1
|
Tuo W, Wu C, Wang X, Yang Z, Xu L, Shen S, Zhai J, Wu S. Developmental Morphology, Physiology, and Molecular Basis of the Pentagram Fruit of Averrhoa carambola. PLANTS (BASEL, SWITZERLAND) 2024; 13:2696. [PMID: 39409566 PMCID: PMC11478451 DOI: 10.3390/plants13192696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024]
Abstract
Averrhoa carambola, a key tropical and subtropical economic tree in the Oxalidaceae family, is distinguished by its unique pentagram-shaped fruit. This study investigates the developmental processes shaping the polarity of A. carambola fruit and their underlying hormonal and genetic mechanisms. By analyzing the Y1, Y2, and Y3 developmental stages-defined by the fruit diameters of 3-4 mm, 4-6 mm, and 6-12 mm, respectively-we observed that both cell number and cell size contribute to fruit development. Our findings suggest that the characteristic pentagram shape is established before flowering and is maintained throughout development. A hormonal analysis revealed that indole-3-acetic acid (IAA) and abscisic acid (ABA) show differential distribution between the convex and concave regions of the fruit across the developmental stages, with IAA playing a crucial role in polar auxin transport and shaping fruit morphology. A transcriptomic analysis identified several key genes, including AcaGH3.8, AcaIAA20, AcaYAB2, AcaXTH6, AcaYAB3, and AcaEXP13, which potentially regulate fruit polarity and growth. This study advances our comprehension of the molecular mechanisms governing fruit shape, offering insights for improving fruit quality through targeted breeding strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shasha Wu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.T.); (C.W.); (X.W.); (Z.Y.); (L.X.); (S.S.); (J.Z.)
| |
Collapse
|
2
|
Huang J, Hua J, Peng L, Bai L, Luo S. The Diterpene Isopimaric Acid Modulates the Phytohormone Pathway to Promote Oryza sativa L. Rice Seedling Growth. Curr Issues Mol Biol 2024; 46:9772-9784. [PMID: 39329932 PMCID: PMC11430709 DOI: 10.3390/cimb46090580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Many plant secondary metabolites are active and important in the regulation of plant growth. Certain plant-derived diterpenes are known to promote plant growth, but the pathways by which this promotion occurs are still unknown. Activity screening revealed that the plant-derived diterpene isopimaric acid exhibits growth-promoting activity in rice (Oryza sativa L.) seedlings. Furthermore, 25 μg/mL of isopimaric acid promoted the growth of 15 self-incompatible associated populations from different rice lineages to different extents. Quantitative analyses revealed a significant decrease in the concentration of the defense-related phytohormone abscisic acid (ABA) following treatment with isopimaric acid. Correlation analysis of the phytohormone concentrations with growth characteristics revealed that the length of seedling shoots was significantly negatively correlated with concentrations of 3-indole-butyric acid (IBA). Moreover, the total root weight was not only negatively correlated with ABA concentrations but also negatively correlated with concentrations of isopentenyl adenine (iP). These data suggest that isopimaric acid is able to influence the phytohormone pathway to balance energy allocation between growth and defense in rice seedlings and also alter the correlation between the concentrations of phytohormones and traits such as shoot and root length and weight. We provide a theoretical basis for the development and utilization of isopimaric acid as a plant growth regulator for rice.
Collapse
Affiliation(s)
| | | | | | - Liping Bai
- Engineering Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (J.H.); (J.H.)
| | - Shihong Luo
- Engineering Research Center of Protection and Utilization of Plant Resources, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (J.H.); (J.H.)
| |
Collapse
|
3
|
da Costa CAR, do Nascimento SV, da Silva Valadares RB, da Silva LGM, Machado GGL, da Costa IRC, Nahon SMR, Rodrigues LJ, Vilas Boas EVDB. Proteome and metabolome of Caryocar brasiliense camb. fruit and their interaction during development. Food Res Int 2024; 191:114687. [PMID: 39059945 DOI: 10.1016/j.foodres.2024.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Considered the symbol fruit of the Brazilian Cerrado, pequi (Caryocar brasiliense Camb.) is an exotic and much-appreciated fruit with an internal mesocarp (edible part) with an eye-catching golden yellow color. In an unprecedented way, this study characterized the proteome throughout pequi development. The most influential and essential transcription factors operating in the regulation of pequi ripening identified were members of the MAD-box family. A group of proteins related to the methionine cycle indicates the high consumption and recycling of methionine. However this consumption does not occur mainly for the biosynthesis of ethylene, a process dependent on methionine consumption. In the bioactive compounds presented, different proteins could be correlated with the presence of these phytochemicals, such as monodehydroascorbate reductase and ascorbate peroxidase in ascorbic acid recycling; pyruvate kinase, fructose bisphosphate aldolase and phytoene synthase with carotenoid biosynthesis; S-adenosylmethionine synthase 1 as a donor of methyl groups in the formation of trigonelline and aspartate aminotransferase as a biomarker of initial regulation of the trigonelline biosynthetic pathway; phenylalanine ammonia lyase, chorismate synthesis and chalcone-flavononone isomerase in the biosynthesis of phenolic compounds. Among the volatile organic compounds identified, the majority compound in pequi was ethyl hexanoate ester, with an area of 50.68 % in the ripe fruit, and in this group of esters that was the most representative, alcohol dehydrogenase, a fundamental enzyme in the synthesis of esters, was identified with an increase of approximately 7.2 times between the first and last stages. Therefore, an extensive group of proteins and some metabolites can serve as biomarkers of ripening in pequi, as most were more expressed in the last stage, which is the ripe fruit suitable for consumption.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Luiz José Rodrigues
- Department of Food and Nutrition - DAN, Faculty of Nutrition - FANUT, Federal University of Mato Grosso - UFMT, Cuiabá, MT CEP 78060-900, Brazil
| | | |
Collapse
|
4
|
Li X, Lian T, Su B, Liu H, Wang Y, Wu X, He J, Wang Y, Xu Y, Yang S, Li Y. Construction of a physiologically based pharmacokinetic model of paclobutrazol and exposure estimation in the human body. Toxicology 2024; 505:153841. [PMID: 38796053 DOI: 10.1016/j.tox.2024.153841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Paclobutrazol (PBZ) is a plant growth regulator that can delay plant growth and improve plant resistance and yield. Although it has been widely used in the growth of medicinal plants, human beings may take it by taking traditional Chinese medicine. There are no published studies on PBZ exposure in humans or standardized limits for PBZ in medicinal plants. We measured the solubility, oil-water partition coefficient (logP), and pharmacokinetics of PBZ in rats and established a physiologically based pharmacokinetic (PBPK) model of PBZ in rats. This was followed by extrapolation to healthy Chinese adult males as a theoretical foundation for future risk assessment of PBZ. The results showed that PBZ had low solubility and high fat solubility. Pharmacokinetic experiments showed that PBZ was absorbed rapidly but eliminated slowly in rats. On this basis, the rat PBPK model was successfully constructed and extrapolated to healthy Chinese adult males to predict the plasma concentration-time curve and exposure of PBZ in humans. The construction of the PBPK model of PBZ in this study facilitates the determination of the standard formulation limits and risk assessment of PBZ residues in medicinal plants.
Collapse
Affiliation(s)
- Xiaomeng Li
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Tingting Lian
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Buda Su
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Hui Liu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Xiaoyan Wu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Junjie He
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yue Wang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China
| | - Yanyan Xu
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| | - Shenshen Yang
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, West Zone, Jinghai District, Tuanbo New City, Tianjin 301617, PR China.
| |
Collapse
|
5
|
Xiao J, Huang J, Xiao K, Li G, Yang S, He Y. How different of the rhizospheric and endophytic microbial compositions in watermelons with different fruit shapes. PLoS One 2024; 19:e0302462. [PMID: 38753836 PMCID: PMC11098346 DOI: 10.1371/journal.pone.0302462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Fruit shape is an important character of watermelon. And the compositions of rhizospheric and endophytic microorganisms of watermelon with different fruit shape also remains unclear. To elucidate the biological mechanism of watermelon fruit shape formations, the rhizospheric and endophytic microbial community compositions between oval (OW) and circular watermelons (CW) were analyzed. The results showed that except of the rhizospheric bacterial richness (P < 0.05), the rhizospheric and endophytic microbial (bacterial and fungal) diversity were not statistically significant between OW and CW (P > 0.05). However, the endophytic microbial (bacterial and fungal) compositions were significantly different. Firstly, Bacillus, Rhodanobacter, Cupriavidus, Luteimonas, and Devosia were the unique soil dominant bacterial genera in rhizospheres of circular watermelon (CW); In contrast, Nocardioides, Ensifer, and Saccharomonospora were the special soil dominant bacterial genera in rhizospheres of oval watermelons (OW); Meanwhile, Cephalotrichum, Neocosmospora, Phialosimplex, and Papulaspora were the unique soil dominant fungal genera in rhizospheres of circular watermelon (CW); By contrast, Acremonium, Cladosporium, Cryptococcus_f__Tremellaceae, Sodiomyces, Microascus, Conocybe, Sporidiobolus, and Acremonium were the unique soil dominant fungal genera in rhizospheres of oval watermelons (OW). Additionally, Lechevalieria, Pseudorhodoferax, Pseudomonas, Massilia, Flavobacterium, Aeromicrobium, Stenotrophomonas, Pseudonocardia, Novosphingobium, Melittangium, and Herpetosiphon were the unique dominant endophytic bacterial genera in stems of CW; In contrast, Falsirhodobacter, Kocuria, and Kineosporia were the special dominant endophytic genera in stems of OW; Moreover, Lectera and Fusarium were the unique dominant endophytic fungal genera in stems of CW; By contrast, Cercospora only was the special dominant endophytic fungal genus in stems of OW. All above results suggested that watermelons with different fruit shapes exactly recruited various microorganisms in rhizospheres and stems. Meanwhile, the enrichments of the different rhizosphric and endophytic microorganisms could be speculated in relating to watermelon fruit shapes formation.
Collapse
Affiliation(s)
- Jian Xiao
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, 530004, P. R. China
- Longping Branch, College of Biology, Hunan University, Changsha, 410125, Hunan, P. R. China
| | - Jinyan Huang
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, P. R. China
| | - Kezhuo Xiao
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, 530004, P. R. China
| | - Guifen Li
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, P. R. China
| | - Shangdong Yang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, National Demonstration Center for Experimental Plant Science Education, Agricultural College, Guangxi University, Nanning, 530004, P. R. China
| | - Yi He
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, Guangxi, P. R. China
| |
Collapse
|
6
|
Ren Y, Fu W, Gao Y, Chen Y, Kong D, Cao M, Pang X, Bo W. Identification of Key Genes of Fruit Shape Variation in Jujube with Integrating Elliptic Fourier Descriptors and Transcriptome. PLANTS (BASEL, SWITZERLAND) 2024; 13:1273. [PMID: 38732489 PMCID: PMC11085141 DOI: 10.3390/plants13091273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Jujube (Ziziphus jujuba) exhibits a rich diversity in fruit shape, with natural occurrences of gourd-like, flattened, and other special shapes. Despite the ongoing research into fruit shape, studies integrating elliptical Fourier descriptors (EFDs) with both Short Time-series Expression Miner (STEM) and weighted gene co-expression network analysis (WGCNA) for gene discovery remain scarce. In this study, six cultivars of jujube fruits with distinct shapes were selected, and samples were collected from the fruit set period to the white mature stage across five time points for shape analysis and transcriptome studies. By combining EFDs with WGCNA and STEM, the study aimed to identify the critical periods and key genes involved in the formation of jujube fruit shape. The findings indicated that the D25 (25 days after flowering) is crucial for the development of jujube fruit shape. Moreover, ZjAGL80, ZjABI3, and eight other genes have been implicated to regulate the shape development of jujubes at different periods of fruit development, through seed development and fruit development pathway. In this research, EFDs were employed to precisely delineate the shape of jujube fruits. This approach, in conjunction with transcriptome, enhanced the precision of gene identification, and offered an innovative methodology for fruit shape analysis. This integration facilitates the advancement of research into the morphological characteristics of plant fruits, underpinning the development of a refined framework for the genetic underpinnings of fruit shape variation.
Collapse
Affiliation(s)
- Yue Ren
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.R.); (W.F.); (Y.G.); (Y.C.); (X.P.)
| | - Wenqing Fu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.R.); (W.F.); (Y.G.); (Y.C.); (X.P.)
| | - Yi Gao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.R.); (W.F.); (Y.G.); (Y.C.); (X.P.)
| | - Yuhan Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.R.); (W.F.); (Y.G.); (Y.C.); (X.P.)
| | - Decang Kong
- National Foundation for Improved Cultivar of Chinese Jujube, Cangzhou 061000, China; (D.K.); (M.C.)
| | - Ming Cao
- National Foundation for Improved Cultivar of Chinese Jujube, Cangzhou 061000, China; (D.K.); (M.C.)
| | - Xiaoming Pang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.R.); (W.F.); (Y.G.); (Y.C.); (X.P.)
| | - Wenhao Bo
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (Y.R.); (W.F.); (Y.G.); (Y.C.); (X.P.)
| |
Collapse
|
7
|
Li WF, Zhou Q, Ma ZH, Zuo CW, Chu MY, Mao J, Chen BH. Regulatory mechanism of GA 3 application on grape (Vitis vinifera L.) berry size. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108543. [PMID: 38554534 DOI: 10.1016/j.plaphy.2024.108543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 02/21/2024] [Accepted: 03/16/2024] [Indexed: 04/01/2024]
Abstract
Gibberellin A3 (GA3) is often used as a principal growth regulator to increase plant size. Here, we applied Tween-20 (2%)-formulated GA3 (T1:40 mg/L; T2:70 mg/L) by dipping the clusters at the initial expansion phase of 'Red Globe' grape (Vitis vinifera L.) in 2018 and 2019. Tween-20 (2%) was used as a control. The results showed that GA3 significantly increased fruit cell length, cell size, diameter, and volume. The hormone levels of auxin (IAA) and zeatin (ZT) were significantly increased at 2 h (0 d) -1 d after application (DAA0-1) and remained significantly higher at DAA1 until maturity. Conversely, ABA exhibited an opposite trend. The mRNA and non-coding sequencing results yielded 436 differentially expressed mRNA (DE_mRNAs), 79 DE_lncRNAs and 17 DE_miRNAs. These genes are linked to hormone pathways like cysteine and methionine metabolism (ko00270), glutathione metabolism (ko00480) and plant hormone signal transduction (ko04075). GA3 application reduced expression of insensitive dwarf 2 (GID2, VIT_07s0129g01000), small auxin-upregulated RNA (SAUR, VIT_08s0007g03120) and 1-aminocyclopropane-1-carboxylate synthase (ACS, VIT_18s0001g08520), but increased SAUR (VIT_04s0023g00560) expression. These four genes were predicted to be negatively regulated by vvi-miR156, vvi-miR172, vvi-miR396, and vvi-miR159, corresponding to specific lncRNAs. Therefore, miRNAs could affect grape size by regulating key genes GID2, ACS and SAUR. The R2R3 MYB family member VvRAX2 (VIT_08s0007g05030) was upregulated in response to GA3 application. Overexpression of VvRAX2 in tomato transgenic lines increased fruit size in contrast to the wild type. This study provides a basis and genetic resources for elucidating the novel role of ncRNAs in fruit development.
Collapse
Affiliation(s)
- Wen-Fang Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Qi Zhou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China; School of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, PR China
| | - Zong-Huan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Cun-Wu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Ming-Yu Chu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Bai-Hong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
8
|
Li H, Suo Y, Li H, Sun P, Han W, Fu J. Cytological, Phytohormone, and Transcriptome Analyses Provide Insights into Persimmon Fruit Shape Formation ( Diospyros kaki Thunb.). Int J Mol Sci 2024; 25:4812. [PMID: 38732032 PMCID: PMC11083898 DOI: 10.3390/ijms25094812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Fruit shape is an important external feature when consumers choose their preferred fruit varieties. Studying persimmon (Diospyros kaki Thunb.) fruit shape is beneficial to increasing its commodity value. However, research on persimmon fruit shape is still in the initial stage. In this study, the mechanism of fruit shape formation was studied by cytological observations, phytohormone assays, and transcriptome analysis using the long fruit and flat fruit produced by 'Yaoxianwuhua' hermaphroditic flowers. The results showed that stage 2-3 (June 11-June 25) was the critical period for persimmon fruit shape formation. Persimmon fruit shape is determined by cell number in the transverse direction and cell length in the longitudinal direction. High IAA, GA4, ZT, and BR levels may promote long fruit formation by promoting cell elongation in the longitudinal direction, and high GA3 and ABA levels may be more conducive to flat fruit formation by increasing the cell number in the transverse direction and inhibiting cell elongation in the longitudinal direction, respectively. Thirty-two DEGs related to phytohormone biosynthesis and signaling pathways and nine DEGs related to cell division and cell expansion may be involved in the persimmon fruit shape formation process. These results provide valuable information for regulatory mechanism research on persimmon fruit formation.
Collapse
Affiliation(s)
- Huawei Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, No. 498 Shaoshan South Road, Changsha 410004, China;
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.)
| | - Yujing Suo
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.)
| | - Hui Li
- Research Institute of Forestry Policy and Information, Chinese Academy of Forestry, Xiangshan Road, Haidian District, Beijing 100091, China;
| | - Peng Sun
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.)
| | - Weijuan Han
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.)
| | - Jianmin Fu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou 450003, China; (Y.S.); (P.S.)
| |
Collapse
|
9
|
Li C, Hou X, Zhao Z, Liu H, Huang P, Shi M, Wu X, Gao R, Liu Z, Wei L, Li Y, Liao W. A tomato NAC transcription factor, SlNAP1, directly regulates gibberellin-dependent fruit ripening. Cell Mol Biol Lett 2024; 29:57. [PMID: 38649857 PMCID: PMC11036752 DOI: 10.1186/s11658-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.
Collapse
Affiliation(s)
- Changxia Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
- College of Agriculture, Guangxi University, 100 East University Road, Xixiangtang District, Nanning, 530004, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zongxi Zhao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Huwei Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Panpan Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Meimei Shi
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuetong Wu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Rong Gao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Lijuan Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
10
|
Wang L, Jin N, Xie Y, Zhu W, Yang Y, Wang J, Lei Y, Liu W, Wang S, Jin L, Yu J, Lyu J. Improvements in the Appearance and Nutritional Quality of Tomato Fruits Resulting from Foliar Spraying with Silicon. Foods 2024; 13:223. [PMID: 38254524 PMCID: PMC10814949 DOI: 10.3390/foods13020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Research on silicon (Si), an element considered beneficial for plant growth, has focused on abiotic and biotic stress mitigation. However, the effect of Si on tomato fruit quality under normal growth conditions remains unclear. This study investigated the effects of applying different levels of Si (0 mmol·L-1 [CK], 0.6 mmol·L-1 [T1], 1.2 mmol·L-1 [T2], and 1.8 mmol·L-1 [T3]) in foliar sprays on tomato fruit quality cultivated in substrates, and the most beneficial Si level was found. Compared to CK, exogenous Si treatments had a positive influence on the appearance and nutritional quality of tomato fruits at the mature green, breaker, and red ripening stages. Of these, T2 treatment significantly increased peel firmness and single-fruit weight in tomato fruits. The contents of soluble sugars, soluble solids, soluble proteins, and vitamin C were significantly higher, and the nitrate content was significantly lower in the T2 treatment than in the CK treatment. Cluster analysis showed that T2 produced results that were significantly different from those of the CK, T1, and T3 treatments. During the red ripening stage, the a* values of fruits in the T2 treatment tomato were significantly higher than those in the other three treatments. Moreover, the lycopene and lutein contents of the T2 treatment increased by 12.90% and 17.14%, respectively, compared to CK. T2 treatment significantly upregulated the relative gene expression levels of the phytoene desaturase gene (PDS), the lycopene ε-cyclase gene (LCY-E), and the zeaxanthin cyclooxygenase gene (ZEP) in the carotenoid key genes. The total amino acid content in tomato fruits in the T2 treatment was also significantly higher than that of CK. In summary, foliar spraying of 1.2 mmol·L-1 exogenous Si was effective in improving the appearance and nutritional quality of tomato fruits under normal growth conditions. This study provides new approaches to further elucidate the application of exogenous silicon to improve tomato fruit quality under normal conditions.
Collapse
Affiliation(s)
- Li Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Ning Jin
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Yandong Xie
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| | - Wen Zhu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Ye Yang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Jiaying Wang
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Yongzhong Lei
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Wenkai Liu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| | - Li Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| | - Jihua Yu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| | - Jian Lyu
- College of Horticulture, Gansu Agriculture University, Lanzhou 730070, China; (L.W.); (N.J.); (Y.X.); (W.Z.); (Y.Y.); (J.W.); (Y.L.); (W.L.); (J.Y.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (S.W.); (L.J.)
| |
Collapse
|
11
|
Guo P, Yang Q, Wang Y, Yang Z, Xie Q, Chen G, Chen X, Hu Z. Overexpression of SlPRE3 alters the plant morphologies in Solanum lycopersicum. PLANT CELL REPORTS 2023; 42:1907-1925. [PMID: 37776371 DOI: 10.1007/s00299-023-03070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023]
Abstract
KEY MESSAGE Overexpression of SlPRE3 is detrimental to the photosynthesis and alters plant morphology and root development. SlPRE3 interacts with SlAIF1/SlAIF2/SlPAR1/SlIBH1 to regulate cell expansion. Basic helix-loop-helix (bHLH) transcription factors play crucial roles as regulators in plant growth and development. In this study, we isolated and characterized SlPRE3, an atypical bHLH transcription factor gene. SlPRE3 exhibited predominant expression in the root and moderate expression in the senescent leaves. Comparative analysis with the wild type revealed significant differences in plant morphology in the 35S:SlPRE3 lines. These differences included increased internode length, rolling leaves with reduced chlorophyll accumulation, and elongated yet fewer adventitious roots. Additionally, 35S:SlPRE3 lines displayed elevated levels of GA3 (gibberellin A3) and reduced starch accumulation. Furthermore, utilizing the Y2H (Yeast two-hybrid) and the BiFC (Bimolecular Fluorescent Complimentary) techniques, we identified physical interactions between SlPRE3 and SlAIF1 (ATBS1-interacting factor 1)/SlAIF2 (ATBS1-interacting factor 2)/SlPAR1 (PHYTOCHROME RAPIDLY REGULATED 1)/SlIBH1 (ILI1-binding bHLH 1). RNA-seq analysis of root tissues revealed significant alterations in transcript levels of genes involved in gibberellin metabolism and signal transduction, cell expansion, and root development. In summary, our study sheds light on the crucial regulatory role of SlPRE3 in determining plant morphology and root development.
Collapse
Affiliation(s)
- Pengyu Guo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Qingling Yang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Zhijie Yang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Xuqing Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing, 100097, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 521, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
12
|
Camarero MC, Briegas B, Corbacho J, Labrador J, Gomez-Jimenez MC. Hormonal Content and Gene Expression during Olive Fruit Growth and Ripening. PLANTS (BASEL, SWITZERLAND) 2023; 12:3832. [PMID: 38005729 PMCID: PMC10675085 DOI: 10.3390/plants12223832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
The cultivated olive (Olea europaea L. subsp. europaea var. europaea) is one of the most valuable fruit trees worldwide. However, the hormonal mechanisms underlying the fruit growth and ripening in olives remain largely uncharacterized. In this study, we investigated the physiological and hormonal changes, by ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), as well as the expression patterns of hormone-related genes, using quantitative real-time PCR (qRT-PCR) analysis, during fruit growth and ripening in two olive cultivars, 'Arbequina' and 'Picual', with contrasting fruit size and shape as well as fruit ripening duration. Hormonal profiling revealed that olive fruit growth involves a lowering of auxin (IAA), cytokinin (CKs), and jasmonic acid (JA) levels as well as a rise in salicylic acid (SA) levels from the endocarp lignification to the onset of fruit ripening in both cultivars. During olive fruit ripening, both abscisic acid (ABA) and anthocyanin levels rose, while JA levels fell, and SA levels showed no significant changes in either cultivar. By contrast, differential accumulation patterns of gibberellins (GAs) were found between the two cultivars during olive fruit growth and ripening. GA1 was not detected at either stage of fruit development in 'Arbequina', revealing a specific association between the GA1 and 'Picual', the cultivar with large sized, elongated, and fast-ripening fruit. Moreover, ABA may play a central role in regulating olive fruit ripening through transcriptional regulation of key ABA metabolism genes, whereas the IAA, CK, and GA levels and/or responsiveness differ between olive cultivars during olive fruit ripening. Taken together, the results indicate that the relative absence or presence of endogenous GA1 is associated with differences in fruit morphology and size as well as in the ripening duration in olives. Such detailed knowledge may be of help to design new strategies for effective manipulation of olive fruit size as well as ripening duration.
Collapse
Affiliation(s)
| | | | | | | | - Maria C. Gomez-Jimenez
- Laboratory of Plant Physiology, Universidad de Extremadura, Avda de Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
13
|
Anwar T, Shehzadi A, Qureshi H, Shah MN, Danish S, Salmen SH, Ansari MJ. Alleviation of cadmium and drought stress in wheat by improving growth and chlorophyll contents amended with GA3 enriched deashed biochar. Sci Rep 2023; 13:18503. [PMID: 37898671 PMCID: PMC10613229 DOI: 10.1038/s41598-023-45670-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023] Open
Abstract
Drought and cadmium (Cd) stress are both major issues that significantly affect the growth and development of wheat plants. Both drought stress and Cd toxicity disrupt physiological processes i.e., nutrient uptake, cell expansion, and enzymatic reactions resulting in poor crop growth. To overcome these issues, the use of activated carbon and gibberellic acid (GA3) are considered valuable amendments. However, the current study aimed to add value using GA3-enriched biochar (GA3-BC). That's why, a lab experiment was conducted on wheat to assess the effectiveness of GA3-BC against Cd and drought stress. For GA3 enrichment in biochar, 10 µg GA3/g biochar was mixed. There were 3 levels of GA3-BC i.e., 0, 0.6 (GA3-BC1), and 0.9% (GA3-BC). All levels were applied in 3 replicates under no stress (0Cd + no drought), drought stress (DS), and 6 mg Cd/ kg soil (6Cd). Results showed that GA3-BC2 caused a significant improvement in shoot length (44.99%), root length (99.73%), seedling length (60.13%) and shoot fresh weight (63.59%) over control at 6Cd + drought stress. A significant improvement in chlorophyll a, chlorophyll b, and total chlorophyll while a decrease in electrolyte leakage and regulation of antioxidants i.e., lipid peroxidation, SOD, CAT, APx, GR, GPx, GST, and DPHH also signified the effectiveness of GA3-BC2 compared to control at 6Cd + drought stress. In conclusion, GA3-BC2 is an efficacious amendment for simultaneously alleviating drought and Cd stress in wheat. More investigations are recommended at the field level on different cereal crops cultivated in different soil textures to declare GA3-BC2 as the best treatment for mitigation of drought stress and Cd toxicity.
Collapse
Affiliation(s)
- Tauseef Anwar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Asma Shehzadi
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Huma Qureshi
- Department of Botany, University of Chakwal, Chakwal, Pakistan
| | - Muhammad Nadeem Shah
- Department of Agriculture, Government College University, Lahore, Pakistan
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, USA
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan.
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box-2455, 11451, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, 244001, India
| |
Collapse
|
14
|
Kim ST, Sang MK. Enhancement of osmotic stress tolerance in soybean seed germination by bacterial bioactive extracts. PLoS One 2023; 18:e0292855. [PMID: 37824539 PMCID: PMC10569584 DOI: 10.1371/journal.pone.0292855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
Soybean (Glycine max (L.) Merr.) is important to the global food industry; however, its productivity is affected by abiotic stresses such as osmosis, flooding, heat, and cold. Here, we evaluated the bioactive extracts of two biostimulant bacterial strains, Bacillus butanolivorans KJ40 and B. siamensis H30-3, for their ability to convey tolerance to osmotic stress in soybean seeds during germination. Soybean seeds were dip-treated in extracts of KJ40 (KJ40E) or H30-3 (H30-3E) and incubated with either 0% or 20% polyethylene glycol 6000 (PEG), simulating drought-induced osmotic stress. We measured malondialdehyde content as a marker for lipid peroxidation, as well as the activity of antioxidant enzymes, including catalase, glutathione peroxidase, and glutathione reductase, together with changes in sugars content. We also monitored the expression of genes involved in the gibberellic acid (GA)-biosynthesis pathway, and abscisic acid (ABA) signaling. Following osmotic stress in the extract-treated seeds, malondialdehyde content decreased, while antioxidant enzyme activity increased. Similarly, the expression of GA-synthesis genes, including GmGA2ox1 and GmGA3 were upregulated in KJ40E-dipped seeds at 12 or 6 h after treatment, respectively. The ABA signaling genes GmABI4 and GmDREB1 were upregulated in H30-3E- and KJ40E-treated seeds at 0 and 12 h after treatment under osmotic stress; however, GmABI5, GmABI4, and GmDREB1 levels were also elevated in the dip-treated seeds in baseline conditions. The GA/ABA ratio increased only in KJ40E-treated seeds undergoing osmotic stress, while glucose content significantly decreased in H30-3E-treated seeds at 24 h after treatment. Collectively, our findings indicated that dip-treatment of soybean seeds in KJ40E and H30-3E can enhance the seeds' resistance to osmotic stress during germination, and ameliorate cellular damage caused by secondary oxidative stress. This seed treatment can be used agriculturally to promote germination under drought stress and lead to increase crop yield and quality.
Collapse
Affiliation(s)
- Sang Tae Kim
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
- Department of Applied Bioscience, Dong-A University, Busan, Republic of Korea
| | - Mee Kyung Sang
- Division of Agricultural Microbiology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| |
Collapse
|
15
|
Pei MS, Liu HN, Wei TL, Guo DL. Proteome-Wide Identification of Non-histone Lysine Methylation during Grape Berry Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12140-12152. [PMID: 37503871 DOI: 10.1021/acs.jafc.3c03144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
To gain a comprehensive understanding of non-histone methylation during berry ripening in grape (Vitis vinifera L.), the methylation of non-histone lysine residues was studied using a 4D label-free quantitative proteomics approach. In total, 822 methylation sites in 416 methylated proteins were identified, with xxExxx_K_xxxxxx as the conserved motif. Functional annotation of non-histone proteins with methylated lysine residues indicated that these proteins were mostly associated with "ripening and senescence", "energy metabolism", "oxidation-reduction process", and "stimulus response". Most of the genes encoding proteins subjected to methylation during grape berry ripening showed a significant increase in expression during maturation at least at one developmental stage. The correlation of methylated proteins with QTLs, SNPs, and selective regions associated with fruit quality and development was also investigated. This study reports the first proteomic analysis of non-histone lysine methylation in grape berry and indicates that non-histone methylation plays an important role in grape berry ripening.
Collapse
Affiliation(s)
- Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| |
Collapse
|
16
|
Li Q, Luo S, Zhang L, Feng Q, Song L, Sapkota M, Xuan S, Wang Y, Zhao J, van der Knaap E, Chen X, Shen S. Molecular and genetic regulations of fleshy fruit shape and lessons from Arabidopsis and rice. HORTICULTURE RESEARCH 2023; 10:uhad108. [PMID: 37577396 PMCID: PMC10419822 DOI: 10.1093/hr/uhad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/12/2023] [Indexed: 08/15/2023]
Abstract
Fleshy fruit shape is an important external quality trait influencing the usage of fruits and consumer preference. Thus, modification of fruit shape has become one of the major objectives for crop improvement. However, the underlying mechanisms of fruit shape regulation are poorly understood. In this review we summarize recent progress in the genetic basis of fleshy fruit shape regulation using tomato, cucumber, and peach as examples. Comparative analyses suggest that the OFP-TRM (OVATE Family Protein - TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathways are probably conserved in regulating fruit shape by primarily modulating cell division patterns across fleshy fruit species. Interestingly, cucumber homologs of FRUITFULL (FUL1), CRABS CLAW (CRC) and 1-aminocyclopropane-1-carboxylate synthase 2 (ACS2) were found to regulate fruit elongation. We also outline the recent progress in fruit shape regulation mediated by OFP-TRM and IQD pathways in Arabidopsis and rice, and propose that the OFP-TRM pathway and IQD pathway coordinate regulate fruit shape through integration of phytohormones, including brassinosteroids, gibberellic acids, and auxin, and microtubule organization. In addition, functional redundancy and divergence of the members of each of the OFP, TRM, and IQD families are also shown. This review provides a general overview of current knowledge in fruit shape regulation and discusses the possible mechanisms that need to be addressed in future studies.
Collapse
Affiliation(s)
- Qiang Li
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuangxia Luo
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Liying Zhang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Qian Feng
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Lijun Song
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Manoj Sapkota
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Shuxin Xuan
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Yanhua Wang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jianjun Zhao
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Xueping Chen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuxing Shen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| |
Collapse
|
17
|
He Y, Wu Q, Cui C, Tian Q, Zhang D, Zhang Y. ChIP-Seq Analysis of SlAREB1 Downstream Regulatory Network during Tomato Ripening. Foods 2023; 12:2357. [PMID: 37372568 DOI: 10.3390/foods12122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
SlAREB1, a member of the abscisic acid (ABA) response element-binding factors (AREB/ABFs) family, was reported to play a crucial role in the expression of ABA-regulated downstream genes and affect the ripening of tomato fruit. However, the downstream genes of SlAREB1 are still unclear. Chromatin immunoprecipitation (ChIP) is a powerful tool and a standard method for studying the interactions between DNA and proteins at the genome-wide level. In the present study, SlAREB1 was proved to continually increase until the mature green stage and then decrease during the ripening period, and a total of 972 gene peaks were identified downstream of SlAREB1 by ChIP-seq analysis, mainly located in the intergenic and promoter regions. Further gene ontology (GO) annotation analysis revealed that the target sequence of SlAREB1 was the most involved in biological function. Kyoto Encylopaedia of Genes and Genomes (KEGG) pathway analysis showed that the identified genes were mainly involved in the oxidative phosphorylation and photosynthesis pathways, and some of them were associated with tomato phytohormone synthesis, the cell wall, pigment, and the antioxidant characteristic of the fruit as well. Based on these results, an initial model of SlAREB1 regulation on tomato fruit ripening was constructed, which provided a theoretical basis for further exploring the effects of the regulation mechanism of SlAREB1 and ABA on tomato fruit ripening.
Collapse
Affiliation(s)
- Yanan He
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Qiong Wu
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Chunxiao Cui
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Qisheng Tian
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Dongdong Zhang
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| | - Yurong Zhang
- Engineering Center of Ministry of Education, School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
18
|
Zhao H, Liu X, Sun Y, Liu J, Waigi MG. Effects and mechanisms of plant growth regulators on horizontal transfer of antibiotic resistance genes through plasmid-mediated conjugation. CHEMOSPHERE 2023; 318:137997. [PMID: 36720410 DOI: 10.1016/j.chemosphere.2023.137997] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
A vast number of bacteria occur in both soil and plants, with some of them harboring antibiotic resistance genes (ARGs). When bacteria congregate on the interface of soil particles or on plant root surfaces, these ARGs can be transferred between bacteria via conjugation, leading to the formation of antibiotic-resistant pathogens that threaten human health. Plant growth regulators (PGRs) are widely used in agricultural production, promoting plant growth and increasing crop yields. However, until now, little information has been known about the effects of PGRs on the horizontal gene transfer (HGT) of ARGs. In this study, with Escherichia coli DH5α (carrying RP4 plasmid with TetR, AmpR, KanR) as the donor and E. coli HB101 as the recipient, a series of diparental conjugation experiments were conducted to investigate the effects of indoleacetic acid (IAA), ethel (ETH) and gibberellin (GA3) on HGT of ARGs via plasmid-mediated conjugation. Furthermore, the mechanisms involved were also clarified. The results showed that all three PGRs affected the ARG transfer frequency by inducing the intracellular reactive oxygen species (ROS) formation, changing the cell membrane permeability, and regulating the gene transcription of traA, traL, trfAp, trbBp, kilA, and korA in plasmid RP4. In detail, 50-100 mg⋅L-1 IAA, 20-50 mg⋅L-1 ETH and 1500-2500 mg⋅L-1 GA3 all significantly promoted the ARG conjugation. This study indicated that widespread use of PGRs in agricultural production could affect the HGT of ARGs via plasmid-mediated conjugation, and the application of reasonable concentrations of PGRs could reduce the ARG transmission in both soil environments and plants.
Collapse
Affiliation(s)
- Hui Zhao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiangyu Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yulong Sun
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
19
|
Feng Z, Wu X, Wang J, Wu X, Wang B, Lu Z, Ye Z, Li G, Wang Y. Identification of Bottle Gourd ( Lagenaria siceraria) OVATE Family Genes and Functional Characterization of LsOVATE1. Biomolecules 2022; 13:biom13010085. [PMID: 36671470 PMCID: PMC9855390 DOI: 10.3390/biom13010085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The OVATE gene family is a class of conserved transcription factors that play significant roles in plant growth, development, and abiotic stress, and also affect fruit shape in vegetable crops. Bottle gourd (Lagenaria siceraria), commonly known as calabash or gourd, is an annual climber belonging to the Cucurbitaceae family. Studies on bottle gourd OVATE genes are limited. In this study, we performed genome-wide identification of the OVATE gene family in bottle gourd, and identified a total of 20 OVATE family genes. The identified genes were unevenly distributed across 11 bottle gourd chromosomes. We also analyzed the gene homology, amino acid sequence conservation, and three-dimensional protein structure (via prediction) of the 20 OVATE family genes. We used RNA-seq data to perform expression analysis, which found 20 OVATE family genes to be differentially expressed based on spatial and temporal characteristics, suggesting that they have varying functions in the growth and development of bottle gourd. In situ hybridization and subcellular localization analysis showed that the expression characteristics of the LsOVATE1 gene, located on chromosome 7 homologous to OVATE, is a candidate gene for affecting the fruit shape of bottle gourd. In addition, RT-qPCR data from bottle gourd roots, stems, leaves, and flowers showed different spatial expression of the LsOVATE1 gene. The ectopic expression of LsOVATE1 in tomato generated a phenotype with a distinct fruit shape and development. Transgenic-positive plants that overexpressed LsOVATE1 had cone-shaped fruit, calyx hypertrophy, petal degeneration, and petal retention after flowering. Our results indicate that LsOVATE1 could serve important roles in bottle gourd development and fruit shape determination, and provide a basis for future research into the function of LsOVATE1.
Collapse
Affiliation(s)
- Zishan Feng
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaohua Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Jian Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Xinyi Wu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Baogen Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Zhongfu Lu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Zihong Ye
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Guojing Li
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
| | - Ying Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310012, China
- Correspondence: ; Tel.: +86-0571-8640-3050
| |
Collapse
|
20
|
Su Q, Li X, Wang L, Wang B, Feng Y, Yang H, Zhao Z. Variation in Cell Wall Metabolism and Flesh Firmness of Four Apple Cultivars during Fruit Development. Foods 2022; 11:3518. [PMID: 36360131 PMCID: PMC9656455 DOI: 10.3390/foods11213518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 08/03/2023] Open
Abstract
Fruit ripening and softening are highly complex processes, and there is an interplay and coordination between the metabolic pathways that are involved in the biological processes. In this study, we aimed to elucidate the variation in the characters and possible causes of cell wall materials and morphological structure during apple fruits development. We studied the cell wall material (CWM), structure, cellular morphology, hydrolase activity, and the transcriptional levels of the related genes in four apple varieties 'Ruixue' and 'Ruixianghong' and their parents ('Pink Lady' and 'Fuji') during fruit development. The decrease in the contents of CWMs, sodium carbonate soluble pectin, hemicellulose, and cellulose were positively correlated with the decline in the hardness during the fruit development. In general, the activities of polygalacturonase, β-galactosidase, and cellulase enzymes increased during the late developmental period. As the fruit grew, the fruit cells of all of the cultivars gradually became larger, and the cell arrangement became more relaxed, the fruit cell walls became thinner, and the intercellular space became larger. In conclusion, the correlation analysis indicated that the up-regulation of the relative expression levels of ethylene synthesis and cell wall hydrolase genes enhanced the activity of the cell wall hydrolase, resulting in the degradation of the CWMs and the depolymerization of the cell wall structure, which affected the final firmness of the apple cultivars in the mature period.
Collapse
Affiliation(s)
- Qiufang Su
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Xianglu Li
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Lexing Wang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Bochen Wang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Yifeng Feng
- College of Horticulture, Northwest A & F University, Yangling 712100, China
| | - Huijuan Yang
- College of Horticulture, Northwest A & F University, Yangling 712100, China
- Apple Engineering and Technology Research Center of Shaanxi Province, Yangling 712100, China
| | - Zhengyang Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, China
- Apple Engineering and Technology Research Center of Shaanxi Province, Yangling 712100, China
| |
Collapse
|
21
|
Chen C, Chen H, Chen Y, Yang W, Li M, Sun B, Song H, Tang W, Zhang Y, Gong R. Joint metabolome and transcriptome analysis of the effects of exogenous GA 3 on endogenous hormones in sweet cherry and mining of potential regulatory genes. FRONTIERS IN PLANT SCIENCE 2022; 13:1041068. [PMID: 36330269 PMCID: PMC9623316 DOI: 10.3389/fpls.2022.1041068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Gibberellin (GA) is an important phytohormone that can participate in various developmental processes of plants. The study found that application of GA3 can induce parthenocarpy fruit and improve fruit set. However, the use of GA3 affects endogenous hormones in fruits, thereby affecting fruit quality. This study mainly investigates the effect of exogenous GA3 on endogenous hormones in sweet cherries. The anabolic pathways of each hormone were analyzed by metabolome and transcriptome to identify key metabolites and genes that affect endogenous hormones in response to exogenous GA3 application. Results showed that exogenous GA3 led to a significant increase in the content of abscisic acid (ABA) and GA and affected jasmonic acid (JA) and auxin (IAA). At the same time, the key structural genes affecting the synthesis of various hormones were preliminarily determined. Combined with transcription factor family analysis, WRKY genes were found to be more sensitive to the use of exogenous GA3, especially the genes belonging to Group III (PaWRKY16, PaWRKY21, PaWRKY38, PaWRKY52, and PaWRKY53). These transcription factors can combine with the promoters of NCED, YUCCA, and other genes to regulate the content of endogenous hormones. These findings lay the foundation for the preliminary determination of the mechanism of GA3's effect on endogenous hormones in sweet cherry and the biological function of WRKY transcription factors.
Collapse
|
22
|
Lan L, Huang W, Zhou H, Yuan J, Miao S, Mao X, Hu Q, Ji S. Integrated Metabolome and Lipidome Strategy to Reveal the Action Pattern of Paclobutrazol, a Plant Growth Retardant, in Varying the Chemical Constituents of Platycodon Root. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206902. [PMID: 36296498 PMCID: PMC9609321 DOI: 10.3390/molecules27206902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
Abstract
Platycodon root, a medicinal food homology species which has been used in Asian countries for hundreds of years, is now widely cultivated in China. Treatment with paclobutrazol, a typical plant growth retardant, has raised uncertainties regarding the quality of Platycodon root, which have been rarely investigated. In the present study, metabolomic and lipidomic differences were revealed by ultra-high performance liquid chromatography coupled to ion mobility-quadrupole time of flight mass spectrometry (UPLC-IM-QTOF-MS). A significant decrease of platycodigenin-type saponins was observed in the paclobutrazol-treated sample. Carrying out a comprehensive quantitative analysis, the contents of total saponins and saccharides were determined to illustrate the mode of action of paclobutrazol on Platycodon root. This study demonstrated an exemplary research model in explaining how the exogenous matter influences the chemical properties of medicinal plants, and therefore might provide insights into the reasonable application of plant growth regulators.
Collapse
Affiliation(s)
- Lan Lan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Weizhen Huang
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Heng Zhou
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Jiajia Yuan
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Shui Miao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Xiuhong Mao
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Qing Hu
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
| | - Shen Ji
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institute for Food and Drug Control, Shanghai 201203, China
- Correspondence: ; Tel.: +86-18001678046
| |
Collapse
|
23
|
Castro-Camba R, Sánchez C, Vidal N, Vielba JM. Plant Development and Crop Yield: The Role of Gibberellins. PLANTS (BASEL, SWITZERLAND) 2022; 11:2650. [PMID: 36235516 PMCID: PMC9571322 DOI: 10.3390/plants11192650] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/12/2023]
Abstract
Gibberellins have been classically related to a few key developmental processes, thus being essential for the accurate unfolding of plant genetic programs. After more than a century of research, over one hundred different gibberellins have been described. There is a continuously increasing interest in gibberellins research because of their relevant role in the so-called "Green Revolution", as well as their current and possible applications in crop improvement. The functions attributed to gibberellins have been traditionally restricted to the regulation of plant stature, seed germination, and flowering. Nonetheless, research in the last years has shown that these functions extend to many other relevant processes. In this review, the current knowledge on gibberellins homeostasis and mode of action is briefly outlined, while specific attention is focused on the many different responses in which gibberellins take part. Thus, those genes and proteins identified as being involved in the regulation of gibberellin responses in model and non-model species are highlighted. The present review aims to provide a comprehensive picture of the state-of-the-art perception of gibberellins molecular biology and its effects on plant development. This picture might be helpful to enhance our current understanding of gibberellins biology and provide the know-how for the development of more accurate research and breeding programs.
Collapse
Affiliation(s)
| | | | | | - Jesús Mª Vielba
- Misión Biológica de Galicia, Consejo Superior de Investigaciones Científicas, 15780 Santiago de Compostela, Spain
| |
Collapse
|
24
|
Zhang X, Zhao B, Sun Y, Feng Y. Effects of gibberellins on important agronomic traits of horticultural plants. FRONTIERS IN PLANT SCIENCE 2022; 13:978223. [PMID: 36267949 PMCID: PMC9578688 DOI: 10.3389/fpls.2022.978223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Horticultural plants such as vegetables, fruits, and ornamental plants are crucial to human life and socioeconomic development. Gibberellins (GAs), a class of diterpenoid compounds, control numerous developmental processes of plants. The roles of GAs in regulating growth and development of horticultural plants, and in regulating significant progress have been clarified. These findings have significant implications for promoting the quality and quantity of the products of horticultural plants. Here we review recent progress in determining the roles of GAs (including biosynthesis and signaling) in regulating plant stature, axillary meristem outgrowth, compound leaf development, flowering time, and parthenocarpy. These findings will provide a solid foundation for further improving the quality and quantity of horticultural plants products.
Collapse
Affiliation(s)
- Xiaojia Zhang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Baolin Zhao
- Chinese Academy of Science (CAS) Key Laboratory of Tropical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, China
| | - Yibo Sun
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yulong Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
25
|
Yin S, Ao Q, Qiu T, Tan C, Tu Y, Kuang T, Yang Y. Tomato SlYTH1 encoding a putative RNA m 6A reader affects plant growth and fruit shape. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111417. [PMID: 35973580 DOI: 10.1016/j.plantsci.2022.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
N6-methyladenosine (m6A), the most abundant and common modification on eukaryotic mRNA, plays crucial roles in multiple biological processes through controlling endogenous gene activity in organisms. The m6A reader specifically recognizes the m6A mark to mediate the regulation of m6A on mRNA, and determines the fate of its target mRNA. In plants, the currently confirmed m6A readers are YTH (YT521B homology) domain-containing proteins. We previously reported that tomato contains 9 YTH genes, of which SlYTH1 has the strongest expression. The present study reports the functional characterization of SlYTH1 in tomato. SlYTH1 mutants generated via CRISPR/Cas9 technology exhibited pleiotropic phenotypes, including low seed germination rate, shortened seedling root, retarded plant growth and development during vegetative development, and elongated and longitudinally flattened fruit with reduced the locule number. SlYTH1 knockout reduced GA3 content and downregulated the expression of related genes in gibberellin biosynthesis pathway. Moreover, exogenous GA3 application could partially restore the phenotypic defects caused by SlYTH1 mutations. SlYTH1 knockout could alleviate the inhibition of seedling root elongation by exogenous GA3 application at relatively low concentration. These facts indicated SlYTH1 is involved in regulating gibberellin biosynthesis and plays important roles in multiple physiological processes in tomato.
Collapse
Affiliation(s)
- Shuangqin Yin
- Bioengineering College, Chongqing University, Chongqing 400044, China; State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qiujing Ao
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tiaoshuang Qiu
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Caiyun Tan
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yun Tu
- Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Tianyin Kuang
- State Key Laboratory of Trauma, Burns and Combined Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yingwu Yang
- Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
26
|
Guo S, Zheng Y, Meng D, Zhao X, Sang Z, Tan J, Deng Z, Lang Z, Zhang B, Wang Q, Bouzayen M, Zuo J. DNA and coding/non-coding RNA methylation analysis provide insights into tomato fruit ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:399-413. [PMID: 36004545 DOI: 10.1111/tpj.15951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Ripening is the last, irreversible developmental stage during which fruit become palatable, thus promoting seed dispersal by frugivory. In Alisa Craig fruit, mRNAs with increasing m5C levels, such as STPK and WRKY 40, were identified as being involved in response to biotic and abiotic stresses. Furthermore, two mRNAs involved in cell wall metabolism, PG and EXP-B1, also presented increased m5C levels. In the Nr mutant, several m5C-modified mRNAs involved in fruit ripening, including those encoding WRKY and MADS-box proteins, were found. Targets of long non-coding RNAs and circular RNAs with different m5C sites were also found; these targets included 2-alkenal reductase, soluble starch synthase 1, WRKY, MADS-box, and F-box/ketch-repeat protein SKIP11. A combined analysis of changes in 5mC methylation and mRNA revealed many differentially expressed genes with differentially methylated regions encoding transcription factors and key enzymes related to ethylene biosynthesis and signal transduction; these included ERF084, EIN3, AP2/ERF, ACO5, ACS7, EIN3/4, EBF1, MADS-box, AP2/ERF, and ETR1. Taken together, our findings contribute to the global understanding of the mechanisms underlying fruit ripening, thereby providing new information for both fruit and post-harvest behavior.
Collapse
Affiliation(s)
- Susu Guo
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yanyan Zheng
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Demei Meng
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Zhaoze Sang
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Jinjuan Tan
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhiping Deng
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhang
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Qing Wang
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Mondher Bouzayen
- Laboratory Genomics and Biotechnology of Fruits, INRA, Toulouse INP, University of Toulouse, Castanet-Tolosan, France
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
27
|
Cheng F, Song M, Zhang M, Cheng C, Chen J, Lou Q. A SNP mutation in the CsCLAVATA1 leads to pleiotropic variation in plant architecture and fruit morphogenesis in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111397. [PMID: 35902027 DOI: 10.1016/j.plantsci.2022.111397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Plant architectures is predominantly determined by branching pattern, internode elongation, phyllotaxis, shoot determinacy and reproductive organs. Domestication or improvement of this critical agronomic trait played an important role in the breakthrough of crop yield. Here, we identified a mutant with fasciated plant architecture, named fas, from an ethyl methanesulfonate (EMS) induced mutant population in cucumber. The mutant exhibited abnormal phyllotaxy, flattened main stem, increased number of floral organs, and significantly shorter and thicker fruits. However, the molecular mechanism conferring this pleiotropic effect remains unknown. Using a map-based cloning strategy, we isolated the gene CsaV3_3G045960, encoding a leucine-rich repeat receptor-like kinase, a putative direct homolog of the Arabidopsis CLAVATA1 protein referred to as CsCLV1. Endogenous hormone assays showed that IAA and GA3 levels in fas stems and ovaries were significantly reduced. Conformably, RNA-seq analysis showed that CsCLV1 regulates cucumber stem and ovary development by coordinating hormones and transcription factors. Our results contribute to the understanding of the function of CsCLV1 throughout the growth cycle, provide new evidence that the CLV signaling system is functionally conserved in Cucurbitaceae.
Collapse
Affiliation(s)
- Feng Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mengfei Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Mengru Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
28
|
Su D, Liu K, Yu Z, Li Y, Zhang Y, Zhu Y, Wu Y, He H, Zeng X, Chen H, Grierson D, Deng H, Liu M. Genome-wide characterization of the tomato GASA family identifies SlGASA1 as a repressor of fruit ripening. HORTICULTURE RESEARCH 2022; 10:uhac222. [PMID: 36643743 PMCID: PMC9832878 DOI: 10.1093/hr/uhac222] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Gibberellins (GAs) play crucial roles in a wide range of developmental processes and stress responses in plants. However, the roles of GA-responsive genes in tomato (Solanum lycopersicum) fruit development remain largely unknown. Here, we identify 17 GASA (Gibberellic Acid-Stimulated Arabidopsis) family genes in tomato. These genes encode proteins with a cleavable signal peptide at their N terminus and a conserved GASA domain at their C terminus. The expression levels of all tomato GASA family genes were responsive to exogenous GA treatment, but adding ethylene eliminated this effect. Comprehensive expression profiling of SlGASA family genes showed that SlGASA1 follows a ripening-associated expression pattern, with low expression levels during fruit ripening, suggesting it plays a negative role in regulating ripening. Overexpressing SlGASA1 using a ripening-specific promoter delayed the onset of fruit ripening, whereas SlGASA1-knockdown fruits displayed accelerated ripening. Consistent with their delayed ripening, SlGASA1-overexpressing fruits showed significantly reduced ethylene production and carotenoid contents compared to the wild type. Moreover, ripening-related genes were downregulated in SlGASA1-overexpressing fruits but upregulated in SlGASA1-knockdown fruits compared to the wild type. Yeast two-hybrid, co-immunoprecipitation, transactivation, and DNA pull-down assays indicated that SlGASA1 interacts with the key ripening regulator FRUITFULL1 and represses its activation of the ethylene biosynthesis genes ACS2 and ACO1. Our findings shed new light on the role and mode of action of a GA-responsive gene in tomato fruit ripening.
Collapse
Affiliation(s)
| | | | - Zhuoshu Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ying Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yaoxin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yunqi Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hongyu He
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Xiaodan Zeng
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Honglin Chen
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Don Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| | - Heng Deng
- Correspondence author: Mingchun Liu Tel: 02885400432, Fax: 02885400432 Heng Deng Tel: 02885400432, Fax: 02885400432
| | - Mingchun Liu
- Correspondence author: Mingchun Liu Tel: 02885400432, Fax: 02885400432 Heng Deng Tel: 02885400432, Fax: 02885400432
| |
Collapse
|
29
|
Plant Development of Early-Maturing Spring Wheat (Triticum aestivum L.) under Inoculation with Bacillus sp. V2026. PLANTS 2022; 11:plants11141817. [PMID: 35890450 PMCID: PMC9317556 DOI: 10.3390/plants11141817] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
The effect of a plant growth-promoting bacterium (PGPB) Bacillus sp. V2026, a producer of indolyl-3-acetic acid (IAA) and gibberellic acid (GA), on the ontogenesis and productivity of four genotypes of early-maturing spring wheat was studied under controlled conditions. The inoculation of wheat plants with Bacillus sp. V2026 increased the levels of endogenous IAA and GA in wheat of all genotypes and the level of trans-Zeatin in Sonora 64 and Leningradskaya rannyaya cvs but decreased it in AFI177 and AFI91 ultra-early lines. Interactions between the factors “genotype” and “inoculation” were significant for IAA, GA, and trans-Zeatin concentrations in wheat shoots and roots. The inoculation increased the levels of chlorophylls and carotenoids and reduced lipid peroxidation in leaves of all genotypes. The inoculation resulted in a significant increase in grain yield (by 33–62%), a reduction in the time for passing the stages of ontogenesis (by 2–3 days), and an increase in the content of macro- and microelements and protein in the grain. Early-maturing wheat genotypes showed a different response to inoculation with the bacterium Bacillus sp. V2026. Cv. Leningradskaya rannyaya was most responsive to inoculation with Bacillus sp. V2026.
Collapse
|
30
|
Paciorek T, Chiapelli BJ, Wang JY, Paciorek M, Yang H, Sant A, Val DL, Boddu J, Liu K, Gu C, Brzostowski LF, Wang H, Allen EM, Dietrich CR, Gillespie KM, Edwards J, Goldshmidt A, Neelam A, Slewinski TL. Targeted suppression of gibberellin biosynthetic genes ZmGA20ox3 and ZmGA20ox5 produces a short stature maize ideotype. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1140-1153. [PMID: 35244326 PMCID: PMC9129074 DOI: 10.1111/pbi.13797] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 06/12/2023]
Abstract
Maize is one of the world's most widely cultivated crops. As future demands for maize will continue to rise, fields will face ever more frequent and extreme weather patterns that directly affect crop productivity. Development of environmentally resilient crops with improved standability in the field, like wheat and rice, was enabled by shifting the architecture of plants to a short stature ideotype. However, such architectural change has not been implemented in maize due to the unique interactions between gibberellin (GA) and floral morphology which limited the use of the same type of mutations as in rice and wheat. Here, we report the development of a short stature maize ideotype in commercial hybrid germplasm, which was generated by targeted suppression of the biosynthetic pathway for GA. To accomplish this, we utilized a dominant, miRNA-based construct expressed in a hemizygous state to selectively reduce expression of the ZmGA20ox3 and ZmGA20ox5 genes that control GA biosynthesis primarily in vegetative tissues. Suppression of both genes resulted in the reduction of GA levels leading to inhibition of cell elongation in internodal tissues, which reduced plant height. Expression of the miRNA did not alter GA levels in reproductive tissues, and thus, the reproductive potential of the plants remained unchanged. As a result, we developed a dominant, short-stature maize ideotype that is conducive for the commercial production of hybrid maize. We expect that the new maize ideotype would enable more efficient and more sustainable maize farming for a growing world population.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kang Liu
- Bayer Crop ScienceChesterfieldMOUSA
| | - Chiyu Gu
- Bayer Crop ScienceChesterfieldMOUSA
| | | | | | | | | | | | | | - Alexander Goldshmidt
- Bayer Crop ScienceChesterfieldMOUSA
- Present address:
Department of Field Crops ScienceInstitute of Plant ScienceAgricultural Research OrganizationThe Volcani CenterP.O. Box 15159Rishon Lezion7528809Israel
| | | | | |
Collapse
|
31
|
Kou X, Feng Y, Yuan S, Zhao X, Wu C, Wang C, Xue Z. Different regulatory mechanisms of plant hormones in the ripening of climacteric and non-climacteric fruits: a review. PLANT MOLECULAR BIOLOGY 2021; 107:477-497. [PMID: 34633626 DOI: 10.1007/s11103-021-01199-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 05/24/2023]
Abstract
This review contains the regulatory mechanisms of plant hormones in the ripening process of climacteric and non-climacteric fruits, interactions between plant hormones and future research directions. The fruit ripening process involves physiological and biochemical changes such as pigment accumulation, softening, aroma and flavor formation. There is a great difference in the ripening process between climacteric fruits and non-climacteric fruits. The ripening of these two types of fruits is affected by endogenous signals and exogenous environments. Endogenous signaling plant hormones play an important regulatory role in fruit ripening. This paper systematically reviews recent progress in the regulation of plant hormones in fruit ripening, including ethylene, abscisic acid, auxin, jasmonic acid (JA), gibberellin, brassinosteroid (BR), salicylic acid (SA) and melatonin. The role of plant hormones in both climacteric and non-climacteric fruits is discussed, with emphasis on the interaction between ethylene and other adjustment factors. Specifically, the research progress and future research directions of JA, SA and BR in fruit ripening are discussed, and the regulatory network between JA and other signaling molecules remains to be further revealed. This study is meant to expand the understanding of the importance of plant hormones, clarify the hormonal regulation network and provide a basis for targeted manipulation of fruit ripening.
Collapse
Affiliation(s)
- Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yuan Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Shuai Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Xiaoyang Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chao Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
32
|
Shan F, Zhang R, Zhang J, Wang C, Lyu X, Xin T, Yan C, Dong S, Ma C, Gong Z. Study on the Regulatory Effects of GA 3 on Soybean Internode Elongation. PLANTS 2021; 10:plants10081737. [PMID: 34451783 PMCID: PMC8398907 DOI: 10.3390/plants10081737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/31/2021] [Accepted: 08/19/2021] [Indexed: 12/03/2022]
Abstract
Excessive plant height is an important factor that can lead to lodging, which is closely related to soybean yield. Gibberellins are widely used as plant growth regulators in agricultural production. Gibberellic acid (GA3), one of the most effective active gibberellins, has been used to regulate plant height and increase yields. The mechanism through which GA3 regulates internode elongation has been extensively investigated. In 2019 and 2020, we applied GA3 to the stems, leaves, and roots of two soybean cultivars, Heinong 48 (a high-stalk cultivar) and Henong 60 (a dwarf cultivar), and GA3 was also applied to plants whose apical meristem was removed or to girded plants to compare the internode length and stem GA3 content of soybean plants under different treatments. These results suggested that the application of GA3 to the stems, leaves, and roots of soybean increased the internode length and GA3 content in the stems. Application of GA3 decreased the proportion of the pith in the soybean stems and primary xylem while increasing the proportion of secondary xylem. The apical meristem is an important site of GA3 synthesis in soybean stems and is involved in the regulation of stem elongation. GA3 was shown to be transported acropetally through the xylem and laterally between the xylem and phloem in soybean stems. We conclude that the GA3 level in stems is an important factor affecting internode elongation.
Collapse
Affiliation(s)
- Fuxin Shan
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (F.S.); (R.Z.); (J.Z.); (C.W.); (X.L.); (T.X.); (C.Y.); (S.D.); (C.M.)
| | - Rui Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (F.S.); (R.Z.); (J.Z.); (C.W.); (X.L.); (T.X.); (C.Y.); (S.D.); (C.M.)
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Jin Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (F.S.); (R.Z.); (J.Z.); (C.W.); (X.L.); (T.X.); (C.Y.); (S.D.); (C.M.)
| | - Chang Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (F.S.); (R.Z.); (J.Z.); (C.W.); (X.L.); (T.X.); (C.Y.); (S.D.); (C.M.)
| | - Xiaochen Lyu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (F.S.); (R.Z.); (J.Z.); (C.W.); (X.L.); (T.X.); (C.Y.); (S.D.); (C.M.)
| | - Tianyu Xin
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (F.S.); (R.Z.); (J.Z.); (C.W.); (X.L.); (T.X.); (C.Y.); (S.D.); (C.M.)
| | - Chao Yan
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (F.S.); (R.Z.); (J.Z.); (C.W.); (X.L.); (T.X.); (C.Y.); (S.D.); (C.M.)
| | - Shoukun Dong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (F.S.); (R.Z.); (J.Z.); (C.W.); (X.L.); (T.X.); (C.Y.); (S.D.); (C.M.)
| | - Chunmei Ma
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (F.S.); (R.Z.); (J.Z.); (C.W.); (X.L.); (T.X.); (C.Y.); (S.D.); (C.M.)
| | - Zhenping Gong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (F.S.); (R.Z.); (J.Z.); (C.W.); (X.L.); (T.X.); (C.Y.); (S.D.); (C.M.)
- Correspondence:
| |
Collapse
|
33
|
Wang H, Sun J, Yang F, Weng Y, Chen P, Du S, Wei A, Li Y. CsKTN1 for a katanin p60 subunit is associated with the regulation of fruit elongation in cucumber (Cucumis sativus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2429-2441. [PMID: 34043036 DOI: 10.1007/s00122-021-03833-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
We identified a short fruit3 (sf3) mutant in cucumber. Map-based cloning revealed that CsKTN1 gene encodes a katanin p60 subunit, which is associated with the regulation of fruit elongation. Fruit length is an important horticultural trait for both fruit yield and quality of cucumber (Cucumis sativus L.). Knowledge on the molecular regulation of fruit elongation in cucumber is very limited. In this study, we identified and characterized a cucumber short fruit3 (sf3) mutant. Histological examination indicated that the shorter fruit in the mutant was due to reduced cell numbers. Genetic analysis revealed that the phenotype of the sf3 mutant was controlled by a single gene with semi-dominant inheritance. By map-based cloning and Arabidopsis genetic transformation, we showed that Sf3 was a homolog of KTN1 (CsKTN1) encoding a katanin p60 subunit. A non-synonymous mutation in the fifth exon of CsKTN1 resulted in an amino acid substitution from Serine in the wild type to Phenylalanine in the sf3 mutant. CsKTN1 expressed in all tissues of both the wild type and the sf3 mutant. However, there was no significant difference in CsKTN1 expression levels between the wild type and the sf3 mutant. The hormone quantitation and RNA-seq analysis suggested that auxin and gibberellin contents are decreased in sf3 by changing the expression levels of genes related with auxin and gibberellin metabolism and signaling. This work helps understand the function of the katanin and the molecular mechanisms of fruit growth regulation in cucumber.
Collapse
Affiliation(s)
- Hui Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jing Sun
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fan Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yiqun Weng
- Horticulture Department, USDA-ARS Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, 53706, USA
| | - Peng Chen
- College of Life Science, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shengli Du
- Tianjin Vegetable Research Center, Tianjin, 300192, China
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China
| | - Aimin Wei
- Tianjin Vegetable Research Center, Tianjin, 300192, China.
- National Key Laboratory of Vegetable Germplasm Innovation, Tianjin, 300192, China.
| | - Yuhong Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
34
|
Wang S, Lv S, Zhao T, Jiang M, Liu D, Fu S, Hu M, Huang S, Pei Y, Wang X. Modification of Threonine-825 of SlBRI1 Enlarges Cell Size to Enhance Fruit Yield by Regulating the Cooperation of BR-GA Signaling in Tomato. Int J Mol Sci 2021; 22:ijms22147673. [PMID: 34299293 PMCID: PMC8305552 DOI: 10.3390/ijms22147673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Brassinosteroids (BRs) are growth-promoting phytohormones that can efficiently function by exogenous application at micromolar concentrations or by endogenous fine-tuning of BR-related gene expression, thus, precisely controlling BR signal strength is a key factor in exploring the agricultural potential of BRs. BRASSINOSTEROID INSENSITIVE1 (BRI1), a BR receptor, is the rate-limiting enzyme in BR signal transduction, and the phosphorylation of each phosphorylation site of SlBRI1 has a distinct effect on BR signal strength and botanic characteristics. We recently demonstrated that modifying the phosphorylation sites of tomato SlBRI1 could improve the agronomic traits of tomato to different extents; however, the associated agronomic potential of SlBRI1 phosphorylation sites in tomato has not been fully exploited. In this research, the biological functions of the phosphorylation site threonine-825 (Thr-825) of SlBRI1 in tomato were investigated. Phenotypic analysis showed that, compared with a tomato line harboring SlBRI1, transgenic tomato lines expressing SlBRI1 with a nonphosphorylated Thr-825 (T825A) exhibited a larger plant size due to a larger cell size and higher yield, including a greater plant height, thicker stems, longer internodal lengths, greater plant expansion, a heavier fruit weight, and larger fruits. Molecular analyses further indicated that the autophosphorylation level of SlBRI1, BR signaling, and gibberellic acid (GA) signaling were elevated when SlBRI1 was dephosphorylated at Thr-825. Taken together, the results demonstrated that dephosphorylation of Thr-825 can enhance the functions of SlBRI1 in BR signaling, which subsequently activates and cooperates with GA signaling to stimulate cell elongation and then leads to larger plants and higher yields per plant. These results also highlight the agricultural potential of SlBRI1 phosphorylation sites for breeding high-yielding tomato varieties through precise control of BR signaling.
Collapse
|
35
|
Fan Y, Yan J, Lai D, Yang H, Xue G, He A, Guo T, Chen L, Cheng XB, Xiang DB, Ruan J, Cheng J. Genome-wide identification, expression analysis, and functional study of the GRAS transcription factor family and its response to abiotic stress in sorghum [Sorghum bicolor (L.) Moench]. BMC Genomics 2021; 22:509. [PMID: 34229611 PMCID: PMC8259154 DOI: 10.1186/s12864-021-07848-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background GRAS, an important family of transcription factors, have played pivotal roles in regulating numerous intriguing biological processes in plant development and abiotic stress responses. Since the sequencing of the sorghum genome, a plethora of genetic studies were mainly focused on the genomic information. The indepth identification or genome-wide analysis of GRAS family genes, especially in Sorghum bicolor, have rarely been studied. Results A total of 81 SbGRAS genes were identified based on the S. bicolor genome. They were named SbGRAS01 to SbGRAS81 and grouped into 13 subfamilies (LISCL, DLT, OS19, SCL4/7, PAT1, SHR, SCL3, HAM-1, SCR, DELLA, HAM-2, LAS and OS4). SbGRAS genes are not evenly distributed on the chromosomes. According to the results of the gene and motif composition, SbGRAS members located in the same group contained analogous intron/exon and motif organizations. We found that the contribution of tandem repeats to the increase in sorghum GRAS members was slightly greater than that of fragment repeats. By quantitative (q) RT-PCR, the expression of 13 SbGRAS members in different plant tissues and in plants exposed to six abiotic stresses at the seedling stage were quantified. We further investigated the relationship between DELLA genes, GAs and grain development in S. bicolor. The paclobutrazol treatment significantly increased grain weight, and affected the expression levels of all DELLA subfamily genes. SbGRAS03 is the most sensitive to paclobutrazol treatment, but also has a high response to abiotic stresses. Conclusions Collectively, SbGRAs play an important role in plant development and response to abiotic stress. This systematic analysis lays the foundation for further study of the functional characteristics of GRAS genes of S. bicolor. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07848-z.
Collapse
Affiliation(s)
- Yu Fan
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Jun Yan
- School of Food and Biological engineering, Chengdu University, 610106, Chengdu, People's Republic of China
| | - Dili Lai
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Hao Yang
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Guoxing Xue
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Ailing He
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Tianrong Guo
- Chengdu Institute of Food Inspection, 610030, Chengdu, People's Republic of China
| | - Long Chen
- Department of Nursing, Sichuan Tianyi College, 618200, Mianzhu, People's Republic of China
| | - Xiao-Bin Cheng
- Department of Environmental and Life Sciences, Sichuan MinZu College, 626001, Kangding, People's Republic of China
| | - Da-Bing Xiang
- School of Food and Biological engineering, Chengdu University, 610106, Chengdu, People's Republic of China
| | - Jingjun Ruan
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China
| | - Jianping Cheng
- College of Agriculture, Guizhou University, Huaxi District, 550025, Guiyang, People's Republic of China.
| |
Collapse
|