1
|
Canè C, Tammaro L, Duilio A, Di Somma A. Investigation of the Mechanism of Action of AMPs from Amphibians to Identify Bacterial Protein Targets for Therapeutic Applications. Antibiotics (Basel) 2024; 13:1076. [PMID: 39596769 PMCID: PMC11591259 DOI: 10.3390/antibiotics13111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial peptides (AMPs) from amphibians represent a promising source of novel antibacterial agents due to their potent and broad-spectrum antimicrobial activity, which positions them as valid alternatives to conventional antibiotics. This review provides a comprehensive analysis of the mechanisms through which amphibian-derived AMPs exert their effects against bacterial pathogens. We focus on the identification of bacterial protein targets implicated in the action of these peptides and on biological processes altered by the effect of AMPs. By examining recent advances in countering multidrug-resistant bacteria through multi-omics approaches, we elucidate how AMPs interact with bacterial membranes, enter bacterial cells, and target a specific protein. We discuss the implications of these interactions in developing targeted therapies and overcoming antibiotic resistance (ABR). This review aims to integrate the current knowledge on AMPs' mechanisms, identify gaps in our understanding, and propose future directions for research to harness amphibian AMPs in clinical applications.
Collapse
Affiliation(s)
- Carolina Canè
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (C.C.); (L.T.)
| | - Lidia Tammaro
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (C.C.); (L.T.)
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia 4, 80126 Napoli, Italy;
- National Institute of Biostructures and Biosystems (INBB), Via dei Carpegna 19, 00165 Roma, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia 4, 80126 Napoli, Italy;
| |
Collapse
|
2
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Loffredo MR, Cappiello F, Cappella G, Capuozzo E, Torrini L, Diaco F, Di YP, Mangoni ML, Casciaro B. The pH-Insensitive Antimicrobial and Antibiofilm Activities of the Frog Skin Derived Peptide Esc(1-21): Promising Features for Novel Anti-Infective Drugs. Antibiotics (Basel) 2024; 13:701. [PMID: 39200001 PMCID: PMC11350779 DOI: 10.3390/antibiotics13080701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The number of antibiotic-resistant microbial infections is dramatically increasing, while the discovery of new antibiotics is significantly declining. Furthermore, the activity of antibiotics is negatively influenced by the ability of bacteria to form sessile communities, called biofilms, and by the microenvironment of the infection, characterized by an acidic pH, especially in the lungs of patients suffering from cystic fibrosis (CF). Antimicrobial peptides represent interesting alternatives to conventional antibiotics, and with expanding properties. Here, we explored the effects of an acidic pH on the antimicrobial and antibiofilm activities of the AMP Esc(1-21) and we found that it slightly lost activity (from 2- to 4-fold) against the planktonic form of a panel of Gram-negative bacteria, with respect to a ≥ 32-fold of traditional antibiotics. Furthermore, it retained its activity against the sessile form of these bacteria grown in media with a neutral pH, and showed similar or higher effectiveness against the biofilm form of bacteria grown in acidic media, simulating a CF-like acidic microenvironment, compared to physiological conditions.
Collapse
Affiliation(s)
- Maria Rosa Loffredo
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Floriana Cappiello
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Giacomo Cappella
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Elisabetta Capuozzo
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Luisa Torrini
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.D.)
| | - Fabiana Diaco
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.D.)
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| | - Bruno Casciaro
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.C.); (E.C.); (B.C.)
| |
Collapse
|
4
|
Loffredo M, Casciaro B, Bellavita R, Troiano C, Brancaccio D, Cappiello F, Merlino F, Galdiero S, Fabrizi G, Grieco P, Stella L, Carotenuto A, Mangoni ML. Strategic Single-Residue Substitution in the Antimicrobial Peptide Esc(1-21) Confers Activity against Staphylococcus aureus, Including Drug-Resistant and Biofilm Phenotype. ACS Infect Dis 2024; 10:2403-2418. [PMID: 38848266 PMCID: PMC11250030 DOI: 10.1021/acsinfecdis.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
Staphylococcus aureus, a bacterium resistant to multiple drugs, is a significant cause of illness and death worldwide. Antimicrobial peptides (AMPs) provide an excellent potential strategy to cope with this threat. Recently, we characterized a derivative of the frog-skin AMP esculentin-1a, Esc(1-21) (1) that is endowed with potent activity against Gram-negative bacteria but poor efficacy against Gram-positive strains. In this study, three analogues of peptide 1 were designed by replacing Gly8 with α-aminoisobutyric acid (Aib), Pro, and dPro (2-4, respectively). The single substitution Gly8 → Aib8 in peptide 2 makes it active against the planktonic form of Gram-positive bacterial strains, especially Staphylococcus aureus, including multidrug-resistant clinical isolates, with an improved biostability without resulting in cytotoxicity to mammalian cells. Moreover, peptide 2 showed a higher antibiofilm activity than peptide 1 against both reference and clinical isolates of S. aureus. Peptide 2 was also able to induce rapid bacterial killing, suggesting a membrane-perturbing mechanism of action. Structural analysis of the most active peptide 2 evidenced that the improved biological activity of peptide 2 is the consequence of a combination of higher biostability, higher α helical content, and ability to reduce membrane fluidity and to adopt a distorted helix, bent in correspondence of Aib8. Overall, this study has shown how a strategic single amino acid substitution is sufficient to enlarge the spectrum of activity of the original peptide 1, and improve its biological properties for therapeutic purposes, thus paving the way to optimize AMPs for the development of new broad-spectrum anti-infective agents.
Collapse
Affiliation(s)
- Maria
Rosa Loffredo
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Bruno Casciaro
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Rosa Bellavita
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Cassandra Troiano
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133 Rome, Italy
| | - Diego Brancaccio
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Floriana Cappiello
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| | - Francesco Merlino
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Stefania Galdiero
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Giancarlo Fabrizi
- Department
of Chemistry and Technology of Drugs, “Department of Excellence
2018−2022”, Sapienza University
of Rome, 00185 Rome, Italy
| | - Paolo Grieco
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Lorenzo Stella
- Department
of Chemical Science and Technologies, University
of Rome Tor Vergata, 00133 Rome, Italy
| | - Alfonso Carotenuto
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, 00185 Rome, Italy
| |
Collapse
|
5
|
Chen J, Yu CG, Zhou MM, Zhang GJ, Su HL, Ding GH, Wei L, Lin ZH, Ma L. An esculentin-1 homolog from a dark-spotted frog (Pelophylax nigromaculatus) possesses antibacterial and immunoregulatory properties. BMC Vet Res 2024; 20:164. [PMID: 38678277 PMCID: PMC11055230 DOI: 10.1186/s12917-024-04013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/11/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Esculentin-1, initially discovered in the skin secretions of pool frogs (Pelophylax lessonae), has demonstrated broad-spectrum antimicrobial activity; however, its immunomodulatory properties have received little attention. RESULTS In the present study, esculentin-1 cDNA was identified by analysing the skin transcriptome of the dark-spotted frog (Pelophylax nigromaculatus). Esculentin-1 from this species (esculentin-1PN) encompasses a signal peptide, an acidic spacer peptide, and a mature peptide. Sequence alignments with other amphibian esculentins-1 demonstrated conservation of the peptide, and phylogenetic tree analysis revealed its closest genetic affinity to esculentin-1P, derived from the Fukien gold-striped pond frog (Pelophylax fukienensis). Esculentin-1PN transcripts were observed in various tissues, with the skin exhibiting the highest mRNA levels. Synthetic esculentin-1PN demonstrated antibacterial activity against various pathogens, and esculentin-1PN exhibited bactericidal activity by disrupting cell membrane integrity and hydrolyzing genomic DNA. Esculentin-1PN did not stimulate chemotaxis in RAW264.7, a murine leukemic monocyte/macrophage cell line. However, it amplified the respiratory burst and augmented the pro-inflammatory cytokine gene (TNF-α and IL-1β) expression in RAW264.7 cells. CONCLUSIONS This novel finding highlights the immunomodulatory activity of esculentin-1PN on immune cells.
Collapse
Affiliation(s)
- Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Ci-Gang Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Min-Min Zhou
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Gao-Jian Zhang
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Hai-Long Su
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Guo-Hua Ding
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Li Wei
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Li Ma
- College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|
6
|
Mangoni ML, Loffredo MR, Casciaro B, Ferrera L, Cappiello F. An Overview of Frog Skin-Derived Esc Peptides: Promising Multifunctional Weapons against Pseudomonas aeruginosa-Induced Pulmonary and Ocular Surface Infections. Int J Mol Sci 2024; 25:4400. [PMID: 38673985 PMCID: PMC11049899 DOI: 10.3390/ijms25084400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial resistance is a silent pandemic harming human health, and Pseudomonas aeruginosa is the most common bacterium responsible for chronic pulmonary and eye infections. Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics. In this review, the in vitro/in vivo activities of the frog skin-derived AMP Esc(1-21) are shown. Esc(1-21) rapidly kills both the planktonic and sessile forms of P. aeruginosa and stimulates migration of epithelial cells, likely favoring repair of damaged tissue. However, to undertake preclinical studies, some drawbacks of AMPs (cytotoxicity, poor biostability, and limited delivery to the target site) must be overcome. For this purpose, the stereochemistry of two amino acids of Esc(1-21) was changed to obtain the diastereomer Esc(1-21)-1c, which is more stable, less cytotoxic, and more efficient in treating P. aeruginosa-induced lung and cornea infections in mouse models. Incorporation of these peptides (Esc peptides) into nanoparticles or immobilization to a medical device (contact lens) was revealed to be an effective strategy to ameliorate and/or to prolong the peptides' antimicrobial efficacy. Overall, these data make Esc peptides encouraging candidates for novel multifunctional drugs to treat lung pathology especially in patients with cystic fibrosis and eye dysfunctions, characterized by both tissue injury and bacterial infection.
Collapse
Affiliation(s)
- Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Loretta Ferrera
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| |
Collapse
|
7
|
Sarkar T, Ghosh S, Sundaravadivelu PK, Pandit G, Debnath S, Thummer RP, Satpati P, Chatterjee S. Mechanism of Protease Resistance of D-Amino Acid Residue Containing Cationic Antimicrobial Heptapeptides. ACS Infect Dis 2024; 10:562-581. [PMID: 38294842 DOI: 10.1021/acsinfecdis.3c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Antimicrobial peptides (AMPs) have been an alternate promising class of therapeutics in combating global antibiotic resistance threat. However, the short half-life of AMPs, owing to protease degradability, is one of the major bottlenecks in its commercial success. In this study, we have developed all-D-amino acid containing small cationic peptides P4C and P5C, which are completely protease-resistant, noncytotoxic, nonhemolytic, and potent against the ESKAPE pathogens in comparison to their L analogues. MD simulations suggested marginal improvement in the peptide-binding affinity to the membrane-mimetic SDS micelle (∼ 1 kcal/mol) in response to L → D conversion, corroborating the marginal improvement in the antimicrobial activity. However, L → D chirality conversion severely compromised the peptide:protease (trypsin) binding affinity (≥10 kcal/mol). The relative distance between the scissile peptide carbonyl and the catalytic triad of the protease (H57, D102, and S195) was found to be significantly altered in the D-peptide:protease complex (inactive conformation) relative to the active L-peptide:protease complex. Thus, the poor binding affinity between D-peptides and the protease, resulting in the inactive complex formation, explained their experimentally observed proteolytic stability. This mechanistic insight might be extended to the proteolytic stability of the D-peptides in general and stimulate the rational design of protease-resistant AMPs.
Collapse
Affiliation(s)
- Tanumoy Sarkar
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Suvankar Ghosh
- Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | | | - Gopal Pandit
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Swapna Debnath
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Rajkumar P Thummer
- Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Priyadarshi Satpati
- Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
8
|
Canè C, Casciaro B, Di Somma A, Loffredo MR, Puglisi E, Battaglia G, Mellini M, Cappiello F, Rampioni G, Leoni L, Amoresano A, Duilio A, Mangoni ML. The antimicrobial peptide Esc(1-21)-1c increases susceptibility of Pseudomonas aeruginosa to conventional antibiotics by decreasing the expression of the MexAB-OprM efflux pump. Front Chem 2023; 11:1271153. [PMID: 37942400 PMCID: PMC10628714 DOI: 10.3389/fchem.2023.1271153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction: The increase in bacterial strains resistant to conventional antibiotics is an alarming problem for human health and could lead to pandemics in the future. Among bacterial pathogens responsible for a large variety of severe infections there is Pseudomonas aeruginosa. Therefore, there is an urgent need for new molecules with antimicrobial activity or that can act as adjuvants of antibiotics already in use. In this scenario, antimicrobial peptides (AMPs) hold great promise. Recently, we characterized a frog-skin AMP derived from esculentin-1a, namely Esc(1-21)-1c, endowed with antipseudomonal activity without being cytotoxic to human cells. Methods: The combinatorial effect of the peptide and antibiotics was investigated through the checkerboard assay, differential proteomic and transcriptional analysis. Results: Here, we found that Esc(1-21)-1c can synergistically inhibit the growth of P. aeruginosa cells with three different antibiotics, including tetracycline. We therefore investigated the underlying mechanism implemented by the peptide using a differential proteomic approach. The data revealed a significant decrease in the production of three proteins belonging to the MexAB-OprM efflux pump upon treatment with sub-inhibitory concentration of Esc(1-21)-1c. Down-regulation of these proteins was confirmed by transcriptional analysis and direct measurement of their relative levels in bacterial cells by tandem mass spectrometry analysis in multiple reaction monitoring scan mode. Conclusion: These evidences suggest that treatment with Esc(1-21)-1c in combination with antibiotics would increase the intracellular drug content making bacteria more susceptible to the antibiotic. Overall, these results highlight the importance of characterizing new molecules able to synergize with conventional antibiotics, paving the way for the development of alternative therapeutic strategies based on AMP/antibiotic formulations to counteract the emergence of resistant bacterial strains and increase the use of "old" antibiotics in medical practice.
Collapse
Affiliation(s)
- Carolina Canè
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Elena Puglisi
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Gennaro Battaglia
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Marta Mellini
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Giordano Rampioni
- Department of Science, University “Roma Tre”, Rome, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Livia Leoni
- Department of Science, University “Roma Tre”, Rome, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructure and Biosystems (INBB), Rome, Italy
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- National Institute of Biostructure and Biosystems (INBB), Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Cafaro V, Bosso A, Di Nardo I, D’Amato A, Izzo I, De Riccardis F, Siepi M, Culurciello R, D’Urzo N, Chiarot E, Torre A, Pizzo E, Merola M, Notomista E. The Antimicrobial, Antibiofilm and Anti-Inflammatory Activities of P13#1, a Cathelicidin-like Achiral Peptoid. Pharmaceuticals (Basel) 2023; 16:1386. [PMID: 37895857 PMCID: PMC10610514 DOI: 10.3390/ph16101386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are powerful molecules with antimicrobial, antibiofilm and endotoxin-scavenging activities. These properties make CAMPs very attractive drugs in the face of the rapid increase in multidrug-resistant (MDR) pathogens, but they are limited by their susceptibility to proteolytic degradation. An intriguing solution to this issue could be the development of functional mimics of CAMPs with structures that enable the evasion of proteases. Peptoids (N-substituted glycine oligomers) are an important class of peptidomimetics with interesting benefits: easy synthetic access, intrinsic proteolytic stability and promising bioactivities. Here, we report the characterization of P13#1, a 13-residue peptoid specifically designed to mimic cathelicidins, the best-known and most widespread family of CAMPs. P13#1 showed all the biological activities typically associated with cathelicidins: bactericidal activity over a wide spectrum of strains, including several ESKAPE pathogens; the ability to act in combination with different classes of conventional antibiotics; antibiofilm activity against preformed biofilms of Pseudomonas aeruginosa, comparable to that of human cathelicidin LL-37; limited toxicity; and an ability to inhibit LPS-induced proinflammatory effects which is comparable to that of "the last resource" antibiotic colistin. We further studied the interaction of P13#1 with SDS, LPSs and bacterial cells by using a fluorescent version of P13#1. Finally, in a subcutaneous infection mouse model, it showed antimicrobial and anti-inflammatory activities comparable to ampicillin and gentamicin without apparent toxicity. The collected data indicate that P13#1 is an excellent candidate for the formulation of new antimicrobial therapies.
Collapse
Affiliation(s)
- Valeria Cafaro
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Ilaria Di Nardo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Assunta D’Amato
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Irene Izzo
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Francesco De Riccardis
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano, Italy; (A.D.); (I.I.); (F.D.R.)
| | - Marialuisa Siepi
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Rosanna Culurciello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Nunzia D’Urzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | | | | | - Elio Pizzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Marcello Merola
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| | - Eugenio Notomista
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.C.); (A.B.); (I.D.N.); (M.S.); (R.C.); (N.D.); (E.P.)
| |
Collapse
|
10
|
Varponi I, Ferro S, Menilli L, Grapputo A, Moret F, Mastrotto F, Marin O, Sandrelli F. Fighting Pseudomonas aeruginosa Infections: Antibacterial and Antibiofilm Activity of D-Q53 CecB, a Synthetic Analog of a Silkworm Natural Cecropin B Variant. Int J Mol Sci 2023; 24:12496. [PMID: 37569868 PMCID: PMC10419416 DOI: 10.3390/ijms241512496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium responsible for severe nosocomial infections and is considered a critical pulmonary pathogen for both immunocompromised and cystic fibrosis patients. Planktonic cells of P. aeruginosa possess intrinsic and acquired resistances, inactivating several classes of conventional antibiotics. Additionally, this bacterium can grow, forming biofilms, and complex structures, further hampering the action of multiple antibiotics. Here, we report the biological properties of D-Q53 CecB, an all-D enantiomer of the silkworm natural peptide Q53 CecB. Compared to the L-variant, D-Q53 CecB was resistant to in vitro degradation by humans and P. aeruginosa elastases and showed an enhanced bactericidal activity against P. aeruginosa planktonic bacteria. D-Q53 CecB was thermostable and maintained its antimicrobial activity at high salt concentrations and in the presence of divalent cations or fetal-bovine serum, although at reduced levels. Against different types of human cells, D-Q53 CecB showed cytotoxic phenomena at concentrations several folds higher compared to those active against P. aeruginosa. When L- and D-Q53 CecB were compared for their antibiofilm properties, both peptides were active in inhibiting biofilm formation. However, the D-enantiomer was extremely effective in inducing biofilm degradation, suggesting this peptide as a favorable candidate in an anti-Pseudomonas therapy.
Collapse
Affiliation(s)
- Irene Varponi
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (I.V.); (L.M.); (A.G.); (F.M.)
| | - Stefania Ferro
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (S.F.); (O.M.)
| | - Luca Menilli
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (I.V.); (L.M.); (A.G.); (F.M.)
| | - Alessandro Grapputo
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (I.V.); (L.M.); (A.G.); (F.M.)
- National Biodiversity Future Centre, Piazza Marina 61, 90133 Palermo, Italy
| | - Francesca Moret
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (I.V.); (L.M.); (A.G.); (F.M.)
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy;
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (S.F.); (O.M.)
| | - Federica Sandrelli
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy; (I.V.); (L.M.); (A.G.); (F.M.)
| |
Collapse
|
11
|
Cappiello F, Verma S, Lin X, Moreno IY, Casciaro B, Dutta D, McDermott AM, Willcox M, Coulson-Thomas VJ, Mangoni ML. Novel Peptides with Dual Properties for Treating Pseudomonas aeruginosa Keratitis: Antibacterial and Corneal Wound Healing. Biomolecules 2023; 13:1028. [PMID: 37509064 PMCID: PMC10377436 DOI: 10.3390/biom13071028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
The corneal epithelium is a layer in the anterior part of eye that contributes to light refraction onto the retina and to the ocular immune defense. Although an intact corneal epithelium is an excellent barrier against microbial pathogens and injuries, corneal abrasions can lead to devastating eye infections. Among them, Pseudomonas aeruginosa-associated keratitis often results in severe deterioration of the corneal tissue and even blindness. Hence, the discovery of new drugs able not only to eradicate ocular infections, which are often resistant to antibiotics, but also to elicit corneal wound repair is highly demanded. Recently, we demonstrated the potent antipseudomonal activity of two peptides, Esc(1-21) and its diastereomer Esc(1-21)-1c. In this study, by means of a mouse model of P. aeruginosa keratitis and an in vivo corneal debridement wound, we discovered the efficacy of these peptides, particularly Esc(1-21)-1c, to cure keratitis and to promote corneal wound healing. This latter property was also supported by in vitro cell scratch and ELISA assays. Overall, the current study highlights Esc peptides as novel ophthalmic agents for treating corneal infection and injury, being able to display a dual function, antimicrobial and wound healing, rarely identified in a single peptide at the same micromolar concentration range.
Collapse
Affiliation(s)
- Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.C.); (B.C.)
| | - Sudhir Verma
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Xiao Lin
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Isabel Y. Moreno
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.C.); (B.C.)
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia; (D.D.); (M.W.)
- School of Optometry, Aston University, Birmingham B4 7ET, UK
| | - Alison M. McDermott
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney 2052, Australia; (D.D.); (M.W.)
| | - Vivien J. Coulson-Thomas
- College of Optometry, University of Houston, Houston, TX 77204-2020, USA; (S.V.); (X.L.); (I.Y.M.); (A.M.M.); (V.J.C.-T.)
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (F.C.); (B.C.)
| |
Collapse
|
12
|
Hu Q, Chen C, Lin Z, Zhang L, Guan S, Zhuang X, Dong G, Shen J. The Antimicrobial Peptide Esculentin-1a(1-21)NH 2 Stimulates Wound Healing by Promoting Angiogenesis through the PI3K/AKT Pathway. Biol Pharm Bull 2023; 46:382-393. [PMID: 36385013 DOI: 10.1248/bpb.b22-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Delayed wound healing is a persistent medical problem mainly caused by decreased angiogenesis. Esculentin-1a(1-21)NH2 [Esc-1a(1-21)NH2], has broad-spectrum antibacterial properties which comes from frog skins. It has shown promise as a treatment for wound healing. However, its effects on angiogenesis as well as the mechanism by which esc-1a(1-21)NH2 enhanced wound healing remained unclear. In this study, we analyzed the structural properties and biocompatibility of esc-1a(1-21)NH2 and evaluated its effect on wound closure using a full-thickness excision model in mice. Our results showed that esc-1a(1-21)NH2 significantly accelerated wound healing by increasing collagen deposition and angiogenesis, characterized by elevated expression levels of platelet, endothelial cell adhesion molecule-1 (CD31) and proliferating cell nuclear antigen (PCNA). Furthermore, the angiogenic activity of esc-1a(1-21)NH2 was confirmed in vitro by various assays. Esc-1a(1-21)NH2 significantly promoted cell migration and cell proliferation in human umbilical vein vascular endothelial cells (HUVECs) via activation of the phosphatidylinositol 3'-kinase (PI3K)/protein kinase B (AKT) pathway, and upregulated the expression of CD31 at both mRNA and protein levels. The effect of esc-1a(1-21)NH2 on angiogenesis was diminished by LY294002, a PI3K pathway inhibitor. Taken together, this study demonstrates that esc-1a(1-21)NH2 accelerates wound closure in mice by promoting angiogenesis via the PI3K/AKT signaling pathway, suggesting its effective application in the treatment of wound healing.
Collapse
Affiliation(s)
- Qiong Hu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Chujun Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Zhenming Lin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Liyao Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Sujiuan Guan
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Xiaoyan Zhuang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Guangfu Dong
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| |
Collapse
|
13
|
Al Tall Y, Al-Nassar B, Abualhaijaa A, Sabi SH, Almaaytah A. The design and functional characterization of a novel hybrid antimicrobial peptide from Esculentin-1a and melittin. PHARMACIA 2023. [DOI: 10.3897/pharmacia.70.e97116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Antimicrobial agents are one of the most widely used drugs in medicine. In the last fifty years, the misuse of these agents caused the emergence of resistant strains of bacteria that led to an increase in life-threatening infections. The need to develop new agents has become a priority, and antimicrobial peptides attained high consideration. The antimicrobial activities of a novel In-house designed hybrid cationic peptide (BKR1) were studied against different strains of Gram-negative bacteria. This was done using the broth dilution method as outlined by the Clinical and Laboratory Institute (CLSI). Checkerboard assy was employed to investigate the synergistic activity of BKR1 peptide with four antibiotics (Levofloxacin, chloramphenicol, rifampicin, and ampicillin). Finally, the cytotoxicity of BKR1 was evaluated against human blood cells and mammalian kidney cells (Vero cells). BKR1 displayed bactericidal activity against tested strains of Gram-negative bacteria, with zero hemolytic effects. It also acts as a strong adjuvant with levofloxacin, chloramphenicol, and rifampicin against resistant strains of P. aeruginosa and E. coli. This study represents the design and elucidation of the antimicrobial activities of a novel hybrid antimicrobial peptide named (BKR1). Our results indicate thar BKR1 is a promising candidate to treat resistant infectious diseases individually or as an adjuvant with conventional antibiotics.
Collapse
|
14
|
Cappiello F, Casciaro B, Loffredo MR, Puglisi E, Lin Q, Yang D, Conte G, d’Angelo I, Ungaro F, Ferrera L, Barbieri R, Cresti L, Pini A, Di YP, Mangoni ML. Pulmonary Safety Profile of Esc Peptides and Esc-Peptide-Loaded Poly(lactide-co-glycolide) Nanoparticles: A Promising Therapeutic Approach for Local Treatment of Lung Infectious Diseases. Pharmaceutics 2022; 14:2297. [PMID: 36365116 PMCID: PMC9697339 DOI: 10.3390/pharmaceutics14112297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
In recent years, we have discovered Esc(1-21) and its diastereomer (Esc peptides) as valuable candidates for the treatment of Pseudomonas lung infection, especially in patients with cystic fibrosis (CF). Furthermore, engineered poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) were revealed to be a promising pulmonary delivery system of antimicrobial peptides. However, the "ad hoc" development of novel therapeutics requires consideration of their stability, tolerability, and safety. Hence, by means of electrophysiology experiments and preclinical studies on healthy mice, we demonstrated that neither Esc peptides or Esc-peptide-loaded PLGA NPs significantly affect the integrity of the lung epithelium, nor change the global gene expression profile of lungs of treated animals compared to those of vehicle-treated animals. Noteworthy, the Esc diastereomer endowed with the highest antimicrobial activity did not provoke any pulmonary pro-inflammatory response, even at a concentration 15-fold higher than the efficacy dosage 24 h after administration in the free or encapsulated form. The therapeutic index was ≥70, and the peptide was found to remain available in the bronchoalveolar lavage of mice, after two days of incubation. Overall, these studies should open an avenue for a new up-and-coming pharmacological approach, likely based on inhalable peptide-loaded NPs, to address CF lung disease.
Collapse
Affiliation(s)
- Floriana Cappiello
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Bruno Casciaro
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Rosa Loffredo
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Elena Puglisi
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | - Qiao Lin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dandan Yang
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gemma Conte
- Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Ivana d’Angelo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Francesca Ungaro
- Department of Pharmacy, University of Napoli Federico II, 80131 Napoli, Italy
| | - Loretta Ferrera
- U.O.C. Genetica Medica, IRCCS, Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Raffaella Barbieri
- Biophysic Institute, Consiglio Nazionale delle Ricerche (CNR), 16149 Genoa, Italy
| | - Laura Cresti
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Alessandro Pini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
15
|
Dini I, De Biasi MG, Mancusi A. An Overview of the Potentialities of Antimicrobial Peptides Derived from Natural Sources. Antibiotics (Basel) 2022; 11:1483. [PMID: 36358138 PMCID: PMC9686932 DOI: 10.3390/antibiotics11111483] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/21/2023] Open
Abstract
Antimicrobial peptides (AMPs) are constituents of the innate immune system in every kind of living organism. They can act by disrupting the microbial membrane or without affecting membrane stability. Interest in these small peptides stems from the fear of antibiotics and the emergence of microorganisms resistant to antibiotics. Through membrane or metabolic disruption, they defend an organism against invading bacteria, viruses, protozoa, and fungi. High efficacy and specificity, low drug interaction and toxicity, thermostability, solubility in water, and biological diversity suggest their applications in food, medicine, agriculture, animal husbandry, and aquaculture. Nanocarriers can be used to protect, deliver, and improve their bioavailability effectiveness. High cost of production could limit their use. This review summarizes the natural sources, structures, modes of action, and applications of microbial peptides in the food and pharmaceutical industries. Any restrictions on AMPs' large-scale production are also taken into consideration.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | | | - Andrea Mancusi
- Department of Food Microbiology, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, Italy
| |
Collapse
|
16
|
Kong D, Hua X, Zhou R, Cui J, Wang T, Kong F, You H, Liu X, Adu-Amankwaah J, Guo G, Zheng K, Wu J, Tang R. Antimicrobial and Anti-Inflammatory Activities of MAF-1-Derived Antimicrobial Peptide Mt6 and Its D-Enantiomer D-Mt6 against Acinetobacter baumannii by Targeting Cell Membranes and Lipopolysaccharide Interaction. Microbiol Spectr 2022; 10:e0131222. [PMID: 36190276 PMCID: PMC9603722 DOI: 10.1128/spectrum.01312-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/30/2022] [Indexed: 12/30/2022] Open
Abstract
Antibiotic resistance in Acinetobacter baumannii is on the rise around the world, highlighting the urgent need for novel antimicrobial drugs. Antimicrobial peptides (AMPs) contribute to effective protection against infections by pathogens, making them the most promising options for next-generation antibiotics. Here, we report two designed, cationic, antimicrobial-derived peptides: Mt6, and its dextroisomer D-Mt6, belonging to the analogs of MAF-1, which is isolated from the instar larvae of houseflies. Both Mt6 and D-Mt6 have a broad-spectrum antimicrobial activity that is accompanied by strong antibacterial activities, especially against A. baumannii planktonic bacteria and biofilms. Additionally, the effect of D-Mt6 against A. baumannii is stable in a variety of physiological settings, including enzyme, salt ion, and hydrogen ion environments. Importantly, D-Mt6 cleans the bacteria on Caenorhabditis elegans without causing apparent toxicity and exhibits good activity in vivo. Both Mt6 and D-Mt6 demonstrated synergistic or additive capabilities with traditional antibiotics against A. baumannii, demonstrating their characteristics as potential complements to combination therapy. Scanning electron microscopy (SEM) and laser scanning confocal microscope (LSCM) experiments revealed that two analogs displayed rapid bactericidal activity by destroying cell membrane integrity. Furthermore, in lipopolysaccharide (LPS)-stimulated macrophage cells, these AMPs drastically decreased IL-1β and TNF-a gene expression and protein secretion, implying anti-inflammatory characteristics. This trait is likely due to its dual function of directly binding LPS and inhibiting the LPS-activated mitogen-activated protein kinase (MAPK) signaling pathways in macrophages. Our findings suggested that D-Mt6 could be further developed as a novel antimicrobial/anti-inflammatory agent and used in the treatment of A. baumannii infections. IMPORTANCE Around 700,000 people worldwide die each year from antibiotic-resistant pathogens. Acinetobacter baumannii in clinical specimens increases year by year, and it is developing a strong resistance to clinical drugs, which is resulting in A. baumannii becoming the main opportunistic pathogen. Antimicrobial peptides show great potential as new antibacterial drugs that can replace traditional antibiotics. In our study, Mt6 and D-Mt6, two new antimicrobial peptides, were designed based on a natural peptide that we first discovered in the hemlymphocytes of housefly larvae. Both Mt6 and D-Mt6 showed broad-spectrum antimicrobial activity, especially against A. baumannii, by damaging membrane integrity. Moreover, D-Mt6 showed better immunoregulatory activity against LPS induced inflammation through its LPS-neutralizing and suppression on MAPK signaling. This study suggested that D-Mt6 is a promising candidate drug as a derived peptide against A. baumannii.
Collapse
Affiliation(s)
- Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xuan Hua
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Rui Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jie Cui
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Tao Wang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiangye Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | | | - Guo Guo
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Jianwei Wu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
17
|
Antimicrobial peptides for tackling cystic fibrosis related bacterial infections: a review. Microbiol Res 2022; 263:127152. [DOI: 10.1016/j.micres.2022.127152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022]
|
18
|
Ben Hur D, Kapach G, Wani NA, Kiper E, Ashkenazi M, Smollan G, Keller N, Efrati O, Shai Y. Antimicrobial Peptides against Multidrug-Resistant Pseudomonas aeruginosa Biofilm from Cystic Fibrosis Patients. J Med Chem 2022; 65:9050-9062. [PMID: 35759644 PMCID: PMC9289885 DOI: 10.1021/acs.jmedchem.2c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Lung
infection is the leading cause of morbidity and mortality
in cystic fibrosis (CF) patients and is mainly dominated by Pseudomonas aeruginosa. Treatment of CF-associated lung
infections is problematic because the drugs are vulnerable to multidrug-resistant
pathogens, many of which are major biofilm producers like P. aeruginosa. Antimicrobial peptides (AMPs) are essential
components in all life forms and exhibit antimicrobial activity. Here
we investigated a series of AMPs (d,l-K6L9), each composed of six lysines and nine leucines but
differing in their sequence composed of l- and d-amino acids. The d,l-K6L9 peptides showed antimicrobial and antibiofilm activities against
P. aeruginosa from CF patients. Furthermore, the
data revealed that the d,l-K6L9 peptides are stable and resistant to degradation by CF sputum proteases
and maintain their activity in a CF sputum environment. Additionally,
the d,l-K6L9 peptides do not
induce bacterial resistance. Overall, these findings should assist
in the future development of alternative treatments against resistant
bacterial biofilms.
Collapse
Affiliation(s)
- Daniel Ben Hur
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gal Kapach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naiem Ahmad Wani
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Edo Kiper
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moshe Ashkenazi
- Pediatric Pulmonary Institute and National CF Center, Edmond and Lilly Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Gill Smollan
- Microbiology Laboratories, Edmond and Lili Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ariel University, Ramat Gan 52621, Israel
| | - Natan Keller
- The Department of Health Management, Ariel University, Ariel 40700, Israel.,Microbiology Laboratories, Edmond and Lili Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Ariel University, Ramat Gan 52621, Israel
| | - Ori Efrati
- Pediatric Pulmonary Institute and National CF Center, Edmond and Lilly Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Yechiel Shai
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
19
|
Plasma d-amino acids are associated with markers of immune activation and organ dysfunction in people with HIV. AIDS 2022; 36:911-921. [PMID: 35212669 DOI: 10.1097/qad.0000000000003207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND d-Amino acids (d-AAs) have been associated with age-associated conditions in the general population but their relevance in people with HIV (PWH), who experience accentuated/accelerated aging has not been studied. We compared d-AA levels in HIV-infected and uninfected controls and explored their association with markers of immune activation, gut permeability and organ dysfunction. DESIGN Case-control analysis. METHOD Plasma samples from 60 antiretroviral therapy-treated HIV-infected individuals and 59 uninfected controls were analysed. A three-dimensional HPLC system was used to measure d-and l-asparagine, serine, alanine and proline and presented as %d-AA. Additionally, cell-associated and soluble markers of immune activation and senescence were characterized. Kidney and liver functions were expressed as estimated glomerular filtration rate and fibrosis-4 scores, respectively. Mann-Whitney and Spearman rank correlation coefficients were used for statistical analysis. RESULTS d-Asparagine, d-serine, d-alanine and d-proline were detectable in all plasma samples and correlated with age in HIV-infected and uninfected but not different between groups. Kynurenine/tryptophan ratio was positively correlated with all %d-AAs in PWH and with %d-serine and %d-proline in controls. %d-AAs were not consistently correlated with markers of gut permeability in both groups. All %d-AAs were also correlated with kidney function in both groups whereas age-associated accumulation of %d-asparagine, %d-serine and %d-proline were correlated with liver function and the VACS score in controls. CONCLUSION Plasma d-AAs are associated with chronological age and correlated with markers of immune activation and organ decline, though variably, in PWH and controls. Their role in the biology of aging warrants further investigation.
Collapse
|
20
|
Ageitos L, de la Fuente-Nunez C. Antimicrobial Peptides: Potential Therapeutics Against Drug-Resistant Pulmonary Infections. Arch Bronconeumol 2022; 58:383-385. [PMID: 34642532 PMCID: PMC8496903 DOI: 10.1016/j.arbres.2021.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Lucía Ageitos
- Centro de Investigacións Científicas Avanzadas (CICA) e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Calle de la Maestranza, 9, A Coruña 15071, Spain; Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
21
|
Yue H, Song P, Sutthammikorn N, Umehara Y, Trujillo-Paez JV, Nguyen HLT, Takahashi M, Peng G, Ikutama R, Okumura K, Ogawa H, Ikeda S, Niyonsaba F. Antimicrobial peptide derived from insulin-like growth factor-binding protein 5 improves diabetic wound healing. Wound Repair Regen 2022; 30:232-244. [PMID: 35092133 DOI: 10.1111/wrr.12997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/20/2021] [Accepted: 01/10/2022] [Indexed: 12/29/2022]
Abstract
Impaired keratinocyte functions are major factors that are responsible for delayed diabetic wound healing. In addition to its antimicrobial activity, the antimicrobial peptide derived from insulin-like growth factor-binding protein 5 (AMP-IBP5) activates mast cells and promotes keratinocyte and fibroblast proliferation and migration. However, its effects on diabetic wound healing remain unclear. Human keratinocytes were cultured in normal or high glucose milieus. The production of angiogenic growth factor and cell proliferation and migration were evaluated. Wounds in normal and streptozotocin-induced diabetic mice were monitored and histologically examined. We found that AMP-IBP5 rescued the high glucose-induced attenuation of proliferation and migration as well as the production of angiogenin and vascular endothelial growth factors in keratinocytes. The AMP-IBP5-induced activity was mediated by the epidermal growth factor receptor, signal transducer and activator of transcription 1 and 3, and mitogen-activated protein kinase pathways, as indicated by the inhibitory effects of pathway-specific inhibitors. In vivo, AMP-IBP5 markedly accelerated wound healing, increased the expression of angiogenic factors and promoted vessel formation in both normal and diabetic mice. Overall, the finding that AMP-IBP5 accelerated diabetic wound healing by protecting against glucotoxicity and promoting angiogenesis suggests that AMP-IBP5 might be a potential therapeutic target for treating chronic diabetic wounds.
Collapse
Affiliation(s)
- Hainan Yue
- Department of Dermatology and Allergology, University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Pu Song
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, China
| | - Nutda Sutthammikorn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Yoshie Umehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Hai Le Thanh Nguyen
- Department of Dermatology and Allergology, University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Miho Takahashi
- Department of Dermatology and Allergology, University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ge Peng
- Department of Dermatology and Allergology, University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risa Ikutama
- Department of Dermatology and Allergology, University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, University Graduate School of Medicine, Tokyo, Japan.,Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - François Niyonsaba
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan
| |
Collapse
|
22
|
Esc peptides as novel potentiators of defective cystic fibrosis transmembrane conductance regulator: an unprecedented property of antimicrobial peptides. Cell Mol Life Sci 2021; 79:67. [PMID: 34971429 PMCID: PMC8752549 DOI: 10.1007/s00018-021-04030-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Mutations in the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein lead to persistent lung bacterial infections, mainly due to Pseudomonas aeruginosa, causing loss of respiratory function and finally death of people affected by CF. Unfortunately, even in the era of CFTR modulation therapies, management of pulmonary infections in CF remains highly challenging especially for patients with advanced stages of lung disease. Recently, we identified antimicrobial peptides (AMPs), namely Esc peptides, with potent antipseudomonal activity. In this study, by means of electrophysiological techniques and computational studies we discovered their ability to increase the CFTR-controlled ion currents, by direct interaction with the F508del-CFTR mutant. Remarkably, this property was not explored previously with any AMPs or peptides in general. More interestingly, in contrast with clinically used CFTR modulators, Esc peptides would give particular benefit to CF patients by combining their capability to eradicate lung infections and to act as promoters of airway wound repair with their ability to ameliorate the activity of the channel with conductance defects. Overall, our findings not only highlighted Esc peptides as the first characterized AMPs with a novel property, that is the potentiator activity of CFTR, but also paved the avenue to investigate the functions of AMPs and/or other peptide molecules, for a new up-and-coming pharmacological approach to address CF lung disease.
Collapse
|
23
|
Oliveras À, Moll L, Riesco-Llach G, Tolosa-Canudas A, Gil-Caballero S, Badosa E, Bonaterra A, Montesinos E, Planas M, Feliu L. D-Amino Acid-Containing Lipopeptides Derived from the Lead Peptide BP100 with Activity against Plant Pathogens. Int J Mol Sci 2021; 22:ijms22126631. [PMID: 34205705 PMCID: PMC8233901 DOI: 10.3390/ijms22126631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/19/2022] Open
Abstract
From a previous collection of lipopeptides derived from BP100, we selected 18 sequences in order to improve their biological profile. In particular, analogues containing a D-amino acid at position 4 were designed, prepared, and tested against plant pathogenic bacteria and fungi. The biological activity of these sequences was compared with that of the corresponding parent lipopeptides with all L-amino acids. In addition, the influence of the length of the hydrophobic chain on the biological activity was evaluated. Interestingly, the incorporation of a D-amino acid into lipopeptides bearing a butanoyl or a hexanoyl chain led to less hemolytic sequences and, in general, that were as active or more active than the corresponding all L-lipopeptides. The best lipopeptides were BP475 and BP485, both incorporating a D-Phe at position 4 and a butanoyl group, with MIC values between 0.8 and 6.2 µM, low hemolysis (0 and 24% at 250 µM, respectively), and low phytotoxicity. Characterization by NMR of the secondary structure of BP475 revealed that the D-Phe at position 4 disrupts the α-helix and that residues 6 to 10 are able to fold in an α-helix. This secondary structure would be responsible for the high antimicrobial activity and low hemolysis of this lipopeptide.
Collapse
Affiliation(s)
- Àngel Oliveras
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
| | - Luís Moll
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Gerard Riesco-Llach
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
| | - Arnau Tolosa-Canudas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
| | - Sergio Gil-Caballero
- Serveis Tècnics de Recerca (NMR), Universitat de Girona, Parc Científic i Tecnològic de la UdG, Pic de Peguera 15, 17004 Girona, Spain;
| | - Esther Badosa
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Anna Bonaterra
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Emilio Montesinos
- Laboratory of Plant Pathology, Institute of Food and Agricultural Technology-CIDSAV-XaRTA, Campus Montilivi, University of Girona, 17004 Girona, Spain; (L.M.); (E.B.); (A.B.); (E.M.)
| | - Marta Planas
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
- Correspondence: (M.P.); (L.F.)
| | - Lidia Feliu
- LIPPSO, Department of Chemistry, Campus Montilivi, University of Girona, 17004 Girona, Spain; (À.O.); (G.R.-L.); (A.T.-C.)
- Correspondence: (M.P.); (L.F.)
| |
Collapse
|
24
|
Boix-Lemonche G, Guillem-Marti J, Lekka M, D'Este F, Guida F, Manero JM, Skerlavaj B. Membrane perturbation, altered morphology and killing of Staphylococcus epidermidis upon contact with a cytocompatible peptide-based antibacterial surface. Colloids Surf B Biointerfaces 2021; 203:111745. [PMID: 33853003 DOI: 10.1016/j.colsurfb.2021.111745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
One possibility to prevent prosthetic infections is to produce biomaterials resistant to bacterial colonization by anchoring membrane active antimicrobial peptides (AMPs) onto the implant surface. In this perspective, a deeper understanding of the mode of action of the immobilized peptides should improve the development of AMP-inspired infection-resistant biomaterials. The aim of the present study was to characterize the bactericidal mechanism against Staphylococcus epidermidis of the AMP BMAP27(1-18), immobilized on titanium disks and on a model resin support, by applying viability counts, Field Emission Scanning Electron Microscopy (FE-SEM), and a fluorescence microplate assay with a membrane potential-sensitive dye. The cytocompatibility to osteoblast-like MG-63 cells was investigated in monoculture and in co-culture with bacteria. The impact of peptide orientation was explored by using N- and C- anchored analogues. On titanium, the ∼50 % drop in bacteria viability and dramatically affected morphology indicate a contact-killing action exerted by the N- and C-immobilized peptides to the same extent. As further shown by the fluorescence assay with the resin-anchored peptides, the bactericidal effect was mediated by rapid membrane perturbation, similar to free peptides. However, at peptide MBC resin equivalents the C-oriented analogue proved more effective with more than 99 % killing and maximum fluorescence increase, compared to half-maximum fluorescence with more than 90 % killing produced by the N-orientation. Confocal microscopy analyses revealed 4-5 times better MG-63 cell adhesion on peptide-functionalized titanium both in monoculture and in co-culture with bacteria, regardless of peptide orientation, thus stimulating further studies on the effects of the immobilized BMAP27(1-18) on osteoblast cells.
Collapse
Affiliation(s)
- Gerard Boix-Lemonche
- Department of Medicine (DAME), University of Udine, piazzale Kolbe, 4, 33100, Udine, Italy.
| | - Jordi Guillem-Marti
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 14, 08930 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering-UPC, Av. Eduard Maristany 14, 08930, Barcelona, Spain.
| | - Maria Lekka
- University of Udine, Polytechnic Department of Engineering and Architecture, Via delle Scienze 206, 33100, Udine, Italy; CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain.
| | - Francesca D'Este
- Department of Medicine (DAME), University of Udine, piazzale Kolbe, 4, 33100, Udine, Italy.
| | - Filomena Guida
- University of Trieste, Department of Life Sciences, Via Giorgieri 5, 34127, Trieste, Italy.
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Av. Eduard Maristany 14, 08930 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering-UPC, Av. Eduard Maristany 14, 08930, Barcelona, Spain.
| | - Barbara Skerlavaj
- Department of Medicine (DAME), University of Udine, piazzale Kolbe, 4, 33100, Udine, Italy.
| |
Collapse
|
25
|
D’Souza AR, Necelis MR, Kulesha A, Caputo GA, Makhlynets OV. Beneficial Impacts of Incorporating the Non-Natural Amino Acid Azulenyl-Alanine into the Trp-Rich Antimicrobial Peptide buCATHL4B. Biomolecules 2021; 11:421. [PMID: 33809374 PMCID: PMC8001250 DOI: 10.3390/biom11030421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs) present a promising scaffold for the development of potent antimicrobial agents. Substitution of tryptophan by non-natural amino acid Azulenyl-Alanine (AzAla) would allow studying the mechanism of action of AMPs by using unique properties of this amino acid, such as ability to be excited separately from tryptophan in a multi-Trp AMPs and environmental insensitivity. In this work, we investigate the effect of Trp→AzAla substitution in antimicrobial peptide buCATHL4B (contains three Trp side chains). We found that antimicrobial and bactericidal activity of the original peptide was preserved, while cytocompatibility with human cells and proteolytic stability was improved. We envision that AzAla will find applications as a tool for studies of the mechanism of action of AMPs. In addition, incorporation of this non-natural amino acid into AMP sequences could enhance their application properties.
Collapse
Affiliation(s)
- Areetha R. D’Souza
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA; (A.R.D.); (A.K.)
| | - Matthew R. Necelis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA; (M.R.N.); (G.A.C.)
| | - Alona Kulesha
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA; (A.R.D.); (A.K.)
| | - Gregory A. Caputo
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, USA; (M.R.N.); (G.A.C.)
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Olga V. Makhlynets
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY 13244, USA; (A.R.D.); (A.K.)
| |
Collapse
|
26
|
Potent intracellular antibacterial activity of a marine peptide-N6NH 2 and its D-enantiomer against multidrug-resistant Aeromonas veronii. Appl Microbiol Biotechnol 2021; 105:2351-2361. [PMID: 33635357 DOI: 10.1007/s00253-021-11176-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Aeromonas veronii can cause a variety of diseases such as sepsis in humans and animals. However, there has been no effective way to eradicate A. veronii. In this study, the intracellular antibacterial activities of the C-terminal aminated marine peptide N6 (N6NH2) and its D-enantiomer (DN6NH2) against A. veronii were investigated in macrophages and in mice, respectively. The result showed that DN6NH2 with the minimum inhibitory concentration (MIC) of 1.62 μM is more resistant to cathepsin B than N6NH2 (3.23 μM). The penetration percentages of the cells treated with 4-200 μg/mL fluorescein isothiocyanate (FITC)-DN6NH2 were 52.5-99.6%, higher than those of FITC-N6NH2 (27.0-99.1%). Both N6NH2 and DN6NH2 entered macrophages by macropinocytosis and an energy-dependent manner. DN6NH2 reduced intracellular A. veronii by 34.57%, superior to N6NH2 (19.52%). After treatment with 100 μg/mL DN6NH2, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β were reduced by 53.45%, 58.54%, and 44.62%, respectively, lower than those of N6NH2 (15.65%, 12.88%, and 14.10%, respectively); DN6NH2 increased the IL-10 level (42.94%), higher than N6NH2 (7.67%). In the mice peritonitis model, 5 μmol/kg DN6NH2 reduced intracellular A. veronii colonization by 73.22%, which was superior to N6NH2 (32.45%) or ciprofloxacin (45.67%). This suggests that DN6NH2 may be used as the candidate for treating intracellular multidrug-resistant (MDR) A. veronii. KEY POINTS: • DN6NH2 improved intracellular antibacterial activity against MDR A. veronii. • DN6NH2 entered macrophages by micropinocytosis and enhanced the internalization rates. • DN6NH2 effectively protected the mice from infection with A. veronii.
Collapse
|
27
|
Yang J, Zhang B, Huang Y, Liu T, Zeng B, Chai J, Wu J, Xu X. Antiviral activity and mechanism of ESC-1GN from skin secretion of hylarana guentheri against influenza a virus. J Biochem 2021; 169:757-765. [PMID: 33624755 DOI: 10.1093/jb/mvab019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/13/2021] [Indexed: 11/13/2022] Open
Abstract
Development of new and effective anti-influenza drugs is critical for prophylaxis and treatment of influenza A virus infection. A wide range of amphibian skin secretions have been identified to show antiviral activity. Our previously reported ESC-1GN, a peptide from the skin secretion of Hylarana guentheri, displayed good antimicrobial and anti-inflammatory effects. Here, we found that ESC-1GN possessed significant antiviral effects against influenza A viruses. Moreover, ESC-1GN could inhibit the entry of divergent H5N1 and H1N1 virus strains with the IC50 values from 1.29 to 4.59 μM. Mechanism studies demonstrated that ESC-1GN disrupted membrane fusion activity of influenza A viruses by interaction with HA2 subunit. The results of site-directed mutant assay and molecular docking revealed that E105, N50 and the residues around them on HA2 subunit could form hydrogen bonds with amino acid on ESC-1GN, which were critical for ESC-1GN binding to HA2 and inhibiting the entry of influenza A viruses. Altogether, these not only suggest that ESC-1GN maybe represent a new type of excellent template designing drugs against influenza A viruses, but also it may shed light on the immune mechanism and survival strategy of H. guentheri against viral pathogens.
Collapse
Affiliation(s)
- Jie Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bei Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yingna Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Teng Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Baishuang Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jingwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
28
|
Casciaro B, Cappiello F, Verrusio W, Cacciafesta M, Mangoni ML. Antimicrobial Peptides and their Multiple Effects at Sub-Inhibitory Concentrations. Curr Top Med Chem 2021; 20:1264-1273. [PMID: 32338221 DOI: 10.2174/1568026620666200427090912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 01/10/2023]
Abstract
The frequent occurrence of multidrug-resistant strains to conventional antimicrobials has led to a clear decline in antibiotic therapies. Therefore, new molecules with different mechanisms of action are extremely necessary. Due to their unique properties, antimicrobial peptides (AMPs) represent a valid alternative to conventional antibiotics and many of them have been characterized for their activity and cytotoxicity. However, the effects that these peptides cause at concentrations below the minimum growth inhibitory concentration (MIC) have yet to be fully analyzed along with the underlying molecular mechanism. In this mini-review, the ability of AMPs to synergize with different antibiotic classes or different natural compounds is examined. Furthermore, data on microbial resistance induction are reported to highlight the importance of antibiotic resistance in the fight against infections. Finally, the effects that sub-MIC levels of AMPs can have on the bacterial pathogenicity are summarized while showing how signaling pathways can be valid therapeutic targets for the treatment of infectious diseases. All these aspects support the high potential of AMPs as lead compounds for the development of new drugs with antibacterial and immunomodulatory activities.
Collapse
Affiliation(s)
- Bruno Casciaro
- Center For Life Nano Science @ Sapienza, Italian Institute of Technology, Rome 00161, Italy
| | - Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| | - Walter Verrusio
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Mauro Cacciafesta
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
29
|
Antipseudomonal and Immunomodulatory Properties of Esc Peptides: Promising Features for Treatment of Chronic Infectious Diseases and Inflammation. Int J Mol Sci 2021; 22:ijms22020557. [PMID: 33429882 PMCID: PMC7826692 DOI: 10.3390/ijms22020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 12/04/2022] Open
Abstract
Persistent infections, such as those provoked by the Gram-negative bacterium Pseudomonas aeruginosa in the lungs of cystic fibrosis (CF) patients, can induce inflammation with lung tissue damage and progressive alteration of respiratory function. Therefore, compounds having both antimicrobial and immunomodulatory activities are certainly of great advantage in fighting infectious diseases and chronic inflammation. We recently demonstrated the potent antipseudomonal efficacy of the antimicrobial peptide (AMP) Esc(1-21) and its diastereomer Esc(1-21)-1c, namely Esc peptides. Here, we confirmed this antimicrobial activity by reporting on the peptides’ ability to kill P. aeruginosa once internalized into alveolar epithelial cells. Furthermore, by means of enzyme-linked immunosorbent assay and Western blot analyses, we investigated the peptides’ ability to detoxify the bacterial lipopolysaccharide (LPS) by studying their effects on the secretion of the pro-inflammatory cytokine IL-6 as well as on the expression of cyclooxygenase-2 from macrophages activated by P. aeruginosa LPS. In addition, by a modified scratch assay we showed that both AMPs are able to stimulate the closure of a gap produced in alveolar epithelial cells when cell migration is inhibited by concentrations of Pseudomonas LPS that mimic lung infection conditions, suggesting a peptide-induced airway wound repair. Overall, these results have highlighted the two Esc peptides as valuable candidates for the development of new multifunctional therapeutics for treatment of chronic infectious disease and inflammation, as found in CF patients.
Collapse
|
30
|
Casciaro B, Loffredo MR, Cappiello F, Fabiano G, Torrini L, Mangoni ML. The Antimicrobial Peptide Temporin G: Anti-Biofilm, Anti-Persister Activities, and Potentiator Effect of Tobramycin Efficacy Against Staphylococcus aureus. Int J Mol Sci 2020; 21:ijms21249410. [PMID: 33321906 PMCID: PMC7764207 DOI: 10.3390/ijms21249410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 01/10/2023] Open
Abstract
Bacterial biofilms are a serious threat for human health, and the Gram-positive bacterium Staphylococcus aureus is one of the microorganisms that can easily switch from a planktonic to a sessile lifestyle, providing protection from a large variety of adverse environmental conditions. Dormant non-dividing cells with low metabolic activity, named persisters, are tolerant to antibiotic treatment and are the principal cause of recalcitrant and resistant infections, including skin infections. Antimicrobial peptides (AMPs) hold promise as new anti-infective agents to treat such infections. Here for the first time, we investigated the activity of the frog-skin AMP temporin G (TG) against preformed S. aureus biofilm including persisters, as well as its efficacy in combination with tobramycin, in inhibiting S. aureus growth. TG was found to provoke ~50 to 100% reduction of biofilm viability in the concentration range from 12.5 to 100 µM vs ATCC and clinical isolates and to be active against persister cells (about 70–80% killing at 50–100 µM). Notably, sub-inhibitory concentrations of TG in combination with tobramycin were able to significantly reduce S. aureus growth, potentiating the antibiotic power. No critical cytotoxicity was detected when TG was tested in vitro up to 100 µM against human keratinocytes, confirming its safety profile for the development of a new potential anti-infective drug, especially for treatment of bacterial skin infections.
Collapse
Affiliation(s)
- Bruno Casciaro
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
- Correspondence: (B.C.); (M.L.M.); Tel.: +39-0649910838 (M.L.M.)
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.F.); (L.T.)
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.F.); (L.T.)
| | - Guendalina Fabiano
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.F.); (L.T.)
| | - Luisa Torrini
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.F.); (L.T.)
| | - Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.R.L.); (F.C.); (G.F.); (L.T.)
- Correspondence: (B.C.); (M.L.M.); Tel.: +39-0649910838 (M.L.M.)
| |
Collapse
|
31
|
Wang Y, Feng Z, Yang M, Zeng L, Qi B, Yin S, Li B, Li Y, Fu Z, Shu L, Fu C, Qin P, Meng Y, Li X, Yang Y, Tang J, Yang X. Discovery of a novel short peptide with efficacy in accelerating the healing of skin wounds. Pharmacol Res 2020; 163:105296. [PMID: 33220421 DOI: 10.1016/j.phrs.2020.105296] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022]
Abstract
Despite extensive efforts to develop efficacious therapeutic approaches, the treatment of skin wounds remains a considerable clinical challenge. Existing remedies cannot sufficiently meet current needs, so the discovery of novel pro-healing agents is of growing importance. In the current research, we identified a novel short peptide (named RL-QN15, primary sequence 'QNSYADLWCQFHYMC') from Rana limnocharis skin secretions, which accelerated wound healing in mice. Exploration of the underlying mechanisms showed that RL-QN15 activated the MAPK and Smad signaling pathways, and selectively modulated the secretion of cytokines from macrophages. This resulted in the proliferation and migration of skin cells and dynamic regulation of TGF-β1 and TGF-β3 in wounds, which accelerated re-epithelialization and granulation tissue formation and thus skin regeneration. Moreover, RL-QN15 showed significant therapeutic potency against chronic wounds, skin fibrosis, and oral ulcers. Our results highlight frog skin secretions as a potential treasure trove of bioactive peptides with healing activity. The novel peptide (RL-QN15) identified in this research shows considerable capacity as a candidate for the development of novel pro-healing agents.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Zhuo Feng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Lin Zeng
- Public Technical Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Bu'er Qi
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Saige Yin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Bangsheng Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Zhe Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethno-Medicine and Ethno-Pharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Chen Fu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Pan Qin
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yi Meng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Xiaojie Li
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Second People's Hospital of Yunnan Province & Fourth Affiliated Hospital of Kunming Medical University, Kunming, 650021, Yunnan, 650223, China
| | - Jing Tang
- Department of Biochemistry and Molecular Biology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
32
|
Lu J, Xu H, Xia J, Ma J, Xu J, Li Y, Feng J. D- and Unnatural Amino Acid Substituted Antimicrobial Peptides With Improved Proteolytic Resistance and Their Proteolytic Degradation Characteristics. Front Microbiol 2020; 11:563030. [PMID: 33281761 PMCID: PMC7688903 DOI: 10.3389/fmicb.2020.563030] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/22/2020] [Indexed: 01/10/2023] Open
Abstract
The transition of antimicrobial peptides (AMPs) from the laboratory to market has been severely hindered by their instability toward proteases in biological systems. In the present study, we synthesized derivatives of the cationic AMP Pep05 (KRLFKKLLKYLRKF) by substituting L-amino acid residues with D- and unnatural amino acids, such as D-lysine, D-arginine, L-2,4-diaminobutanoic acid (Dab), L-2,3-diaminopropionic acid (Dap), L-homoarginine, 4-aminobutanoic acid (Aib), and L-thienylalanine, and evaluated their antimicrobial activities, toxicities, and stabilities toward trypsin, plasma proteases, and secreted bacterial proteases. In addition to measuring changes in the concentration of the intact peptides, LC-MS was used to identify the degradation products of the modified AMPs in the presence of trypsin and plasma proteases to determine degradation pathways and examine whether the amino acid substitutions afforded improved proteolytic resistance. The results revealed that both D- and unnatural amino acids enhanced the stabilities of the peptides toward proteases. The derivative DP06, in which all of the L-lysine and L-arginine residues were replaced by D-amino acids, displayed remarkable stability and mild toxicity in vitro but only slight activity and severe toxicity in vivo, indicating a significant difference between the in vivo and in vitro results. Unexpectedly, we found that the incorporation of a single Aib residue at the N-terminus of compound UP09 afforded remarkably enhanced plasma stability and improved activity in vivo. Hence, this derivative may represent a candidate AMP for further optimization, providing a new strategy for the design of novel AMPs with improved bioavailability.
Collapse
Affiliation(s)
- Jianguang Lu
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China.,Department of Peptide Drugs R&D, Shanghai Duomirui Biotechnology Co., Ltd., Shanghai, China
| | - Hongjiang Xu
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China.,Department of Drug Evaluation and Research, Chia Tai Tianqing Pharmaceutical Group Co., Ltd., Nanjing, China
| | - Jianghua Xia
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Jie Ma
- Department of Peptide Drugs R&D, Shanghai Duomirui Biotechnology Co., Ltd., Shanghai, China
| | - Jun Xu
- Department of Peptide Drugs R&D, Shanghai Duomirui Biotechnology Co., Ltd., Shanghai, China
| | - Yanan Li
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China.,School of Pharmacy, Fudan University, Shanghai, China
| | - Jun Feng
- Key State Laboratory of Drug Innovation and Pharmaceutical Technology, China State Institute of Pharmaceutical Industry, Shanghai, China.,Department of Peptide Drugs R&D, Shanghai Duomirui Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
33
|
Muthunayake NS, Islam R, Inutan ED, Colangelo W, Trimpin S, Cunningham PR, Chow CS. Expression and In Vivo Characterization of the Antimicrobial Peptide Oncocin and Variants Binding to Ribosomes. Biochemistry 2020; 59:3380-3391. [PMID: 32840100 DOI: 10.1021/acs.biochem.0c00600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptides have important biomedical applications, but poor correlation between in vitro and in vivo activities can limit their development for clinical use. The ability to generate peptides and monitor their expression with new mass spectrometric methods and biological activities in vivo would be an advantage for the discovery and improvement of peptide-based drugs. In this study, a plasmid-based system was used to express the ribosome-targeting peptide oncocin (19 amino acids, VDKPPYLPRPRPPRRIYNR) and to determine its direct antibacterial effects on Escherichia coli. Previous biochemical and structure studies showed that oncocin targets the bacterial ribosome. The oncocin peptide generated in vivo strongly inhibits bacterial growth. In vivo dimethyl sulfate footprinting of oncocin on the rRNA gives results that are consistent with those of in vitro studies but reveals additional binding interactions with E. coli ribosomes. Furthermore, expression of truncated or mutated peptides reveals which amino acids are important for antimicrobial activity. Overall, the in vivo peptide expression system can be used to investigate biological activities and interactions of peptides with their targets within the cellular environment and to separate contributions of the sequence to cellular transport. This strategy has future applications for improving the effectiveness of existing peptides and developing new peptide-based drugs.
Collapse
Affiliation(s)
- Nisansala S Muthunayake
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.,Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Rabiul Islam
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Ellen D Inutan
- Department of Chemistry, Mindanao State University-Iligan Institute of Technology, Iligan 9200, Philippines
| | - Wesley Colangelo
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Philip R Cunningham
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Christine S Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
34
|
Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep 2020; 10:13206. [PMID: 32764602 PMCID: PMC7414031 DOI: 10.1038/s41598-020-69995-9] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/13/2020] [Indexed: 01/08/2023] Open
Abstract
The use of non-standard toxicity models is a hurdle in the early development of antimicrobial peptides towards clinical applications. Herein we report an extensive in vitro and in vivo toxicity study of a library of 24 peptide-based antimicrobials with narrow spectrum activity towards veterinary pathogens. The haemolytic activity of the compounds was evaluated against four different species and the relative sensitivity against the compounds was highest for canine erythrocytes, intermediate for rat and human cells and lowest for bovine cells. Selected peptides were additionally evaluated against HeLa, HaCaT and HepG2 cells which showed increased stability towards the peptides. Therapeutic indexes of 50–500 suggest significant cellular selectivity in comparison to bacterial cells. Three peptides were administered to rats in intravenous acute dose toxicity studies up to 2–8 × MIC. None of the injected compounds induced any systemic toxic effects in vivo at the concentrations employed illustrating that the correlation between the different assays is not obvious. This work sheds light on the in vitro and in vivo toxicity of this class of promising compounds and provides insights into the relationship between the different toxicity models often employed in different manners to evaluate the toxicity of novel bioactive compounds in general.
Collapse
|
35
|
Savini F, Loffredo M, Troiano C, Bobone S, Malanovic N, Eichmann T, Caprio L, Canale V, Park Y, Mangoni M, Stella L. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183291. [DOI: 10.1016/j.bbamem.2020.183291] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/18/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023]
|
36
|
Frog Skin-Derived Peptides Against Corynebacterium jeikeium: Correlation between Antibacterial and Cytotoxic Activities. Antibiotics (Basel) 2020; 9:antibiotics9080448. [PMID: 32722535 PMCID: PMC7459541 DOI: 10.3390/antibiotics9080448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/03/2023] Open
Abstract
Corynebacterium jeikeium is a commensal bacterium that colonizes human skin, and it is part of the normal bacterial flora. In non-risk subjects, it can be the cause of bad body smell due to the generation of volatile odorous metabolites, especially in the wet parts of the body that this bacterium often colonizes (i.e., groin and axillary regions). Importantly, in the last few decades, there have been increasing cases of serious infections provoked by this bacterium, especially in immunocompromised or hospitalized patients who have undergone installation of prostheses or catheters. The ease in developing resistance to commonly-used antibiotics (i.e., glycopeptides) has made the search for new antimicrobial compounds of clinical importance. Here, for the first time, we characterize the antimicrobial activity of some selected frog skin-derived antimicrobial peptides (AMPs) against C. jeikeium by determining their minimum inhibitory and bactericidal concentrations (MIC and MBC) by a microdilution method. The results highlight esculentin-1b(1-18) [Esc(1-18)] and esculentin-1a(1-21) [Esc(1-21)] as the most active AMPs with MIC and MBC of 4-8 and 0.125-0.25 µM, respectively, along with a non-toxic profile after a short- and long-term (40 min and 24 h) treatment of mammalian cells. Overall, these findings indicate the high potentiality of Esc(1-18) and Esc(1-21) as (i) alternative antimicrobials against C. jeikeium infections and/or as (ii) additives in cosmetic products (creams, deodorants) to reduce the production of bad body odor.
Collapse
|
37
|
Casciaro B, Cappiello F, Loffredo MR, Ghirga F, Mangoni ML. The Potential of Frog Skin Peptides for Anti-Infective Therapies: The Case of Esculentin-1a(1-21)NH2. Curr Med Chem 2020; 27:1405-1419. [PMID: 31333082 DOI: 10.2174/0929867326666190722095408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 06/25/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022]
Abstract
Antimicrobial Peptides (AMPs) are the key effectors of the innate immunity and represent promising molecules for the development of new antibacterial drugs. However, to achieve this goal, some problems need to be overcome: (i) the cytotoxic effects at high concentrations; (ii) the poor biostability and (iii) the difficulty in reaching the target site. Frog skin is one of the richest natural storehouses of AMPs, and over the years, many peptides have been isolated from it, characterized and classified into several families encompassing temporins, brevinins, nigrocins and esculentins. In this review, we summarized how the isolation/characterization of peptides belonging to the esculentin-1 family drove us to the design of an analogue, i.e. esculentin-1a(1-21)NH2, with a powerful antimicrobial action and immunomodulatory properties. The peptide had a wide spectrum of activity, especially against the opportunistic Gram-negative bacterium Pseudomonas aeruginosa. We described the structural features and the in vitro/in vivo biological characterization of this peptide as well as the strategies used to improve its biological properties. Among them: (i) the design of a diastereomer carrying Damino acids in order to reduce the peptide's cytotoxicity and improve its half-life; (ii) the covalent conjugation of the peptide to gold nanoparticles or its encapsulation into poly(lactide- co-glycolide) nanoparticles; and (iii) the peptide immobilization to biomedical devices (such as silicon hydrogel contact lenses) to obtain an antibacterial surface able to reduce microbial growth and attachment. Summing up the best results obtained so far, this review traces all the steps that led these frog-skin AMPs to the direction of peptide-based drugs for clinical use.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.,Center for Life Nano Science@ Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Ghirga
- Center for Life Nano Science@ Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
38
|
Riool M, de Breij A, Kwakman PHS, Schonkeren-Ravensbergen E, de Boer L, Cordfunke RA, Malanovic N, Drijfhout JW, Nibbering PH, Zaat SAJ. Thrombocidin-1-derived antimicrobial peptide TC19 combats superficial multi-drug resistant bacterial wound infections. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183282. [PMID: 32376222 DOI: 10.1016/j.bbamem.2020.183282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 10/24/2022]
Abstract
Antimicrobial peptides are considered promising candidates for the development of novel antimicrobial agents to combat infections by multi-drug-resistant (MDR) bacteria. Here, we describe the identification and characterization of the synthetic peptide TC19, derived from the human thrombocidin-1-derived peptide L3. Biophysical experiments into the interaction between TC19 and mimics of human and bacterial plasma membranes demonstrated that the peptide is highly selective for bacterial membranes. In agreement, TC19 combined low cytotoxicity towards human fibroblasts with efficient and rapid killing in human plasma of MDR strains of several bacterial species of the ESKAPE panel. In addition, TC19 induced minor resistance in vitro, neutralized pro-inflammatory activity of bacterial cell envelope components while displaying slight chemotactic activity for human neutrophils. Importantly, topical application of TC19-containing hypromellose gel significantly reduced numbers of viable methicillin-resistant Staphylococcus aureus (MRSA) and MDR Acinetobacter baumannii in a superficial wound infection in mice. Together, TC19 is an attractive candidate for further development as a novel agent against (MDR) bacterial skin wound infections.
Collapse
Affiliation(s)
- Martijn Riool
- Dept. of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Anna de Breij
- Dept. of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Paulus H S Kwakman
- Dept. of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | | | - Leonie de Boer
- Dept. of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands
| | - Robert A Cordfunke
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Nermina Malanovic
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Humboldtstrasse 50/III, 8010 Graz, Austria
| | - Jan W Drijfhout
- Dept. of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Peter H Nibbering
- Dept. of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Sebastian A J Zaat
- Dept. of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, the Netherlands.
| |
Collapse
|
39
|
The Interactions between the Antimicrobial Peptide P-113 and Living Candida albicans Cells Shed Light on Mechanisms of Antifungal Activity and Resistance. Int J Mol Sci 2020; 21:ijms21072654. [PMID: 32290246 PMCID: PMC7178208 DOI: 10.3390/ijms21072654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
In the absence of proper immunity, such as in the case of acquired immune deficiency syndrome (AIDS) patients, Candida albicans, the most common human fungal pathogen, may cause mucosal and even life-threatening systemic infections. P-113 (AKRHHGYKRKFH), an antimicrobial peptide (AMP) derived from the human salivary protein histatin 5, shows good safety and efficacy profiles in gingivitis and human immunodeficiency virus (HIV) patients with oral candidiasis. However, little is known about how P-113 interacts with Candida albicans or its degradation by Candida-secreted proteases that contribute to the fungi’s resistance. Here, we use solution nuclear magnetic resonance (NMR) methods to elucidate the molecular mechanism of interactions between P-113 and living Candida albicans cells. Furthermore, we found that proteolytic cleavage of the C-terminus prevents the entry of P-113 into cells and that increasing the hydrophobicity of the peptide can significantly increase its antifungal activity. These results could help in the design of novel antimicrobial peptides that have enhanced stability in vivo and that can have potential therapeutic applications.
Collapse
|
40
|
Bronchial epithelium repair by Esculentin-1a-derived antimicrobial peptides: involvement of metalloproteinase-9 and interleukin-8, and evaluation of peptides' immunogenicity. Sci Rep 2019; 9:18988. [PMID: 31831857 PMCID: PMC6908641 DOI: 10.1038/s41598-019-55426-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/06/2019] [Indexed: 01/19/2023] Open
Abstract
The airway epithelium is seriously damaged upon pulmonary Pseudomonas aeruginosa infection, especially in cystic fibrosis (CF) sufferers. Therefore, the discovery of novel anti-infective agents accelerating healing of infected injured tissues is crucial. The antipseudomonal peptides esculentin-1a(1–21)NH2 and its diastereomer Esc(1–21)-1c (Esc peptides) hold promise in this respect. In fact, they stimulate airway epithelial wound repair, but no mechanistic insights are available. Here we demonstrated that this process occurs through promotion of cell migration by an indirect activation of epidermal growth factor receptor mediated by metalloproteinases. Furthermore, we showed an increased expression of metalloproteinase 9, at both gene and protein levels, in peptide-treated bronchial epithelial cells with a functional or mutated form of CF transmembrane conductance regulator. In addition, the two peptides counteracted the inhibitory effect of Pseudomonas lipopolysaccharide (mimicking an infection condition) on the wound healing activity of the airway epithelium, and they enhanced the production of interleukin-8 from both types of cells. Finally, no immunogenicity was discovered for Esc peptides, suggesting their potential safety for clinical usage. Besides representing a step forward in understanding the molecular mechanism underlying the peptide-induced wound healing activity, these studies have contributed to highlight Esc peptides as valuable therapeutics with multiple functions.
Collapse
|
41
|
Der Torossian Torres M, de la Fuente-Nunez C. Reprogramming biological peptides to combat infectious diseases. Chem Commun (Camb) 2019; 55:15020-15032. [PMID: 31782426 DOI: 10.1039/c9cc07898c] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
With the rapid spread of resistance among parasites and bacterial pathogens, antibiotic-resistant infections have drawn much attention worldwide. Consequently, there is an urgent need to develop new strategies to treat neglected diseases and drug-resistant infections. Here, we outline several new strategies that have been developed to counter pathogenic microorganisms by designing and constructing antimicrobial peptides (AMPs). In addition to traditional discovery and design mechanisms guided by chemical biology, synthetic biology and computationally-based approaches offer useful tools for the discovery and generation of bioactive peptides. We believe that the convergence of such fields, coupled with systematic experimentation in animal models, will help translate biological peptides into the clinic. The future of anti-infective therapeutics is headed towards specifically designed molecules whose form is driven by computer-based frameworks. These molecules are selective, stable, and active at therapeutic doses.
Collapse
Affiliation(s)
- Marcelo Der Torossian Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
42
|
Casciaro B, Lin Q, Afonin S, Loffredo MR, de Turris V, Middel V, Ulrich AS, Di YP, Mangoni ML. Inhibition of Pseudomonas aeruginosa biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentin-1a(1-21)NH 2. FEBS J 2019; 286:3874-3891. [PMID: 31144441 DOI: 10.1111/febs.14940] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/22/2019] [Accepted: 05/28/2019] [Indexed: 12/21/2022]
Abstract
Pseudomonas aeruginosa is a pathogenic bacterium known to cause serious human infections, especially in immune-compromised patients. This is due to its unique ability to transform from a drug-tolerant planktonic to a more dangerous and treatment-resistant sessile life form, called biofilm. Recently, two derivatives of the frog skin antimicrobial peptide esculentin-1a, i.e. Esc(1-21) and its D-amino acids containing diastereomer Esc(1-21)-1c, were characterized for their powerful anti-Pseudomonal activity against both forms. Prevention of biofilm formation already in its early stages could be even more advantageous for counteracting infections induced by this bacterium. In this work, we studied how the diastereomer Esc(1-21)-1c can inhibit Pseudomonas biofilm formation in comparison to the parent peptide and two clinically-used conventional antibiotics, i.e. colistin and aztreonam, when applied at dosages below the minimal growth inhibitory concentration. Biofilm prevention was correlated to the peptides' ability to inhibit Pseudomonas motility and to reduce the production of virulent metabolites, for example, pyoverdine and rhamnolipids. Furthermore, the molecular mechanism underlying these activities was evaluated by studying the peptides' effect on the expression of key genes involved in the virulence and motility of bacteria, as well as by monitoring the peptides' binding to the bacterial signaling nucleotide ppGpp. Our results demonstrate that the presence of only two D-amino acids in Esc(1-21)-1c is sufficient to downregulate ppGpp-mediated expression of biofilm-associated genes, presumably as a result of higher peptide stability and therefore prolonged interaction with the nucleotide. Overall, these studies should assist efficient design and optimization of new anti-infective agents with multiple pharmacologically beneficial properties.
Collapse
Affiliation(s)
- Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Italy.,Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Qiao Lin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Italy
| | - Valeria de Turris
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Volker Middel
- Institute of Toxicology and Genetics (ITG), KIT, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Organic Chemistry, KIT, Karlsruhe, Germany
| | - YuanPu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, Italy
| |
Collapse
|
43
|
Casciaro B, d’Angelo I, Zhang X, Loffredo MR, Conte G, Cappiello F, Quaglia F, Di YPP, Ungaro F, Mangoni ML. Poly(lactide-co-glycolide) Nanoparticles for Prolonged Therapeutic Efficacy of Esculentin-1a-Derived Antimicrobial Peptides against Pseudomonas aeruginosa Lung Infection: in Vitro and in Vivo Studies. Biomacromolecules 2019; 20:1876-1888. [DOI: 10.1021/acs.biomac.8b01829] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bruno Casciaro
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, via degli Apuli, 9, 00185 Rome, Italy
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Ivana d’Angelo
- Di.S.T.A.Bi.F., University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
| | - Xiaoping Zhang
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Maria Rosa Loffredo
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, via degli Apuli, 9, 00185 Rome, Italy
| | - Gemma Conte
- Di.S.T.A.Bi.F., University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy
- Department of Pharmacy, University of Naples Federico II, Via D Montesano 49, 80131 Naples, Italy
| | - Floriana Cappiello
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, via degli Apuli, 9, 00185 Rome, Italy
| | - Fabiana Quaglia
- Department of Pharmacy, University of Naples Federico II, Via D Montesano 49, 80131 Naples, Italy
| | - Yuan-Pu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Francesca Ungaro
- Department of Pharmacy, University of Naples Federico II, Via D Montesano 49, 80131 Naples, Italy
| | - Maria Luisa Mangoni
- Laboratory affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, via degli Apuli, 9, 00185 Rome, Italy
| |
Collapse
|
44
|
Antibacterial Properties and Efficacy of a Novel SPLUNC1-Derived Antimicrobial Peptide, α4-Short, in a Murine Model of Respiratory Infection. mBio 2019; 10:mBio.00226-19. [PMID: 30967458 PMCID: PMC6456746 DOI: 10.1128/mbio.00226-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The rise of superbugs underscores the urgent need for novel antimicrobial agents. Antimicrobial peptides (AMPs) have the ability to kill superbugs regardless of resistance to traditional antibiotics. However, AMPs often display a lack of efficacy in vivo. Sequence optimization and engineering are promising but may result in increased host toxicity. We report here the optimization of a novel AMP (α4-short) derived from the multifunctional respiratory protein SPLUNC1. The AMP α4-short demonstrated broad-spectrum activity against superbugs as well as in vivo efficacy in the P. aeruginosa pneumonia model. Further exploration for clinical development is warranted. Multidrug resistance (MDR) by bacterial pathogens constitutes a global health crisis, and resistance to treatment displayed by biofilm-associated infections (e.g., cystic fibrosis, surgical sites, and medical implants) only exacerbates a problem that is already difficult to overcome. Antimicrobial peptides (AMPs) are a promising class of therapeutics that may be useful in the battle against antibiotic resistance, although certain limitations have hindered their clinical development. The goal of this study was to examine the therapeutic potential of novel AMPs derived from the multifunctional respiratory host defense protein SPLUNC1. Using standard growth inhibition and antibiofilm assays, we demonstrated that a novel structurally optimized AMP, α4-short, was highly effective against the most common group of MDR bacteria while showing broad-spectrum bactericidal and antibiofilm activities. With negligible hemolysis and toxicity to white blood cells, the new peptide also demonstrated in vivo efficacy when delivered directly into the airway in a murine model of Pseudomonas aeruginosa-induced respiratory infection. The data warrant further exploration of SPLUNC1-derived AMPs with optimized structures to assess the potential application to difficult-to-cure biofilm-associated infections.
Collapse
|
45
|
Latendorf T, Gerstel U, Wu Z, Bartels J, Becker A, Tholey A, Schröder JM. Cationic Intrinsically Disordered Antimicrobial Peptides (CIDAMPs) Represent a New Paradigm of Innate Defense with a Potential for Novel Anti-Infectives. Sci Rep 2019; 9:3331. [PMID: 30833614 PMCID: PMC6399351 DOI: 10.1038/s41598-019-39219-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
In the search for potential mechanisms underlying the remarkable resistance of healthy skin against infection by soil bacteria like Pseudomonas (P.) aeruginosa we identified fragments of the intrinsically disordered protein hornerin as potent microbicidal agents in the stratum corneum. We found that, independent of the amino acid (AA)-sequence, any tested linear cationic peptide containing a high percentage of disorder-promoting AA and a low percentage of order-promoting AA is a potent microbicidal antimicrobial. We further show that the antimicrobial activity of these cationic intrinsically disordered antimicrobial peptides (CIDAMPs) depends on the peptide chain length, its net charge, lipidation and environmental conditions. The ubiquitous presence of latent CIDAMP sources in nature suggests a common and yet overlooked adapted innate disinfection system of body surfaces. The simple structure and virtually any imaginable sequence or composition of disorder-promoting AA allow the generation of a plethora of CIDAMPs. These are potential novel microbicidal anti-infectives for various bacterial pathogens, including P. aeruginosa, methicillin-resistant Staphylococcus aureus (MRSA) and fungal pathogens like Candida albicans and Cryptococcus neoformans.
Collapse
Affiliation(s)
- Ties Latendorf
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ulrich Gerstel
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Zhihong Wu
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Institute of Biochemistry and Cell Biology, Zhejiang University of Science and Technology, 310023, Hangzhou, China
| | - Joachim Bartels
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Alexander Becker
- Institute for Experimental Medicine-AG Systematic Proteomics & Bioanalytics, Kiel University (CAU), Kiel, Germany
| | - Andreas Tholey
- Institute for Experimental Medicine-AG Systematic Proteomics & Bioanalytics, Kiel University (CAU), Kiel, Germany
| | - Jens-Michael Schröder
- Department of Dermatology, University-Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
46
|
Huey R, Rathbone D, McCarron P, Hawthorne S. Design, stability and efficacy of a new targeting peptide for nanoparticulate drug delivery to SH-SY5Y neuroblastoma cells. J Drug Target 2019; 27:959-970. [DOI: 10.1080/1061186x.2019.1567737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Rachel Huey
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Dan Rathbone
- Aston Pharmacy School, Aston University, Aston Triangle, Birmingham, UK
| | - Paul McCarron
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| | - Susan Hawthorne
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
47
|
Rivas L, Rojas V. Cyanobacterial peptides as a tour de force in the chemical space of antiparasitic agents. Arch Biochem Biophys 2019; 664:24-39. [PMID: 30707942 DOI: 10.1016/j.abb.2019.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Parasites are scarcely addressed target for antimicrobial peptides despite their big impact in health and global economy. The notion of antimicrobial peptides is frequently associated to the innate immune defense of vertebrates and invertebrate vectors, as the ultimate recipients of the parasite infection. These antiparasite peptides are produced by ribosomal synthesis, with few post-translational modifications, and their diversity come mostly from their amino acid sequence. For many of them permeabilization of the cell membrane of the targeted pathogen is crucial for their microbicidal mechanism. In contrast, cyanobacterial peptides are produced either by ribosomal or non-ribosomal biosynthesis. Quite often, they undergo heavy modifications, such as the inclusion of non-proteinogenic amino acids, lipid acylation, cyclation, Nα-methylation, or heterocyclic rings. Furthermore, the few targets identified for cyanobacterial peptides in parasites are intracellular. Some cyanobacterial antiparasite peptides are active at picomolar concentrations, whereas those from higher eukaryotes usually work in the micromolar range. In all, cyanobacterial peptides are an appealing target to develop new antiparasite therapies and a challenge in the invention of new synthetic methods for peptides. This review aims to provide an updated appraisal of antiparasite cyanobacterial peptides and to establish a side-by -side comparison with those antiparasite peptides from higher eukaryotes.
Collapse
Affiliation(s)
- Luis Rivas
- Centro de Investigaciones Biológicas (C.S.I.C), c/ Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Campus Curauma, Curauma, Valparaíso, Chile.
| |
Collapse
|
48
|
Zeng B, Chai J, Deng Z, Ye T, Chen W, Li D, Chen X, Chen M, Xu X. Functional Characterization of a Novel Lipopolysaccharide-Binding Antimicrobial and Anti-Inflammatory Peptide in Vitro and in Vivo. J Med Chem 2018; 61:10709-10723. [PMID: 30427189 DOI: 10.1021/acs.jmedchem.8b01358] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Antimicrobial peptides (AMPs) are key components of host immune defense of vertebrates against microbial invasions. Here, we report a new AMP (esculentin-1GN) characterized from the skin of the frog Hylarana guentheri. Esculentin-1GN (GLFSKKGGKGGKSWIKGVFKGIKGIGKEVGGDVIRTGIEIAACKIKGEC) with high amphipathic α-helical structure in membrane-mimetic environments has the microbial-killing activity by destruction of the cell membrane. Moreover, esculentin-1GN inhibits LPS-induced expression of proinflammatory nitric oxide, interleukin-1β, interleukin-6, and tumor necrosis factor while it enhances expression of interleukin-10. Furthermore, esculentin-1GN can bind to d-(+)-galacturonic acid and LPS. Meanwhile, esculentin-1GN suppresses the activation of inflammatory response pathway induced by LPS. In addition, esculentin-1GN significantly reduces acute inflammation in carrageenan-induced mice paw. Taken together, the novel LPS-binding esculentin-1GN with antimicrobial and anti-inflammatory activities will be an excellent temple for designing new antibiotic formulations.
Collapse
Affiliation(s)
- Baishuang Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Zhenhui Deng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Tiaofei Ye
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Wenbin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Dan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Xin Chen
- Department of Respiratory Medicine , Zhujiang Hospital, Southern Medical University , Guangzhou 510282 , China
| | - Ming Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin 541004 , China
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| |
Collapse
|
49
|
Oliva R, Chino M, Pane K, Pistorio V, De Santis A, Pizzo E, D'Errico G, Pavone V, Lombardi A, Del Vecchio P, Notomista E, Nastri F, Petraccone L. Exploring the role of unnatural amino acids in antimicrobial peptides. Sci Rep 2018; 8:8888. [PMID: 29892005 PMCID: PMC5995839 DOI: 10.1038/s41598-018-27231-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
Cationic antimicrobial peptides (CAMPs) are a promising alternative to treat multidrug-resistant bacteria, which have developed resistance to all the commonly used antimicrobial, and therefore represent a serious threat to human health. One of the major drawbacks of CAMPs is their sensitivity to proteases, which drastically limits their half-life. Here we describe the design and synthesis of three nine-residue CAMPs, which showed high stability in serum and broad spectrum antimicrobial activity. As for all peptides a very low selectivity between bacterial and eukaryotic cells was observed, we performed a detailed biophysical characterization of the interaction of one of these peptides with liposomes mimicking bacterial and eukaryotic membranes. Our results show a surface binding on the DPPC/DPPG vesicles, coupled with lipid domain formation, and, above a threshold concentration, a deep insertion into the bilayer hydrophobic core. On the contrary, mainly surface binding of the peptide on the DPPC bilayer was observed. These observed differences in the peptide interaction with the two model membranes suggest a divergence in the mechanisms responsible for the antimicrobial activity and for the observed high toxicity toward mammalian cell lines. These results could represent an important contribution to unravel some open and unresolved issues in the development of synthetic CAMPs.
Collapse
Affiliation(s)
- Rosario Oliva
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Marco Chino
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Katia Pane
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Naples, Italy
| | - Valeria Pistorio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via Pansini, 5, I-80131, Naples, Italy
| | - Augusta De Santis
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Elio Pizzo
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Naples, Italy
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Eugenio Notomista
- Department of Biology, University of Naples "Federico II", Via Cintia, I-80126, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples "Federico II", via Cintia, I-80126, Naples, Italy.
| |
Collapse
|
50
|
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds. Front Pharmacol 2018; 9:281. [PMID: 29643807 PMCID: PMC5882822 DOI: 10.3389/fphar.2018.00281] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 01/10/2023] Open
Abstract
Alarming data about increasing resistance to conventional antibiotics are reported, while at the same time the development of new antibiotics is stagnating. Skin and soft tissue infections (SSTIs) are mainly caused by the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) which belong to the most recalcitrant bacteria and are resistant to almost all common antibiotics. S. aureus and P. aeruginosa are the most frequent pathogens isolated from chronic wounds and increasing resistance to topical antibiotics has become a major issue. Therefore, new treatment options are urgently needed. In recent years, research focused on the development of synthetic antimicrobial peptides (AMPs) with lower toxicity and improved activity compared to their endogenous counterparts. AMPs appear to be promising therapeutic options for the treatment of SSTIs and wounds as they show a broad spectrum of antimicrobial activity, low resistance rates and display pivotal immunomodulatory as well as wound healing promoting activities such as induction of cell migration and proliferation and angiogenesis. In this review, we evaluate the potential of AMPs for the treatment of bacterial SSTIs and wounds and provide an overview of the mechanisms of actions of AMPs that contribute to combat skin infections and to improve wound healing. Bacteria growing in biofilms are more resistant to conventional antibiotics than their planktonic counterparts due to limited biofilm penetration and distinct metabolic and physiological functions, and often result in chronification of infections and wounds. Thus, we further discuss the feasibility of AMPs as anti-biofilm agents. Finally, we highlight perspectives for future therapies and which issues remain to bring AMPs successfully to the market.
Collapse
Affiliation(s)
- Anja Pfalzgraff
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | - Günther Weindl
- Pharmacology and Toxicology, Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|