1
|
Wang HL, He Y, Wang SWM, Aziz-Ur-Rahman M, Zhang SY, Shi CX, Wang HM, Su HW. Unlocking the potential of methionine: a dietary supplement for preventing colitis. Food Funct 2024; 15:10373-10389. [PMID: 39318168 DOI: 10.1039/d4fo02883j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The incidence rate of colitis and conversion of colitis into colorectal cancer is increasing. However, the results of drug treatments are inconsistent with variable side effects; therefore, it is necessary to find alternative ways of treating colitis, e.g. through dietary supplements. One such dietary supplement could be sulfur-containing amino acids, which are known to have anti-inflammatory, antioxidant, and gut microbiota homeostasis effects. Therefore, the aim of the present study was to explore the effect of methionine supplementation in the diet of mice on experimental dextran sulfate sodium (DSS)-induced colitis. Here, 24 male C57BL/6J mice were split into three experimental treatment groups in such a way that each treatment group had four replicates and each replicate had two mice. The control group was colitis-free, while colitis was induced by the administration of DSS in the DSS groups. In the DSS and DSS plus methionine (DSS + Met) groups, DSS was provided in drinking water containing 3% DSS on days 1-5 and later provided with purified water on days 6-7. It was found that supplementing with methionine could activate pathways like Nrf2, and inhibit pathways like TLR4 and Nlrp3 to realize anti-inflammatory and antioxidant effects. Moreover, methionine could alter the microbiota of the gut in the experimental mice, whereby exploration of the gut microbiota demonstrated that methionine supplementation in the diet increased the abundance of parabacteroides and the production of propionate and butyrate. The current study shows that the dietary prophylactic supplementation of methionine has a beneficial effect on resisting colitis, providing new insights for the prevention of colitis.
Collapse
Affiliation(s)
- Hui-Li Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| | - Yang He
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| | - Song-Wei-Min Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| | - Muhammad Aziz-Ur-Rahman
- Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Si-Yu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| | - Chang-Xiao Shi
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| | - Hao-Ming Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| | - Hua-Wei Su
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|
2
|
Chae B, Poaty Ditengou JIC, Lee AL, Tak J, Cheon I, Choi NJ. An Estimation of the Requirements of the Standardized Ileal Digestible Tryptophan, Valine, Isoleucine and Methionine on Young Pigs' (Up to 50 kg) Feed Efficiency: A Meta-Regression Analysis. Animals (Basel) 2024; 14:2884. [PMID: 39409833 PMCID: PMC11482568 DOI: 10.3390/ani14192884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Currently, the NRC amino acid (AA) requirements for pigs published in 2012 are used as a reference in variable swine industries. However, recent results in several articles suggest that the standardized ileal digestible (SID) AA-lysine (Lys) ratio significantly evolved over the last two decades, while some publications report inconsistent outcomes. Therefore, the present study used a meta-regression analysis to assess the relative ratio to lysine to maximize the feed efficiency of four essential amino acids (tryptophan, valine, isoleucine, and methionine) in pig diets. According to the PRISMA guidelines, articles examining the target AA requirement using a basal diet supplemented with varying levels of crystalline AA (tryptophan, valine, isoleucine, or methionine) were identified across Scopus, PubMed, and Science Direct. As a result, 23, 22, 16, and 9 articles using tryptophan, valine, isoleucine, and methionine were selected and categorized into experiments for inclusion in our meta-analysis. The results suggested that the requirements of tryptophan, valine, isoleucine, and methionine in our meta-regression analysis were superior to NRC recommendations, regardless of the regression models and the growth phases with significant RSQ values (RSQ ≈ 1). Also, the QUAD and CLP regression models emphasized higher requirements than the LP model for the great majority of amino acids and growth phases. The results of the QUAD and CLP models were selected as estimations of the amino acid requirements for pigs under challenged conditions, whereas the LP model was chosen to estimate the amino acid requirements of genetically improved pigs under a modern housing system. The results of this meta-regression analysis could be used to refresh the information on the NRC amino acids (AA) requirements for swine.
Collapse
Affiliation(s)
- Byungho Chae
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (B.C.); (J.I.C.P.D.); (I.C.)
| | | | - A-Leum Lee
- CJ Cheiljedang, Seoul 04560, Republic of Korea; (A.-L.L.); (J.T.)
| | - Jisoo Tak
- CJ Cheiljedang, Seoul 04560, Republic of Korea; (A.-L.L.); (J.T.)
| | - Inhyeok Cheon
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (B.C.); (J.I.C.P.D.); (I.C.)
| | - Nag-Jin Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea; (B.C.); (J.I.C.P.D.); (I.C.)
| |
Collapse
|
3
|
Wang Y, Wen J. Available Strategies for Improving the Biosynthesis of Methionine: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17166-17175. [PMID: 39074311 DOI: 10.1021/acs.jafc.4c02728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Methionine is the only nonpolar α-amino acid containing sulfur among the eight essential amino acids and is closely related to the metabolism of sulfur-containing compounds in the human body. Widely used in feed, medicine, food, and other fields, the market demand is increasing annually. However, low productivity and high cost largely limit the industrial production of methionine, and many novel production methods still have their own disadvantages. In this paper, the available methods for synthesizing methionine are reviewed and discussed. The latest strategies for improving methionine production are further introduced, including culture medium optimization, mutation technology, expression of key genes in the metabolic pathway, knockout and recombination, as well as the engineering of membrane transporters, the fermentation-enzymatic coupling route, and innovation of CO2 biotransformation.
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory of System Bioengineering, Ministry of Education, Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of System Bioengineering, Ministry of Education, Department of Biological Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China
- Frontier Science Center of the Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
4
|
Lin X, Ruan D, Lin Z, Xiong T, Zhang S, Fan Q, Dong X, Deng Y, Jiang Z, Jiang S. Effects of L-Methionine and DL-Methionine on Growth Performance, Methionine-Metabolizing Enzyme Activities, Feather Traits, and Intestinal Morphology of Medium-Growing, Yellow-Feathered Chickens between 1 and 30 Days of Age. Animals (Basel) 2024; 14:2135. [PMID: 39061597 PMCID: PMC11273740 DOI: 10.3390/ani14142135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
This experiment investigated the effects of L-Methionine (L-Met) on growth performance, Met-metabolizing enzyme activity, feather traits, and small intestinal morphological characteristics, and compared these with DL-Methionine (DL-Met) for medium-growing, yellow-feathered broilers during the starter phase. Furthermore, the aim was to provide recommendations for the appropriate dietary Met levels in feed. A total of 1584 1-d broilers were randomly divided into 11 treatment groups with six replicates of 24 birds each: basal diet (CON, Met 0.28%), basal diet + L-Met (0.04%, 0.08%, 0.12%, 0.16%, 0.20%), and basal diet + DL-Met (0.04%, 0.08%, 0.12%, 0.16%, 0.20%). The total trial period was 30 days. Compared with broilers fed the basal diet, those fed 0.04 to 0.20% supplemental Met had higher final body weight (FBW), average daily feed intake (ADFI), average daily gain (ADG), and lower feed-to-gain ratio (F: G) (p < 0.05). Compared with DL-Met groups, the L-Met group had higher FBW and ADG (p < 0.05). The relative bioavailability (RBV) of L-Met in ADG of 1-30 d was 142.5%. Chicks fed diets supplemented with L-Met had longer fourth primary feather lengths compared to birds fed the control and diets supplemented with DL-Met (p < 0.05). Compared to the control, birds supplemented with DL-Met or L-Met had an increased moulting score (p ≤ 0.05). Chicks fed diets supplemented with L-Met had lower activities of methionine adenosyl transferase (MAT) compared to those fed the basal diet or supplemented with DL-Met (p < 0.05). Chicks supplemented with either DL-Met or L-Met had higher activities of cystathionine β-synthase (CBS) than those fed the basal diet (p < 0.05). Compared with the control, chicks fed diets supplemented with either DL-Met or L-Met had an enhanced level of albumin in plasma (p < 0.05). There were no obvious differences in the plasma content of uric acid and total protein among the treatments (p > 0.05). Chicks fed diets supplemented with either DL-Met or L-Met had higher villus height and V/C in the duodenal than chicks fed the basal diet (p < 0.05). The jejunum morphology was not affected by either L-Met or DL-Met supplementation (p > 0.05). Therefore, dietary supplementation with DL-Met or L-Met improved the growth performance, feather traits, and intestinal morphological characteristics of medium-growing, yellow-feathered broiler chickens aged 1 to 30 d by decreasing the enzyme activities of Met methylation (MAT) and increasing the enzyme activities of the sulfur transfer pathway (CBS), and supplementation with L-Met showed a better improvement compared with DL-Met. The relative efficacy of L-Met to DL-Met was 142.5% for ADG of yellow-feathered broilers. The appropriate Met levels for medium-growing, yellow-feathered broilers are between 0.36~0.38% (supplementation with DL-Met) or 0.32~0.33% (supplementation with L-Met) when based on ADG and feed-to-gain ratio.
Collapse
Affiliation(s)
- Xiajing Lin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (X.L.); (D.R.); (Z.L.); (T.X.); (S.Z.); (Q.F.); (Z.J.)
| | - Dong Ruan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (X.L.); (D.R.); (Z.L.); (T.X.); (S.Z.); (Q.F.); (Z.J.)
| | - Zeling Lin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (X.L.); (D.R.); (Z.L.); (T.X.); (S.Z.); (Q.F.); (Z.J.)
| | - Taidi Xiong
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (X.L.); (D.R.); (Z.L.); (T.X.); (S.Z.); (Q.F.); (Z.J.)
| | - Sheng Zhang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (X.L.); (D.R.); (Z.L.); (T.X.); (S.Z.); (Q.F.); (Z.J.)
| | - Qiuli Fan
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (X.L.); (D.R.); (Z.L.); (T.X.); (S.Z.); (Q.F.); (Z.J.)
| | - Xiaoli Dong
- CJ International Trading Co., Ltd., Shanghai 201107, China; (X.D.); (Y.D.)
| | - Yuanfan Deng
- CJ International Trading Co., Ltd., Shanghai 201107, China; (X.D.); (Y.D.)
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (X.L.); (D.R.); (Z.L.); (T.X.); (S.Z.); (Q.F.); (Z.J.)
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China; (X.L.); (D.R.); (Z.L.); (T.X.); (S.Z.); (Q.F.); (Z.J.)
| |
Collapse
|
5
|
Wang D, Wang X, Han J, You C, Liu Z, Wu Z. Effect of Lacticaseibacillus casei LC2W Supplementation on Glucose Metabolism and Gut Microbiota in Subjects at High Risk of Metabolic Syndrome: A Randomized, Double-blinded, Placebo-controlled Clinical Trial. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10312-5. [PMID: 38954305 DOI: 10.1007/s12602-024-10312-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2024] [Indexed: 07/04/2024]
Abstract
Metabolic syndrome (MetS) is a global epidemic complex and will cause serious metabolic comorbidities without treatment. A prevention strategy for MetS development has been proposed to modulate gut microbiota by probiotic administration to improve intestinal dysbiosis and benefit the host. Lacticaseibacillus casei LC2W has exhibited positive effects in preventing colitis and anti-hypertension in vivo. However, the effect of L. casei LC2W on subjects at high risk of MetS is unknown. Here, a randomized, double-blinded, placebo-controlled study was conducted on 60 subjects with high risk of MetS, and the hypoglycemic and hypolipidemic activity and possible pathways of L. casei LC2W were inferred from the correlation analysis with gut microbiome composition, function, and clinical phenotypic indicators. The results showed that oral administration of L. casei LC2W could exert significant benefits on weight control, glucose and lipid metabolism, inflammatory and oxidative stress parameters, and SCFA production, as well as modulate the composition of gut microbiota. The relative abundance of Lacticaseibacillus, Bifidobacterium, Dorea, and Blautia was enriched, and their interaction with other gut microbes was strengthened by oral administration of L. casei LC2W, which was beneficial in ameliorating gut inflammation, promoting glucose and lipids degradation pathways, thus alleviated MetS. The present study confirmed the prevention effects of L. casei LC2W towards MetS from aspects of clinical outcomes and microflora modulation, providing an alternative strategy for people at high risk of MetS.Trial registration: The study was proactively registered in ClinicalTrial.gov with the registration number of ChiCTR2000031833 on April 09, 2020.
Collapse
Affiliation(s)
- Danqi Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Xiaohua Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Jin Han
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China
| | - Zhengjun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, 200436, PR China.
| |
Collapse
|
6
|
Kim HY, Moon JO, Kim SW. Development and application of a multi-step porcine in vitro system to evaluate feedstuffs and feed additives for their efficacy in nutrient digestion, digesta characteristics, and intestinal immune responses. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:265-282. [PMID: 38800740 PMCID: PMC11127235 DOI: 10.1016/j.aninu.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 05/29/2024]
Abstract
In vitro model provides alternatives to the use of live animals in research. In pig nutrition, there has been a tremendous increase in in vivo research over the decades. Proper utilization of in vitro models could provide a screening tool to reduce the needs of in vivo studies, research duration, cost, and the use of animals and feeds. This study aimed to develop a multi-step porcine in vitro system to simulate nutrient digestion and intestinal epithelial immune responses affected by feedstuffs and feed additives. Seven feedstuffs (corn, corn distillers dried grains with solubles [corn DDGS], barley, wheat, soybean meal, soy protein concentrates, and Corynebacterium glutamicum cell mass [CGCM]), feed enzymes (xylanase and phytase), and supplemental amino acids (arginine, methionine, and tryptophan), were used in this in vitro evaluation for their efficacy on digestibility, digesta characteristics, and intestinal health compared with the results from previously published in vivo studies. All in vitro evaluations were triplicated. Data were analyzed using Mixed procedure of SAS9.4. Evaluations included (1) nutrient digestibility of feedstuffs, (2) the effects of feed enzymes, xylanase and phytase, on digestibility of feedstuffs and specific substrates, and (3) the effects of amino acids, arginine, tryptophan, and methionine, on anti-inflammatory, anti-oxidative, and anti-heat stress statuses showing their effects (P < 0.05) on the measured items. Differences in dry matter and crude protein digestibility among the feedstuffs as well as effects of xylanase and phytase were detected (P < 0.05), including xylo-oligosaccharide profiles and phosphorus release from phytate. Supplementation of arginine, tryptophan, and methionine modulated (P < 0.05) cellular inflammatory and oxidative stress responses. The use of this in vitro model allowed the use of 3 experimental replications providing sufficient statistical power at P < 0.05. This indicates in vitro models can have increased precision and consistency compared with in vivo animal studies.
Collapse
Affiliation(s)
- Hee Yeon Kim
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Jun-Ok Moon
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Zhou X, Liang J, Xiong X, Yin Y. Amino acids in piglet diarrhea: Effects, mechanisms and insights. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:267-274. [PMID: 38362520 PMCID: PMC10867606 DOI: 10.1016/j.aninu.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 02/17/2024]
Abstract
Piglet diarrhea is among one of the most serious health problems faced by the pig industry, resulting in significant economic losses. Diarrheal disease in piglets has a multifactorial etiology that is affected by physiology, environment, and management strategy. Diarrhea is the most apparent symptom of intestinal dysfunction. As a key class of essential nutrients in the piglet diet, amino acids confer a variety of beneficial effects on piglets in addition to being used as a substrate for protein synthesis, including maintaining appropriate intestinal integrity, permeability and epithelial renewal, and alleviating morphological damage and inflammatory and oxidative stress. Thus, provision of appropriate levels of amino acids could alleviate piglet diarrhea. Most amino acid effects are mediated by metabolites, gut microbes, and related signaling pathways. In this review, we summarize the current understanding of dietary amino acid effects on gut health and diarrhea incidence in piglets, and reveal the mechanisms involved. We also provide ideas for using amino acid blends and emphasize the importance of amino acid balance in the diet to prevent diarrhea in piglets.
Collapse
Affiliation(s)
- Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Xiong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Gong L, Mahmood T, Mercier Y, Xu H, Zhang X, Zhao Y, Luo Y, Guo Y. Dietary methionine sources and levels modulate the intestinal health status of broiler chickens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:242-255. [PMID: 38033606 PMCID: PMC10684994 DOI: 10.1016/j.aninu.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 12/02/2023]
Abstract
Given the key role of methionine in biological processes, adequate methionine should be provided to meet the nutritional requirements. DL-2-hydroxy-4-(methylthio)-butanoic acid (DL-HMTBA) has been considered as an important source of methionine. However, the effects of different sources and levels of methionine on the intestinal health status have not been clarified yet. An experiment was carried out to investigate the effects of different dietary sources and levels of methionine on the intestinal epithelial barrier, inflammatory cytokines expression, ileal morphology, microbiota composition, and cecal short chain fatty acids (SCFA) profiles. For this purpose, 720 male Arbor Acre broiler chicks at 1 d old were randomly assigned to a 2 × 3 factorial arrangement with 2 methionine sources (DL-methionine and DL-HMTBA) and 3 total sulfur amino acids (TSAA) levels (80%, 100%, and 120% of Arbor Acre recommendation). The results showed that DL-HMTBA supplementation promoted intestinal physical barrier at both gene expression level of claudin-1 and serum diamine oxidase level (P < 0.05), and the inflammatory cytokine IL-6 mRNA expression was down-regulated by dietary DL-HMTBA supplementation compared with the DL-methionine group (P < 0.05). Meanwhile, an upregulated gene expression of claudin-1 and zonula occluden-1 (ZO-1) were observed in the low-TSAA treatment on d 14 (P < 0.05), whereas this treatment increased the expression of IL-1β and IL-6 (P < 0.05). Villus height to crypt depth ratio was high (P < 0.05) in the middle-level TSAA group. Furthermore, DL-HMTBA supplementation optimized the microbiota of the ileum especially the relative abundance of Lactobacillus, where the digestion and absorption were completed, and elevated the concentrations of SCFA (acetate, propionate, and butyrate) in the cecal content on d 21 (P < 0.01). In conclusion, dietary DL-HMTBA supplementation improved the intestinal barrier function, immune homeostasis and optimized the microbiota to promote intestinal health status in broiler chickens.
Collapse
Affiliation(s)
- Lu Gong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | | | | | - Huiping Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiaodan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yizhu Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yimeng Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
9
|
Candebat CL, Eddie T, Marc AF, Fernando F, Nankervis L. Exploring the physiological plasticity of giant grouper (Epinephelus lanceolatus) to dietary sulfur amino acids and taurine to measure dietary requirements and essentiality. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:829-851. [PMID: 37507548 PMCID: PMC10581923 DOI: 10.1007/s10695-023-01222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Giant grouper (Epinephelus lanceolatus) is an economically important yet under-researched species, still reliant on 'trash fish' or generic aquafeeds. The transition toward sustainable formulations is contingent on establishing requirements of target species for limiting nutrients, among which the sulfur amino acids (methionine and cysteine) commonly limit fish growth. Further, there remains significant conjecture around the role of the sulfonic acid taurine in marine aquafeed formulation and its relationship to sulfur amino acids. To develop a species-specific feed formulation for giant grouper, dietary methionine was modulated in a dose-response experiment to achieve five graded levels from 9.5 to 21.5 g/kg, including an additional diet with methionine at 18.6 g/kg supplemented with 8 g/kg taurine. The mean (±SD) cysteine level of the diets was 4.5 ± 0.3 g/kg. Each diet was randomly allocated to triplicate tanks of 14 fish (83.9 ± 8.4 g). The best-fit regression for growth showed that the optimal dietary methionine content was 15.8 g/kg and the total sulfur amino acid content was 20.3 g/kg. Inadequate dietary methionine content triggered physiological responses, including hepatic hyperplasia and hypoplasia at 9.5 and 21.5 g/kg, respectively, and high aspartate transaminase levels at 18.9 g/kg. Moreover, inadequate dietary methionine contents resulted in higher densities of mixed goblet cell mucin and reduced absorptive surface area of posterior intestinal villi. Our results suggest that adequate levels of methionine, but not taurine, improved posterior intestinal conditions and liver homeostasis. These findings may aid in formulating aquafeeds to optimize gastrointestinal and liver functions in juvenile giant grouper.
Collapse
Affiliation(s)
- Caroline Lourdes Candebat
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, QLD, Townsville, 4811 Australia
| | - Thibault Eddie
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, QLD, Townsville, 4811 Australia
| | - Adrien Francois Marc
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, QLD, Townsville, 4811 Australia
| | - Fernando Fernando
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, QLD, Townsville, 4811 Australia
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Leo Nankervis
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Science and Engineering, James Cook University, QLD, Townsville, 4811 Australia
| |
Collapse
|
10
|
Wu X, Li P, Wang W, Xu J, Ai R, Wen Q, Cui B, Zhang F. The Underlying Changes in Serum Metabolic Profiles and Efficacy Prediction in Patients with Extensive Ulcerative Colitis Undergoing Fecal Microbiota Transplantation. Nutrients 2023; 15:3340. [PMID: 37571277 PMCID: PMC10421017 DOI: 10.3390/nu15153340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
(1) Background: Fecal microbiota transplantation (FMT) is an effective treatment for ulcerative colitis (UC). Metabolomic techniques would assist physicians in clinical decision-making. (2) Methods: Patients with active UC undergoing FMT were enrolled in the study and monitored for 3 months. We explored short-term changes in the serum metabolic signatures of groups and the association between baseline serum metabolomic profiles and patient outcomes. (3) Results: Forty-four eligible patients were included in the analysis. Of them, 50.0% and 29.5% achieved clinical response and clinical remission, respectively, 3 months post-FMT. The top two significantly altered pathways in the response group were vitamin B6 metabolism and aminoacyl-tRNA biosynthesis. Both the remission and response groups exhibited an altered and enriched pathway for the biosynthesis of primary bile acid. We found a clear separation between the remission and non-remission groups at baseline, characterized by the higher levels of glycerophosphocholines, glycerophospholipids, and glycerophosphoethanolamines in the remission group. A random forest (RF) classifier was constructed with 20 metabolic markers selected by the Boruta method to predict clinical remission 3 months post-FMT, with an area under the curve of 0.963. (4) Conclusions: FMT effectively induced a response in patients with active UC, with metabolites partially improving post-FMT in the responsive group. A promising role of serum metabolites in the non-invasive prediction of FMT efficacy for UC demonstrated the value of metabolome-informed FMT in managing UC.
Collapse
Affiliation(s)
- Xia Wu
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Pan Li
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Weihong Wang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Jie Xu
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Rujun Ai
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Quan Wen
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Bota Cui
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| | - Faming Zhang
- Department of Microbiota Medicine, Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China; (X.W.); (P.L.); (W.W.); (J.X.); (R.A.); (Q.W.); (B.C.)
- Key Lab of Holistic Integrative Enterology, Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
11
|
Luise D, Chalvon-Demersay T, Correa F, Bosi P, Trevisi P. Review: A systematic review of the effects of functional amino acids on small intestine barrier function and immunity in piglets. Animal 2023; 17 Suppl 2:100771. [PMID: 37003917 DOI: 10.1016/j.animal.2023.100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
The need to reduce the use of antibiotics and zinc oxide at the pharmacological level, while preserving the performance of postweaning piglets, involves finding adequate nutritional strategies which, coupled with other preventive strategies, act to improve the sustainability of the piglet-rearing system. Amino acids (AAs) are the building blocks of proteins; however, they also have many other functions within the body. AA supplementation, above the suggested nutritional requirement for piglets, has been investigated in the diets of postweaning piglets to limit the detrimental consequences occurring during this stressful period. A systematic review was carried out to summarise the effects of AAs on gut barrier function and immunity, two of the parameters contributing to gut health. An initial manual literature search was completed using an organised search strategy on PubMed, utilising the search term " AND ". These searches yielded 302 articles (published before October 2021); 59 were selected. Based on the method for extracting data (synthesis of evidence), this review showed that L-Arginine, L-Glutamine and L-Glutamate are important functional AAs playing major roles in gut morphology and immune functions. Additional benefits of AA supplementation, refereed to a supplementation above the suggested nutritional requirement for piglets, could also be observed; however, data are needed to provide consistent evidence. Taken together, this review showed that supplementation with AAs during the weaning phase supported a plethora of the physiological functions of piglets. In addition, the data reported confirmed that each amino acid targets different parameters related to gut health, suggesting the existence of potential synergies among them.
Collapse
Affiliation(s)
- D Luise
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy.
| | | | - F Correa
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Bosi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
12
|
Ramirez-Camba CD, Levesque CL. The Linear-Logistic Model: A Novel Paradigm for Estimating Dietary Amino Acid Requirements. Animals (Basel) 2023; 13:ani13101708. [PMID: 37238138 DOI: 10.3390/ani13101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to determine whether current methods for estimating AA requirements for animal health and welfare are sufficient. An exploratory data analysis (EDA) was conducted, which involved a review of assumptions underlying AA requirements research, a data mining approach to identify animal responses to dietary AA levels exceeding those for maximum protein retention, and a literature review to assess the physiological relevance of the linear-logistic model developed through the data mining approach. The results showed that AA dietary levels above those for maximum growth resulted in improvements in key physiological responses, and the linear-logistic model depicted the AA level at which growth and protein retention rates were maximized, along with key metabolic functions related to milk yield, litter size, immune response, intestinal permeability, and plasma AA concentrations. The results suggest that current methods based solely on growth and protein retention measurements are insufficient for optimizing key physiological responses associated with health, survival, and reproduction. The linear-logistic model could be used to estimate AA doses that optimize these responses and, potentially, survival rates.
Collapse
Affiliation(s)
- Christian D Ramirez-Camba
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
13
|
Gou W, Zhang D, Gao L. Qingdu decoction can reduce LPS induced ACLF endotoxemia by regulating microRNA-34c/MAZ/TJs and microRNA-122a/Zonulin/EGFR signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115922. [PMID: 36414212 DOI: 10.1016/j.jep.2022.115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qingdu Decoction (QDT) is a traditional Chinese medicine (TCM) that was derived from Xiaochengqi Decoction, a famous decoction documented in the book of Treatise on Exogenous Febrile Disease in the Eastern Han Dynasty. According to our years of clinical application, QDT showed satisfactory efficacy in the treatment of endotoxemia in acute-on-chronic liver failure (ACLF). However, the underlying molecular mechanisms remain largely unknown. AIM OF STUDY In this study, we aimed to systematically evaluate the intervention effect of QDT on endotoxemia in rats and further clarify its potential regulatory mechanism. MATERIALS AND METHODS The rat model of ACLF endotoxemia was induced by TAA and LPS + D-Gal. Then the rats were treated with clinical doses of QDT and lactulose. The rats were divided into four groups: CG, MG, QG and LG. The target microRNA was screened by high-throughput sequencing. The rat weight, liver index, hepatointestinal phenotype, serum biochemical indexes, mast cell activity, and hepatointestinal histopathology were used to evaluate the intervention effect. Western blot analysis was used to detect the expression levels of MAZ and its downstream genes ZO-1 and Occludin, and the expression levels of Zonulin and its downstream gene EGFR in colon. Finally, the expression of the miR-34c, MAZ, ZO-1, Occludin, miR-122a, Zonulin, and EGFR in colon was detected by qRT-PCR to further confirm the mechanism of the miR-34c/MAZ/TJs pathway and the miR-122a/Zonulin/EGFR pathway. RESULTS The rat weight, liver index, liver and colon phenotype, and serum biochemical indexes showed that QDT could significantly reduce liver and intestine injury and inhibit the progress of ACLF and endotoxemia. Toluidine blue staining and cytokine indexes showed that QDT could inhibit the activity of MCs and reduce the release of inflammatory factors. Mechanistically, QDT can inhibit the activity of MCs, activate miR-34c/MAZ/TJs pathway and miR-122a/Zonulin/EGFR pathway in colon, promote the recovery of intestinal barrier homeostasis, reduce and restore the damage of endotoxemia. CONCLUSION Our results suggested that QDT can significantly reduce rat ACLF endotoxemia by regulating the miR-34c/MAZ/TJs pathway and the miR-122a/Zonulin/EGFR pathway in colon.
Collapse
Affiliation(s)
- Wenjing Gou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Di Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Lianyin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
14
|
Isolation and characterization of a novel l-Methionine producer from mahanadi river site in Sambalpur district of Odisha, India. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
15
|
Teng PY, Liu G, Choi J, Yadav S, Wei F, Kim WK. Effects of levels of methionine supplementations in forms of L or DL-methionine on the performance, intestinal development, immune response, and antioxidant system in broilers challenged with Eimeria spp. Poult Sci 2023; 102:102586. [PMID: 36966644 PMCID: PMC10064433 DOI: 10.1016/j.psj.2023.102586] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
The study was conducted to investigate the effects of 2 isoforms of methionine on growth performance and intestinal health induced by methionine (Met) deficiency and Eimeria infection in broilers. A total of 720 one-day old male chicks (Cobb500) were randomly allocated to 10 groups in a 2 × 5 factorial arrangement (6 reps/group, 12 birds/cage) with diets and Eimeria challenge as the main factors. Hundred percent DL-Met, 100% L-Met, 80% DL-Met, and 80% L-Met diets were formulated to meet approximately 100 or 80% of the total sulfur amino acid (TSAA) requirement with DL-Met or L-Met as Met supplementation sources. The 60% TSAA basal diet (60% Met) was formulated without Met supplementation. At d14, the challenge groups were gavaged with mixed Eimeria spp. Growth performance was recorded on d7, 14, 20 (6-day postinfection [DPI]), and 26 (12 DPI). The gut permeability was measured on 5 and 11 DPI. Antioxidant status and gene expression of immune cytokines and tight junction proteins were measured on 6 and 12 DPI. Data were analyzed by 1-way and 2-way ANOVA before and after the challenge, respectively. Orthogonal polynomial contrasts were used for post hoc comparison. Overall, the Eimeria challenge and 60% Met diet significantly reduced growth performance, antioxidant status, and mRNA expression of tight junction genes and immune cytokines. For other Met treatments, the L-Met groups had significantly higher BWG and lower FCR than the DL-Met group from d 1 to 20. The L-Met groups had less gut permeability than the DL-Met groups on 5 DPI. Compared to the 80% Met groups, the 100% Met groups reduced gut permeability. At 6 DPI, the 80% Met groups showed higher ZO1 expression than the 100% Met groups. The challenge groups had higher Muc2 expression and GSH/GSSG compared to the nonchallenge groups, and SOD activity was lower in the L-Met groups compared to the DL-Met groups at 6 DPI. The 100% Met groups had higher GPx activity than the 80% Met groups at 12 DPI. In conclusion, during coccidiosis, the 100% Met groups had better gut integrity and antioxidant status. Met supplementation in the form of L-Met improved growth performance in the starter phase and gut permeability in the challenge phase.
Collapse
Affiliation(s)
- Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Sudhir Yadav
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Fengxian Wei
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
16
|
Koo B, Choi J, Holanda DM, Yang C, Nyachoti CM. Comparative effects of dietary methionine and cysteine supplementation on redox status and intestinal integrity in immunologically challenged-weaned pigs. Amino Acids 2023; 55:139-152. [PMID: 36371728 DOI: 10.1007/s00726-022-03213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022]
Abstract
Sulfur-containing amino acids such as methionine and cysteine play critical roles in immune system and redox status. A body of evidence shows that metabolic aspects of supplemented Met and Cys may differ in the body. Therefore, the study aimed to investigate the effects of dietary Met and Cys supplementation in immunologically challenged weaned pigs. Forty weaned piglets (6.5 ± 0.3 kg) were randomly allocated to five treatment groups. The treatment included: (1) sham-challenged control (SCC), (2) challenged control (CC), (3) MET (CC + 0.1% DL-Met), (4) CYS (CC + 0.1% L-Cys), and (5) MET + CYS (CC + 0.1% DL-Met + 0.1% L-Cys). On day 7, all pigs were intramuscularly injected with either Escherichia coli O55:B5 lipopolysaccharides (LPS) or phosphate-buffered saline. Blood, liver, and jejunum samples were analyzed for immune response and redox status. The CC group had lower (P < 0.05) villus surface area and higher (P < 0.05) flux of 4-kDa fluorescein isothiocyanate dextran (FD4) than the SCC group. A lower (P < 0.05) glutathione (GSH) concentration was observed in the jejunum of pigs in the CC group than those in the SCC group. Dietary Cys supplementation increased (P < 0.05) villus surface area, GSH levels, and reduced (P < 0.05) the flux of FD4 in the jejunum of LPS-challenged pigs. Dietary Met supplementation enhanced (P < 0.05) hepatic GSH content. Pigs challenged with LPS in the MET group had lower serum IL-8 concentration than those in the CC group. There was a Met × Cys interaction (P < 0.05) in serum IL-4 and IL-8 concentrations, and Trolox equivalent antioxidant capacity. Dietary L-Cys supplementation restored intestinal integrity and GSH levels that were damaged by lipopolysaccharides administration. Dietary DL-Met supplementation improved hepatic GSH and reduced systemic inflammatory response, but antagonistic interaction with dietary L-Cys supplementation was observed in the inflammatory response and redox status.
Collapse
Affiliation(s)
- Bonjin Koo
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | | | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | |
Collapse
|
17
|
Liang H, Ji K, Ge X, Zhu J, Ren M, Mi H. Methionine played a positive role in improving the intestinal digestion capacity, anti-inflammatory reaction and oxidation resistance of grass carp, Ctenopharyngodon idella, fry. FISH & SHELLFISH IMMUNOLOGY 2022; 128:389-397. [PMID: 35940539 DOI: 10.1016/j.fsi.2022.07.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
A study was carried out to appraisal the function of methionine on intestinal digestion and the health of grass carp (Ctenopharyngodon idella) fry (initial weight 0.36 ± 0.01 g). The fry were fed graded dietary methionine levels (0.33%-1.20% dry matter) in 18 recirculatory tanks (180 L). After an 8-week breeding experiment, the results revealed that 0.71%-1.20% dietary methionine levels markedly upregulated the mRNA levels of intestinal digestion including trypsin, amylase, chymotrypsin and AKP, and 0.71%-0.87% dietary methionine level significantly increased intestinal trypsin activities compared with the 0.33% dietary methionine level. For inflammation, 0.71%-1.20% dietary methionine levels downregulated the mRNA levels of NF-κBp65, IL-1β, IL-6, IL-8, IL-15 and IL-17D, whereas upregulated the mRNA levels of anti-inflammatory cytokines, including IL-4/13B, IL-10 and IL-11. In terms of antioxidants, although dietary methionine levels had no significant effect on the expression of most core genes of the Nrf2/ARE signaling pathway, such as Nrf2, Keap 1, GPx4, CAT, Cu/Zn-SOD. Furthermore, dietary methionine levels had no significant effect on the expression of p38MAPK, IL-12p35, TGF-β2 and IL-4/13A. 0.71%-1.20% dietary methionine levels still increased the mRNA levels of GPx1α, GSTR and GSTP1. Furthermore, higher intestinal catalase activity and glutathione contents were also observed in fry fed 0.71%-1.20% diets. In summary, 0.71%-1.20% dietary methionine levels played a positive role in improving the intestinal digestion capacity of digestion, anti-inflammatory reaction and oxidation resistance of grass carp fry. This study provided a theoretical basis for improving the survival rate and growth of grass carp fry.
Collapse
Affiliation(s)
- Hualiang Liang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Ke Ji
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Xianping Ge
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Mingchun Ren
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
| | - Haifeng Mi
- Tongwei Co, Ltd, Healthy Aquaculture Key Laboratory of Sichuan Province, Chengdu, 610093, China.
| |
Collapse
|
18
|
Zhao F, Wang C, Song S, Fang C, Kristiansen K, Li C. Intake of a Chicken Protein-Based or Soy Protein-Based Diet Differentially Affects Growth Performance, Absorptive Capacity, and Gut Microbiota in Young Rats. Mol Nutr Food Res 2022; 66:e2101124. [PMID: 35583811 DOI: 10.1002/mnfr.202101124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/12/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Both plant and animal products provide protein for human demands. However, the effect of protein sources on the physiological responses and the composition and functions of the gut microbiota during the early stage of life have received little attention. METHODS AND RESULTS In the present study, chicken protein and soy protein are fed to young weaning rats for 14 days based on the AIN-93G diet formulation. The growth performance is recorded, and the morphology of the small intestine is analyzed to estimate the absorptive capacity. Shotgun metagenomic sequencing is applied to analyze the cecal microbiota. The chicken protein-based diet (CHPD) enhances growth performance and absorptive capacity in young rats compared to the soy protein-based diet (SPD). The CHPD maintains higher levels of Lactobacillus species, associated with glutathione synthesis. CONCLUSION The CHPD seems favorable for young growing rats in relation to growth performance and absorptive capacity, correlated with changes in the composition and functional potential of the gut microbiota.
Collapse
Affiliation(s)
- Fan Zhao
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Chong Wang
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark.,Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Shangxin Song
- School of Food Science, Nanjing Xiaozhuang University, 3601 Hongjing Road, Nanjing, 211171, P. R. China
| | - Chao Fang
- BGI-Shenzhen, Shenzhen, 518083, P. R. China
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark.,BGI-Shenzhen, Shenzhen, 518083, P. R. China.,Institute of Metagenomics, Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, Qingdao, 166555, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Centre of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| |
Collapse
|
19
|
Sarsour A, Persia M. Effects of Sulfur amino acid supplementation on Broiler Chickens Exposed to Acute and Chronic Cyclic Heat Stress. Poult Sci 2022; 101:101952. [PMID: 35688032 PMCID: PMC9189208 DOI: 10.1016/j.psj.2022.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic heat stress can result in oxidative damage from increased reactive oxygen species. One proposed method to alleviate the chronic effects of HS is the supplementation of sulfur amino acids (SAA) which can be metabolized to glutathione, an important antioxidant. Therefore, the objective of this experiment was to determine the effects of dietary SAA content on broiler chickens exposed to HS from 28 to 35 d on broiler performance, body temperature, intestinal permeability, and oxidative status. Four experimental treatments were arranged as a 2 × 2 factorial consisting of HS (6 h at 33.3°C followed by 18 h at 27.8°C from 28 to 35 d of age) and Thermoneutral (TN- 22.2°C continuously from 28 to 35 d) and 2 dietary concentrations of SAA formulated at 100% (0.95, 0.87, and 0.80% for starter, grower, and finisher diets) or 130% SAA (1.24, 1.13, and 1.04% for starter, grower, and finisher diets). A total of 648-day-old, male Ross 708 chicks were placed in 36 pens with 18 chicks/pen and 9 replicates per treatment. Data were analyzed as a 2 × 2 factorial in JMP 14 (P ≤ 0.05). No interaction effects were observed on broiler live performance (P > 0.05). As expected, HS reduced BWG by 92 g and increased FCR by 11 points from 28 to 35 d of age compared to TN, respectively (P ≤ 0.05). The supplementation of SAA had no effect on live performance (P > 0.05). Cloacal temperatures were increased by 1.7, 1.4, and 1.2°C with HS at 28, 31, and 35 d compared to TN, respectively (P ≤ 0.05) and dietary SAA did not alter cloacal temperatures. At 28 d of age, supplementation of SAA to birds exposed to HS interacted as serum FITC-dextran (an indicator of intestinal permeability) was reduced to that of the TN group (P ≤ 0.05). The interaction was lost at 31 d, but HS still increased intestinal permeability (P ≤ 0.05). By 35 d, broilers were able to adapt to the HS conditions and intestinal permeability was unaffected (P > 0.05). Potential oxidative damage was reduced by increased SAA supplementation as indicated by an improvement in the reduced glutathione to oxidized glutathione ratio of 5 and 45 % at 28 (P = 0.08) and 35 d (P ≤ 0.05). These data suggest that intestinal permeability is compromised initially and to at least three d of heat exposure before the bird can adjust. However, oxidative damage in the liver of broilers exposed to HS is more chronic, building over the entire 7 d HS period and increased dietary SAA might have some protective effects on both broiler intestinal permeability and oxidative stress responses to HS.
Collapse
|
20
|
Liu Y, Wang D, Zhao L, Zhang J, Huang S, Ma Q. Effect of Methionine Deficiency on the Growth Performance, Serum Amino Acids Concentrations, Gut Microbiota and Subsequent Laying Performance of Layer Chicks. Front Vet Sci 2022; 9:878107. [PMID: 35548049 PMCID: PMC9083200 DOI: 10.3389/fvets.2022.878107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/31/2022] [Indexed: 11/24/2022] Open
Abstract
This study was conducted to investigate the effect of methionine (Met) deficiency in the rearing period on the growth performance, amino acids metabolism, intestinal development and gut microbiome of egg-laying chicks and the continuous effects on the performance, egg quality, and serum amino acids metabolism of the subsequent development process. Three hundred sixty one-day-old chicks were randomly divided into two groups and fed on a basal diet (NC group, Met 0.46%) and Met deficiency diet (Met- group, Met 0.27%). Each group included six replicates with 30 chicks per replicate. The trial lasted 6 weeks (0–6 weeks), both groups were fed the same basal diet which met the needs of Met during the observation period (7–24 weeks). Results showed that Met deficiency significantly decreased (P < 0.05) body weight (BW), average daily weight gain (ADG), average daily feed intake (ADFI) and tibia length (TL) compared to the NC group during the trial period (0–6 weeks). Also, Met deficiency dramatically increased (P < 0.05) feed conversion ratio (FCR) during the trial and observation period (7–24 weeks). In addition, during the observation period, the BW and ADG were decreased (P < 0.05) in the Met- group. Moreover, Met- group decreased (P < 0.05) villi height and villi height/crypt depth ratio in jejunum at 6th weeks. In addition, the concentrations of serum main free amino acids (FAA) in the Met- group were significantly increased (P < 0.05) at 6th weeks, while were decreased at 16th weeks. Based on the α-diversity and PCoA analysis in β-diversity, there were no significant differences in the cecal microbial composition between NC and Met- groups. However, the LEfSe analysis revealed that differential genera were enriched in the NC or Met- groups. The Haugh unit, shell thickness and egg production in the Met- group were significantly lower (P < 0.05) than in the NC group. In conclusion, these results revealed that dietary supplementation of appropriate Met could substantially improve the growth performance, host amino acid metabolism and intestinal development and continuously improve the laying performance and thus boost the health of growing hens.
Collapse
|
21
|
Watanabe T, Takada S, Onozato M, Fukushima T, Mizuta R. The difference of chows affects mouse physiological conditions. J Vet Med Sci 2022; 84:582-584. [PMID: 35173100 PMCID: PMC9096044 DOI: 10.1292/jvms.21-0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acetaminophen-induced liver injury in mice is a model system of human acetaminophen
overdose and oxidative stress in vivo. The system is technically
established, and we usually obtain severe liver damage in the treated mice; however, it is
possible that the degree of liver damage is affected by the type of chow fed to mice.
Thus, in this experiment, we investigated the effect of different chows on mice by
comparing acetaminophen-induced liver damage, liver antioxidant level, and serum
amino-acid concentrations. The results showed that differences in chows, even standard
ones, affected mouse physiological conditions, with the response to oxidative stress
greatly affected.
Collapse
Affiliation(s)
- Taiki Watanabe
- Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Shuhei Takada
- Research Institute for Biomedical Sciences, Tokyo University of Science
| | - Mayu Onozato
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University
| | - Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University
| | - Ryushin Mizuta
- Research Institute for Biomedical Sciences, Tokyo University of Science
| |
Collapse
|
22
|
Li XY, Tan ZJ. Modern biological connotation of diarrhea with kidney-Yang deficiency syndrome. Shijie Huaren Xiaohua Zazhi 2022; 30:119-127. [DOI: 10.11569/wcjd.v30.i3.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kidney-Yang deficiency syndrome, a common traditional Chinese medicine syndrome of diarrhea, has a complex pathogenesis. This paper explores the mechanisms of the development of diarrhea with kidney-Yang deficiency syndrome from three aspects: Gut flora, signaling pathway, and molecules related to the "kidney-gut axis", and tries to identify biomarkers for diarrhea with kidney-Yang deficiency syndrome. It is of great significance to reveal the modern biological connotation of diarrhea with kidney-Yang deficiency syndrome, which can promote the subsequent clinical targeted therapy.
Collapse
Affiliation(s)
- Xiao-Ya Li
- Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Zhou-Jin Tan
- Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
23
|
Rodrigues LA, Wellington MO, González-Vega JC, Htoo JK, Van Kessel AG, Columbus DA. Ileal alkaline phosphatase is upregulated following functional amino acid supplementation in Salmonella Typhimurium-challenged pigs. J Anim Sci 2021; 100:6485855. [PMID: 34962518 PMCID: PMC8846338 DOI: 10.1093/jas/skab376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022] Open
Abstract
We recently showed that functional amino acid (FAA) supplementation improves growth performance and immune status of Salmonella Typhimurium (ST)-challenged pigs, which was further improved by a longer adaptation period. It is expected that the effects are associated with increased activity of intestinal alkaline phosphatase (IAP). The objective of this study was to evaluate the effects of FAA supplementation and adaptation period on the ileal, cecal, and colonic activity of IAP in weaned pigs challenged with ST. In experiment 1, a total of 32 mixed-sex weanling pigs were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement with low (LP) or high protein (HP) content and basal (FAA-) or FAA profile (FAA+; Thr, Met, and Trp at 120% of requirements) as factors. In experiment 2, a total of 32 mixed-sex weanling pigs were randomly assigned to one of four dietary treatments, being FAA- fed throughout the experimental period (FAA-) or an FAA profile fed only in the post-inoculation (FAA + 0), for 1 wk pre- and post-inoculation (FAA + 1), or throughout the experimental period (FAA + 2). In experiments 1 and 2, after a 7- and 14-d adaptation period, respectively, pigs were inoculated with saline solution containing ST (3.3 and 2.2 × 109 CFU/mL, respectively). Plasma alkaline phosphatase was measured on days 0 and 7 post-inoculation in experiment 1, and IAP (ileum, cecum, and colon) was measured in experiments 1 and 2. Correlations among ileal IAP and serum albumin and haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), and reduced:oxidized glutathione, ileal myeloperoxidase, ST shedding and ileal colonization, and post-inoculation average daily gain, feed intake (ADFI), and gain:feed were also analyzed. In experiment 1, plasma alkaline phosphatase was decreased with ST inoculation and the overall content was increased in LP-FAA+ compared with LP-FAA- (P < 0.05). Moreover, ileal IAP was increased in FAA+ compared with FAA- pigs in both studies (P < 0.05) regardless of adaptation time (P > 0.05). IAP was positively correlated with MDA and ADFI and negatively correlated with SOD and ST shedding in experiment 1 (P < 0.05). These results demonstrate a positive effect of FAA supplementation, but not adaptation period, on ileal alkaline phosphatase activity in Salmonella-challenged pigs, which may be associated with improvements in antioxidant balance.
Collapse
Affiliation(s)
- Lucas A Rodrigues
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Michael O Wellington
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | | | - John K Htoo
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | - Andrew G Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., Saskatoon, SK S7H 5N9, Canada,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada,Corresponding author:
| |
Collapse
|
24
|
Ma M, Geng S, Liu M, Zhao L, Zhang J, Huang S, Ma Q. Effects of Different Methionine Levels in Low Protein Diets on Production Performance, Reproductive System, Metabolism, and Gut Microbiota in Laying Hens. Front Nutr 2021; 8:739676. [PMID: 34692750 PMCID: PMC8526799 DOI: 10.3389/fnut.2021.739676] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
This study investigated the effects of different levels of methionine (Met) in a low protein diet on the production performance, reproductive system, metabolism, and gut microbial composition of laying hens to reveal the underlying molecular mechanism of Met in a low protein diet on the host metabolism and gut microbial composition and function of hens. A total of 360 healthy 38-week-old Peking Pink laying hens with similar body conditions and egg production (EP) were randomly divided into four groups with nine replicates per treatment and 10 hens per replicate. The hens in each treatment group were fed low protein diets containing different levels of Met (0.25, 0.31, 0.38, and 0.47%, respectively) for 12 weeks. Feed and water were provided ad libitum throughout the trial period. The results showed that, compared with the 0.25% Met group, the final body weight (FBW), average daily gain (ADG), EP, egg weight (EW), and average daily feed intake (ADFI) in the other groups were significantly increased and feed egg ratio (FER) was decreased. Meanwhile, the EW and yield of abdominal fat (AFY) in the 0.47% Met group were higher than those in other groups. The triglyceride (TG), estradiol (E2), total protein (TP), albumin (ALB), and immunoglobulin A (IgA) in the 0.38 and 0.47% Met groups were higher than those in other groups. In addition, 16S rRNA gene sequencing revealed that there was no difference in the Sobs index, ACE index, and Shannon index among all groups. However, it is worth noting that feeding low protein diets with Met changed the gut microbial composition (e.g., the supplementation of Met increased the level of Lactobacillus and decreased the proportion of Faecalibacterium). Also, our results showed that the changes in gut microbial composition induced by the diets with different levels of Met were closely related to the changes of key parameters: ADFI, EW, FBW, TG, EM, EP, ADG, FER, and uric acid (UA). Our results highlight the role of adding an appropriate amount of Met to the low protein diet in laying hens, which could improve the gut microbial composition, production performance, reproductive system, and nutrient metabolism of laying hens. In conclusion, this study suggested that when the Met level was 0.38%, the production performance of the laying hens was pretty good.
Collapse
Affiliation(s)
- Miaolin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shunju Geng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Meiling Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Heritability and genetic correlations of plasma metabolites of pigs with production, resilience and carcass traits under natural polymicrobial disease challenge. Sci Rep 2021; 11:20628. [PMID: 34667249 PMCID: PMC8526711 DOI: 10.1038/s41598-021-99778-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
Metabolites in plasma of healthy nursery pigs were quantified using nuclear magnetic resonance. Heritabilities of metabolite concentration were estimated along with their phenotypic and genetic correlations with performance, resilience, and carcass traits in growing pigs exposed to a natural polymicrobial disease challenge. Variance components were estimated by GBLUP. Heritability estimates were low to moderate (0.11 ± 0.08 to 0.19 ± 0.08) for 14 metabolites, moderate to high (0.22 ± 0.09 to 0.39 ± 0.08) for 17 metabolites, and highest for l-glutamic acid (0.41 ± 0.09) and hypoxanthine (0.42 ± 0.08). Phenotypic correlation estimates of plasma metabolites with performance and carcass traits were generally very low. Significant genetic correlation estimates with performance and carcass traits were found for several measures of growth and feed intake. Interestingly the plasma concentration of oxoglutarate was genetically negatively correlated with treatments received across the challenge nursery and finisher (− 0.49 ± 0.28; P < 0.05) and creatinine was positively correlated with mortality in the challenge nursery (0.85 ± 0.76; P < 0.05). These results suggest that some plasma metabolite phenotypes collected from healthy nursery pigs are moderately heritable and genetic correlations with measures of performance and resilience after disease challenge suggest they may be potential genetic indicators of disease resilience.
Collapse
|
26
|
Gebeyew K, Yang C, He Z, Tan Z. Low-protein diets supplemented with methionine and lysine alter the gut microbiota composition and improve the immune status of growing lambs. Appl Microbiol Biotechnol 2021; 105:8393-8410. [PMID: 34617138 DOI: 10.1007/s00253-021-11620-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Feeding low-protein (LP) diets with essential amino acids could be an effective strategy for ruminants from economic, health and environmental perspectives. This study was conducted to investigate the effects of rumen-protected methionine and lysine (RML) in the LP diet on growth performance, innate immunity, and gut health of growing lambs. After 15 days of adaption, sixty-three male Hulunbuir lambs aged approximately 4 months were allotted to three dietary groups and each group had three pens with seven lambs for 60 days. The dietary treatments were as follows: a normal protein diet (14.5% CP, positive control; NP), LP diet (12.5% CP, negative control; LP), and LP diet with RML (12.5% CP, LP + RML). Lambs fed with LP + RML diet showed improved villus architecture and gut barrier function than those fed with the other two diets. The mRNA expressions of interleukin-1β, tumor necrosis factor-α, interferon-γ, toll-like receptor-4, and myeloid differentiation primary response 88 were downregulated in most regions of the intestinal segments by feeding the LP + RML diet. Compared with the NP diet, feeding lambs with the LP diet increased the abundance of Candidatus_Saccharimonas in all regions of the intestinal tract and reversed by feeding the LP + RML diet. Lambs in the LP + RML diet group had lower abundance of Erysipelotrichaceae_UCG-009 and Clostridium_sensu_stricto_1 than those in the LP diet group. The results showed that supplementing RML in the LP diet exhibited beneficial effects on host immune function, intestinal mucosal integrity, and microbiota composition. KEY POINTS: • Adding methionine and lysine in a low-protein diet improve the intestinal mucosal growth and integrity. • Feeding a low-protein diet with methionine and lysine enhance the innate immune status. • Adding methionine and lysine in a low-protein diet alter the intestinal microbiota composition.
Collapse
Affiliation(s)
- Kefyalew Gebeyew
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Chao Yang
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhixiong He
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China.
- University of Chinese Academy of Science, Beijing, 100049, China.
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China.
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, 410128, Hunan, China
| |
Collapse
|
27
|
Long-Term Recovery of the Fecal Microbiome and Metabolome of Dogs with Steroid-Responsive Enteropathy. Animals (Basel) 2021; 11:ani11092498. [PMID: 34573464 PMCID: PMC8468387 DOI: 10.3390/ani11092498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 01/02/2023] Open
Abstract
The long-term impact of treatment of dogs with steroid-responsive enteropathy (SRE) on the fecal microbiome and metabolome has not been investigated. Therefore, this study aimed to evaluate the fecal microbiome and metabolome of dogs with SRE before, during, and following treatment with standard immunosuppressive therapy and an elimination diet. We retrospectively selected samples from 9 dogs with SRE enrolled in a previous clinical trial, which received treatment for 8 weeks, and had achieved remission as indicated by the post-treatment clinical scores. Long-term (1 year) samples were obtained from a subset (5/9) of dogs. Samples from 13 healthy dogs were included as controls (HC). We evaluated the microbiome using 16S rRNA sequencing and qPCR. To evaluate the recovery of gut function, we measured fecal metabolites using an untargeted approach. While improvement was observed for some bacterial taxa after 8 weeks of treatment, several bacterial taxa remained significantly different from HC. Seventy-five metabolites were altered in dogs with SRE, including increased fecal amino acids and vitamins, suggesting malabsorption as a component of SRE. One year after treatment, however, all bacterial species were evaluated by qPCR and 16S rRNA gene sequencing, and all but thirteen metabolites were no longer different from healthy controls.
Collapse
|
28
|
Banton S, Pezzali JG, Verbrugghe A, Bakovic M, Wood KM, Shoveller AK. Addition of dietary methionine but not dietary taurine or methyl donors/receivers to a grain-free diet increases postprandial homocysteine concentrations in adult dogs. J Anim Sci 2021; 99:6333283. [PMID: 34333630 DOI: 10.1093/jas/skab223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 07/29/2021] [Indexed: 11/14/2022] Open
Abstract
Grain based ingredients are replaced in part by pulse ingredients in grain-free pet foods. Pulse ingredients are lower in methionine and cysteine, amino acid (AA) precursors to taurine synthesis in dogs. While recent work has investigated plasma and whole blood taurine concentrations when feeding grain-free diets, supplementation of a grain-free diet with various nutrients involved in the biosynthesis of taurine has not been evaluated. This study aimed to investigate the effects of supplementing a complete grain-free dry dog food with either methionine (MET), taurine (TAU), or methyl donors (choline) and methyl receivers (creatine and carnitine; CCC) on postprandial AA concentrations. Eight healthy Beagle dogs were fed 1 of 3 treatments or the control grain-free diet (CON) for 7 d in a 4 × 4 Latin square design. On d7, cephalic catheters were placed and one fasted sample (0 min) and a series of 9 post-meal blood samples were collected at 15, 30, 60, 90, 120, 180, 240, 300 and 360 min. Data were analyzed as repeated measures using the PROC GLIMMIX function in SAS (Version 9.4). Dogs fed MET had greater plasma and whole blood methionine concentrations from 30 - 360 min after a meal (P < 0.0001) and greater plasma homocysteine concentrations from 60 - 360 min after a meal (P < 0.0001) compared to dogs fed CON, TAU and CCC. Dogs fed TAU had greater plasma taurine concentrations over time compared to dogs fed CON (P = 0.02), but were not different than dogs fed MET and CCC (P > 0.05). In addition, most AA remained significantly elevated at 6 h post-meal compared to fasted samples across all treatments. Supplementation of creatine, carnitine and choline in grain-free diets may play a role in sparing the methionine requirement without increasing homocysteine concentrations. Supplementing these nutrients could also aid in the treatment of disease that causes metabolic or oxidative stress, including cardiac disease in dogs, but future research is required.
Collapse
Affiliation(s)
- Sydney Banton
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Júlia G Pezzali
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Adronie Verbrugghe
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Katie M Wood
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Anna K Shoveller
- Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
29
|
Zhou H, Yuan Z, Chen D, Wang H, Shu Y, Gao J, Htoo JK, Yu B. Bioavailability of the dl-methionine and the calcium salt of dl-methionine hydroxy analog compared with l-methionine for nitrogen retention in starter pigs. J Anim Sci 2021; 99:6270939. [PMID: 33956968 DOI: 10.1093/jas/skab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/04/2021] [Indexed: 01/28/2023] Open
Abstract
Two nitrogen balance studies were conducted to evaluate the relative bioavailability values (RBV) of dl-methionine (dl-Met) and dl-methionine hydroxy analog calcium salt (MHA-Ca) to l-methionine (l-Met) as Met sources fed to pigs. In experiment 1, 42 pigs were assigned to 7 treatments feeding with basal diet (BD) formulated to be deficient in Met (0.22% standardized ileal digestible basis) but adequate in other amino acids. Diets included (1) BD, (2) BD + 0.025% dl-Met, (3) BD + 0.050% dl-Met, (4) BD + 0.075% dl-Met, (5) BD + 0.025% l-Met, (6) BD + 0.050% l-Met, and (7) BD + 0.075% l-Met. Increasing levels of l-Met and dl-Met enhanced N retained (g/d) and N retention (% of intake) linearly (P < 0.01). Using a linear slope ratio procedure, a product-to-product RBV of dl-Met compared with l-Met was 94% (95% confidence limits: 65% to 123%) based on N retained expressed as g/d and 99% (95% confidence limits: 70% to 128%) for N retention expressed as % of intake. In experiment 2, 42 pigs were allotted to 7 treatments in another N-balance trial. Diets included (1) BD, (2) BD + 0.025% l-Met, (3) BD + 0.050% l-Met, (4) BD + 0.075% l-Met, (5) BD + 0.030% MHA-Ca, (6) BD + 0.060% MHA-Ca, and (7) BD + 0.089% MHA-Ca. An increase in dietary inclusion rates of l-Met increased (P < 0.01) N retained (g/d) linearly while increasing levels of MHA-Ca had no effects (P > 0.05) on N retained (g/d) and N retention (% of intake). Using linear slope-ratio regression, the RBV of MHA-Ca compared with l-Met was 70% (95% confidence limits: 59% to 81%) on a product-to-product basis or 83% on equimolar basis based on N retained expressed as g/d. Overall, the mean RBV of dl-Met to l-Met of 97% (95% confidence limits cover 100%) indicated that dl-Met and l-Met are equally bioavailable as Met sources in pigs. Compared with l-Met, the RBV of MHA-Ca was lower at 70% (95% confidence limits: 59% to 81%) on a product-to-product basis or 83% on equimolar basis in starter pigs.
Collapse
Affiliation(s)
- Hua Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengcai Yuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Huifeng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Shu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Gao
- Nutrition & Care, Evonik (China) Co., Ltd. Beijing 100026, China
| | - John Khun Htoo
- Evonik Operations GmbH, Rodenbacher Chaussee 4, Hanau-Wolfgang 63457, Germany
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
30
|
Chalvon-Demersay T, Luise D, Le Floc'h N, Tesseraud S, Lambert W, Bosi P, Trevisi P, Beaumont M, Corrent E. Functional Amino Acids in Pigs and Chickens: Implication for Gut Health. Front Vet Sci 2021; 8:663727. [PMID: 34113671 PMCID: PMC8185281 DOI: 10.3389/fvets.2021.663727] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
In pigs and broiler chickens, the gastrointestinal tract or gut is subjected to many challenges which alter performance, animal health, welfare and livability. Preventive strategies are needed to mitigate the impacts of these challenges on gut health while reducing the need to use antimicrobials. In the first part of the review, we propose a common definition of gut health for pig and chickens relying on four pillars, which correspond to the main functions of the digestive tract: (i) epithelial barrier and digestion, (ii) immune fitness, (iii) microbiota balance and (iv) oxidative stress homeostasis. For each pillar, we describe the most commonly associated indicators. In the second part of the review, we present the potential of functional amino acid supplementation to preserve and improve gut health in piglets and chickens. We highlight that amino acid supplementation strategies, based on their roles as precursors of energy and functional molecules, as signaling molecules and as microbiota modulators can positively contribute to gut health by supporting or restoring its four intertwined pillars. Additional work is still needed in order to determine the effective dose of supplementation and mode of administration that ensure the full benefits of amino acids. For this purpose, synergy between amino acids, effects of amino acid-derived metabolites and differences in the metabolic fate between free and protein-bound amino acids are research topics that need to be furtherly investigated.
Collapse
Affiliation(s)
| | - Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | | | | | | | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Martin Beaumont
- GenPhySE, Université De Toulouse, INRAE, ENVT, Toulouse, France
| | | |
Collapse
|
31
|
Miao ZQ, Dong YY, Qin X, Yuan JM, Han MM, Zhang KK, Shi SR, Song XY, Zhang JZ, Li JH. Dietary supplementation of methionine mitigates oxidative stress in broilers under high stocking density. Poult Sci 2021; 100:101231. [PMID: 34217142 PMCID: PMC8258695 DOI: 10.1016/j.psj.2021.101231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 11/29/2022] Open
Abstract
We aimed to investigate whether dietary supplementation of methionine could mitigate intestinal oxidative injury in broilers under high stocking density (HSD). In the grower phase (d 22–42), 576 broilers with similar body weight were randomly chosen and divided into 8 groups in a 2 × 4 factorial experiment. Two different stocking densities (14 and 20 broilers per m2) were tested with 4 different methionine levels: 0.35%, 0.4%, 0.45%, or 0.5%. Intestinal morphological and oxidative stress markers were assessed at the end of the test period. The results showed that mortality of broilers was significantly higher in the HSD group fed 0.35% methionine diet than the other groups, which was reversed by supplementation with 0.40% to 0.50% methionine. HSD significantly decreased feed intake and daily weight gain. HSD treatment significantly decreased T-AOC, activity of GPX (P < 0.01) and increased the level of PCO (P < 0.01), MDA (P = 0.052) of plasma. The decreased glutathione peroxidase activity in the liver and jejunum caused by HSD was alleviated by additional methionine. Supplementation of methionine increased the ration of GSH/GSSG in the plasma. The jejunum villus height and ratio of villus height to crypt depth under low stocking density conditions with 0.40% methionine diet were the highest, whereas the 0.45% methionine group was the highest under HSD conditions. Thus, additional dietary supplementation of methionine mitigates oxidative stress in broilers under HSD conditions and 0.40% to 0.45% methionine can be applied in cage rearing broiler production for amelioration of oxidative stress caused by HSD.
Collapse
Affiliation(s)
- Z Q Miao
- Shanxi Agricultural University College of Animal Science, Tai Gu Shan Xi 030801, China
| | - Y Y Dong
- Shanxi Agricultural University College of Animal Science, Tai Gu Shan Xi 030801, China
| | - X Qin
- Shanxi Agricultural University College of Animal Science, Tai Gu Shan Xi 030801, China
| | - J M Yuan
- China Agricultural University College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, Beijing, China, 100193
| | - M M Han
- Shanxi Agricultural University College of Animal Science, Tai Gu Shan Xi 030801, China
| | - K K Zhang
- Shanxi Agricultural University College of Animal Science, Tai Gu Shan Xi 030801, China
| | - S R Shi
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, Jiangsu, 225125, China
| | - X Y Song
- Shanxi Agricultural University College of Animal Science, Tai Gu Shan Xi 030801, China
| | - J Z Zhang
- Shanxi Agricultural University College of Animal Science, Tai Gu Shan Xi 030801, China
| | - J H Li
- Shanxi Agricultural University College of Animal Science, Tai Gu Shan Xi 030801, China.
| |
Collapse
|
32
|
Rodrigues LA, Wellington MO, González-Vega JC, Htoo JK, Van Kessel AG, Columbus DA. A longer adaptation period to a functional amino acid-supplemented diet improves growth performance and immune status of Salmonella Typhimurium-challenged pigs. J Anim Sci 2021; 99:skab146. [PMID: 33955450 PMCID: PMC8153703 DOI: 10.1093/jas/skab146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/29/2021] [Indexed: 01/02/2023] Open
Abstract
We recently showed that dietary supplementation with key functional amino acids (FAA) improves growth performance and immune status of Salmonella Typhimurium (ST)-challenged pigs. It is not known if ST-challenged pigs will benefit from a longer adaptation period to FAA. The objective of this study was to evaluate the effects of different adaptation periods to diets containing FAA above requirements for growth on performance and immune response of weaned pigs subsequently challenged with ST. A total of 32 mixed-sex weanling pigs (11.6 ± 0.3 kg) were randomly assigned to 1 of 4 dietary treatments, being a basal amino acid (AA) profile fed throughout the experimental period (FAA-) or a functional AA profile (FAA+; Thr, Met, and Trp at 120% of requirements) fed only in the postinoculation (FAA+0), for 1 wk pre- and postinoculation (FAA+1), or throughout the experimental period (FAA+2). After a 14-d adaptation period, pigs were inoculated with ST (2.15 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, score for ST shedding in feces and intestinal colonization, and fecal and digesta myeloperoxidase (MPO) were measured pre- and postinoculation. Postinoculation body temperature and fecal score, serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), and fecal MPO were increased while serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) were reduced compared to pre-inoculation (P < 0.05). Average daily gain and G:F were greater in FAA+2 pigs compared to FAA- pigs (P < 0.05). Serum albumin was higher in FAA+2 and FAA+1 compared to FAA+0 and FAA- pigs (P < 0.05) while FAA+2 pigs had lower haptoglobin compared to FAA- (P < 0.05). Plasma SOD was increased and GSH:GSSG was decreased in FAA- pigs compared to the other treatments (P < 0.05). Score for ST shedding in feces was progressively lower from d 1 to 6 regardless of treatment (P < 0.05) and was lower in FAA+2 pigs compared to FAA- and FAA+0 (P < 0.05). Counts of ST in colon digesta were higher in FAA- and FAA+0 pigs compared to FAA+2 (P < 0.05). Fecal and colonic digesta MPO were lower in FAA+2 and FAA+1 pigs compared to FAA- (P < 0.05). These results demonstrate a positive effect of a longer adaptation period to FAA-supplemented diets on performance and immune status of weaned pigs challenged with Salmonella.
Collapse
Affiliation(s)
- Lucas A Rodrigues
- Prairie Swine Centre, Inc., S7H 5N9, Saskatoon,Canada
- Department of Animal and Poultry Science, University of Saskatchewan, S7N 5A8, Saskatoon,Canada
| | - Michael O Wellington
- Prairie Swine Centre, Inc., S7H 5N9, Saskatoon,Canada
- Department of Animal and Poultry Science, University of Saskatchewan, S7N 5A8, Saskatoon,Canada
| | | | - John K Htoo
- Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Germany
| | - Andrew G Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, S7N 5A8, Saskatoon,Canada
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., S7H 5N9, Saskatoon,Canada
- Department of Animal and Poultry Science, University of Saskatchewan, S7N 5A8, Saskatoon,Canada
| |
Collapse
|
33
|
Invited Review: Maintain or Improve Piglet Gut Health around Weanling: The Fundamental Effects of Dietary Amino Acids. Animals (Basel) 2021; 11:ani11041110. [PMID: 33924356 PMCID: PMC8069201 DOI: 10.3390/ani11041110] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/31/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022] Open
Abstract
Gut health has significant implications for swine nutrient utilization and overall health. The basic gut morphology and its luminal microbiota play determinant roles for maintaining gut health and functions. Amino acids (AA), a group of essential nutrients for pigs, are not only obligatory for maintaining gut mucosal mass and integrity, but also for supporting the growth of luminal microbiota. This review summarized the up-to-date knowledge concerning the effects of dietary AA supplementation on the gut health of weanling piglets. For instance, threonine, arginine, glutamine, methionine and cysteine are beneficial to gut mucosal immunity and barrier function. Glutamine, arginine, threonine, methionine and cysteine can also assist with relieving the post-weaning stress of young piglets by improving gut immunological functions, antioxidant capacity, and/or anti-inflammatory ability. Glutamine, glutamate, glycine and cysteine can assist to reconstruct the gut structure after its damage and reverse its dysfunction. Furthermore, methionine, lysine, threonine, and glutamate play key roles in affecting bacteria growth in the lumen. Overall, the previous studies with different AA showed both similar and different effects on the gut health, but how to take advantages of all these effects for field application is not clear. It is uncertain whether these AA effects are synergetic or antagonistic. The interactions between the effects of non-nutrient feed additives and the fundamental effects of AA warrant further investigation. Considering the global push to minimize the antibiotics and ZnO usage in swine production, a primary effort at present may be made to explore the specific effects of individual AA, and then the concert effects of multiple AA, on the profile and functions of gut microbiota in young pigs.
Collapse
|
34
|
Rodrigues LA, Wellington MO, González-Vega JC, Htoo JK, Van Kessel AG, Columbus DA. Functional amino acid supplementation, regardless of dietary protein content, improves growth performance and immune status of weaned pigs challenged with Salmonella Typhimurium. J Anim Sci 2021; 99:6126666. [PMID: 33529342 DOI: 10.1093/jas/skaa365] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
High dietary protein may increase susceptibility of weaned pigs to enteric pathogens. Dietary supplementation with functional amino acids (FAA) may improve growth performance of pigs during disease challenge. The objective of this study was to evaluate the interactive effects of dietary protein content and FAA supplementation above requirements for growth on performance and immune response of weaned pigs challenged with Salmonella. Sixty-four mixed-sex weanling pigs (13.9 ± 0.82 kg) were randomly assigned to dietary treatments in a 2 × 2 factorial arrangement with low (LP) or high protein (HP) content and basal (AA-) or FAA profile (AA+; Thr, Met, and Trp at 120% of requirements) as factors. After a 7-d adaptation period, pigs were inoculated with either a sterile saline solution (CT) or saline solution containing Salmonella Typhimurium (ST; 3.3 × 109 CFU/mL). Growth performance, body temperature, fecal score, acute-phase proteins, oxidant/antioxidant balance, ST shedding score in feces and intestinal colonization, fecal and digesta myeloperoxidase (MPO), and plasma urea nitrogen (PUN) were measured pre- and postinoculation. There were no dietary effects on any measures pre-inoculation or post-CT inoculation (P > 0.05). Inoculation with ST increased body temperature and fecal score (P < 0.05), serum haptoglobin, plasma superoxide dismutase (SOD), malondialdehyde (MDA), PUN, and fecal MPO, and decreased serum albumin and plasma reduced glutathione (GSH):oxidized glutathione (GSSG) compared with CT pigs (P < 0.05). ST-inoculation reduced average daily gain (ADG) and feed intake (ADFI) vs. CT pigs (P < 0.05) but was increased by AA+ vs. AA- in ST pigs (P < 0.05). Serum albumin and GSH:GSSG were increased while haptoglobin and SOD were decreased in ST-inoculated pigs fed AA+ vs. AA- (P < 0.05). PUN was higher in HP vs. LP-fed pigs postinoculation (P < 0.05). Fecal ST score was increased in ST-inoculated pigs on days 1 and 2 postinoculation and declined by day 6 (P < 0.05) in all pigs while the overall score was reduced in AA+ vs. AA- pigs (P < 0.05). Cecal digesta ST score was higher in HP vs. LP-fed pigs and were lower in AA+ compared with AA- fed pigs in the colon (P < 0.05). Fecal and digesta MPO were reduced in ST pigs fed AA+ vs. AA- (P < 0.05). These results demonstrate a positive effect of FAA supplementation, with minimal effects of dietary protein, on performance and immune status in weaned pigs challenged with Salmonella.
Collapse
Affiliation(s)
- Lucas A Rodrigues
- Prairie Swine Centre, Inc., Saskatoon, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - Michael O Wellington
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | | | - John K Htoo
- Evonik Operations GmbH, Rodenbacher Chaussee, Hanau-Wolfgang, Germany
| | - Andrew G Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - Daniel A Columbus
- Prairie Swine Centre, Inc., Saskatoon, Canada.,Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
35
|
Bai M, Wang L, Liu H, Xu K, Deng J, Huang R, Yin Y. Imbalanced dietary methionine-to-sulfur amino acid ratio can affect amino acid profiles, antioxidant capacity, and intestinal morphology of piglets. ACTA ACUST UNITED AC 2020; 6:447-456. [PMID: 33364461 PMCID: PMC7750798 DOI: 10.1016/j.aninu.2020.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Abstract
Animal protein sources such as fishmeal and plasma powder are excellent and indispensable sources of energy, amino acids, and minerals in animal production. Amino acid imbalance, especially methionine-to-sulfur amino acid (Met:SAA) ratio, caused by an imbalance of animal protein meal leads to growth restriction. This study was conducted to evaluate the effects of imbalanced Met:SAA ratio supplementation of different animal protein source diets on growth performance, plasma amino acid profiles, antioxidant capacity and intestinal morphology in a piglet model. Twenty-four weaned piglets (castrated males; BW = 10.46 ± 0.34 kg), assigned randomly into 3 groups (8 piglets/group), were fed for 28 d. Three experimental diets of equal energy and crude protein levels were as follows: 1) a corn-soybean basal diet with a Met:SAA ratio at 0.51 (BD); 2) a plasma powder diet with a low Met:SAA ratio at 0.41 (L-MR); 3) a fishmeal diet with a high Met:SAA ratio at 0.61 (H-MR). Results revealed that compared to BD, L-MR significantly decreased (P < 0.05) the activities of plasma total antioxidant capacity and glutathione peroxidase, plasma amino acid profiles, and significantly reduced (P < 0.05) villus height and crypt depth in the duodenum and jejunum. Additionally, L-MR significantly reduced (P < 0.05) the mRNA expression level of solute carrier family 7 member 9 (SlC7A9) in the ileum, and significantly increased (P < 0.05) mRNA expression levels of zonula occludens-1 (ZO-1) in the duodenum, and Claudin-1, ZO-1, sodium-coupled neutral amino acid transporters 2 (SNAT2) and SlC7A7 in the jejunum. H-MR significantly increased (P < 0.05) plasma SAA levels, and significantly reduced (P < 0.05) average daily feed intake, villus height, and villus height-to-crypt depth (VH:CD) ratio in the ileum compared to BD. In conclusion, L-MR may result in oxidative stress and villous atrophy but proves beneficial in improving intestinal barrier function and the activity of amino acid transporters for compensatory growth. H-MR may impair intestinal growth and development for weaned piglets. The research provides a guidance on the adequate Met:SAA ratio (0.51) supplementation in diet structure for weaned piglets.
Collapse
Affiliation(s)
- Miaomiao Bai
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Lei Wang
- Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410081, China
| | - Hongnan Liu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,Hunan Co-Innovation Center of Safety Animal Production (CICSAP), Changsha 410128, China
| | - Kang Xu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,Hunan Co-Innovation Center of Safety Animal Production (CICSAP), Changsha 410128, China
| | - Jinping Deng
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ruilin Huang
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,Hunan Co-Innovation Center of Safety Animal Production (CICSAP), Changsha 410128, China
| | - Yulong Yin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.,Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.,Laboratory of Animal Nutrition and Human Health, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410081, China.,Hunan Co-Innovation Center of Safety Animal Production (CICSAP), Changsha 410128, China
| |
Collapse
|
36
|
Jiang Y, Zhang C, Wang T. bFGF ameliorates intestinal mucosal permeability and barrier function through tight junction proteins in burn injury rats. Burns 2020; 47:1129-1136. [PMID: 33422356 DOI: 10.1016/j.burns.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUD To investigate the protective effect of exogenous basic fibroblast growth factor (bFGF) treatment on the intestinal mucosa in scalded rats. METHODS Thirty-six SD rats were randomly divided into 3 groups (n = 12): sham group, scald group and bFGF group (0.5 mg/kg). Intestinal barrier dysfunction was evaluated by permeability of intestinal mucosa to fluorescein isothiocyanate (FITC)-dextran and Chiu's grading system. H&E staining was used to detect the morphological changes of intestinal mucosa. Immunohistochemistry was used to observe zonula occludens-1 (ZO-1) and occludin. Western blot assay was used to detect the expression of ZO-1, Claudin-1, occludin and myosin light-chain kinase (MLCK). RESULTS The results demonstrated that following bFGF treatment, permeability of the intestinal epithelium barrier of was significantly decreased compared to scald group. H&E staining and Chiu's grading were consistent with previous result. The expression of ZO-1, Claudin-1, occludin in bFGF group were significantly increased compared to scald group, while MLCK protein was decreased. CONCLUSIONS bFGF ameliorates permeability of intestinal mucosa after burns. The possible mechanism may be relate to bFGF could increase the expression level of tight junction proteins (TJPs).
Collapse
Affiliation(s)
- Yan Jiang
- Department of Burns and Plastic Surgery, Laiyang Central Hospital of Yantai, Yantai, Shandong, China.
| | - Caifeng Zhang
- Department of Burns and Plastic Surgery, Laiyang Central Hospital of Yantai, Yantai, Shandong, China
| | - Tingli Wang
- Department of Burns and Plastic Surgery, Laiyang Central Hospital of Yantai, Yantai, Shandong, China
| |
Collapse
|
37
|
Wu Y, Zhao J, Xu C, Ma N, He T, Zhao J, Ma X, Thacker PA. Progress towards pig nutrition in the last 27 years. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5102-5110. [PMID: 29691867 DOI: 10.1002/jsfa.9095] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 06/08/2023]
Abstract
Over the last 27 years (1990-2017), based on the revolutionary progresses of basic nutrition research, novel methods and techniques have been developed which bring a profound technological revolution to pig production from free-range system to intensive farming all over the world. Basic theoretical innovations and feed production studies have provided vital advancements in pig nutrition by developing formula feed, utilizing balanced diets, determining feed energy value, dividing pig physiological stages, enhancing gut health, and improving feed processing technique. Formula feed is the primary contributor of the rise of the mechanized farming industry, and meets comprehensive nutritional needs of the pig. The focuses of the development of a balanced diet by optimizing nutrient levels are the amino acids balance, the balance between amino acids and energy, the balance between calcium and phosphorus. Multiple-site-production and targeted feeding program have been applied extensively. Early weaning of piglets improves production efficiency, but piglets that have not yet fully developed their intestine are prone to diarrhea. Therefore, intestinal health has received special attention in recent years. Feed processing technologies, such as granulation, puffing, fermentation and enzymatic hydrolysis, can improve the utilization of feed nutrients and reduce production cost. However, increasing a sow's potential for production, seeking alternatives to antibiotics, reducing drug treatment in piglets, developing functional additives and improving meat quality remain future challenges. Herein, we outline the important progresses of pig nutrition in the past 27 years, which will shed light on the basic nutrition rules of pig production, and help to push forward its future development. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianfei Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chenchen Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- Department of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Phil A Thacker
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
38
|
Heat stress effect on the intestinal epithelial function of broilers fed methionine supplementation. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Cynober L, Bier DM, Stover P, Kadowaki M, Morris SM, Elango R, Smriga M. Proposals for Upper Limits of Safe Intake for Methionine, Histidine, and Lysine in Healthy Humans. J Nutr 2020; 150:2606S-2608S. [PMID: 33000163 DOI: 10.1093/jn/nxaa231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/15/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
Based on research presented during the 10th Amino Acid Assessment Workshop, no observed adverse effect levels (NOAELs) for supplemental methionine at 46 mg/(kg·d) (∼3.2 g/d), for supplemental histidine at 8.0 g/d, and for supplemental lysine at 6.0 g/d have been proposed. These NOAELs are relevant to healthy adults and are applicable only to high-purity amino acids administered in fortified foods or dietary supplements. Because individuals are exposed to the above supplemental amino acids in the context of complex combinations of essential amino acids or individually in dietary supplements for various physiologic benefits, such as body fat reduction, skin conditioning, mental energy increase, or herpes simplex treatments, the above safety recommendations will make an important contribution to regulatory and nutritional practices.
Collapse
Affiliation(s)
- Luc Cynober
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,Clinical Chemistry Laboratory, Cochin Hospital, AP-HP, Paris, France.,Biological Nutrition Laboratory and EA 4466, Faculty of Pharmacy, Paris Descartes University, Paris, France
| | - Dennis M Bier
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Patrick Stover
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,Texas A&M AgriLife, College Station, TX, USA
| | - Motoni Kadowaki
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,Department of Engineering, Niigata Institute of Technology, Niigata, Japan
| | - Sidney M Morris
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Rajavel Elango
- Scientific Advisory Committee of the International Council for Amino Acid Science (ICAAS), Brussels, Belgium.,Department of Pediatrics, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Miro Smriga
- International Council for Amino Acid Science (ICAAS), Brussels, Belgium
| |
Collapse
|
40
|
Zeitz JO, Fleischmann A, Ehbrecht T, Most E, Friedrichs S, Whelan R, Gessner DK, Failing K, Lütjohann D, Eder K. Effects of supplementation of DL-methionine on tissue and plasma antioxidant status during heat-induced oxidative stress in broilers. Poult Sci 2020; 99:6837-6847. [PMID: 33248599 PMCID: PMC7704969 DOI: 10.1016/j.psj.2020.08.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 01/18/2023] Open
Abstract
Exposure to high ambient temperature has been shown to impair growth performance and to cause oxidative stress in broilers. This study investigated the hypothesis that supplementation with methionine (Met) as DL-Met (DLM) more than the National Research Council recommendations improves growth performance and alleviates oxidative stress in broilers exposed to high ambient temperature. One-day-old male Cobb-500 broilers (n = 68) were allotted to 4 groups and phase-fed 3 basal diets during days 1 to 10, 11 to 21, and 22 to 35. One group was kept under thermoneutral temperature conditions and received the basal diets with Met + cysteine (Cys) concentrations according to recommendations of NRC. The other 3 groups were kept in a room with an increased ambient temperature from week 3 to 5 and were fed either the basal diet or the basal diets supplemented with 2 levels of DLM in which Met + Cys concentrations exceeded NRC recommendations by around 20% (group DLM1) and 40% (group DLM2), respectively. As expected, the broilers exposed to high ambient temperature showed a lower feed intake, lower body weight gains, a higher feed:gain ratio, and biochemical indications of oxidative stress in comparison to broilers kept under thermoneutral temperature conditions. Supplementation of DLM did not improve the growth performance in broilers exposed to high ambient temperature. However, the broilers supplemented with DLM had increased concentrations of glutathione in liver and breast muscle (groups DLM1 and DLM2), increased concentrations of tocopherols in the liver (group DLM2), and reduced concentrations of 7α-hydroxycholesterol and 7-ketocholesterol in heat-processed thigh muscle (groups DLM1 and DLM2) in comparison to the control group exposed to high ambient temperature. Concentrations of thiobarbituric acid-reactive substances and vitamin C in plasma, liver, and muscle were not different between the 3 groups exposed to heat stress. Nevertheless, the study shows that supplementation of DLM in slight excess of the Met concentration required for maximum growth performance improved the antioxidant status in tissues and reduced the susceptibility of muscle toward oxidation in heat-stressed broilers.
Collapse
Affiliation(s)
- Johanna O Zeitz
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| | - Anne Fleischmann
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| | - Tamara Ehbrecht
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| | - Erika Most
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| | - Silvia Friedrichs
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Rose Whelan
- Evonik Operations GmbH, Hanau-Wolfgang, Germany
| | - Denise K Gessner
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany.
| | - Klaus Failing
- Unit of Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus-Liebig-University, Giessen, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Klaus Eder
- University of Giessen, Institute of Animal Nutrition and Nutritional Physiology, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
41
|
Hellmann J, Andersen H, Fei L, Linn A, Bezold R, Lake K, Jackson K, Meyer D, Dirksing K, Bonkowski E, Ollberding NJ, Haslam DB, Denson L. Microbial Shifts and Shorter Time to Bowel Resection Surgery Associated with C. difficile in Pediatric Crohn's Disease. Inflamm Bowel Dis 2020; 26:1212-1221. [PMID: 31725875 PMCID: PMC7365806 DOI: 10.1093/ibd/izz263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Clostridioides difficile infection and colonization are common in pediatric Crohn's disease (CD). Our aims were to test the relationship between C. difficile positivity and bowel resection surgery and to characterize microbial shifts associated with C. difficile carriage and surgery. METHODS A retrospective single-center study of 75 pediatric CD patients tested for association between C. difficile carriage and bowel resection surgery. A prospective single-center study of 70 CD patients utilized C. difficile testing and shotgun metagenomic sequencing of fecal samples to define microbiota variation stratified by C. difficile carriage or history of surgery. RESULTS The rate of bowel resection surgery increased from 21% in those without C. difficile to 67% in those with (P = 0.003). From a Kaplan-Meier survival model, the hazard ratio for time to first surgery was 4.4 (95% CI, 1.2-16.2; P = 0.00) in patients with positive C. difficile testing in the first year after diagnosis. Multivariable logistic regression analysis confirmed this association (odds ratio 16.2; 95% CI, 2.2-120; P = 0.006). Larger differences in microbial abundance and metabolic pathways were observed in patients with prior surgery than in those with C. difficile carriage. Depletion of Alistipes and Ruminococcus species and reduction in methionine biosynthesis were noted in patients with both C. difficile carriage and past surgery. CONCLUSIONS A positive C. difficile test during the first year after diagnosis is associated with decreased time to first bowel resection surgery in pediatric Crohn's disease. Depletion of beneficial commensals and methionine biosynthesis in patients with C. difficile carriage may contribute to increased risk for surgery.
Collapse
Affiliation(s)
- Jennifer Hellmann
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati, OH, USA
| | | | - Lin Fei
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aaron Linn
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati, OH, USA
| | - Ramona Bezold
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati, OH, USA
| | - Kathleen Lake
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati, OH, USA
| | - Kimberly Jackson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati, OH, USA
| | - Danielle Meyer
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati, OH, USA
| | - Kelsie Dirksing
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati, OH, USA
| | - Erin Bonkowski
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati, OH, USA
| | - Nicholas J Ollberding
- Division of Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Lee Denson
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati, OH, USA
| |
Collapse
|
42
|
Bourgonje AR, Feelisch M, Faber KN, Pasch A, Dijkstra G, van Goor H. Oxidative Stress and Redox-Modulating Therapeutics in Inflammatory Bowel Disease. Trends Mol Med 2020; 26:1034-1046. [PMID: 32620502 DOI: 10.1016/j.molmed.2020.06.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is associated with the production of reactive species that target cysteine redox switches in proteins, thereby affecting gene regulation, DNA damage, ion transport, intermediary metabolism, and mitochondrial function. Precursors of reactive species are derived from organic and inorganic compounds and their cofactors, including amino acids, vitamins, oxygen, nitrite, and sulfate. Nutrition and the gut microbiome fuel this process to a significant extent. The production of reactive species in IBD is reflected by a reduction in systemic free thiols, the major components of the antioxidant machinery. Systemic free thiols are amenable to nutritional or therapeutic intervention. This opens up future avenues for therapeutic modulation of redox status in IBD.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Martin Feelisch
- Clinical and Experimental Sciences, University of Southampton School of Medicine and National Institute of Health Research (NIHR) Southampton Biomedical Research Centre, Southampton General Hospital, Southampton, UK
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andreas Pasch
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
43
|
Kwak MS, Cha JM, Shin HP, Jeon JW, Yoon JY. Development of a Novel Metagenomic Biomarker for Prediction of Upper Gastrointestinal Tract Involvement in Patients With Crohn's Disease. Front Microbiol 2020; 11:1162. [PMID: 32582102 PMCID: PMC7283919 DOI: 10.3389/fmicb.2020.01162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/06/2020] [Indexed: 12/28/2022] Open
Abstract
The human gut microbiota is an important component in the pathogenesis of Crohn's disease (CD), promoting host-microbe imbalances and disturbing intestinal and immune homeostasis. We aimed to assess the potential clinical usefulness of the colonic tissue microbiome for obtaining biomarkers for upper gastrointestinal (UGI) tract involvement in CD. We analyzed colonic tissue samples from 26 CD patients (13 with and 13 without UGI involvement at diagnosis) from the Inflammatory Bowel Disease Multi-Omics Database. QIIME1, DiTaxa, linear discriminant analysis effect size (LEfSe), and PICRUSt2 methods were used to examine microbial dysbiosis. Linear support vector machine (SVM) and random forest classifier (RF) algorithms were used to identify the UGI tract involvement-associated biomarkers. There were no statistically significant differences in community richness, phylogenetic diversity, and phylogenetic distance between the two groups of CD patients. DiTaxa analysis predicted significant association of the species Ruminococcus torques with UGI involvement, which was confirmed by the LEfSe analysis (P = 0.025). For the feature ranking method in both linear SVM and RF models, the species R. torques and age at diagnosis contributed to the combined models. The L-methionine biosynthesis III (P = 0.038) and palmitate biosynthesis II (P = 0.050) were under-represented in CD with UGI involvement. These findings suggest that R. torques might serve as a novel potential biomarker for UGI involvement in CD and its correlations, in addition to a range of bacterial species. The mechanisms of interaction between hosts and R. torques should be further investigated.
Collapse
Affiliation(s)
- Min Seob Kwak
- Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
44
|
Effects of dietary amino acids in ameliorating intestinal function during enteric challenges in broiler chickens. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114383] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Rasch I, Görs S, Tuchscherer A, Viergutz T, Metges CC, Kuhla B. Substitution of Dietary Sulfur Amino Acids by dl-2-Hydroxy-4-Methylthiobutyric Acid Reduces Fractional Glutathione Synthesis in Weaned Piglets. J Nutr 2020; 150:722-729. [PMID: 31773161 PMCID: PMC7138682 DOI: 10.1093/jn/nxz272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/23/2019] [Accepted: 10/10/2019] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Cys is limiting for reduced glutathione (GSH) synthesis and can be synthesized from Met. We hypothesized that the dietary Met hydroxyl analogue dl-2-hydroxy-4-methylthiobutyric acid (dl-HMTBA) affects Cys and GSH metabolism and oxidative stress defense differently than Met. OBJECTIVE The objective was to elucidate whether dl-HMTBA supplementation of a Met-deficient diet affects Cys flux, GSH fractional synthetic rate (FSR), and the basal oxidative stress level relative to Met supplementation in pigs. METHODS Twenty-nine male German Landrace piglets aged 28 d were allocated to 3 dietary groups: a basal diet limiting in Met (69% of Met plus Cys requirement) supplemented with either 0.15% l-Met (LMET; n = 9), 0.15% dl-Met (DLMET; n = 11), or 0.17% dl-HMTBA (DLHMTBA; n = 9) on an equimolar basis. At age 54 d the pigs received a continuous infusion of [1-13C]-Cys to calculate Cys flux and Cys oxidation. After 3 d, GSH FSR was determined by [2,2-2H2]-glycine infusion, and RBC GSH and oxidized GSH concentrations were measured. At age 62 d the animals were killed to determine hepatic mRNA abundances of enzymes involved in GSH metabolism, GSH concentrations, and plasma oxidative stress defense markers. RESULTS The Cys oxidation was 21-39% and Cys flux 5-15% higher in the fed relative to the feed-deprived state (P < 0.001). On average, GSH FSR was 49% lower (P < 0.01), and RBC GSH and total GSH concentrations were 12% and 9% lower, respectively, in DLHMTBA and DLMET relative to LMET pigs (P < 0.05). In the feed-deprived state, Gly flux, the GSH:oxidized glutathione (GSSG) ratio, RBC GSSG concentrations, plasma oxidative stress markers, and the hepatic GSH content did not differ between groups. CONCLUSIONS Although GSH FSR was higher in LMET compared with DLMET or DLHMTBA feed-deprived pigs, these differences were not reflected by lower oxidative stress markers and antioxidant defense enzymes in LMET pigs.
Collapse
Affiliation(s)
- Ilka Rasch
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Solvig Görs
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Torsten Viergutz
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Cornelia C Metges
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
- Chair of Nutritional Physiology and Animal Nutrition, Faculty of Agriculture and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology “Oskar Kellner”, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
46
|
Falk M, Bernhoft A, Reinoso-Maset E, Salbu B, Lebed P, Framstad T, Fuhrmann H, Oropeza-Moe M. Beneficial antioxidant status of piglets from sows fed selenomethionine compared with piglets from sows fed sodium selenite. J Trace Elem Med Biol 2020; 58:126439. [PMID: 31830704 DOI: 10.1016/j.jtemb.2019.126439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Studies in mammals proved dietary organic selenium (Se) being superior to inorganic Se regarding effects on growth performance, antioxidative status, immune response, and Se homeostasis. However, the picture of possible effects of different Se sources and - levels can be expanded. The present field study evaluated the effects on weight gain, hematological and selected biochemical variables as well as plasma concentrations of vitamin E (vitE), total Se and selenobiomolecules in piglets throughout the suckling period. METHODS Piglets were monitored from birth to 38 days of age (d). The mother sows' diets were enriched with l-selenomethionine (SeMet-0.26 and -0.43 mg Se/kg feed) or sodium selenite (NaSe-0.40 and -0.60 mg Se/kg feed) from 1 month prior to farrowing until the end of lactation period. Piglets received pelleted feed supplemented with Se similarly to the sows' diets from one week of age. Selenite at 0.40 mg Se/kg (NaSe-0.40) represents a common Se source and -level in pig feed and served as control diet. RESULTS From 24d, piglets in SeMet-groups had higher mean body weight (BW) compared with piglets from sows fed NaSe-0.40. Furthermore, from five-d and above, piglets from sows fed NaSe-0.60 had significantly higher BW than offspring from sows fed NaSe-0.40. Neonatal piglets in group SeMet-0.43 had significantly lower red blood cell counts (RBC), hemoglobin (Hgb) and hematocrit (Hct) concentrations compared with piglets from sows fed with NaSe-0.40. Neonatal and 5d-old piglets in group SeMet-0.26 showed higher gamma-glutamyl transferase activity than piglets in group NaSe-0.40. From five d and above, group NaSe-0.60 excelled with increased specific hematological variables culminating at age 38d with increased Hct, mean corpuscular volume (MCV), and MC hemoglobin (MCH) as well as increased activities of aspartate transaminase and lactate dehydrogenase compared with the other groups. Generally, offspring in the SeMet groups had higher total Se-concentrations in plasma than those from sows fed selenite, and showed a dose-response effect on plasma Se-concentrations. Furthermore, SeMet-fed piglets had higher plasma levels of the selenoproteins (Sel) glutathione peroxidase 3 (GPx3) and SelP as well as selenoalbumin. Plasma vitE levels were significantly negatively correlated with RBC throughout trial period. CONCLUSIONS Maternal supplementation with SeMet during gestation influenced hematology and clinical biochemistry in neonatal piglets in a different way than in offspring from sows receiving selenite enriched diets. Growth performance was positively influenced by both dietary Se source and Se level. Higher plasma levels of GPx3 observed in piglets receiving SeMet probably improved the protection against birth or growth related oxidative stress. These might prime the piglets for demanding situations as indicated by higher weight gain in offspring from sows fed with SeMet-supplemented diets. Our results on some enzyme activities might indicate that piglets fed NaSe-0.60 had to cope with increased levels of oxidative stress compared with those originating from sows fed SeMet or lower dietary levels of selenite. We assume that combining inorganic and organic Se sources in complete feed for breeding sows might be beneficial fro reproduction and the offspring's performance.
Collapse
Affiliation(s)
- M Falk
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, 4325, Sandnes, Norway.
| | - A Bernhoft
- Norwegian Veterinary Institute, 0454, Oslo, Norway
| | - Estela Reinoso-Maset
- Faculty of Environmental Sciences and Natural Resource Management (MINA)/Centre for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences (NMBU), 1433Ås, Norway
| | - B Salbu
- Faculty of Environmental Sciences and Natural Resource Management (MINA)/Centre for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences (NMBU), 1433Ås, Norway
| | - P Lebed
- Faculty of Environmental Sciences and Natural Resource Management (MINA)/Centre for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences (NMBU), 1433Ås, Norway
| | - T Framstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, 0454, Oslo, Norway
| | - H Fuhrmann
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Marianne Oropeza-Moe
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, 4325, Sandnes, Norway
| |
Collapse
|
47
|
Wu CT, Liao JM, Ko JL, Lee YL, Chang HY, Wu CH, Ou CC. D-Methionine Ameliorates Cisplatin-Induced Muscle Atrophy via Inhibition of Muscle Degradation Pathway. Integr Cancer Ther 2019; 18:1534735419828832. [PMID: 30789014 PMCID: PMC6416772 DOI: 10.1177/1534735419828832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cisplatin induces anorexia, weight loss, loss of adipose tissue, skeletal muscle atrophy, and serious adverse effects that can cause premature termination of chemotherapy. The aim of this study was to use an animal model to assess cisplatin therapy (3 cycles) with and without d-methionine to investigate its protective effects on cisplatin-induced anorexia and skeletal muscle wasting. Wistar rats were divided into 3 groups and treated as follows: saline as control (group 1), intraperitoneal cisplatin once a week for 3 weeks (group 2), and intraperitoneal cisplatin once a week for 3 weeks plus oral administration of d-methionine (group 3). Tissue somatic index (TSI), gastric emptying index (GEI), and feeding efficiency were measured. Both hepatic lipid metabolism and muscle atrophy-related gene expressions and C2C12 myotubes were determined by polymerase chain reaction. Micro-computed tomography (micro-CT) was used to conduct assessment of bone microarchitecture indices. Pathological changes of the gastric mucosa were assessed by hematoxylin and eosin staining after euthanizing the animals. d-Methionine increased food intake, weight gain, gastric emptying, and feeding efficiency, as well as decrease stomach contents, after cisplatin injections. Cisplatin caused shortening of myofibers. Cisplatin-induced muscle mass wasting was mediated by the elevation of mRNA expressions of MAFbx and MuRF-1 in ubiquitin ligases in muscle tissue homogenate. The mRNA expressions of MyoD and myogenin, markers of muscle differentiation, declined following cisplatin administration. The administration of d-methionine not only led to significant improvements in myofiber diameter and cross-sectional fiber areas but also reversed muscle atrophy-related gene expression. However, there were no significant changes in stomach histology or microarchitecture of trabecular bone among the study groups. The results indicate that d-methionine has an appetite-enhancing effect and ameliorates cisplatin-induced adipose and muscle tissue loss during cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Ching-Te Wu
- 1 Show Chwan Memorial Hospital, Changhua, Taiwan
| | | | | | - Yao-Ling Lee
- 2 Chung Shan Medical University, Taichung, Taiwan
| | - Hui-Yi Chang
- 2 Chung Shan Medical University, Taichung, Taiwan
| | | | - Chu-Chyn Ou
- 2 Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
48
|
Campos PHRF, Merlot E, Renaudeau D, Noblet J, Le Floc'h N. Postprandial insulin and nutrient concentrations in lipopolysaccharide-challenged growing pigs reared in thermoneutral and high ambient temperatures1. J Anim Sci 2019; 97:3354-3368. [PMID: 31250878 DOI: 10.1093/jas/skz204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/04/2019] [Indexed: 12/19/2022] Open
Abstract
The aim of this study was to evaluate the associated effects of ambient temperature and inflammation caused by repeated administration of Escherichia coli lipopolysaccharide (LPS) on insulin, energy, and AA metabolism. Twenty-eight pigs were assigned to one of the two thermal conditions: thermoneutral (24 °C) or high ambient temperature (30 °C). The experimental period lasted 17 d, which was divided into a 7-d period without LPS (days -7 to -1), and a subsequent 10-d LPS period (days 1 to 10) in which pigs were administered 5 repeated injections of LPS at 2-d intervals. Postprandial profiles of plasma insulin and nutrients were evaluated through serial blood samples taken on days -4 (P0), 4 (P1), and 8 (P2). Before the LPS-challenge (P0), postprandial concentrations of glucose, lactate, Gln, Ile, Leu, Phe, Tyr, and Val were greater in pigs kept at 24 °C than at 30 °C (P < 0.05). In contrast, Arg, Asp, Gly, His, and Met postprandial concentrations at P0 were lower at 24 °C than at 30 °C (P < 0.05). At both 24 and 30 °C conditions, pigs had greater postprandial concentrations of insulin (P < 0.01) and lower concentrations of NEFA (P < 0.01) and α-amino nitrogen (P < 0.05) at P1 and P2 than at P0. Compared with P0, postprandial concentrations of glucose were greater (P < 0.05) at P1 in pigs kept at 24 °C, and at P1 and P2 in pigs kept at 30 °C. At both ambient temperatures, pigs had lower (P < 0.05) postprandial concentrations of Ala, Gly, His, Ile, Leu, Pro, Ser, Thr, Trp, and Val at P1 and P2 than at P0. Arginine postprandial concentration at P1 was lower than at P0 in pigs kept at 24 °C (P < 0.05), whereas no difference was observed in pigs at 30 °C. Relative to P0, Gln and Tyr concentrations were lower at P1 and P2 in pigs kept at 24 °C (P < 0.01), whereas lower Gln concentration was observed only at P2 (P < 0.01) and lower Tyr only at P1 (P < 0.01) in pigs kept at 30 °C. Our study shows a hyperglycemic and hyperinsulinemic state in LPS-challenged pigs and a greater magnitude of this response in pigs kept at 30 °C. Furthermore, LPS caused important changes in BCAA, His, Thr, and Trp profiles, suggesting the role these AA in supporting the inflammatory response. Finally, our results suggest that LPS-induced effects on postprandial profiles of specific AA (Arg, Gln, Phe, and Tyr) may be modulated by ambient temperature.
Collapse
Affiliation(s)
| | - Elodie Merlot
- PEGASE, Agrocampus Ouest, INRA, Saint-Gilles, France
| | | | - Jean Noblet
- PEGASE, Agrocampus Ouest, INRA, Saint-Gilles, France
| | | |
Collapse
|
49
|
Zhou JY, Wang Z, Zhang SW, Lin HL, Gao CQ, Zhao JC, Yang C, Wang XQ. Methionine and Its Hydroxyl Analogues Improve Stem Cell Activity To Eliminate Deoxynivalenol-Induced Intestinal Injury by Reactivating Wnt/β-Catenin Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11464-11473. [PMID: 31532211 DOI: 10.1021/acs.jafc.9b04442] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The intestinal epithelium is derived from intestinal stem cells (ISCs) and has direct contact with nutrients and toxins. However, whether methionine (Met) or a methionine hydroxyl analogue (2-hydroxy-4-(methylthio)butanoic acid (HMB)) can alleviate deoxynivalenol (DON)-induced intestinal injury remains unknown. Mice were treated orally with Met or HMB on days 1-11 and with DON on days 4-8. On day 12, the mice were sacrificed, and the jejunum was collected for crypt isolation and culture. Mouse enteroids were treated with DON and Met or HMB ex vivo. The results showed that Met and HMB increased the average daily feed intake and average daily gain of the mice. Met and HMB also improved the jejunal structure and barrier integrity and promoted ISC expansion, as indicated by the increased enteroid formation efficiency and area, under DON-induced injury conditions. In addition, DON-induced decreases in ISC activity were rescued Wnt/β-catenin signaling reactivation by Met or HMB in vivo and ex vivo. Collectively, our findings reveal that Met and HMB alleviated DON-induced intestinal injury by improving ISC expansion and reactivating Wnt/β-catenin signaling. Our study thus provides a nutritional intervention for intestinal diseases involving Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , China
| | - Zhe Wang
- College of Letters & Science , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Sai-Wu Zhang
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , China
| | - Hua-Lin Lin
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , China
| | - Chun-Qi Gao
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , China
- Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , Guangdong 510642 , China
| | - Jiang-Chao Zhao
- Department of Animal Science , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| | - Chengbo Yang
- Department of animal science, Faculty of Agricultural and Food Sciences , University of Manitoba , Winnipeg , Manitoba R3T 2N2 , Canada
| | - Xiu-Qi Wang
- College of Animal Science , South China Agricultural University/Guangdong Provincial Key Laboratory of Animal Nutrition Control/National Engineering Research Center for Breeding Swine Industry , Guangzhou , Guangdong 510642 , China
| |
Collapse
|
50
|
Chen Q, Wang C, Zhao FQ, Liu J, Liu H. Effects of methionine partially replaced by methionyl-methionine dipeptide on intestinal function in methionine-deficient pregnant mice. J Anim Physiol Anim Nutr (Berl) 2019; 103:1610-1618. [PMID: 31106911 DOI: 10.1111/jpn.13126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
This study was to compare the effects of parenteral supplementation of methionyl-methionine (Met-Met) or Met on intestinal barrier function in Met-deficient pregnant mice. Pregnant mice were randomly divided into three groups. The Control group was provided a diet containing Met and received i.p. injection of saline. The Met group was fed the same diet but without Met and received daily i.p. injection of 35% of the Met contained in the control diet. The Met-Met group was treated the same as the Met group, except that 25% of the Met injected was replaced with Met-Met. Met-Met promoted villus surface area in ileum compared with Met alone. In addition, the mRNA abundance of amino acid and glucose transporters in the small intestine was altered with Met-Met. Moreover, Met-Met increased tight junction protein and decreased apoptosis-related proteins expression in the jejunum and ileum. These results suggest that Met-Met can promote intestinal function over Met alone in Met-deficient mice.
Collapse
Affiliation(s)
- Qiong Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Caihong Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Feng-Qi Zhao
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China.,Department of Animal and Veterinary Sciences, University of Vermont, Burlington, Vermont
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hongyun Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|