active properties and align with sustainable and eco-friendly practices. This article examines and discusses the structure and properties of plant saponins with high yield of saponin concentrations and their exploitable applications. This highlights the potential of saponins as ethical substitutes for traditional synthetic surfactants and pharmacological agents, with favorable effects on the economy and environment. For this purpose, studies on the relevant capabilities, structure, and yield of selected plants were thoroughly examined. Studies on the possible uses of the selected saponins have also been conducted. This in-depth analysis highlights the potential of saponins as workable and ethical replacements for traditional synthetic medications and surfactants, thus emphasizing their favorable effects on human health and the environment.
Collapse
Affiliation(s)
- Annu Jolly
- Department of BioNanotechnology, Gachon University, 1342 Seongnam-Daero, Sujeon-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea
| | - Youl Hour
- 125-6, Techno 2-ro, Yuseong-gu, Daejeon 34024, BTGin co., Ltd., Republic of Korea.
| | - Young-Chul Lee
- Department of BioNanotechnology, Gachon University, 1342 Seongnam-Daero, Sujeon-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|
7
|
Chen S, Wang K, Wang H, Gao Y, Nie K, Jiang X, Su H, Tang Y, Lu F, Dong H, Wang Z. The therapeutic effects of saikosaponins on depression through the modulation of neuroplasticity: From molecular mechanisms to potential clinical applications. Pharmacol Res 2024; 201:107090. [PMID: 38309381 DOI: 10.1016/j.phrs.2024.107090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
Depression is a major global health issue that urgently requires innovative and precise treatment options. In this context, saikosaponin has emerged as a promising candidate, offering a variety of therapeutic benefits that may be effective in combating depression. This review delves into the multifaceted potential of saikosaponins in alleviating depressive symptoms. We summarized the effects of saikosaponins on structural and functional neuroplasticity, elaborated the regulatory mechanism of saikosaponins in modulating key factors that affect neuroplasticity, such as inflammation, the hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, and the brain-gut axis. Moreover, this paper highlights existing gaps in current researches and outlines directions for future studies. A detailed plan is provided for the future clinical application of saikosaponins, advocating for more targeted researches to speed up its transition from preclinical trials to clinical practice.
Collapse
Affiliation(s)
- Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ke Wang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hao Su
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fuer Lu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Xiao F, Zhao Y, Wang X, Jian X. Full-length transcriptome characterization and comparative analysis of Gleditsia sinensis. BMC Genomics 2023; 24:757. [PMID: 38066414 PMCID: PMC10709882 DOI: 10.1186/s12864-023-09843-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
As an economically important tree, Gleditsia sinensis Lam. is widely planted. A lack of background genetic information on G. sinensis hinders molecular breeding. Based on PacBio single-molecule real-time (SMRT) sequencing and analysis of G. sinensis, a total of 95,183 non-redundant transcript sequences were obtained, of which 93,668 contained complete open reading frames (ORFs), 2,858 were long non-coding RNAs (LncRNAs) and 18,855 alternative splicing (AS) events were identified. Genes orthologous to different Gleditsia species pairs were identified, stress-related genes had been positively selected during the evolution. AGA, AGG, and CCA were identified as the universal optimal codon in the genus of Gleditsia. EIF5A was selected as a suitable fluorescent quantitative reference gene. 315 Cytochrome P450 monooxygenases (CYP450s) and 147 uridine diphosphate (UDP)-glycosyltransferases (UGTs) were recognized through the PacBio SMRT transcriptome. Randomized selection of GsIAA14 for cloning verified the reliability of the PacBio SMRT transcriptome assembly sequence. In conclusion, the research data lay the foundation for further analysis of the evolutionary mechanism and molecular breeding of Gleditsia.
Collapse
Affiliation(s)
- Feng Xiao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Xiurong Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xueyan Jian
- School of Continuing Education, Yanbian University, Yanji, 133002, Jilin, China
| |
Collapse
|
9
|
Zhou JC, Li HL, Zhou Y, Li XT, Yang ZY, Tohda C, Komatsu K, Piao XH, Ge YW. The roles of natural triterpenoid saponins against Alzheimer's disease. Phytother Res 2023; 37:5017-5040. [PMID: 37491018 DOI: 10.1002/ptr.7967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023]
Abstract
The aging of the world population and increasing stress levels in life are the major cause of the increased incidence of neurological disorders. Alzheimer's disease (AD) creates a huge burden on the lives and health of individuals and has become a big concern for society. Triterpenoid saponins (TS), representative natural product components, have a wide range of pharmacological bioactivities such as anti-inflammation, antioxidation, antiapoptosis, hormone-like, and gut microbiota regulation. Notably, some natural TS exhibited promising neuroprotective activity that can intervene in AD progress, especially in the early stage. Recently, studies have indicated that TS play a pronounced positive role in the prevention and treatment of AD. This review discusses the recent research on the neuroprotection of TS and proceeds to detail the action mechanisms of TS against AD, hoping to provide a reference for drug development for anti-AD.
Collapse
Affiliation(s)
- Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui-Lin Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xi-Tao Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Chihiro Tohda
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- Division of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative team of research on effective substances of traditional Chinese medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
10
|
Shida W, Tahara Y, Morikawa S, Monde K, Koga R, Ohsugi T, Otsuka M, Ikemoto A, Tateishi H, Ikeda T, Fujita M. The unique activity of saponin: Induction of cytotoxicity in HTLV-1 infected cells. Bioorg Med Chem 2023; 91:117408. [PMID: 37453188 DOI: 10.1016/j.bmc.2023.117408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Infection with the retrovirus human T-cell leukemia virus type 1 (HTLV-1) sometimes causes diseases that are difficult to cure. To find anti-HTLV-1 natural compounds, we opted to screen using the HTLV-1-infected T-cell line, MT-2. Based on our results, an extract of the pulp/seeds of Akebia quinata Decaisne fruit killed MT-2 cells but did not affect the Jurkat cell line that was not infected with virus. To determine the active ingredients, seven saponins with one-six sugar moieties were isolated from A. quinata seeds, and their activities against the two cell lines were examined. Both cell lines were killed in a similar manner by Akebia saponins A and B. Further, Akebia saponins D, E, PK and G did not exhibit cytotoxicity. Akebia saponin C had a similar activity to the extract found in the screening. This compound was found to enhance Gag aggregation, induce the abnormal cleavage of Gag, suppress virion release, and preferentially kill HTLV-1 infected cells; however, their relationship remains elusive. Our findings may lead to the development of new therapies for infectious diseases based on the removal of whole-virus-infected cells.
Collapse
Affiliation(s)
- Wataru Shida
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan
| | - Yurika Tahara
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan
| | - Saki Morikawa
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan
| | - Kazuaki Monde
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Kumamoto 860-8556, Japan
| | - Ryoko Koga
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan
| | - Takeo Ohsugi
- Department of Laboratory Animal Science, School of Veterinary Medicine, Rakuno-Gakuen University, 582 Bunkyodai-midorimachi, Ebetsu, Hokkaido 069-8501, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto, Kumamoto 862-0976, Japan
| | - Atsushi Ikemoto
- Division of Regional Studies and Clinical Psychology, Faculty of Education and Human Studies, Akita University, 1-1 Tegatagakuen-machi, Akita, Akita 010-8502, Japan
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan
| | - Tsuyoshi Ikeda
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto, Kumamoto 860-0082, Japan.
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, Kumamoto 862-0973, Japan.
| |
Collapse
|
11
|
Šedbarė R, Grigaitė O, Janulis V. Peculiarities of the Variation of Biologically Active Compounds in Fruit of Vaccinium oxycoccos L. Growing in the Čepkeliai State Strict Nature Reserve. Molecules 2023; 28:5888. [PMID: 37570858 PMCID: PMC10421140 DOI: 10.3390/molecules28155888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
This study was carried out to analyze the accumulation patterns of anthocyanins, proanthocyanidins, flavonols, chlorogenic acid, and triterpene compounds in fruit samples of Vaccinium oxycoccos L. berries growing in the Čepkeliai State Strict Nature Reserve in Lithuania. Studies were carried out on the phytochemical composition of cranberry fruit samples during the period of 2020-2022. Anthocyanins, flavonols, chlorogenic acid and triterpene compounds were identified and quantified using UPLC-DAD methods, and proanthocyanins were determined using spectrophotometric methods. The content of identified compounds varied, as reflected in the total amounts of anthocyanins (710.3 ± 40 µg/g to 6993.8 ± 119 µg/g), proanthocyanidins (378.4 ± 10 µg EE/g to 3557. 3 ± 75 µg EE/g), flavonols (479.6 ± 9 µg/g to 7291.2 ± 226 µg/g), chlorogenic acid (68.0 ± 1 µg/g to 3858.2 ± 119 µg/g), and triterpenoids (3780.8 ± 98 µg/g to 7226.9 ± 224 µg/g). Cranberry fruit samples harvested from open oligotrophic wetland habitats contained higher levels of anthocyanins, anthocyanidins, flavonol glycosides, and proanthocyanidins. The highest levels of triterpene compounds were found in the cranberry fruits harvested in the spring of the following year after the snowmelt. The use of principal component analysis showed that cranberry plant material harvested in October and November had higher levels of bioactive compounds.
Collapse
Affiliation(s)
- Rima Šedbarė
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania;
| | - Onutė Grigaitė
- Dzūkija National Park and Čepkeliai State Nature Reserve Directorate, 65334 Merkinė, Lithuania
| | - Valdimaras Janulis
- Department of Pharmacognosy, Faculty of Pharmacy, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania;
| |
Collapse
|
12
|
Ibrahim AM, Al-Fanharawi AA, Dokmak HAA. Ovicidal, immunotoxic and endocrine disrupting effects of saponin on Bulinus truncatus snails with special emphasize on the oxidative stress parameters, genotoxicological, and histopathological alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:78641-78652. [PMID: 37273057 PMCID: PMC10313852 DOI: 10.1007/s11356-023-27668-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
Bulinus truncatus snail is one of the most medically important snails. The goal of this study was to evaluate the molluscicidal effect of saponin on these snails and study how it affects their biological functions. The present results showed that saponin had a molluscicidal activity against adult B. truncatus snails after 24h and 72h with LC50 (57.5 and 27.1 ppm, respectively) and had ovicidal acivity on the snails' embryos. By studying the effect of the sublethal concentrations (LC10 48.63 ppm or LC25 52.83 ppm) exposure on B. truncatus snails, they resulted in significant decreases in the survivorship, egg-laying, and the reproductive rate compared to untreated snails. Both concentrations caused morphological changes to the snails' hemocytes, where, after the exposure, granulocytes and hyalinocytes had irregular outer cell membrane and some cell formed pseudopodia. Granulocytes had large number of granules, vacuoles, while hyalinocytes' nucleus was shrunken. Also, these concentrations resulted in significant increases in sex hormone levels (17β-estradiol and testosterone) in tissue homogenate of B. truncatus snails. It resulted in significant decrease in total antioxidant (TAO) activity, while, significantly increased lipid peroxidase (LPO) level, superoxide dismutase (SOD), nitrogen oxide (NO), and glutathione-S-transferase (GST) as compared to control group. Histopathological and genotoxicological damages occurred in snails' tissue after exposure to these concentrations. Conclusion, saponin has a molluscicidal effect on B. truncatus snails and might be used for the control of schistosomiasis haematobium. Besides, these snails could be used as invertebrate models to reflect the toxic effects of saponin in the aquatic ecosystem.
Collapse
Affiliation(s)
- Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, P.O:11635, Egypt.
| | - Ali A Al-Fanharawi
- Biology Department, College of Science, University of Al-Muthanna, Al-Muthanna, Iraq
| | - Hebat-Allah A Dokmak
- Medical Malacology Department, Theodor Bilharz Research Institute, Imbaba, Giza, P.O:11635, Egypt
| |
Collapse
|
13
|
Song Z, Chen D, Sui S, Wang Y, Cen S, Dai J. Characterization of a Malabaricane-Type Triterpene Synthase from Astragalus membranaceus and Enzymatic Synthesis of Astramalabaricosides. JOURNAL OF NATURAL PRODUCTS 2023. [PMID: 37336771 DOI: 10.1021/acs.jnatprod.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Triterpenoids are a large and medicinally important group of natural products with a wide range of biological and pharmacological effects. Among them, malabaricane-type triterpenoids are a rare group of terpenoids with a 6,6,5-tricyclic ring system, and a few malabaricane triterpene synthases have been characterized to date. Here, an arabidiol synthase AmAS for the formation of the malabaricane-type 6,6,5-tricyclic triterpenoid skeleton in astramalabaricosides biosynthesis was characterized from Astragalus membranaceus. Multiple sequence alignment, site-directed mutagenesis, and molecular docking of AmAS reveal that residues Q256 and Y258 are essential for AmAS activity, and the triad motif IIH725-727 was the critical residue necessary for its product specificity. Mutation of IIH725-727 with VFN led to the formation of seven tricyclic, tetracyclic, and pentacyclic triterpenoids (1-7). Glycosylation of malabaricane-type triterpenoids in the biosynthesis of astramalabaricosides was also explored. Three triterpenoids (1, 5, and 6) displayed potent inhibitory effects against influenza A virus in vitro. These findings provide insights into malabaricane-type triterpenoids biosynthesis in A. membranaceus and access to diverse bioactive triterpenoids for drug discovery.
Collapse
Affiliation(s)
- Zhijun Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Songyang Sui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yujia Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, and NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Oluwasina OO, Idris SO, Ogidi CO, Igbe FO. Production of herbal toothpaste: Physical, organoleptic, phyto-compound, and antimicrobial properties. Heliyon 2023; 9:e13892. [PMID: 36923892 PMCID: PMC10009007 DOI: 10.1016/j.heliyon.2023.e13892] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Objective To investigate the possibility of producing dental antimicrobial toothpaste from Allium cepa L skin chaff, Azadirachta indica A. seed, and Tetrapleura tetraptera pod extracts. Methods Ethanolic extracts of the three plant materials were obtained. These were subjected to phytochemical and GC-MS analyses. The different extract combinations were used for the production of various toothpaste. The toothpaste's physical, organoleptic, and antimicrobial properties were determined. Results From the phytochemical analysis, Allium cepa has the highest phenolic (1.20 mgGAE/g), saponin (14.80%), tannin (0.11 mg/g) and DPPH (82.80%), Tetrapleura tetraptera has the highest flavonoid (0.33 mg RE/g), and alkaloid (20.50 mg/g) while, Azadirachta indica has the highest oxalate (77.50 mg/g). The GC-MS revealed significant chemical components of Allium cepa as 1-heptatriacotanol, germacra-1(10),4,11(13)-trien-12-oic acid, 6-alpha-hydroxy-,gamma-lactone, (E,E)-, 11H-Indeno [1,2b] quinoxaline, 2-methyl- while Azadirachta indica have butyl benzoate, benzoic acid, hexyl ester, hexadecanoic acid, methyl ester and Tetrapleura tetraptera have the following 15-hydroxypentadecanoic acid, cis-9-hexadecenal, and 11,13-dimethyl-12-tetradecen-1-ol acetate. All the produced toothpaste has a brown colour and a pleasant smell, with pH from 7.30 to 8.10 and foamability from 19.23% of stand-alone toothpaste to 44.44% of Allium cepa-based. Amongst the produced toothpaste Allium cepa-based toothpaste has the best antimicrobial activities against the tested bacteria (Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca) and fungi (Candida albicans and Candida parapsilosis). The stand-alone toothpaste has the lowest minimum inhibitory concentration of 1.25 mg/mL against bacteria and fungi. Clinical significance The study provides information on the production of human health-friendly dental antimicrobial toothpaste from plant materials.
Collapse
Affiliation(s)
| | - Suleiman Oladokun Idris
- Department of Chemistry, The Federal University of Technology Akure, PMB 704, Akure, Ondo State, Nigeria
| | - Clement Olusola Ogidi
- Department of Food Science and Technology, School of Agriculture, Food and Natural Resources, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria
| | - Festus O. Igbe
- Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| |
Collapse
|
15
|
Majnooni MB, Fakhri S, Ghanadian SM, Bahrami G, Mansouri K, Iranpanah A, Farzaei MH, Mojarrab M. Inhibiting Angiogenesis by Anti-Cancer Saponins: From Phytochemistry to Cellular Signaling Pathways. Metabolites 2023; 13:metabo13030323. [PMID: 36984763 PMCID: PMC10052344 DOI: 10.3390/metabo13030323] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Saponins are one of the broadest classes of high-molecular-weight natural compounds, consisting mainly of a non-polar moiety with 27 to 30 carbons and a polar moiety containing sugars attached to the sapogenin structure. Saponins are found in more than 100 plant families as well as found in marine organisms. Saponins have several therapeutic effects, including their administration in the treatment of various cancers. These compounds also reveal noteworthy anti-angiogenesis effects as one of the critical strategies for inhibiting cancer growth and metastasis. In this study, a comprehensive review is performed on electronic databases, including PubMed, Scopus, ScienceDirect, and ProQuest. Accordingly, the structural characteristics of triterpenoid/steroid saponins and their anti-cancer effects were highlighted, focusing on their anti-angiogenic effects and related mechanisms. Consequently, the anti-angiogenic effects of saponins, inhibiting the expression of genes related to vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-α (HIF-1α) are two main anti-angiogenic mechanisms of triterpenoid and steroidal saponins. The inhibition of inflammatory signaling pathways that stimulate angiogenesis, such as pro-inflammatory cytokines, mitogen-activated protein kinase (MAPKs), and phosphoinositide 3-kinases/protein kinase B (PI3K/Akt), are other anti-angiogenic mechanisms of saponins. Furthermore, the anti-angiogenic and anti-cancer activity of saponins was closely related to the binding site of the sugar moiety, the type and number of their monosaccharide units, as well as the presence of some functional groups in their aglycone structure. Therefore, saponins are suitable candidates for cancer treatment by inhibiting angiogenesis, for which extensive pre-clinical and comprehensive clinical trial studies are recommended.
Collapse
Affiliation(s)
- Mohammad Bagher Majnooni
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Syed Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| | - Mahdi Mojarrab
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| |
Collapse
|
16
|
Cytotoxicity, Antimicrobial, Antioxidant, Anthelmintic, and Anti-Inflammatory Activities and FTIR Analysis of Combretum nioroense Stem Bark. J CHEM-NY 2023. [DOI: 10.1155/2023/5424386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
Combretum nioroense is widely used in the folkloric treatment of a variety of bacterial and helminthic infections. The decoction of its leaves is traditionally fed to newborn babies in some rural parts of Ghana. The study focused on identifying the prime components of petroleum ether and ethanolic extracts of the stem bark using standard phytochemical screening protocols and chromatographic and spectroscopic techniques. The activities (cytotoxicity, antimicrobial, antioxidant, anthelmintic, and anti-inflammatory) of the extracts of C. nioroense were also investigated. Preliminary phytochemical analysis of the extracts revealed the presence of glycosides, saponins, phenols, coumarins, alkaloids, flavonoids, tannins, steroids, phytosterols, flavanols, terpenoids, and cardiac glycosides. The action of the extracts of C. nioroense on Milsonia ghanensis worms was concentration-dependent, with the least concentration (0.75 mg/mL) paralyzing and killing M. ghanensis after the maximal exposure time. The IC50 values for petroleum ether and ethanol extracts in the DPPH assay were >100.0 and 27.940 ± 1.005 μg/mL and those of the H2O2 assay were 400.900 ± 3.400 and 322.500 ± 1.005 μg/mL, respectively. The total antioxidant capacities (TACs) for petroleum ether and ethanol extracts were 47.197 ± 0.533 and 57.968 ± 0.560 gAAE/100 g, respectively. The IC50 value for ethanol extract in the cytotoxicity studies was 115.4 ± 1.332 μg/mL. The MICs of the extracts against the test organisms were within the range of 0.0122–25.0 mg/mL. The extracts (petroleum ether and ethanol) showed a concentration-dependent increase in anti-inflammatory activity with IC50 values of 31.254 ± 0.359 and 24.402 ± 0.569 μg/mL, respectively. Chromatographic separations of the ethanol extract gave three fractions. FTIR analysis of the extracts and purified fractions revealed the presence of functional groups, confirming the presence of the phytochemicals identified in the screening test. The results indicate that both extracts of C. nioroense exhibit cytotoxicity, antimicrobial, antioxidant, anthelmintic, and anti-inflammatory activities, thereby proving the folkloric use to treat ailments caused by worms and microorganisms.
Collapse
|
17
|
Discovery of pentacyclic triterpenoid glycosides with anti-proliferative activities from Ardisialindleyana. Carbohydr Res 2023; 524:108761. [PMID: 36753889 DOI: 10.1016/j.carres.2023.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/05/2023]
Abstract
One new pentacyclic triterpenoid glycoside, ardisiapunine E (1), along with two known compounds were isolated from the root of Ardisia lindleyana D.Dietr. Their structures were elucidated by 1H and 13C NMR, DEPT, HMBC, HSQC, 1H-1H COSY and NOESY spectroscopic analyses, ESI-MS, and literature. Compounds 1-3 exhibited obvious anti-proliferative activities against the HeLa cell line in a dose- and time-dependent manner by inducing G2/M phase arrest and apoptosis in vitro, both consisting of pentacyclic triterpenes and sugar. Hence, this study identified a new and two known pentacyclic triterpenoid glycosides promoting apoptosis as a potential anti-proliferative agent.
Collapse
|
18
|
Antihyaluronidase and Antioxidant Potential of Atriplex sagittata Borkh. in Relation to Phenolic Compounds and Triterpene Saponins. Molecules 2023; 28:molecules28030982. [PMID: 36770647 PMCID: PMC9921161 DOI: 10.3390/molecules28030982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
The genus Atriplex provides species that are used as food and natural remedies. In this work, the levels of soluble phenolic acids (free and conjugated) and flavonoids in extracts from roots, stems, leaves and flowers of the unexplored Atriplex sagittata Borkh were investigated by LC-ESI-MS/MS, together with their antioxidant and antihyaluronidase activity. Phenolic acids were present in all parts of A. sagittata; and were most abundant in the leaves (225.24 μg/g dw.), whereas the highest content of flavonoids were found in the flowers (242.71 μg/g dw.). The most common phenolics were 4-hydroxybenzoic and salicylic acids, kaempferol-3-glucoside-7-rhamnoside, kaempferol-3-rutinoside and the rare narcissoside, which was present in almost all morphotic parts. The stem extract had the highest antioxidant activity and total phenolic content (611.86 mg/100 g dw.), whereas flower extract exerted the most potent antihyaluronidase effect (IC50 = 84.67 µg/mL; control-quercetin: IC50 = 514.28 μg/mL). Phytochemical analysis of the flower extract led to the isolation of two triterpene saponins that were shown to be strong hyaluronidase inhibitors (IC50 = 33.77 and 168.15 µg/mL; control-escin: IC50 = 307.38 µg/mL). This is the first report on the presence of phenolics and saponins in A. sagittata. The results suggest that both groups of metabolites may contribute to the overall activity of this plant species.
Collapse
|
19
|
Dai X, Liao Y, Yang C, Zhang Y, Feng M, Tian Y, Qu Q, Sheng M, Li Z, Peng X, Cen S, Shi X. Diammonium Glycyrrhizinate-Based Micelles for Improving the Hepatoprotective Effect of Baicalin: Characterization and Biopharmaceutical Study. Pharmaceutics 2022; 15:pharmaceutics15010125. [PMID: 36678754 PMCID: PMC9864020 DOI: 10.3390/pharmaceutics15010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Saponins are an important class of surface-active substances. When formulated as an active ingredient or co-used with other drugs, the effect of their surface activity on efficacy or safety must be considered. In this paper, diammonium glycyrrhizinate (DG), a clinical hepatoprotective drug that has long been used as a biosurfactant, was taken as the research object to study its combined hepatoprotective effect with baicalin (BAI). Animal experiments proved that the preparation of DG and BAI integrated into micelles (BAI-DG Ms) had a better protective effect on acute liver injury caused by carbon tetrachloride than the direct combined use of the two. From the perspective of biopharmaceutics, the synergistic mechanism of BAI-DG Ms was further explored. The results showed that after forming BAI-DG Ms with DG, the solubility of BAI increased by 4.75 to 6.25 times, and the cumulative percentage release in the gastrointestinal tract also increased by 2.42 times. In addition, the negatively charged BAI-DG Ms were more likely to penetrate the mucus layer and be absorbed by endocytosis. These findings provide support for the rational application of glycyrrhizin, and other saponins.
Collapse
Affiliation(s)
- Xingxing Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102488, China
| | - Yuyao Liao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cuiting Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yingying Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Minfang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuting Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengke Sheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhixun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinhui Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuai Cen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102488, China
- Correspondence:
| |
Collapse
|
20
|
Zafar S, Khan K, Hafeez A, Irfan M, Armaghan M, Rahman AU, Gürer ES, Sharifi-Rad J, Butnariu M, Bagiu IC, Bagiu RV. Ursolic acid: a natural modulator of signaling networks in different cancers. Cancer Cell Int 2022; 22:399. [PMID: 36496432 PMCID: PMC9741527 DOI: 10.1186/s12935-022-02804-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Incidence rate of cancer is estimated to increase by 40% in 2030. Furthermore, the development of resistance against currently available treatment strategies has contributed to the cancer-associated mortality. Scientists are now looking for the solutions that could help prevent the disease occurrence and could provide a pain-free treatment alternative for cancers. Therefore, efforts are now put to find a potent natural compound that could sever this purpose. Ursolic acid (UA), a triterpene acid, has potential to inhibit the tumor progression and induce sensitization to conventional treatment drugs has been documented. Though, UA is a hydrophobic compound therefore it is usually chemically modified to increase its bioavailability prior to administration. However, a thorough literature indicating its mechanism of action and limitations for its use at clinical level was not reviewed. Therefore, the current study was designed to highlight the potential mechanism of UA, its anti-cancer properties, and potential applications as therapeutic compound. This endeavour is a valuable contribution in understanding the hurdles preventing the translation of its potential at clinical level and provides foundations to design new studies that could help enhance its bioavailability and anti-cancer potential for various cancers.
Collapse
Affiliation(s)
- Sameen Zafar
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Khushbukhat Khan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Amna Hafeez
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Muhammad Irfan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Muhammad Armaghan
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Anees ur Rahman
- grid.412117.00000 0001 2234 2376Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab Pakistan
| | - Eda Sönmez Gürer
- grid.411689.30000 0001 2259 4311Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Javad Sharifi-Rad
- grid.442126.70000 0001 1945 2902Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Monica Butnariu
- University of Life Sciences “King Mihai I” from Timisoara, 300645 Calea Aradului 119, Timis, Romania
| | - Iulia-Cristina Bagiu
- grid.22248.3e0000 0001 0504 4027Department of Microbiology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, Romania ,Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- grid.22248.3e0000 0001 0504 4027Department of Microbiology, Victor Babes University of Medicine and Pharmacy of Timisoara, Timisoara, Romania ,Preventive Medicine Study Center, Timisoara, Romania
| |
Collapse
|
21
|
Huo Y, Liu D, Yang Q, Sun C, Wang Z, Li D. Transcriptional Responses for Biosynthesis of Triterpenoids in Exogenous Inducers Treated Inonotus Hispidus Using RNA-Seq. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238541. [PMID: 36500635 PMCID: PMC9739630 DOI: 10.3390/molecules27238541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Inonotus hispidus is a traditional medicinal that grows in Northeast China and produces various economically important compounds, including polysaccharide compounds and terpenoids; triterpenoid saponins is the main bioactive component. Our research group has found that the accumulation of triterpenoid was affected by exogenous inducers. Experimental results showed that treatment with methyl jasmonate (MeJA) and oleic acid significantly increased the triterpenoid content of I. hispidus. However, how exogenous inducers enhance production of secondary metabolites in I. hispidus is not well understood. In this study, metabolite changes were further investigated with UPLC-TOF/MS following exogenous inducer treatment. As a result, a total of eight types of triterpenoids in I. hispidus were identified. The RNA-seq analysis was used to evaluate the effects of exogenous inducers on the expression of triterpenoid-synthesis-related genes in I. hispidus in liquid fermentation. This study is the first exploration to profile the transcriptome of I. hispidus after adding exogenous inducers; the generated data and gene will facilitate further molecular studies on the physiology and metabolism in this fungi. By comparative transcriptomic analysis, a series of candidate genes involved in the biosynthetic pathway of triterpenoids are identified, providing new insights into their biosynthesis at the transcriptome level.
Collapse
Affiliation(s)
- Yonghong Huo
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Dongchao Liu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Qin Yang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Changyan Sun
- Department of Environmental Engineering, School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Zhanbin Wang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Dehai Li
- School of Forestry, Northeast Forestry University, Harbin 150040, China
- Correspondence: ; Tel.: +86-186-4500-5091 or +86-451-8219-0514
| |
Collapse
|
22
|
Ma Y, Wu L, Niu L. Screening of Biomarkers and Quality Control of Shaoyao Gancao Decoction Using UPLC-MS/MS Combined with Network Pharmacology and Molecular Docking Technology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2442681. [PMID: 36482932 PMCID: PMC9726270 DOI: 10.1155/2022/2442681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/06/2022] [Accepted: 11/16/2022] [Indexed: 09/23/2023]
Abstract
Shaoyao Gancao Decoction (SGD) is a classic prescription of traditional Chinese medicine (TCM), which is composed of Paeoniae Radix Alba and Glycyrrhizae Radix et Rhizoma, and has the clinical effect of anti-liver injury, but its active ingredients are unclear. In this study, the joint application of phytochemical compositional analysis, network pharmacology, and molecular docking technology was utilized to screen the active components of SGD against liver injury. Firstly, a total of 110 compounds were identified by UPLC-Q-TOF-MS/MS, including 54 flavonoids, 23 triterpenoids, 10 monoterpenoids, 6 coumarins, and 17 other compounds. Secondly, based on the above plant chemical compositions, network pharmacology was used to search for the active components of SGD against liver injury, and 19 components were considered to be the active components, including 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose, ferulic acid, coniferyl ferulate, benzoyl paeoniflorin, hesperidin, liquiritin, liquiritigenin, glycyrrhizic acid, caffeic acid, rutin, chlorogenic acid, gallic acid, methyl gallate, isoliquiritin apioside, albiflorin, neochlorogenic acid, isoliquiritin, narirutin, and naringenin. Thirdly, molecular docking was used to verify the efficacy of the compounds and showed that the compounds bound well to key targets. Furthermore, the 19 components were detected in the rat serum, which also demonstrated that they could be biomarkers. Because it is generally believed that the ingredients that can be absorbed into the blood may be active ingredients. In the end, we determined the contents of 19 key components in 10 different batches of SGD. The method has satisfactory linearity, stability, accuracy, repeatability, and recovery. This study clarified the active components, key targets, and pathways of SGD against liver injury and provided a new idea for the selection of quality control indicators in traditional Chinese medicine.
Collapse
Affiliation(s)
- Yongben Ma
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
- Hebei TCM Formula Granule Engineering and Technology Research Center, Shijiazhuang 050091, China
- TCM Quality Evaluation & Reference Compoundization Engineering Research Center, Shijiazhuang 050091, China
| | - Lingfang Wu
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
- Hebei TCM Formula Granule Engineering and Technology Research Center, Shijiazhuang 050091, China
- TCM Quality Evaluation & Reference Compoundization Engineering Research Center, Shijiazhuang 050091, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Liying Niu
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
- Hebei TCM Formula Granule Engineering and Technology Research Center, Shijiazhuang 050091, China
- TCM Quality Evaluation & Reference Compoundization Engineering Research Center, Shijiazhuang 050091, China
| |
Collapse
|
23
|
Transcriptome Level Reveals the Triterpenoid Saponin Biosynthesis Pathway of Bupleurum falcatum L. Genes (Basel) 2022; 13:genes13122237. [PMID: 36553505 PMCID: PMC9777608 DOI: 10.3390/genes13122237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Bupleurum falcatum L. is frequently used in traditional herbal medicine in Asia. Saikosaponins (SSs) are the main bioactive ingredients of B. falcatum, but the biosynthetic pathway of SSs is unclear, and the biosynthesis of species-specific phytometabolites is little known. Here we resolved the transcriptome profiles of B. falcatum to identify candidate genes that might be involved in the biosynthesis of SSs. By isoform sequencing (Iso-Seq) analyses of the whole plant, a total of 26.98 Gb of nucleotides were obtained and 124,188 unigenes were identified, and 81,594 unigenes were successfully annotated. A total of 1033 unigenes of 20 families related to the mevalonate (MVA) pathway and methylerythritol phosphate (MEP) pathway of the SS biosynthetic pathway were identified. The WGCNA (weighted gene co-expression network analysis) of these unigenes revealed that only the co-expression module of MEmagenta, which contained 343 unigenes, was highly correlated with the biosynthesis of SSs. Comparing differentially expressed gene analysis and the WGCNA indicated that 130 out of 343 genes of the MEmagenta module exhibited differential expression levels, and genes with the most "hubness" within this module were predicted. Manipulation of these genes might improve the biosynthesis of SSs.
Collapse
|
24
|
Enhancing the Antioxidant Ability of Momordica grosvenorii Saponin to Resist Gastrointestinal Stresses via Microcapsules of Sodium Alginate and Chitosan and Its Application in Beverage. BEVERAGES 2022. [DOI: 10.3390/beverages8040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Momordica grosvenorii saponin (MGS), as a promising dietary supplement with remarkable biological properties, has poor stability under acidic conditions and thus hinders its application in functional foods. In this study, capsules of chitosan and sodium alginate were successfully prepared to enhance the stability of MGS. The optimized parameters for preparing MGS capsules were established. Sodium alginate of 20.8 mg/mL and triplication of MGS powder were added to chitosan of 4 mg/mL and calcium chloride of 10 mg/mL at a volume ratio of 3:1, stirring at 1000 r/min for 30 min to form the capsules. In this case, the fresh particles averaged 1687 μm with an encapsulation efficiency (EE) of 80.25% MGS. The capsule tolerated acidic environments better, and in vitro MGS could be controlled to release in a stimulated gastrointestinal tract system. The antioxidant activity and delayed release of MGS could be achieved by microencapsulation of chitosan/sodium alginate. Moreover, one drink containing 19 mg/mL MGS was successfully developed for the fruit.
Collapse
|
25
|
Duran P, Loya-López S, Ran D, Tang C, Calderon-Rivera A, Gomez K, Stratton HJ, Huang S, Xu YM, Wijeratne EMK, Perez-Miller S, Shan Z, Cai S, Gabrielsen AT, Dorame A, Masterson KA, Alsbiei O, Madura CL, Luo G, Moutal A, Streicher J, Zamponi GW, Gunatilaka AAL, Khanna R. The natural product argentatin C attenuates postoperative pain via inhibition of voltage-gated sodium and T-type voltage-gated calcium channels. Br J Pharmacol 2022; 180:1267-1285. [PMID: 36245395 DOI: 10.1111/bph.15974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Postoperative pain occurs in as many as 70% of surgeries performed worldwide. Postoperative pain management still relies on opioids despite their negative consequences, resulting in a public health crisis. Therefore, it is important to develop alternative therapies to treat chronic pain. Natural products derived from medicinal plants are potential sources of novel biologically active compounds for development of safe analgesics. In this study, we screened a library of natural products to identify small molecules that target the activity of voltage-gated sodium and calcium channels that have important roles in nociceptive sensory processing. EXPERIMENTAL APPROACH Fractions derived from the Native American medicinal plant, Parthenium incanum, were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion (DRG) neurons. Further separation of these fractions yielded a cycloartane-type triterpene identified as argentatin C, which was additionally evaluated using whole-cell voltage and current-clamp electrophysiology, and behavioural analysis in a mouse model of postsurgical pain. KEY RESULTS Argentatin C blocked the activity of both voltage-gated sodium and low-voltage-activated (LVA) calcium channels in calcium imaging assays. Docking analysis predicted that argentatin C may bind to NaV 1.7-1.9 and CaV 3.1-3.3 channels. Furthermore, argentatin C decreased Na+ and T-type Ca2+ currents as well as excitability in rat and macaque DRG neurons, and reversed mechanical allodynia in a mouse model of postsurgical pain. CONCLUSION AND IMPLICATIONS These results suggest that the dual effect of argentatin C on voltage-gated sodium and calcium channels supports its potential as a novel treatment for painful conditions.
Collapse
Affiliation(s)
- Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA
| | - Santiago Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA.,NYU Pain Research Center, New York, New York, USA.,Department of Biochemistry and Molecular Biology, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA
| | - Harrison J Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Sun Huang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, USA
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA
| | - Zhiming Shan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Anna T Gabrielsen
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Kyleigh A Masterson
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Omar Alsbiei
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Cynthia L Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Guoqin Luo
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - John Streicher
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, USA.,NYU Pain Research Center, New York, New York, USA
| |
Collapse
|
26
|
Li Z, Xu X, Wang Y, Kong L, Han C. Carrier-free nanoplatforms from natural plants for enhanced bioactivity. J Adv Res 2022:S2090-1232(22)00215-6. [PMID: 36208834 PMCID: PMC10403678 DOI: 10.1016/j.jare.2022.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Natural plants as well as traditional Chinese medicine have made outstanding contributions to the health and reproduction of human beings and remain the basis and major resource for drug innovation. Carrier-free nanoplatforms completely self-assembled by pure molecules or therapeutic components have attracted increasing attention due to their advantages of improved pharmacodynamics/pharmacokinetics, reduced toxicity, and high drug loading. In recent years, carrier-free nanoplatforms produced by self-assembly from natural plants have contributed to progress in a variety of therapeutic modalities. Notably, these nanoplatforms based on the interactions of components from different natural plants improve efficiency and depress toxicity. AIM OF REVIEW In this review, different types of self-assembled nanoplatforms are first summarized, mainly including nanoassemblies of pure small molecules isolated from different plants, extracellular vesicles separated from fresh plants, charcoal nanocomponents obtained from charred plants, and nanoaggregates from plants formulae decoctions. Key Scientific Concepts of Review: We mainly focus on composition, self-assembly mechanisms, biological activity and modes of action. Finally, a future perspective of existing challenges with respect to the clinical application of plant-based carrier-free nanoplatforms is discussed, which may be instructive to further develop effective carrier-free nanoplatforms from natural plants in the future.
Collapse
Affiliation(s)
- Zhongrui Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, 101 longmian Avenue, Nanjing 211166, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | - Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
27
|
Hasanzadeh A, Vahabi AH, Hooshmand SE, Hosseini ES, Azar BKY, Kiani J, Saeedi S, Shahbazi A, Rudra A, Hamblin MR, Karimi M. Saponin and fluorine-modified polycation as a versatile gene delivery system. NANOTECHNOLOGY 2022; 33:445101. [PMID: 35882099 DOI: 10.1088/1361-6528/ac842d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Despite the development of many novel carriers for the delivery of various types of genetic material, the lack of a delivery system with high efficiency and low cytotoxicity is a major bottleneck. Herein, low molecular weight polyethylenimine (PEI1.8k) was functionalized with saponin residues using phenylboronic acid (PBA) as an ATP-responsive cross-linker, and a fluorinated side chain to construct PEI-PBA-SAP-F polycation as a highly efficient delivery vector. This vehicle could transfect small plasmid DNA (∼3 kb) with outstanding efficiency into various cells, including HEK 293T, NIH3T3, A549, PC12, MCF7 and HT-29, as well as robust transfection of a large plasmid (∼9 kb) into HEK 293T cells. The carrier indicated good transfection efficacy even at high concentration of serum and low doses of plasmid. The use of green fluorescent protein (GFP) knock-out analysis demonstrated transfection of different types of CRISPR/Cas9 complexes (Cas9/sgRNA ribonucleoproteins RNP, plasmid encoding Cas9 plus sgRNA targeting GFP, Cas9 expression plasmid plusin vitro-prepared sgRNA). In summary, we report an effective PEI-PBA-SAP-F gene carrier with the appropriate lipophilic/cationic balance for biomedical applications.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Vahabi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyyed Emad Hooshmand
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elaheh Sadat Hosseini
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behjat Kheiri Yeghaneh Azar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arnab Rudra
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Phytochemical Studies, Antioxidant Potential, and Identification of Bioactive Compounds Using GC-MS of the Ethanolic Extract of Luffa cylindrica (L.) Fruit. Appl Biochem Biotechnol 2022; 194:4018-4032. [PMID: 35583705 DOI: 10.1007/s12010-022-03961-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/02/2022] [Indexed: 02/02/2023]
Abstract
Luffa cylindrica (L.) is a medicinal plant associated with Cucurbitaceae family which is also known as loofah/sponge gourd, comprising a series of phytochemicals such as chlorophylls, carotenoids, oleanolic acid, saponin, and triterpenoids. The study was carried out to investigate and characterize the bioactive components of ethanolic extract of L. cylindrica. Whole fruit of L. cylindrica was collected, shade dried, pulverized, and extracted successively with ethanol by Soxhlet percolation technique. The crude extracts were later exposed to gas chromatography-mass spectrometry analysis. The profile of the extracts was analyzed for a wide range of secondary metabolites and characterized spectroscopically. A total of 18 components were identified in the ethanolic extract respectively. Prevailing pharmacologically active compounds benzaldehyde, 2-hydroxy-4-methyl-, 4-acetoxy-2-azetidinone, N-decanoic acid, oxirane,2-butyl-3-methyl-, cis, and 3,4-furandiol, tetrahydro-, cis- were present. The extracted compounds were articulated by comparing their retention time and peak area besides the interpretation of mass spectra. Thus, the current study reveals the presence of promising, bioactive components which in turn provides a strength to explore biological activity. In silico molecular docking could be performed for Alzheimer receptors and studied for its activity. Nevertheless, additional studies are required to carry out its bioactivity exploration and toxicity profile.
Collapse
|
29
|
Wang J, Li G, Zhong W, Zhang H, Yang Q, Chen L, Wang J, Yang X. Effect of Dietary Paeoniae Radix Alba Extract on the Growth Performance, Nutrient Digestibility and Metabolism, Serum Biochemistry, and Small Intestine Histomorphology of Raccoon Dog During the Growing Period. Front Vet Sci 2022; 9:839450. [PMID: 35445094 PMCID: PMC9014091 DOI: 10.3389/fvets.2022.839450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Paeoniae radix alba extract (PRA extract) has the functions of regulating immunity, resisting inflammation, and has antioxidant properties. However, current recommendations of dietary PRA extract levels for raccoon dogs were inadequate. The purpose of this experimental study was to gain information allowing for better estimating the effects of PRA extract on raccoon dogs, and their PRA requirements. Fifty healthy male raccoon dogs of (120 ± 5) days old were randomly divided into 5 groups (group PRA0, PRA1, PRA2, PRA4, PRA8) with 10 animals in each group and 1 in each replicate. Five kinds of experimental diets were prepared with five levels of Paeoniae radix alba extract (0, 1, 2, 4, 8 g/kg) in the basic diet. The prefeeding period was 7 days and the experimental period was 40 days. The results showed that the average daily feed intake in group PRA1 and PRA2 was significantly higher than that in other groups (P < 0.01). The dry matter excretion in group PRA8 was significantly higher than that in other groups (P < 0.01), while the dry matter digestibility and protein digestibility in group PRA8 were significantly lower than those in other groups (P < 0.01). Nitrogen retention in group PRA1 and PRA2 was significantly higher than that in group PRA8 (P < 0.05). With the increase of the content of Paeoniae radix alba extract in diet, the activity of alkaline phosphatase in group PRA2 was significantly higher than that in group PRA0 (P < 0.05); The activity of serum SOD in group PRA4 was significantly higher than that in other groups (P < 0.01). The content of serum IgA in group PRA2 was significantly higher than that in other groups (P < 0.05). The content of TNF-α in intestinal mucosa in group PRA1 and group PRA2 was significantly lower than that in group PRA0 (P < 0.05). In conclusion, we found that dietary Paeoniae radix alba extract intake significantly improved the feed intake and nitrogen deposition of Ussuri raccoon dog, increased the content of serum IgA and reduced the content of TNF-α in the small intestinal mucosa. We suggest that an estimated dietary Paeoniae radix alba extract level of 1 to 2 g/kg could be used as a guide to achieve the optimal performance of raccoon dogs.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Guangyu Li
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China.,College of Animal Science and Technology, Qingdao Agriculture University, Qingdao, China
| | - Wei Zhong
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Haihua Zhang
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Qianlong Yang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Lihong Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jinming Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Xuewen Yang
- China Animal Husbandry Group, Beijing, China
| |
Collapse
|
30
|
Phytocompounds as an Alternative Antimicrobial Approach in Aquaculture. Antibiotics (Basel) 2022; 11:antibiotics11040469. [PMID: 35453220 PMCID: PMC9031819 DOI: 10.3390/antibiotics11040469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Despite culturing the fastest-growing animal in animal husbandry, fish farmers are often adversely economically affected by pathogenic disease outbreaks across the world. Although there are available solutions such as the application of antibiotics to mitigate this phenomenon, the excessive and injudicious use of antibiotics has brought with it major concerns to the community at large, mainly due to the rapid development of resistant bacteria. At present, the use of natural compounds such as phytocompounds that can be an alternative to antibiotics is being explored to address the issue of antimicrobial resistance (AMR). These phytocompounds are bioactive agents that can be found in many species of plants and hold much potential. In this review, we will discuss phytocompounds extracted from plants that have been evidenced to contain antimicrobial, antifungal, antiviral and antiparasitic activities. Further, it has also been found that compounds such as terpenes, phenolics, saponins and alkaloids can be beneficial to the aquaculture industry when applied. This review will focus mainly on compounds that have been identified between 2000 and 2021. It is hoped this review will shed light on promising phytocompounds that can potentially and effectively mitigate AMR.
Collapse
|
31
|
Huang Y, An W, Yang Z, Xie C, Liu S, Zhan T, Pan H, Zheng X. Metabolic stimulation-elicited transcriptional responses and biosynthesis of acylated triterpenoids precursors in the medicinal plant Helicteres angustifolia. BMC PLANT BIOLOGY 2022; 22:86. [PMID: 35216551 PMCID: PMC8876399 DOI: 10.1186/s12870-022-03429-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Helicteres angustifolia has long been used in Chinese traditional medicine. It has multiple pharmacological benefits, including anti-inflammatory, anti-viral and anti-tumor effects. Its main active chemicals include betulinic acid, oleanolic acid, helicteric acid, helicterilic acid, and other triterpenoid saponins. It is worth noting that some acylated triterpenoids, such as helicteric acid and helicterilic acid, are characteristic components of Helicteres and are relatively rare among other plants. However, reliance on natural plants as the only sources of these is not enough to meet the market requirement. Therefore, the engineering of its metabolic pathway is of high research value for enhancing the production of secondary metabolites. Unfortunately, there are few studies on the biosynthetic pathways of triterpenoids in H. angustifolia, hindering its further investigation. RESULTS Here, the RNAs of different groups treated by metabolic stimulation were sequenced with an Illumina high-throughput sequencing platform, resulting in 121 gigabases of data. A total of 424,824 unigenes were obtained after the trimming and assembly of the raw data, and 22,430 unigenes were determined to be differentially expressed. In addition, three oxidosqualene cyclases (OSCs) and four Cytochrome P450 (CYP450s) were screened, of which one OSC (HaOSC1) and one CYP450 (HaCYPi3) achieved functional verification, suggesting that they could catalyze the production of lupeol and oleanolic acid, respectively. CONCLUSION In general, the transcriptomic data of H. angustifolia was first reported and analyzed to study functional genes. Three OSCs, four CYP450s and three acyltransferases were screened out as candidate genes to perform further functional verification, which demonstrated that HaOSC1 and HaCYPi3 encode for lupeol synthase and β-amyrin oxidase, which produce corresponding products of lupeol and oleanolic acid, respectively. Their successful identification revealed pivotal steps in the biosynthesis of acylated triterpenoids precursors, which laid a foundation for further study on acylated triterpenoids. Overall, these results shed light on the regulation of acylated triterpenoids biosynthesis.
Collapse
Affiliation(s)
- Yuying Huang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Wenli An
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Zerui Yang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Chunzhu Xie
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Shanshan Liu
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Ting Zhan
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Huaigeng Pan
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| | - Xiasheng Zheng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, 232 Waihuandong Road, Higher Education Mega Center, Panyu District, Guangzhou, 510405 China
| |
Collapse
|
32
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
33
|
Qu X, Hu S, Li T, Zhang J, Wang B, Liu C. Metabolomics Analysis Reveals the Differences Between Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. FRONTIERS IN PLANT SCIENCE 2022; 13:933849. [PMID: 35909726 PMCID: PMC9328751 DOI: 10.3389/fpls.2022.933849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/22/2022] [Indexed: 05/12/2023]
Abstract
Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. are two varieties of Bupleuri Radix in Chinese Pharmacopoeia 2020. The clinical efficacy of the two bupleurum species is different. The difference in clinical efficacy is closely related to the composition of plant metabolites. In order to analyze the difference in metabolites, we used liquid chromatography coupled with mass spectrometry (LC-MS) for untargeted metabolome and gas chromatography coupled with mass spectrometry (GC-MS) for widely targeted metabolome to detect the roots (R), stems (S), leaves (L), and flowers (F) of two varieties, and detected 1,818 metabolites in 25 classes. We performed a statistical analysis of metabolites. Differential metabolites were screened by fold-change and variable importance in the projection values of the OPLS-DA model, and significant differences were found among different groups. The content of active components (triterpenoid saponins) was found to be high in the BcR group than in the BsR group. Other pharmacological metabolites were significantly different. By Kyoto Encyclopedia of Genes and Genomes annotation and enrichment analysis, we found that differential metabolites of the aboveground parts mainly concentrated in monoterpenoid biosynthesis, while the differential metabolites of the root mainly concentrated in sesquiterpenoid and triterpenoid biosynthesis. Differences in metabolic networks may indirectly affect the metabolic profile of Bc and Bs, leading to differences in clinical efficacy. Our study provides a scientific basis for subsequent biosynthesis pathway and related bioactivity research, and provides a reference for developing non-medicinal parts and guiding the clinical application of Bupleuri Radix.
Collapse
|
34
|
Yates PS, Roberson J, Ramsue LK, Song BH. Bridging the Gaps between Plant and Human Health: A Systematic Review of Soyasaponins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14387-14401. [PMID: 34843230 DOI: 10.1021/acs.jafc.1c04819] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Saponins, prominent secondary plant metabolites, are recognized for their roles in plant defense and medicinal benefits. Soyasaponins, commonly derived from legumes, are a class of triterpenoid saponins that demonstrate significant potential for plant and human health applications. Previous research and reviews largely emphasize human health effects of soyasaponins. However, the biological effects of soyasaponins and their implications for plants in the context of human health have not been well-discussed. This review provides comprehensive discussions on the biological roles of soyasaponins in plant defense and rhizosphere microbial interactions; biosynthetic regulation and compound production; immunological effects and potential for therapeutics; and soyasaponin acquisition attributed to processing effects, bioavailability, and biotransformation processes based on recent soyasaponin research. Given the multifaceted biological effects elicited by soyasaponins, further research warrants an integrated approach to understand molecular mechanisms of regulations in their production as well as their applications in plant and human health.
Collapse
Affiliation(s)
- Ping S Yates
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28262, United States
| | - Julia Roberson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28262, United States
| | - Lyric K Ramsue
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28262, United States
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28262, United States
| |
Collapse
|
35
|
Abstract
Saponins, as secondary metabolites in terrestrial plants and marine invertebrate, constitute one of the largest families of natural products. The long history of folk medicinal applications of saponins makes them attractive candidates for innovative drug design and development. Chemical synthesis has become a practical alternative to the availability of the natural saponins and their modified analogs, so as to facilitate SAR studies and the discovery of optimal structures for clinical applications. The recent achievements in the synthesis of these complex saponins reflect the advancements of both steroid/triterpene chemistry and carbohydrate chemistry. This chapter provides an updated review on the chemical synthesis of natural saponins, covering the literature from 2014 to 2020.
Collapse
Affiliation(s)
- Peng Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
36
|
Linnaea borealis L. var. borealis-In Vitro Cultures and Phytochemical Screening as a Dual Strategy for Its Ex Situ Conservation and a Source of Bioactive Compounds of the Rare Species. Molecules 2021; 26:molecules26226823. [PMID: 34833914 PMCID: PMC8620648 DOI: 10.3390/molecules26226823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 11/03/2021] [Indexed: 01/18/2023] Open
Abstract
Linnaea borealis L. (Twinflower)—a dwarf shrub in the Linnaeeae tribe of Caprifoliaceae family—is distributed across the Northern Hemisphere. By means of this study, a reliable protocol for efficient micropropagation of uniform L. borealis L. var. borealis plantlets has been provided for the first time; callus culture was also established. Different initial explants, types of cultures, media systems, and plant growth regulators in Murashige and Skoog (MS) media were tested. Agitated shoot cultures in the liquid media turned out to be the best system for the production of sustainable plant biomass. After stabilization of the callus lines, the highest growth index (c.a. 526%) was gained for callus maintained on MS enriched with picloram. TLC and UHPLC-HESI-HRMS analysis confirmed the presence of phenolic acids and flavonoids, and for the first time, the presence of iridoids and triterpenoid saponins in this species. Multiplication of L. borealis shoot culture provides renewable raw material, allowing for the assessment of the phytochemical profile, and, in the future, for the quantitative analyses and the studies of the biological activity of extracts, fractions, or isolated compounds. This is the first report on in vitro cultures of traditionally used L. borealis rare taxon and its biosynthetic potential.
Collapse
|
37
|
Park HA, Kim MY, Lee NY, Lim J, Park KB, Lee CK, Nguyen VD, Kim J, Park JT, Park JI. Variation of Triterpenic Acids in 12 Wild Syzygium formosum and Anti-Inflammation Activity on Human Keratinocyte HaCaT. PLANTS 2021; 10:plants10112428. [PMID: 34834790 PMCID: PMC8622825 DOI: 10.3390/plants10112428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/20/2022]
Abstract
Syzygium formosum (Wall.) Masam leaf is known as a Vietnamese traditional herbal medicine used to treat atopic dermatitis and stomach ulcers. Recently, its potent anti-allergic effects were reported with possible active compounds analysis. Here, we collected S. formosum leaves from 12 wild trees and compared compositions of triterpenic acids (TA) with Centella asiatica. Anti-inflammatory activities of S. formosum leaf extract (SFLE) was compared with C. asiatica extract (CAE) using human keratinocyte, HaCaT. In this study, up to seven TAs were identified in SFLE, while only madecassic and asiatic acids were detected in the CAE. Total TA content varied among SFLE, but asiatic, corosolic, and betulinic acids were the major components. Surprisingly, wild tree sample 12 (S12) contained total TA of 27.2 mg/g dry-leaves that was 5-fold greater than that in the C. asiatica sample, and S4 had the highest content of asiatic acid (12.6 mg/g dry-leaves) that accounted for 50% of the total TA. S4 and S12 showed more than 3-fold higher anti-oxidative power than the CAE. In the UVB irradiation model, S4 and S12 (5 μg/mL) strongly repressed mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6, and IL-8) and COX-2, while the CAE at the same condition showed moderate or weak repression. The difference in anti-inflammation effects between the SFLE and the CAE was also confirmed by protein quantifications. Taken together, SFLE has great potentials as a new cosmeceutical ingredient with a higher amount of skin-active phytochemicals.
Collapse
Affiliation(s)
- Hyun-ah Park
- CARBOEXPERT Inc., Daejeon 34134, Korea; (H.-a.P.); (N.-Y.L.); (K.-b.P.); (C.-K.L.)
| | - Mi Yoon Kim
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Translational Immunology Institute, Chungnam National University, Daejeon 35015, Korea
| | - Nan-Young Lee
- CARBOEXPERT Inc., Daejeon 34134, Korea; (H.-a.P.); (N.-Y.L.); (K.-b.P.); (C.-K.L.)
| | - Jaeyoon Lim
- Department of Food Science and Nutrition, Chungnam National University, Daejeon 34134, Korea; (J.L.); (J.K.)
| | - Kyu-been Park
- CARBOEXPERT Inc., Daejeon 34134, Korea; (H.-a.P.); (N.-Y.L.); (K.-b.P.); (C.-K.L.)
| | - Chang-Kyu Lee
- CARBOEXPERT Inc., Daejeon 34134, Korea; (H.-a.P.); (N.-Y.L.); (K.-b.P.); (C.-K.L.)
| | - Van Dao Nguyen
- Biotechnology Faculty, Binh Duong University, Thu Dau Mot 820000, Vietnam;
| | - Jaehan Kim
- Department of Food Science and Nutrition, Chungnam National University, Daejeon 34134, Korea; (J.L.); (J.K.)
| | - Jong-Tae Park
- CARBOEXPERT Inc., Daejeon 34134, Korea; (H.-a.P.); (N.-Y.L.); (K.-b.P.); (C.-K.L.)
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Korea
- Correspondence: (J.-T.P.); (J.-I.P.)
| | - Jong-Il Park
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Translational Immunology Institute, Chungnam National University, Daejeon 35015, Korea
- Correspondence: (J.-T.P.); (J.-I.P.)
| |
Collapse
|
38
|
Antimicrobial, antioxidant and wound healing activities of methanol leaf extract of Bridelia micrantha (Hochst.) Baill. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
39
|
Enhancement of Phytosterol and Triterpenoid Production in Plant Hairy Root Cultures-Simultaneous Stimulation or Competition? PLANTS 2021; 10:plants10102028. [PMID: 34685836 PMCID: PMC8541584 DOI: 10.3390/plants10102028] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/01/2022]
Abstract
Plant in vitro cultures, including hairy roots, can be applied for controlled production of valuable natural products, such as triterpenoids and sterols. These compounds originate from the common precursor squalene. Sterols and triterpenoids distinctly differ in their functions, and the 2,3-oxidosqualene cyclization step is often regarded as a branch point between primary and secondary (more aptly: general and specialized) metabolism. Considering the crucial role of phytosterols as membrane constituents, it has been postulated that unconstrained biosynthesis of triterpenoids can occur when sterol formation is already satisfied, and these compounds are no longer needed for cell growth and division. This hypothesis seems to follow directly the growth-defense trade-off plant dilemma. In this review, we present some examples illustrating the specific interplay between the two divergent pathways for sterol and triterpenoid biosynthesis appearing in root cultures. These studies were significant for revealing the steps of the biosynthetic pathway, understanding the role of particular enzymes, and discovering the possibility of gene regulation. Currently, hairy roots of many plant species can be considered not only as an efficient tool for production of phytochemicals, but also as suitable experimental models for investigations on regulatory mechanisms of plant metabolism.
Collapse
|
40
|
Tavan M, Sarikhani H, Mirjalili MH, Rigano MM, Azizi A. Triterpenic and phenolic acids production changed in Salvia officinalis via in vitro and in vivo polyploidization: A consequence of altered genes expression. PHYTOCHEMISTRY 2021; 189:112803. [PMID: 34144408 DOI: 10.1016/j.phytochem.2021.112803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 05/02/2023]
Abstract
The induction of polyploidy is an efficient technique for creating a diversity of genetic, phenotypic, and phytochemical novelties in plant taxa. Sage (Salvia officinalis L.) is a well-known medicinal plant rich of valuable bioactive molecules such as triterpenic and phenolic acids. In the present study, the effect of in vitro and in vivo polyploidization on morphological characteristics, anatomical structures, phytochemical traits, and expression level of the genes involved in the biosynthesis of major triterpenic acids (ursolic, betulinic, and oleanolic acids) of the plant was studied. The sterile seeds treated with different concentrations (0, 0.05, 0.1, and 0.2%) of colchicine for 24 and 48 h were considered for polyploidy induction. Flow cytometry and chromosome counting were used to confirm the ploidy level of diploid (2n = 2x = 14, 2C DNA = 1.10 pg) and tetraploid (2n = 4x = 28, 2C DNA = 2.12 pg) plants after seven months. The highest polyploidy induction was obtained by applying 0.1% (w/v) colchicine for 48 h with an efficiency of 19.05% in vitro tetraploidy. Polyploids showed differences in leaf shape and color, leaf and stem thickness, trichrome density, root length, plant height, and number of leaves compared to diploid plants. There was also a significant decrease in rosmarinic acid content in polyploid (plants) as compared to diploid plants. Although a significant decrease in ursolic acid content was observed in polyploids, betulinic acid content associated with the expression levels of genes encoding enzymes being active in triterpene biosynthesis such as squalene epoxidase (SQE) and lupeol synthase (LUS). The expression of SQE and LUS was significantly increased in in vitro tertaploids (2.9-fold) and in vivo mixoploids (2.4-fold). The results confirm the idea that induced polyploidy can randomly alter breeding traits of plants as well as the content of bioactive compounds.
Collapse
Affiliation(s)
- Mansoureh Tavan
- Department of Horticultural Science, Faculty of Agriculture, Bu Ali Sina University, 65174, Hamedan, Iran.
| | - Hassan Sarikhani
- Department of Horticultural Science, Faculty of Agriculture, Bu Ali Sina University, 65174, Hamedan, Iran.
| | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, 1983969411, Tehran, Iran.
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055, Naples, Italy.
| | - Ali Azizi
- Department of Horticultural Science, Faculty of Agriculture, Bu Ali Sina University, 65174, Hamedan, Iran.
| |
Collapse
|
41
|
Zanatta AC, Vilegas W, Edrada-Ebel R. UHPLC-(ESI)-HRMS and NMR-Based Metabolomics Approach to Access the Seasonality of Byrsonima intermedia and Serjania marginata From Brazilian Cerrado Flora Diversity. Front Chem 2021; 9:710025. [PMID: 34295876 PMCID: PMC8290060 DOI: 10.3389/fchem.2021.710025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/24/2021] [Indexed: 11/24/2022] Open
Abstract
Seasonality is one of the major environmental factors that exert influence over the synthesis and accumulation of secondary metabolites in medicinal plants. The application of the metabolomics approach for quality control of plant extracts is essentially important because it helps one to establish a standard metabolite profile and to analyze factors that affect the effectiveness of the medicinal plants. The Brazilian Cerrado flora is characterized by a rich diversity of native plant species, and a number of these plant species have been found to have suitable medicinal properties. Some of these plant species include Byrsonima intermedia and Serjania marginata. To better understand the chemical composition of these plant species, we conducted a study using the state-of-the-art techniques including the HPLC system coupled to an Exactive-Orbitrap high resolution mass spectrometer with electrospray ionization interface UHPLC-(ESI)-HRMS and by NMR being performed 2D J-resolved and proton NMR spectroscopy. For the analysis, samples were harvested bimonthly during two consecutive years. UHPLC-(ESI)-HRMS data were preprocessed and the output data uploaded into an in-house Excel macro for peak dereplication. MS and NMR data were concatenated using the data fusion method and submitted to multivariate statistical analysis. The dereplication of LC-HRMS data helped in the annotation of the major compounds present in the extracts of the three plant species investigated allowing the annotation of 68 compounds in the extracts of B. intermedia (cinnamic acids, phenolic acids derived from galloyl quinic and shikimic acid, proanthocyanidins, glycosylated flavonoids, triterpenes and other phenols) and 81 compounds in the extracts of S. marginata (phenolic acids, saponins, proanthocyanidins, glycosylated flavonoids among other compounds). For a better assessment of the great number of responses, the significance of the chemical variables for the differentiation and correlation of the seasons was determined using the variable importance on projection (VIP) technique and through the application of the false discovery rate (FDR) estimation. The statistical data obtained showed that seasonal factors played an important role on the production of metabolites in each plant species. Temperature conditions, drought and solar radiation were found to be the main factors that affected the variability of phenolic compounds in each species.
Collapse
Affiliation(s)
- Ana C. Zanatta
- Laboratory of Phytochemistry, Institute of Chemistry, Department of Biochemistry and Organic Chemistry, São Paulo State University (UNESP), Araraquara, Brazil
- Laboratory of Bioprospecting of Natural Products, Institute of Biosciences, São Paulo State University (UNESP), São Vicente, Brazil
| | - Wagner Vilegas
- Laboratory of Bioprospecting of Natural Products, Institute of Biosciences, São Paulo State University (UNESP), São Vicente, Brazil
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
42
|
Cheng Z, Li Y, Zhu X, Wang K, Ali Y, Shu W, Zhang T, Zhu L, Murray M, Zhou F. The Potential Application of Pentacyclic Triterpenoids in the Prevention and Treatment of Retinal Diseases. PLANTA MEDICA 2021; 87:511-527. [PMID: 33761574 DOI: 10.1055/a-1377-2596] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Retinal diseases are a leading cause of impaired vision and blindness but some lack effective treatments. New therapies are required urgently to better manage retinal diseases. Natural pentacyclic triterpenoids and their derivatives have a wide range of activities, including antioxidative, anti-inflammatory, cytoprotective, neuroprotective, and antiangiogenic properties. Pentacyclic triterpenoids have great potential in preventing and/or treating retinal pathologies. The pharmacological effects of pentacyclic triterpenoids are often mediated through the modulation of signalling pathways, including nuclear factor erythroid-2 related factor 2, high-mobility group box protein 1, 11β-hydroxysteroid dehydrogenase type 1, and Src homology region 2 domain-containing phosphatase-1. This review summarizes recent in vitro and in vivo evidence for the pharmacological potential of pentacyclic triterpenoids in the prevention and treatment of retinal diseases. The present literature supports the further development of pentacyclic triterpenoids. Future research should now attempt to improve the efficacy and pharmacokinetic behaviour of the agents, possibly by the use of medicinal chemistry and targeted drug delivery strategies.
Collapse
Affiliation(s)
- Zhengqi Cheng
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Yue Li
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Youmna Ali
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Wenying Shu
- Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Michael Murray
- Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| |
Collapse
|
43
|
Sui C, Han WJ, Zhu CR, Wei JH. Recent Progress in Saikosaponin Biosynthesis in Bupleurum. Curr Pharm Biotechnol 2021; 22:329-340. [PMID: 32957882 DOI: 10.2174/1389201021999200918101248] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/14/2020] [Accepted: 07/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chaihu is a popular traditional Chinese medicine that has been used for centuries. It is traditionally used to treat cold fever and liver-related diseases. Saikosaponins (SSs) are one of the main active components of chaihu, in addition to essential oils, flavonoids, and polysaccharides. Considerable effort is needed to reveal the biosynthesis and regulation of SSs on the basis of current progress. OBJECTIVE The aim of this study is to provide a reference for further studies and arouse attention by summarizing the recent achievements of SS biosynthesis. METHODS All the data compiled and presented here were obtained from various online resources, such as PubMed Scopus and Baidu Scholar in Chinese, up to October 2019. RESULTS A few genes of the enzymes of SSs participating in the biosynthesis of SSs were isolated. Among these genes, only the P450 gene was verified to catalyze the SS skeleton β-amyrin synthase. Several UDP-glycosyltransferase genes were predicted to be involved in the biosynthesis of SSs. SSs could be largely biosynthesized in the phloem and then transported from the protoplasm, which is the biosynthetic site, to the vacuoles to avoid self-poisoning. As for the other secondary metabolites, the biosynthesis of SSs was strongly affected by environmental factors and the different species belonging to the genus of Bupleurum. Transcriptional regulation was studied at the molecular level. CONCLUSION Profound discoveries in SSs may elucidate the mechanism of diverse the monomer formation of SSs and provide a reference for maintaining the stability of SS content in Radix Bupleuri.
Collapse
Affiliation(s)
- Chun Sui
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing 100193, China
| | - Wen-Jing Han
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing 100193, China
| | - Chu-Ran Zhu
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing 100193, China
| | - Jian-He Wei
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College (Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials), Beijing 100193, China
| |
Collapse
|
44
|
Cheng Q, Li Y, Guo X, Li H. Involvement of mTOR/Survivin signaling pathway in TUA(2β, 3β, 23-trihydroxy-urs-12-ene-28-olic acid)-induced apoptosis in human gastric cancer cell line BGC823 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113437. [PMID: 33011370 DOI: 10.1016/j.jep.2020.113437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE A natural ursolic compound, 2β,3β,23-trihydroxy-urs-12-ene-28-olic acid (TUA) was isolated from the root of Actinidiafulvicoma Hance. (A.fulvicoma Radix), which is used as a traditional hebal medicine to cure innominate inflammation of unknown origin of the digestive tract in the She nationality. AIM OF THE STUDY The aim of present study was to investigate the effects of TUA on gastric cancer and to clarify the potential mechanisms in human gastric cancer cell line BGC823 cells in vitro and in vivo. MATERIALS AND METHODS Cell proliferation, apoptosis, cell cycle, autophagy were all measured by MTS assay, flow cytometry following exposure to TUA. The mRNA expressions of PI3K, AKT, mTOR, P70S6K, Survivin and the protein expressions of p-PI3K, p-AKT, p-mTOR, p-P70S6K, Survivin were determined by qRT-PCR and Western blotting analysis, respectively. In vivo antitumor activity of TUA was assessed in a xenograft model. RESULTS In vitro studies showed that TUA significantly suppressed the viability of BGC823 cells in a concentration- and time-dependent manner but not GES-1 non-tumorigenic human gastric epithelial cells. TUA also significantly increased the apoptosis rate and the sub G2 population by cell cycle analysis in a concentration dependent manner. Exposure to TUA decreased PI3K, AKT, mTOR, P70S6K, Survivin mRNA, inhibited the phosphorylation of major receptors involved in autophagy and apoptosis, such as PI3K, AKT, mTOR and P70S6K, while reduced the expression of Survivin in BGC cells. In vivo studies showed that TUA decreased tumor volume and tumor weight and also down regulated the autophagy-related proteins expression. CONCLUSIONS TUA occupies underlying antitumor effects, the potential mechanisms may involve the suppression of mTOR/Survivin pathways connected to autophagy and the activation of apoptotic pathways in gastric cancer cells.
Collapse
Affiliation(s)
- Qilai Cheng
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, PR China.
| | - Yingchen Li
- Department of Neurology, The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha 410006, Hunan Province, PR China.
| | - Xiaohua Guo
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, PR China
| | - Hongliang Li
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi Province, PR China.
| |
Collapse
|
45
|
Gallelli L, Cione E, Wang T, Zhang L. Glucocorticoid-Like Activity of Escin: A New Mechanism for an Old Drug. Drug Des Devel Ther 2021; 15:699-704. [PMID: 33658760 PMCID: PMC7917317 DOI: 10.2147/dddt.s297501] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Saponins are a group of compounds used in clinical practice in the management of several diseases. Escin is a natural mixture of triterpene saponins which mainly consist of several isoforms, in which the α- and β-escin are predominant. β-escin is the major active compound that exerts a therapeutic effect by relieving tissue edema, promoting venous drainage, and reducing inflammation. In this review, we describe the features of its glucocorticoid-like activity that could explain its clinical effects. Using PubMed, Embase Cochrane library and reference lists for articles published until October 01, 2020, we documented that escin is likely able to exert its anti-inflammatory and anti-edematous effects through a glucocorticoid-like activity, but without the development of glucocorticoid-like adverse drug reactions.
Collapse
Affiliation(s)
- Luca Gallelli
- Department of Health Science, School of Medicine, Operative Unit of Clinical Pharmacology, Mater Domini University Hospital, Catanzaro, Italy
- Research Center FAS@UMG, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, Department of Excellence 2018–2022, University of Calabria, Rende, 87036, CS, Italy
| | - Tian Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai, People’s Republic of China
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai, People’s Republic of China
| |
Collapse
|
46
|
Maliński MP, Budzianowski J, Kikowska M, Derda M, Jaworska MM, Mlynarczyk DT, Szukalska M, Florek E, Thiem B. Two Ecdysteroids Isolated from Micropropagated Lychnis flos-cuculi and the Biological Activity of Plant Material. Molecules 2021; 26:904. [PMID: 33572129 PMCID: PMC7914685 DOI: 10.3390/molecules26040904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/22/2021] [Accepted: 02/03/2021] [Indexed: 11/29/2022] Open
Abstract
Genetically uniform plant material, derived from Lychnis flos-cuculi propagated in vitro, was used for the isolation of 20-hydroxyecdysone and polypodine B and subjected to an evaluation of the antifungal and antiamoebic activity. The activity of 80% aqueous methanolic extracts, their fractions, and isolated ecdysteroids were studied against pathogenic Acanthamoeba castellani. Additionally, a Microtox® acute toxicity assay was performed. It was found that an 80% methanolic fraction of root extract exerts the most potent amoebicidal activity at IC50 of 0.06 mg/mL at the 3rd day of treatment. Both ecdysteroids show comparable activity at IC50 of 0.07 mg/mL. The acute toxicity of 80% fractions at similar concentrations is significantly higher than that of 40% fractions. Crude extracts exhibited moderate antifungal activity, with a minimum inhibitory concentration (MIC) within the range of 1.25-2.5 mg/mL. To the best of our knowledge, the present report is the first to show the biological activity of L. flos-cuculi in terms of the antifungal and antiamoebic activities and acute toxicity. It is also the first isolation of the main ecdysteroids from L. flos-cuculi micropropagated, ecdysteroid-rich plant material.
Collapse
Affiliation(s)
- Michał P. Maliński
- Chair and Department of Pharmaceutical Botany and Plant Biotechnology, Poznan University of Medical Sciences, 14 Sw. Marii Magdaleny St., 61-861 Poznań, Poland; (J.B.); (M.K.); (B.T.)
| | - Jaromir Budzianowski
- Chair and Department of Pharmaceutical Botany and Plant Biotechnology, Poznan University of Medical Sciences, 14 Sw. Marii Magdaleny St., 61-861 Poznań, Poland; (J.B.); (M.K.); (B.T.)
| | - Małgorzata Kikowska
- Chair and Department of Pharmaceutical Botany and Plant Biotechnology, Poznan University of Medical Sciences, 14 Sw. Marii Magdaleny St., 61-861 Poznań, Poland; (J.B.); (M.K.); (B.T.)
| | - Monika Derda
- Chair and Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznań, Poland;
| | - Marcelina M. Jaworska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 4 Święcickiego St., 60-781 Poznań, Poland;
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 6 Grunwaldzka St., 60-780 Poznań, Poland;
| | - Marta Szukalska
- Laboratory of Environmental Research, Chair and Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznań, Poland; (M.S.); (E.F.)
| | - Ewa Florek
- Laboratory of Environmental Research, Chair and Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznań, Poland; (M.S.); (E.F.)
| | - Barbara Thiem
- Chair and Department of Pharmaceutical Botany and Plant Biotechnology, Poznan University of Medical Sciences, 14 Sw. Marii Magdaleny St., 61-861 Poznań, Poland; (J.B.); (M.K.); (B.T.)
| |
Collapse
|
47
|
Li CX, Liang J, Song Y, Chai JH, Kuang HX, Xia YG. Structural characterization of the metabolites of orally ingested hederasaponin B, a natural saponin that is isolated from Acanthopanax senticosus leaves by liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2021; 197:113929. [PMID: 33618133 DOI: 10.1016/j.jpba.2021.113929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 10/22/2022]
Abstract
Plant saponins are important natural product with biologically active. However, the metabolism of these compounds has rarely been studied due to their low bioavailability and the complexity of their metabolite structures. In this study, ultra-performance liquid chromatography/Fusion Lumos Orbitrap mass spectrometry was used to analyze the metabolites of hederasaponin B in vivo, and its possible metabolic pathways were proposed. After oral administration of the parent drug, a total of 47 metabolites are identified in rat feces (42), urine (11), and plasma (9) samples. These metabolites resulted from the metabolic processes in phases I and II reactions involved in deglycosylation, hydroxylation, acetylation, oxidation, gluconalciation and glycosylations. Deglycosylation is the main metabolic pathway (accounts for 52.46 % of all metabolites in feces samples). Among the identified metabolites, four were glycosylated (deprotonated precursors at m/z = 1335.7, 1365.7, 1467.9, and 1379.6) with higher molecular weight than the parent drug . These glycosylated compounds account for 11.55 % of the metabolites in rat feces according to the semi-quantitative chromatographic peak areas. To sum up, the results of this study provide a basis for further understanding the metabolism of plant saponins in vivo.
Collapse
Affiliation(s)
- Chen-Xue Li
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Jun Liang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Yan Song
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Jun-Hong Chai
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China
| | - Hai-Xue Kuang
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China.
| | - Yong-Gang Xia
- Key Laboratory of Chinese Materia Medica (Heilongjiang University of Chinese Medicine), Ministry of Education, 24 Heping Road, Harbin, 150040, PR China.
| |
Collapse
|
48
|
Yao L, Wang J, He J, Huang L, Gao W. Endophytes, biotransforming microorganisms, and engineering microbial factories for triterpenoid saponins production. Crit Rev Biotechnol 2021; 41:249-272. [PMID: 33472430 DOI: 10.1080/07388551.2020.1869691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Triterpenoid saponins are structurally diverse secondary metabolites. They are the main active ingredient of many medicinal plants and have a wide range of pharmacological effects. Traditional production of triterpenoid saponins, directly extracted from cultivated plants, cannot meet the rapidly growing demand of pharmaceutical industry. Microorganisms with triterpenoid saponins production ability (especially Agrobacterium genus) and biotransformation ability, such as fungal species in Armillaria and Aspergillus genera and bacterial species in Bacillus and Intestinal microflora, represent a valuable source of active metabolites. With the development of synthetic biology, engineering microorganisms acquired more potential in terms of triterpenoid saponins production. This review focusses on potential mechanisms and the high yield strategies of microorganisms with inherent production or biotransformation ability of triterpenoid saponins. Advances in the engineering of microorganisms, such as Saccharomyces cerevisiae, Yarrowia lipolytica, and Escherichia coli, for the biosynthesis triterpenoid saponins de novo have also been reported. Strategies to increase the yield of triterpenoid saponins in engineering microorganisms are summarized following four aspects, that is, introduction of high efficient gene, optimization of enzyme activity, enhancement of metabolic flux to target compounds, and optimization of fermentation conditions. Furthermore, the challenges and future directions for improving the yield of triterpenoid saponins biosynthesis in engineering microorganisms are discussed.
Collapse
Affiliation(s)
- Lu Yao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Junping He
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
49
|
Cañon-Jones H, Cortes H, Castillo-Ruiz M, Schlotterbeck T, San Martín R. Quillaja saponaria (Molina) Extracts Inhibits In Vitro Piscirickettsia salmonis Infections. Animals (Basel) 2020; 10:E2286. [PMID: 33287333 PMCID: PMC7761688 DOI: 10.3390/ani10122286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022] Open
Abstract
P. salmonis infections are the cause of major bacterial disease in salmonids in Chile, and the reason for using more antibiotics compared to other salmon-producing countries. Vaccination and antibiotics have not been efficient and new approaches are needed. The safety of Quillaja saponaria extracts was measured by cytotoxicity using flow cytometry of cytopathic and death of fish cell cultures and efficacy was assessed using in vitro infection models with pathogenic P. salmonis. Cytotoxicity was low and control of in vitro infections was achieved with all products, with protection of over 90%. Minimum inhibitory concentrations were much higher than those in the infection using cell cultures. These results suggest a dual mechanism of action where less purified extracts with a combination of saponin and non-saponin components simultaneously decrease P. salmonis infection while protecting cell lines, rather than exerting a direct antimicrobial effect. Quillaja saponins controlled in vitro infections with P. salmonis and could be considered good candidates for a new, safe and sustainable method of controlling fish bacterial infectious diseases.
Collapse
Affiliation(s)
- Hernán Cañon-Jones
- Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago 7500975, Chile
| | | | - Mario Castillo-Ruiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago 8370146, Chile;
- Departamento de Ciencias Químicas y Biológicas, Facultad de Ciencias de la Salud, Universidad Bernardo O Higgins, Santiago 8370993, Chile
| | | | | |
Collapse
|
50
|
Bailly C, Vergoten G. Esculentosides: Insights into the potential health benefits, mechanisms of action and molecular targets. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153343. [PMID: 33002830 DOI: 10.1016/j.phymed.2020.153343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/14/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Esculentosides and related phytolaccosides form a group of oleanene-type saponins isolated from plants of the Phytolaccaceae family, essentially Phytolacca esculenta, P. americana and P. acinosa. This chemical family offers a diversity of glycosylated compounds, including molecules with a mono-, di- or tri-saccharide unit at position C-3, and with or without a glucose residue at position C-28. The esculentosides, which derive essentially from the sapogenin jaligonic acid or its 30-methyl ester phytolaccagenin, exhibit anti-inflammatory, antifungal and anticancer activities. PURPOSE The objective of the review was to identify the 26 esculentosides (ES) and phytolaccosides known to date, including 16 monodesmosidic and 10 bidesmosidic saponins, and to review their pharmacological properties and molecular targets. METHODOLOGY The retrieval of potentially relevant studies was done by systematically searching of scientific databases like Google Scholar and PubMed in January-May 2020. The main keywords used as search terms were related to esculentosides, phytolaccosides and Phytolaccaceae. The systematic search retrieved about 110 papers that were potentially relevant and after an abstract-based selection, 68 studies were analyzed in details and discussed. RESULTS The structural relationship between the compounds and their sapogenin precursors has been studied. In addition, the pharmacological properties of the main ES, such as ES-A, -B and -H, have been analyzed to highlight their mode of action and potential targets. ES-A is a potent inhibitor of the release of cytokines and this anti-inflammatory activity contributes to the anticancer effects observed in vitro and in vivo. Potential molecular targets of ES-A/B include the enzymes cyclooxygenase 2 (COX-2) and casein kinase 2 (CK2). In addition, the targeting of the protein high-mobility group box 1 (HGMB1) by ES-A/B is proposed, based on molecular modeling and the structural analogy with the related saponin glycyrrhizin, a potent HGMB1 alarmin inhibitor. CONCLUSION More work is needed to properly characterize the molecular targets but otherwise compounds like ES-A and ES-H emerge as potent anti-inflammatory and anticancer agents and ES-B as an antifungal agent. A preclinical development of these three compounds should be considered.
Collapse
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, 3 rue du Professeur Laguesse, BP-83, F-59006, Lille, France
| |
Collapse
|