1
|
Lee SCES, Pyo AHA, Mohammadi H, Zhang J, Dvorkin-Gheva A, Malbeteau L, Chung S, Khan S, Ciudad MT, Rondeau V, Cairns RA, Kislinger T, McGaha TL, Wouters BG, Reisz JA, Culp-Hill R, D’Alessandro A, Jones CL, Koritzinsky M. Cysteamine dioxygenase (ADO) governs cancer cell mitochondrial redox homeostasis through proline metabolism. SCIENCE ADVANCES 2024; 10:eadq0355. [PMID: 39356760 PMCID: PMC11446280 DOI: 10.1126/sciadv.adq0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
2-Aminoethanethiol dioxygenase (ADO) is a thiol dioxygenase that sulfinylates cysteamine and amino-terminal cysteines in polypeptides. The pathophysiological roles of ADO remain largely unknown. Here, we demonstrate that ADO expression represents a vulnerability in cancer cells, as ADO depletion led to loss of proliferative capacity and survival in cancer cells and reduced xenograft growth. In contrast, generation of the ADO knockout mouse revealed high tolerance for ADO depletion in adult tissues. To understand the mechanism underlying ADO's essentiality in cancer cells, we characterized the cell proteome and metabolome following depletion of ADO. This revealed that ADO depletion leads to toxic levels of polyamines which can be driven by ADO's substrate cysteamine. Polyamine accumulation in turn stimulated expression of proline dehydrogenase (PRODH) which resulted in mitochondrial hyperactivity and ROS production, culminating in cell toxicity. This work identifies ADO as a unique vulnerability in cancer cells, due to its essential role in maintenance of redox homeostasis through restraining polyamine levels and proline catabolism.
Collapse
Affiliation(s)
- Sandy Che-Eun S. Lee
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Andrea Hye An Pyo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Helia Mohammadi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ji Zhang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Anna Dvorkin-Gheva
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Lucie Malbeteau
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Stephen Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - M. Teresa Ciudad
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Vincent Rondeau
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Rob A. Cairns
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Tracy L. McGaha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Bradly G. Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Courtney L. Jones
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Long D, Chan M, Han M, Kamdar Z, Ma RK, Tsai PY, Francisco AB, Barrow J, Shackelford DB, Yarchoan M, McBride MJ, Orre LM, Vacanti NM, Gujral TS, Sethupathy P. Proteo-metabolomics and patient tumor slice experiments point to amino acid centrality for rewired mitochondria in fibrolamellar carcinoma. Cell Rep Med 2024; 5:101699. [PMID: 39208801 PMCID: PMC11528240 DOI: 10.1016/j.xcrm.2024.101699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/12/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Fibrolamellar carcinoma (FLC) is a rare, lethal, early-onset liver cancer with a critical need for new therapeutics. The primary driver in FLC is the fusion oncoprotein, DNAJ-PKAc, which remains challenging to target therapeutically. It is critical, therefore, to expand understanding of the FLC molecular landscape to identify druggable pathways/targets. Here, we perform the most comprehensive integrative proteo-metabolomic analysis of FLC. We also conduct nutrient manipulation, respirometry analyses, as well as key loss-of-function assays in FLC tumor tissue slices from patients. We propose a model of cellular energetics in FLC pointing to proline anabolism being mediated by ornithine aminotransferase hyperactivity and ornithine transcarbamylase hypoactivity with serine and glutamine catabolism fueling the process. We highlight FLC's potential dependency on voltage-dependent anion channel (VDAC), a mitochondrial gatekeeper for anions including pyruvate. The metabolic rewiring in FLC that we propose in our model, with an emphasis on mitochondria, can be exploited for therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Donald Long
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Marina Chan
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mingqi Han
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Zeal Kamdar
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rosanna K Ma
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Pei-Yin Tsai
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Adam B Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Joeva Barrow
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew J McBride
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Lukas M Orre
- Department of Oncology and Pathology, Karolinska Institute, SciLifeLab, Solna, Sweden
| | | | - Taranjit S Gujral
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Upadhyay-Tiwari N, Huang XJ, Lee YC, Singh SK, Hsu CC, Huang SS, Verslues PE. The nonphototrophic hypocotyl 3 (NPH3) domain protein NRL5 is a trafficking-associated GTPase essential for drought resistance. SCIENCE ADVANCES 2024; 10:eado5429. [PMID: 39121213 PMCID: PMC11313873 DOI: 10.1126/sciadv.ado5429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/02/2024] [Indexed: 08/11/2024]
Abstract
The mechanisms of plant drought resistance are unclear but may involve membrane trafficking and metabolic reprogramming, including proline accumulation. Forward genetic screening using a proline dehydrogenase 1 (ProDH1) promoter:reporter identified a drought hypersensitive mutant with a single-amino acid substitution (P335L) in the nonphototrophic hypocotyl 3 (NPH3) domain of NPH3/root phototropism 2-like 5 (NRL5)/naked pins in Yucca 8 (NPY8). Further experiments found that NRL5 and other NPH3 domain proteins are guanosine triphosphatases (GTPases). NRL5, but not NRL5P335L, interacted with the RABE1c and RABH1b GTPases and the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Vesicle-Associated Membrane Protein (VAMP)721/722. These proteins controlled NRL5 localization and connection to trafficking while also being genetically downstream of, and potentially regulated by, NRL5. These data demonstrate that NRL5-mediated restraint of proline catabolism is required for drought resistance and also reveal unexpected functions of the NPH3 domain such that the role of NPH3 domain proteins in signaling, trafficking, and cellular polarity can be critically reevaluated.
Collapse
Affiliation(s)
| | - Xin-Jie Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | - Shih-Shan Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | |
Collapse
|
4
|
Becirovic T, Zhang B, Lindskog C, Norberg E, Vakifahmetoglu-Norberg H, Kaminskyy VO, Kochetkova E. Deubiquitinase USP9x regulates the proline biosynthesis pathway in non-small cell lung cancer. Cell Death Discov 2024; 10:342. [PMID: 39075050 PMCID: PMC11286954 DOI: 10.1038/s41420-024-02111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Metabolic rewiring has been recognized as a hallmark of malignant transformation, supplying the biosynthetic and energetic demands for rapid cancer cell proliferation and tumor progression. A comprehensive understanding of the regulatory mechanisms governing these metabolic processes is still limited. Here, we identify the deubiquitinase ubiquitin-specific peptidase 9 X-linked (USP9x) as a positive regulator of the proline biosynthesis pathway in non-small cell lung cancer (NSCLC). Our findings demonstrate USP9x directly stabilizes pyrroline-5-carboxylate reductase 3 (PYCR3), a key enzyme in the proline cycle. Disruption of proline biosynthesis by either USP9x or PYCR3 knockdown influences the proline cycle leading to a decreased activity of the connected pentose phosphate pathway and mitochondrial respiration. We show that USP9x is elevated in human cancer tissues and its suppression impairs NSCLC growth in vitro and in vivo. Overall, our study uncovers a novel function of USP9x as a regulator of the proline biosynthesis pathway, which impacts lung cancer growth and progression, and implicates a new potential therapeutic avenue.
Collapse
Affiliation(s)
- Tina Becirovic
- Department of Physiology and Pharmacology, Solnavägen 9, Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Boxi Zhang
- Department of Physiology and Pharmacology, Solnavägen 9, Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85, Uppsala, Sweden
| | - Erik Norberg
- Department of Physiology and Pharmacology, Solnavägen 9, Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Helin Vakifahmetoglu-Norberg
- Department of Physiology and Pharmacology, Solnavägen 9, Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Vitaliy O Kaminskyy
- Department of Physiology and Pharmacology, Solnavägen 9, Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden.
| | - Elena Kochetkova
- Department of Physiology and Pharmacology, Solnavägen 9, Biomedicum, Karolinska Institutet, 171 65, Stockholm, Sweden.
| |
Collapse
|
5
|
Flores L, Shene C. Single Amino Acids as Sole Nitrogen Source for the Production of Lipids and Coenzyme Q by Thraustochytrium sp. RT2316-16. Microorganisms 2024; 12:1428. [PMID: 39065196 PMCID: PMC11279195 DOI: 10.3390/microorganisms12071428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This work analyzes the production of total lipids and the content of CoQ9 and CoQ10 in the biomass of Thraustochytrium sp. RT2316-16 grown in media containing a single amino acid at a concentration of 1 g L-1 as the sole nitrogen source; glucose (5 g L-1) was used as the carbon source. Biomass concentration and the content of total lipids and CoQ were determined as a function of the incubation time; ten amino acids were evaluated. The final concentration of the total biomass was found to be between 2.2 ± 0.1 (aspartate) and 3.9 ± 0.1 g L-1 (glutamate). The biomass grown in media containing glutamate, serine or phenylalanine reached a content of total lipids higher than 20% of the cell dry weight (DW) after 72, 60 and 72 h of incubation, respectively. The highest contents of CoQ9 (39.0 ± 0.7 µg g-1 DW) and CoQ10 (167.4 ± 3.4 mg g-1 DW) in the biomass of the thraustochytrid were obtained when glutamate and cysteine were used as the nitrogen source, respectively. Fatty acid oxidation, which decreased the total lipid content during the first 12 h of incubation, and the oxidation of hydrogen sulfide when cysteine was the nitrogen source, might be related to the content of CoQ10 in the biomass of the thraustochytrid.
Collapse
Affiliation(s)
| | - Carolina Shene
- Department of Chemical Engineering, Center of Food Biotechnology and Bioseparations, BIOREN, and Centre of Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Temuco 4780000, Chile;
| |
Collapse
|
6
|
Xi X, Zhang M, Li Y, Wang X. Identification of PRODH as a mitochondria- and angiogenesis-related biomarker for lung adenocarcinoma. Transl Cancer Res 2024; 13:2073-2093. [PMID: 38881931 PMCID: PMC11170523 DOI: 10.21037/tcr-23-2109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/14/2024] [Indexed: 06/18/2024]
Abstract
Background Proline dehydrogenase (PRODH) encodes a mitochondrial protein that catalyzes the first step of proline degradation and is related to angiogenesis. Angiogenesis is a critical process in the development and progression of tumors, including lung adenocarcinoma (LUAD), as tumor growth and metastasis are dependent on angiogenesis. The mitochondria and their associated genes thus play a vital role in tumor therapy. However, the specific mechanism of action of PRODH in LUAD is not yet clear. The aim of this study was thus to clarify the specific mechanism of PRODH as a mitochondrial gene in LUAD. Methods This study identified genes related to mitochondria and angiogenesis in LUAD. Based on the high and low expression of the genes in LUAD, we grouped them and conducted relevant bioinformatics analysis on the differentially expressed genes. Results We screened genes related to mitochondria and angiogenesis in the differential genes of LUAD, and identified PRODH as a gene of interest. The expression of PRODH was associated with the survival outcome of patients with LUAD. Additionally, PRODH was found to be associated with immune cell infiltration and tumor mutations. Conclusions Mitochondrial metabolism and angiogenesis may have significant therapeutic ramifications for patients with LUAD. We identified PRODH, a gene exerts a dual role in cancer. PRODH may be a prospective therapeutic target in LUAD and a possible diagnostic and prognostic biomarker associated with immune infiltration and tumor mutational burden.
Collapse
Affiliation(s)
- Xinran Xi
- Department of Respiratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Meng Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Yonghua Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Xianghai Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| |
Collapse
|
7
|
Chen C, Liu Q, Chen W, Gong Z, Kang B, Sui M, Huang L, Wang YJ. PRODH safeguards human naive pluripotency by limiting mitochondrial oxidative phosphorylation and reactive oxygen species production. EMBO Rep 2024; 25:2015-2044. [PMID: 38480845 PMCID: PMC11014864 DOI: 10.1038/s44319-024-00110-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 04/14/2024] Open
Abstract
Naive human embryonic stem cells (hESCs) that resemble the pre-implantation epiblasts are fueled by a combination of aerobic glycolysis and oxidative phosphorylation, but their mitochondrial regulators are poorly understood. Here we report that, proline dehydrogenase (PRODH), a mitochondria-localized proline metabolism enzyme, is dramatically upregulated in naive hESCs compared to their primed counterparts. The upregulation of PRODH is induced by a reduction in c-Myc expression that is dependent on PD0325901, a MEK inhibitor routinely present in naive hESC culture media. PRODH knockdown in naive hESCs significantly promoted mitochondrial oxidative phosphorylation (mtOXPHOS) and reactive oxygen species (ROS) production that triggered autophagy, DNA damage, and apoptosis. Remarkably, MitoQ, a mitochondria-targeted antioxidant, effectively restored the pluripotency and proliferation of PRODH-knockdown naive hESCs, indicating that PRODH maintains naive pluripotency by preventing excessive ROS production. Concomitantly, PRODH knockdown significantly slowed down the proteolytic degradation of multiple key mitochondrial electron transport chain complex proteins. Thus, we revealed a crucial role of PRODH in limiting mtOXPHOS and ROS production, and thereby safeguarding naive pluripotency of hESCs.
Collapse
Affiliation(s)
- Cheng Chen
- Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, 312000, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qianyu Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenjie Chen
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Zhiyuan Gong
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Meihua Sui
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Liming Huang
- Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang, 312000, China.
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
8
|
Verslues PE. Please, carefully, pass the P5C. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:663-666. [PMID: 38307518 PMCID: PMC10837010 DOI: 10.1093/jxb/erad446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
This article comments on:
Zheng Y, Cabassa-Hourton C, Eubel H, Chevreux G, Lignieres L, Crilat E, Braun H-P, Lebreton S, Savouré A. 2024. Pyrroline-5-carboxylate metabolism protein complex detected in Arabidopsis thaliana leaf mitochondria. Journal of Experimental Botany 75, 917–934.
Collapse
Affiliation(s)
- Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11528, Taiwan
| |
Collapse
|
9
|
Zheng Y, Cabassa-Hourton C, Eubel H, Chevreux G, Lignieres L, Crilat E, Braun HP, Lebreton S, Savouré A. Pyrroline-5-carboxylate metabolism protein complex detected in Arabidopsis thaliana leaf mitochondria. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:917-934. [PMID: 37843921 DOI: 10.1093/jxb/erad406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/14/2023] [Indexed: 10/18/2023]
Abstract
Proline dehydrogenase (ProDH) and pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyse the oxidation of proline into glutamate via the intermediates P5C and glutamate-semialdehyde (GSA), which spontaneously interconvert. P5C and GSA are also intermediates in the production of glutamate from ornithine and α-ketoglutarate catalysed by ornithine δ-aminotransferase (OAT). ProDH and P5CDH form a fused bifunctional PutA enzyme in Gram-negative bacteria and are associated in a bifunctional substrate-channelling complex in Thermus thermophilus; however, the physical proximity of ProDH and P5CDH in eukaryotes has not been described. Here, we report evidence of physical proximity and interactions between Arabidopsis ProDH, P5CDH, and OAT in the mitochondria of plants during dark-induced leaf senescence when all three enzymes are expressed. Pairwise interactions and localization of the three enzymes were investigated using bimolecular fluorescence complementation with confocal microscopy in tobacco and sub-mitochondrial fractionation in Arabidopsis. Evidence for a complex composed of ProDH, P5CDH, and OAT was revealed by co-migration of the proteins in native conditions upon gel electrophoresis. Co-immunoprecipitation coupled with mass spectrometry analysis confirmed the presence of the P5C metabolism complex in Arabidopsis. Pull-down assays further demonstrated a direct interaction between ProDH1 and P5CDH. P5C metabolism complexes might channel P5C among the constituent enzymes and directly provide electrons to the respiratory electron chain via ProDH.
Collapse
Affiliation(s)
- Yao Zheng
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Holger Eubel
- Institute of Plant Genetics, Leibniz Universität Hannover, Germany
| | - Guillaume Chevreux
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Laurent Lignieres
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Emilie Crilat
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Hans-Peter Braun
- Institute of Plant Genetics, Leibniz Universität Hannover, Germany
| | - Sandrine Lebreton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRAE Institute of Ecology and Environmental Sciences of Paris (iEES), 75005 Paris, France
| |
Collapse
|
10
|
Nishimura A. Regulations and functions of proline utilization in yeast Saccharomyces cerevisiae. Biosci Biotechnol Biochem 2024; 88:131-137. [PMID: 37994668 DOI: 10.1093/bbb/zbad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The quality of alcoholic beverages strongly depends on the metabolic characteristics of the yeast cells being used. To control the aroma and the taste of alcoholic beverages, as well as the production of ethanol in them, it is thus crucial to select yeast cells with the proper characteristics. Grape must contain a high concentration of proline, an amino acid that can potentially be a useful nitrogen source. However, Saccharomyces cerevisiae cannot utilize proline during the wine-making process, resulting in the elevated levels of proline in wine and consequent negative effects on wine quality. In this article, I review and discuss recent discoveries about the inhibitory mechanisms and roles of proline utilization in yeast. The information can help in developing novel yeast strains that can improve fermentation and enhance the quality and production efficiency of wine.
Collapse
Affiliation(s)
- Akira Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara, Japan
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| |
Collapse
|
11
|
Hardy MLM, Lakhiani D, Morris MB, Day ML. Proline and Proline Analogues Improve Development of Mouse Preimplantation Embryos by Protecting Them against Oxidative Stress. Cells 2023; 12:2640. [PMID: 37998375 PMCID: PMC10670569 DOI: 10.3390/cells12222640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The culture of embryos in the non-essential amino acid L-proline (Pro) or its analogues pipecolic acid (PA) and L-4-thiazolidine carboxylic acid (L4T) improves embryo development, increasing the percentage that develop to the blastocyst stage and hatch. Staining of 2-cell and 4-cell embryos with tetramethylrhodamine methyl ester and 2',7'-dichlorofluorescein diacetate showed that the culture of embryos in the presence of Pro, or either of these analogues, reduced mitochondrial activity and reactive oxygen species (ROS), respectively, indicating potential mechanisms by which embryo development is improved. Inhibition of the Pro metabolism enzyme, proline oxidase, by tetrahydro-2-furoic-acid prevented these reductions and concomitantly prevented the improved development. The ways in which Pro, PA and L4T reduce mitochondrial activity and ROS appear to differ, despite their structural similarity. Specifically, the results are consistent with Pro reducing ROS by reducing mitochondrial activity while PA and L4T may be acting as ROS scavengers. All three may work to reduce ROS by contributing to the GSH pool. Overall, our results indicate that reduction in mitochondrial activity and oxidative stress are potential mechanisms by which Pro and its analogues act to improve pre-implantation embryo development.
Collapse
|
12
|
Xu X, Zhang G, Chen Y, Xu W, Liu Y, Ji G, Xu H. Can proline dehydrogenase-a key enzyme involved in proline metabolism-be a novel target for cancer therapy? Front Oncol 2023; 13:1254439. [PMID: 38023181 PMCID: PMC10661406 DOI: 10.3389/fonc.2023.1254439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Emerging evidence suggests that proline metabolism is important for regulating the survival and death of different types of cancer cells. Proline dehydrogenase (PRODH), an enzyme catalyzing proline catabolism, and the degradation products of proline by PRODH, such as ATP and ROS, are known to play critical roles in cancer progression. Notably, the role of PRODH in cancer is still complicated and unclear, and primarily depends on the cancer type and tumor microenvironment. For instance, PRODH induces apoptosis and senescence through ROS signaling in different types of cancers, while as a protumor factor, PRODH promotes malignant phenotypes of certain tumors under stresses such as hypoxia. In order to assess whether PRODH can serve as a novel target for cancer therapy, we will provide an overview of the biological functions of PRODH and its double-edged role in cancer in this article.
Collapse
Affiliation(s)
- Xiangyuan Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yijia Chen
- Department of Gynecology, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weina Xu
- Shanghai Pudong New Area Zhoujiadu Community Health Service Center, Shanghai, China
| | - Yujing Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, China
| |
Collapse
|
13
|
Silao FGS, Jiang T, Bereczky-Veress B, Kühbacher A, Ryman K, Uwamohoro N, Jenull S, Nogueira F, Ward M, Lion T, Urban CF, Rupp S, Kuchler K, Chen C, Peuckert C, Ljungdahl PO. Proline catabolism is a key factor facilitating Candida albicans pathogenicity. PLoS Pathog 2023; 19:e1011677. [PMID: 37917600 PMCID: PMC10621835 DOI: 10.1371/journal.ppat.1011677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023] Open
Abstract
Candida albicans, the primary etiology of human mycoses, is well-adapted to catabolize proline to obtain energy to initiate morphological switching (yeast to hyphal) and for growth. We report that put1-/- and put2-/- strains, carrying defective Proline UTilization genes, display remarkable proline sensitivity with put2-/- mutants being hypersensitive due to the accumulation of the toxic intermediate pyrroline-5-carboxylate (P5C), which inhibits mitochondrial respiration. The put1-/- and put2-/- mutations attenuate virulence in Drosophila and murine candidemia models and decrease survival in human neutrophils and whole blood. Using intravital 2-photon microscopy and label-free non-linear imaging, we visualized the initial stages of C. albicans cells infecting a kidney in real-time, directly deep in the tissue of a living mouse, and observed morphological switching of wildtype but not of put2-/- cells. Multiple members of the Candida species complex, including C. auris, are capable of using proline as a sole energy source. Our results indicate that a tailored proline metabolic network tuned to the mammalian host environment is a key feature of opportunistic fungal pathogens.
Collapse
Affiliation(s)
- Fitz Gerald S. Silao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Tong Jiang
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Biborka Bereczky-Veress
- Intravital Microscopy Facility, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Andreas Kühbacher
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Kicki Ryman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Nathalie Uwamohoro
- Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University Umeå, Sweden
| | - Sabrina Jenull
- Medical University of Vienna, Max F. Perutz Laboratories GmbH, Department of Medical Biochemistry, Vienna, Austria
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Filomena Nogueira
- Medical University of Vienna, Max F. Perutz Laboratories GmbH, Department of Medical Biochemistry, Vienna, Austria
- St. Anna Kinderkrebsforschung e.V., Children’s Cancer Research Institute, Vienna, Austria
| | - Meliza Ward
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Thomas Lion
- St. Anna Kinderkrebsforschung e.V., Children’s Cancer Research Institute, Vienna, Austria
| | - Constantin F. Urban
- Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University Umeå, Sweden
| | - Steffen Rupp
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Karl Kuchler
- Medical University of Vienna, Max F. Perutz Laboratories GmbH, Department of Medical Biochemistry, Vienna, Austria
| | - Changbin Chen
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Christiane Peuckert
- Intravital Microscopy Facility, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Per O. Ljungdahl
- Department of Molecular Biosciences, The Wenner-Gren Institute, Science for Life Laboratory, Stockholm University, Solna, Sweden
| |
Collapse
|
14
|
Pilley SE, Hennequart M, Vandekeere A, Blagih J, Legrave NM, Fendt SM, Vousden KH, Labuschagne CF. Loss of attachment promotes proline accumulation and excretion in cancer cells. SCIENCE ADVANCES 2023; 9:eadh2023. [PMID: 37672588 PMCID: PMC10482343 DOI: 10.1126/sciadv.adh2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Previous studies have revealed a role for proline metabolism in supporting cancer development and metastasis. In this study, we show that many cancer cells respond to loss of attachment by accumulating and secreting proline. Detached cells display reduced proliferation accompanied by a general decrease in overall protein production and de novo amino acid synthesis compared to attached cells. However, proline synthesis was maintained under detached conditions. Furthermore, while overall proline incorporation into proteins was lower in detached cells compared to other amino acids, there was an increased production of the proline-rich protein collagen. The increased excretion of proline from detached cells was also shown to be used by macrophages, an abundant and important component of the tumor microenvironment. Our study suggests that detachment induced accumulation and secretion of proline may contribute to tumor progression by supporting increased production of extracellular matrix and providing proline to surrounding stromal cells.
Collapse
Affiliation(s)
| | - Marc Hennequart
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anke Vandekeere
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
| | - Julianna Blagih
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- University of Montreal, Maisonneuve-Rosemont Hospital Research Centre, 5414 Assomption Blvd, Montreal H1T 2M4, Canada
| | | | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
| | | | - Christiaan F. Labuschagne
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), 11 Hoffman Street, Potchefstroom 2531, South Africa
| |
Collapse
|
15
|
Davati N, Ghorbani A. Discovery of long non-coding RNAs in Aspergillus flavus response to water activity, CO 2 concentration, and temperature changes. Sci Rep 2023; 13:10330. [PMID: 37365206 DOI: 10.1038/s41598-023-37236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
Although the role of long non-coding RNAs (lncRNAs) in key biological processes in animals and plants has been confirmed for decades, their identification in fungi remains limited. In this study, we discovered and characterized lncRNAs in Aspergillus flavus in response to changes in water activity, CO2 concentration, and temperature, and predicted their regulatory roles in cellular functions. A total of 472 lncRNAs were identified in the genome of A. flavus, consisting of 470 novel lncRNAs and 2 putative lncRNAs (EFT00053849670 and EFT00053849665). Our analysis of lncRNA expression revealed significant differential expression under stress conditions in A. flavus. Our findings indicate that lncRNAs in A. flavus, particularly down-regulated lncRNAs, may play pivotal regulatory roles in aflatoxin biosynthesis, respiratory activities, cellular survival, and metabolic maintenance under stress conditions. Additionally, we predicted that sense lncRNAs down-regulated by a temperature of 30 °C, osmotic stress, and CO2 concentration might indirectly regulate proline metabolism. Furthermore, subcellular localization analysis revealed that up-and down-regulated lncRNAs are frequently localized in the nucleus under stress conditions, particularly at a water activity of 0.91, while most up-regulated lncRNAs may be located in the cytoplasm under high CO2 concentration.
Collapse
Affiliation(s)
- Nafiseh Davati
- Department of Food Science and Technology, College of Food Industry, Bu-Ali Sina University, Hamedan, 65167-38695, Iran.
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| |
Collapse
|
16
|
Hornos Carneiro MF, Colaiácovo MP. Beneficial antioxidant effects of Coenzyme Q10 on reproduction. VITAMINS AND HORMONES 2022; 121:143-167. [PMID: 36707133 DOI: 10.1016/bs.vh.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter focuses on preclinical and clinical studies conducted in recent years that contribute to increasing knowledge on the role of Coenzyme Q10 in female reproductive health. General aspects of CoQ10, such as its role as an antioxidant and in mitochondrial bioenergetics are considered. The age-dependent decline in human female reproductive potential is associated with cellular mitochondrial dysfunction and oxidative stress, and in some cases accompanied by a decrease in CoQ10 levels. Herein, we discuss experimental and clinical evidence on CoQ10 protective effects on reproductive health. We also address the potential of supplementation with this coenzyme to rescue reprotoxicity induced by exposure to environmental xenobiotics. This review not only contributes to our general understanding of the effects of aging on female reproduction but also provides new insights into strategies promoting reproductive health. The use of CoQ10 supplementation can improve reproductive performance through the scavenging of reactive oxygen species and free radicals. This strategy can constitute a low-risk and low-cost strategy to attenuate the impact on fertility related to aging and exposure to environmental chemicals.
Collapse
Affiliation(s)
| | - Monica P Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
17
|
Bennett CF, Ronayne CT, Puigserver P. Targeting adaptive cellular responses to mitochondrial bioenergetic deficiencies in human disease. FEBS J 2022; 289:6969-6993. [PMID: 34510753 PMCID: PMC8917243 DOI: 10.1111/febs.16195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/25/2021] [Accepted: 09/10/2021] [Indexed: 01/13/2023]
Abstract
Mitochondrial dysfunction is increasingly appreciated as a central contributor to human disease. Oxidative metabolism at the mitochondrial respiratory chain produces ATP and is intricately tied to redox homeostasis and biosynthetic pathways. Metabolic stress arising from genetic mutations in mitochondrial genes and environmental factors such as malnutrition or overnutrition is perceived by the cell and leads to adaptive and maladaptive responses that can underlie pathology. Here, we will outline cellular sensors that react to alterations in energy production, organellar redox, and metabolites stemming from mitochondrial disease (MD) mutations. MD is a heterogeneous group of disorders primarily defined by defects in mitochondrial oxidative phosphorylation from nuclear or mitochondrial-encoded gene mutations. Preclinical therapies that improve fitness of MD mouse models have been recently identified. Targeting metabolic/energetic deficiencies, maladaptive signaling processes, and hyper-oxygenation of tissues are all strategies aside from direct genetic approaches that hold therapeutic promise. A further mechanistic understanding of these curative processes as well as the identification of novel targets will significantly impact mitochondrial biology and disease research.
Collapse
Affiliation(s)
- Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Conor T Ronayne
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Heterozygous Loss of KRIT1 in Mice Affects Metabolic Functions of the Liver, Promoting Hepatic Oxidative and Glycative Stress. Int J Mol Sci 2022; 23:ijms231911151. [PMID: 36232456 PMCID: PMC9570113 DOI: 10.3390/ijms231911151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
KRIT1 loss-of-function mutations underlie the pathogenesis of Cerebral Cavernous Malformation (CCM), a major vascular disease affecting the central nervous system (CNS). However, KRIT1 is also expressed outside the CNS and modulates key regulators of metabolic and oxy-inflammatory pathways, including the master transcription factor FoxO1, suggesting a widespread functional significance. Herein, we show that the KRIT1/FoxO1 axis is implicated in liver metabolic functions and antioxidative/antiglycative defenses. Indeed, by performing comparative studies in KRIT1 heterozygous (KRIT1+/−) and wild-type mice, we found that KRIT1 haploinsufficiency resulted in FoxO1 expression/activity downregulation in the liver, and affected hepatic FoxO1-dependent signaling pathways, which are markers of major metabolic processes, including gluconeogenesis, glycolysis, mitochondrial respiration, and glycogen synthesis. Moreover, it caused sustained activation of the master antioxidant transcription factor Nrf2, hepatic accumulation of advanced glycation end-products (AGEs), and abnormal expression/activity of AGE receptors and detoxifying systems. Furthermore, it was associated with an impairment of food intake, systemic glucose disposal, and plasma levels of insulin. Specific molecular alterations detected in the liver of KRIT1+/− mice were also confirmed in KRIT1 knockout cells. Overall, our findings demonstrated, for the first time, that KRIT1 haploinsufficiency affects glucose homeostasis and liver metabolic and antioxidative/antiglycative functions, thus inspiring future basic and translational studies.
Collapse
|
19
|
Daniele LL, Han JY, Samuels IS, Komirisetty R, Mehta N, McCord JL, Yu M, Wang Y, Boesze-Battaglia K, Bell BA, Du J, Peachey NS, Philp NJ. Glucose uptake by GLUT1 in photoreceptors is essential for outer segment renewal and rod photoreceptor survival. FASEB J 2022; 36:e22428. [PMID: 35766190 PMCID: PMC9438481 DOI: 10.1096/fj.202200369r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Photoreceptors consume glucose supplied by the choriocapillaris to support phototransduction and outer segment (OS) renewal. Reduced glucose supply underlies photoreceptor cell death in inherited retinal degeneration and age-related retinal disease. We have previously shown that restricting glucose transport into the outer retina by conditional deletion of Slc2a1 encoding GLUT1 resulted in photoreceptor loss and impaired OS renewal. However, retinal neurons, glia, and the retinal pigment epithelium play specialized, synergistic roles in metabolite supply and exchange, and the cell-specific map of glucose uptake and utilization in the retina is incomplete. In these studies, we conditionally deleted Slc2a1 in a pan-retinal or rod-specific manner to better understand how glucose is utilized in the retina. Using non-invasive ocular imaging, electroretinography, and histochemical and biochemical analyses we show that genetic deletion of Slc2a1 from retinal neurons and Müller glia results in reduced OS growth and progressive rod but not cone photoreceptor cell death. Rhodopsin levels were severely decreased even at postnatal day 20 when OS length was relatively normal. Arrestin levels were not changed suggesting that glucose uptake is required to synthesize membrane glycoproteins. Rod-specific deletion of Slc2a1 resulted in similar changes in OS length and rod photoreceptor cell death. These studies demonstrate that glucose is an essential carbon source for rod photoreceptor cell OS maintenance and viability.
Collapse
Affiliation(s)
- Lauren L. Daniele
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - John Y.S. Han
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - Ivy S. Samuels
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH
- Louis Stokes Cleveland VA Medical Center, Cleveland,
OH
| | - Ravikiran Komirisetty
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - Nikhil Mehta
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - Jessica L. McCord
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| | - Minzhong Yu
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH
- Department of Ophthalmology, Cleveland Clinic Lerner
College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West
Virginia University, Morgantown, WV
- Department of Biochemistry, West Virginia University,
Morgantown, WV
| | - Kathleen Boesze-Battaglia
- Department of Basic and Translational Sciences, Penn Dental
Medicine, University of Pennsylvania, Philadelphia, PA
| | - Brent A. Bell
- Department of Ophthalmology, University of Pennsylvania,
Philadelphia, PA
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West
Virginia University, Morgantown, WV
- Department of Biochemistry, West Virginia University,
Morgantown, WV
| | - Neal S. Peachey
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH
- Louis Stokes Cleveland VA Medical Center, Cleveland,
OH
- Department of Ophthalmology, Cleveland Clinic Lerner
College of Medicine of Case Western Reserve University, Cleveland, OH
| | - Nancy J. Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas
Jefferson University, Philadelphia, PA
| |
Collapse
|
20
|
Kavi Kishor PB, Suravajhala P, Rathnagiri P, Sreenivasulu N. Intriguing Role of Proline in Redox Potential Conferring High Temperature Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:867531. [PMID: 35795343 PMCID: PMC9252438 DOI: 10.3389/fpls.2022.867531] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/21/2022] [Indexed: 05/24/2023]
Abstract
Proline is a proteinogenic amino acid synthesized from glutamate and ornithine. Pyrroline-5-carboxylate synthetase and pyrroline-5-carboxylate reductase are the two key enzymes involved in proline synthesis from glutamate. On the other hand, ornithine-δ-aminotransferase converts ornithine to pyrroline 5-carboxylate (P5C), an intermediate in the synthesis of proline as well as glutamate. Both proline dehydrogenase and P5C dehydrogenase convert proline back to glutamate. Proline accumulation is widespread in response to environmental challenges such as high temperatures, and it is known to defend plants against unpropitious situations promoting plant growth and flowering. While proline accumulation is positively correlated with heat stress tolerance in some crops, it has detrimental consequences in others. Although it has been established that proline is a key osmolyte, its exact physiological function during heat stress and plant ontogeny remains unknown. Emerging evidence pointed out its role as an overriding molecule in alleviating high temperature stress (HTS) by quenching singlet oxygen and superoxide radicals. Proline cycle acts as a shuttle and the redox couple (NAD+/NADH, NADP+/NADPH) appears to be highly crucial for energy transfer among different cellular compartments during plant development, exposure to HTS conditions and also during the recovery of stress. In this review, the progress made in recent years regarding its involvement in heat stress tolerance is highlighted.
Collapse
Affiliation(s)
- P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to Be University), Guntur, India
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham University, Kerala, India
| | - P. Rathnagiri
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to Be University), Guntur, India
| | - Nese Sreenivasulu
- Consumer-Driven Grain Quality and Nutrition Research Unit, International Rice Research Institute, Los Banos, Philippines
| |
Collapse
|
21
|
Peng L, Lou W, Xu Y, Yu S, Liang C, Alloul A, Song K, Vlaeminck SE. Regulating light, oxygen and volatile fatty acids to boost the productivity of purple bacteria biomass, protein and co-enzyme Q10. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153489. [PMID: 35122839 DOI: 10.1016/j.scitotenv.2022.153489] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Purple non‑sulfur bacteria (PNSB) possess significant potential for bioresource recovery from wastewater. Effective operational tools are needed to boost productivity and direct the PNSB biomass towards abundant value-added substances (e.g., protein and co-enzyme Q10, CoQ10). This study aimed to investigate the impact of light, oxygen and volatile fatty acids (VFAs) on PNSB growth (i.e., Rhodobacter sphaeroides) and productivity of protein and CoQ10. Overall, the biomass yields and specific growth rates of PNSB were in the ranges of 0.57-1.08 g biomass g-1 CODremoved and 0.48-0.71 d-1, respectively. VFAs did not influence the biomass yield, yet acetate and VFA mixtures enhanced the specific growth rate with a factor of 1.2-1.5 compared to propionate and butyrate. The most PNSB biomass (1.08 g biomass g-1 CODremoved and 0.71 d-1) and the highest biomass quality (protein content of 609 mg g-1 dry cell weight (DCW) and CoQ10 content of 13.21 mg g-1 DCW) were obtained in the presence of VFA mixtures under natural light and microaerobic (low light alternated with darkness; dissolved oxygen (DO) between 0.5 and 1 mg L-1) conditions (vs. light anaerobic and dark aerobic cultivations). Further investigation on VFAs dynamics revealed that acetate was most rapidly consumed by PNSB in the individual VFA feeding (specific uptake rate of 0.76 g COD g-1 DCW d-1), while acetate as a co-substrate in the mixed VFAs feeding might accelerate the consumption of propionate and butyrate through providing additional cell metabolism precursor. Enzymes activities of succinate dehydrogenase and fructose-1,6-bisphosphatase as well as the concentration of photo pigments confirmed that light, oxygen and VFAs regulated the key enzymes in the energy metabolism and biomass synthesis to boost PNSB growth. These results provide a promising prospect for utilization of fermented waste stream for the harvest of PNSB biomass, protein and CoQ10.
Collapse
Affiliation(s)
- Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| | - Wenjing Lou
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Siwei Yu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Chuanzhou Liang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
22
|
Proline Oxidation Supports Mitochondrial ATP Production When Complex I Is Inhibited. Int J Mol Sci 2022; 23:ijms23095111. [PMID: 35563503 PMCID: PMC9106064 DOI: 10.3390/ijms23095111] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
The oxidation of proline to pyrroline-5-carboxylate (P5C) leads to the transfer of electrons to ubiquinone in mitochondria that express proline dehydrogenase (ProDH). This electron transfer supports Complexes CIII and CIV, thus generating the protonmotive force. Further catabolism of P5C forms glutamate, which fuels the citric acid cycle that yields the reducing equivalents that sustain oxidative phosphorylation. However, P5C and glutamate catabolism depend on CI activity due to NAD+ requirements. NextGen-O2k (Oroboros Instruments) was used to measure proline oxidation in isolated mitochondria of various mouse tissues. Simultaneous measurements of oxygen consumption, membrane potential, NADH, and the ubiquinone redox state were correlated to ProDH activity and F1FO-ATPase directionality. Proline catabolism generated a sufficiently high membrane potential that was able to maintain the F1FO-ATPase operation in the forward mode. This was observed in CI-inhibited mouse liver and kidney mitochondria that exhibited high levels of proline oxidation and ProDH activity. This action was not observed under anoxia or when either CIII or CIV were inhibited. The duroquinone fueling of CIII and CIV partially reproduced the effects of proline. Excess glutamate, however, could not reproduce the proline effect, suggesting that processes upstream of the glutamate conversion from proline were involved. The ProDH inhibitors tetrahydro-2-furoic acid and, to a lesser extent, S-5-oxo-2-tetrahydrofurancarboxylic acid abolished all proline effects. The data show that ProDH-directed proline catabolism could generate sufficient CIII and CIV proton pumping, thus supporting ATP production by the F1FO-ATPase even under CI inhibition.
Collapse
|
23
|
Yadav T, Gau D, Roy P. Mitochondria-actin cytoskeleton crosstalk in cell migration. J Cell Physiol 2022; 237:2387-2403. [PMID: 35342955 PMCID: PMC9945482 DOI: 10.1002/jcp.30729] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria perform diverse functions in the cell and their roles during processes such as cell survival, differentiation, and migration are increasingly being appreciated. Mitochondrial and actin cytoskeletal networks not only interact with each other, but this multifaceted interaction shapes their functional dynamics. The interrelation between mitochondria and the actin cytoskeleton extends far beyond the requirement of mitochondrial ATP generation to power actin dynamics, and impinges upon several major aspects of cellular physiology. Being situated at the hub of cell signaling pathways, mitochondrial function can alter the activity of actin regulatory proteins and therefore modulate the processes downstream of actin dynamics such as cellular migration. As we will discuss, this regulation is highly nuanced and operates at multiple levels allowing mitochondria to occupy a strategic position in the regulation of migration, as well as pathological events that rely on aberrant cell motility such as cancer metastasis. In this review, we summarize the crosstalk that exists between mitochondria and actin regulatory proteins, and further emphasize on how this interaction holds importance in cell migration in normal as well as dysregulated scenarios as in cancer.
Collapse
Affiliation(s)
- Tarun Yadav
- Biology, Indian Institute of Science Education and Research, Pune
| | - David Gau
- Bioengineering, University of Pittsburgh, USA
| | - Partha Roy
- Bioengineering, University of Pittsburgh, USA
- Pathology, University of Pittsburgh, USA
| |
Collapse
|
24
|
Lemieux H, Blier PU. Exploring Thermal Sensitivities and Adaptations of Oxidative Phosphorylation Pathways. Metabolites 2022; 12:metabo12040360. [PMID: 35448547 PMCID: PMC9025460 DOI: 10.3390/metabo12040360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Temperature shifts are a major challenge to animals; they drive adaptations in organisms and species, and affect all physiological functions in ectothermic organisms. Understanding the origin and mechanisms of these adaptations is critical for determining whether ectothermic organisms will be able to survive when faced with global climate change. Mitochondrial oxidative phosphorylation is thought to be an important metabolic player in this regard, since the capacity of the mitochondria to produce energy greatly varies according to temperature. However, organism survival and fitness depend not only on how much energy is produced, but, more precisely, on how oxidative phosphorylation is affected and which step of the process dictates thermal sensitivity. These questions need to be addressed from a new perspective involving a complex view of mitochondrial oxidative phosphorylation and its related pathways. In this review, we examine the effect of temperature on the commonly measured pathways, but mainly focus on the potential impact of lesser-studied pathways and related steps, including the electron-transferring flavoprotein pathway, glycerophosphate dehydrogenase, dihydroorotate dehydrogenase, choline dehydrogenase, proline dehydrogenase, and sulfide:quinone oxidoreductase. Our objective is to reveal new avenues of research that can address the impact of temperature on oxidative phosphorylation in all its complexity to better portray the limitations and the potential adaptations of aerobic metabolism.
Collapse
Affiliation(s)
- Hélène Lemieux
- Faculty Saint-Jean, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6C 4G9, Canada
- Correspondence: (H.L.); (P.U.B.)
| | - Pierre U. Blier
- Department Biologie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
- Correspondence: (H.L.); (P.U.B.)
| |
Collapse
|
25
|
Lewoniewska S, Oscilowska I, Forlino A, Palka J. Understanding the Role of Estrogen Receptor Status in PRODH/POX-Dependent Apoptosis/Survival in Breast Cancer Cells. BIOLOGY 2021; 10:biology10121314. [PMID: 34943229 PMCID: PMC8698543 DOI: 10.3390/biology10121314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 04/15/2023]
Abstract
It has been suggested that activation of estrogen receptor α (ER α) stimulates cell proliferation. In contrast, estrogen receptor β (ER β) has anti-proliferative and pro-apoptotic activity. Although the role of estrogens in estrogen receptor-positive breast cancer progression has been well established, the mechanism of their effect on apoptosis is not fully understood. It has been considered that ER status of breast cancer cells and estrogen availability might determine proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis. PRODH/POX is a mitochondrial enzyme that converts proline into pyrroline-5-carboxylate (P5C). During this process, ATP (adenosine triphosphate) or ROS (reactive oxygen species) are produced, facilitating cell survival or death, respectively. However, the critical factor in driving PRODH/POX-dependent functions is proline availability. The amount of this amino acid is regulated at the level of prolidase (proline releasing enzyme), collagen biosynthesis (proline utilizing process), and glutamine, glutamate, α-ketoglutarate, and ornithine metabolism. Estrogens were found to upregulate prolidase activity and collagen biosynthesis. It seems that in estrogen receptor-positive breast cancer cells, prolidase supports proline for collagen biosynthesis, limiting its availability for PRODH/POX-dependent apoptosis. Moreover, lack of free proline (known to upregulate the transcriptional activity of hypoxia-inducible factor 1, HIF-1) contributes to downregulation of HIF-1-dependent pro-survival activity. The complex regulatory mechanism also involves PRODH/POX expression and activity. It is induced transcriptionally by p53 and post-transcriptionally by AMPK (AMP-activated protein kinase), which is regulated by ERs. The review also discusses the role of interconversion of proline/glutamate/ornithine in supporting proline to PRODH/POX-dependent functions. The data suggest that PRODH/POX-induced apoptosis is dependent on ER status in breast cancer cells.
Collapse
Affiliation(s)
- Sylwia Lewoniewska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Ilona Oscilowska
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Antonella Forlino
- Department of Molecular Medicine, University of Pavia, Viale Taramelli 3/B, 27100 Pavia, Italy;
| | - Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
- Correspondence: ; Tel.: +48-85-748-5706
| |
Collapse
|
26
|
Forlani G, Sabbioni G, Ragno D, Petrollino D, Borgatti M. Phenyl-substituted aminomethylene-bisphosphonates inhibit human P5C reductase and show antiproliferative activity against proline-hyperproducing tumour cells. J Enzyme Inhib Med Chem 2021; 36:1248-1257. [PMID: 34107832 PMCID: PMC8205077 DOI: 10.1080/14756366.2021.1919890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In certain cancers, such as breast, prostate and some lung and skin cancers, the gene for the enzyme catalysing the second and last step in proline synthesis, δ1-pyrroline-5-carboxylate (P5C) reductase, has been found upregulated. This leads to a higher proline content that exacerbates the effects of the so-called proline-P5C cycle, with tumour cells effectively using this method to increase cell survival. If a method of reducing or inhibiting P5C reductase could be discovered, it would provide new means of treating cancer. To address this point, the effect of some phenyl-substituted derivatives of aminomethylene-bisphosphonic acid, previously found to interfere with the catalytic activity of plant and bacterial P5C reductases, was evaluated in vitro on the human isoform 1 (PYCR1), expressed in E. coli and affinity purified. The 3.5-dibromophenyl- and 3.5-dichlorophenyl-derivatives showed a remarkable effectiveness, with IC50 values lower than 1 µM and a mechanism of competitive type against both P5C and NADPH. The actual occurrence in vivo of enzyme inhibition was assessed on myelogenous erythroleukemic K562 and epithelial breast cancer MDA-MB-231 cell lines, whose growth was progressively impaired by concentrations of the dibromo derivative ranging from 10-6 to 10-4 M. Interestingly, growth inhibition was not relieved by the exogenous supply of proline, suggesting that the effect relies on the interference with the proline-P5C cycle, and not on proline starvation.
Collapse
Affiliation(s)
- Giuseppe Forlani
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Giuseppe Sabbioni
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Davide Petrollino
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Monica Borgatti
- Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
27
|
Phang JM. Perspectives, past, present and future: the proline cycle/proline-collagen regulatory axis. Amino Acids 2021; 53:1967-1975. [PMID: 34825974 PMCID: PMC8651602 DOI: 10.1007/s00726-021-03103-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 01/19/2023]
Abstract
In the 35 years since the introduction of the "proline cycle", its relevance to human tumors has been widely established. These connections are based on a variety of mechanisms discovered by many laboratories and have stimulated the search for small molecule inhibitors to treat cancer or metastases. In addition, the multi-layered connections of the proline cycle and the role of proline and hydroxyproline in collagen provide an important regulatory link between the extracellular matrix and metabolism.
Collapse
Affiliation(s)
- James M Phang
- Scientist Emeritus, Mouse Cancer Genetics Program, CCR, NCI at Frederick, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
28
|
Redox Regulation and Oxidative Stress in Mammalian Oocytes and Embryos Developed In Vivo and In Vitro. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111374. [PMID: 34769890 PMCID: PMC8583213 DOI: 10.3390/ijerph182111374] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022]
Abstract
Oocytes and preimplantation embryos require careful regulation of the redox environment for optimal development both in vivo and in vitro. Reactive oxygen species (ROS) are generated throughout development as a result of cellular metabolism and enzyme reactions. ROS production can result in (i) oxidative eustress, where ROS are helpful signalling molecules with beneficial physiological functions and where the redox state of the cell is maintained within homeostatic range by a closely coupled system of antioxidants and antioxidant enzymes, or (ii) oxidative distress, where excess ROS are deleterious and impair normal cellular function. in vitro culture of embryos exacerbates ROS production due to a range of issues including culture-medium composition and laboratory culture conditions. This increase in ROS can be detrimental not only to assisted reproductive success rates but can also result in epigenetic and genetic changes in the embryo, resulting in transgenerational effects. This review examines the effects of oxidative stress in the oocyte and preimplantation embryo in both the in vivo and in vitro environment, identifies mechanisms responsible for oxidative stress in the oocyte/embryo in culture and approaches to reduce these problems, and briefly examines the potential impacts on future generations.
Collapse
|
29
|
Zheng Y, Cabassa-Hourton C, Planchais S, Lebreton S, Savouré A. The proline cycle as an eukaryotic redox valve. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6856-6866. [PMID: 34331757 DOI: 10.1093/jxb/erab361] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The amino acid proline has been known for many years to be a component of proteins as well as an osmolyte. Many recent studies have demonstrated that proline has other roles such as regulating redox balance and energy status. In animals and plants, the well-described proline cycle is concomitantly responsible for the preferential accumulation of proline and shuttling of redox equivalents from the cytosol to mitochondria. The impact of the proline cycle goes beyond regulating proline levels. In this review, we focus on recent evidence of how the proline cycle regulates redox status in relation to other redox shuttles. We discuss how the interconversion of proline and glutamate shuttles reducing power between cellular compartments. Spatial aspects of the proline cycle in the entire plant are considered in terms of proline transport between organs with different metabolic regimes (photosynthesis versus respiration). Furthermore, we highlight the importance of this shuttle in the regulation of energy and redox power in plants, through a particularly intricate coordination, notably between mitochondria and cytosol.
Collapse
Affiliation(s)
- Yao Zheng
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Cécile Cabassa-Hourton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Séverine Planchais
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Sandrine Lebreton
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| | - Arnould Savouré
- Sorbonne Université, UPEC, CNRS, IRD, INRAE, Institute of Ecology and Environmental Sciences of Paris (iEES), F-75005 Paris, France
| |
Collapse
|
30
|
Jakoube P, Cutano V, González-Morena JM, Keckesova Z. Mitochondrial Tumor Suppressors-The Energetic Enemies of Tumor Progression. Cancer Res 2021; 81:4652-4667. [PMID: 34183354 PMCID: PMC9397617 DOI: 10.1158/0008-5472.can-21-0518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Tumor suppressors represent a critical line of defense against tumorigenesis. Their mechanisms of action and the pathways they are involved in provide important insights into cancer progression, vulnerabilities, and treatment options. Although nuclear and cytosolic tumor suppressors have been extensively investigated, relatively little is known about tumor suppressors localized within the mitochondria. However, recent research has begun to uncover the roles of these important proteins in suppressing tumorigenesis. Here, we review this newly developing field and summarize available information on mitochondrial tumor suppressors.
Collapse
Affiliation(s)
- Pavel Jakoube
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Valentina Cutano
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Juan M. González-Morena
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Keckesova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.,Corresponding Author: Zuzana Keckesova, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo Namesti 2, Prague 16000, Czech Republic. Phone: 420-2201-83584; E-mail:
| |
Collapse
|
31
|
Nishimura A, Yoshikawa Y, Ichikawa K, Takemoto T, Tanahashi R, Takagi H. Longevity Regulation by Proline Oxidation in Yeast. Microorganisms 2021; 9:microorganisms9081650. [PMID: 34442729 PMCID: PMC8400801 DOI: 10.3390/microorganisms9081650] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022] Open
Abstract
Proline is a pivotal and multifunctional amino acid that is used not only as a nitrogen source but also as a stress protectant and energy source. Therefore, proline metabolism is known to be important in maintaining cellular homeostasis. Here, we discovered that proline oxidation, catalyzed by the proline oxidase Put1, a mitochondrial flavin-dependent enzyme converting proline into ∆1-pyrroline-5-carboxylate, controls the chronological lifespan of the yeast Saccharomyces cerevisiae. Intriguingly, the yeast strain with PUT1 deletion showed a reduced chronological lifespan compared with the wild-type strain. The addition of proline to the culture medium significantly increased the longevity of wild-type cells but not that of PUT1-deleted cells. We next found that induction of the transcriptional factor Put3-dependent PUT1 and degradation of proline occur during the aging of yeast cells. Additionally, the lifespan of the PUT3-deleted strain, which is deficient in PUT1 induction, was shorter than that of the wild-type strain. More importantly, the oxidation of proline by Put1 helped maintain the mitochondrial membrane potential and ATP production through the aging period. These results indicate that mitochondrial energy metabolism is maintained through oxidative degradation of proline and that this process is important in regulating the longevity of yeast cells.
Collapse
|
32
|
Liu Y, Mao C, Liu S, Xiao D, Shi Y, Tao Y. Proline dehydrogenase in cancer: apoptosis, autophagy, nutrient dependency and cancer therapy. Amino Acids 2021; 53:1891-1902. [PMID: 34283310 DOI: 10.1007/s00726-021-03032-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/27/2021] [Indexed: 01/03/2023]
Abstract
L-proline catabolism is emerging as a key pathway that is critical to cellular metabolism, growth, survival, and death. Proline dehydrogenase (PRODH) enzyme, which catalyzes the first step of proline catabolism, has diverse functional roles in regulating many pathophysiological processes, including apoptosis, autophagy, cell senescence, and cancer metastasis. Notably, accumulated evidence demonstrated that PRODH plays complex role in many types of cancers. In this review, we briefly introduce the function of PRODH, then its expression in different types of cancer. We next discuss the regulation of PRODH in cancer, the downstream pathways of PRODH and the therapies that are under investigation. Finally, we propose novel insights for future perspectives on the modulation of PRODH.
Collapse
Affiliation(s)
- Yating Liu
- Postdoctoral Research Station of Clinical Medicine & Department of Hematology and Critical Care Medicine, Central South University, the 3rd Xiangya Hospital, Changsha, 410000, People's Republic of China.,Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Chao Mao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Center for Geriatric Disorders, National Clinical Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Ying Shi
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Yongguang Tao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China. .,Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
33
|
Antioxidant Therapy in a Patient with Hyperprolinemia Type 1 Presenting with Mild Neuromotor Retardation and Speech Disturbance. Indian J Pediatr 2021; 88:601. [PMID: 33772430 DOI: 10.1007/s12098-021-03744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
|
34
|
Du J, Zhu S, Lim RR, Chao JR. Proline metabolism and transport in retinal health and disease. Amino Acids 2021; 53:1789-1806. [PMID: 33871679 PMCID: PMC8054134 DOI: 10.1007/s00726-021-02981-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
The retina is one of the most energy-demanding tissues in the human body. Photoreceptors in the outer retina rely on nutrient support from the neighboring retinal pigment epithelium (RPE), a monolayer of epithelial cells that separate the retina and choroidal blood supply. RPE dysfunction or cell death can result in photoreceptor degeneration, leading to blindness in retinal degenerative diseases including some inherited retinal degenerations and age-related macular degeneration (AMD). In addition to having ready access to rich nutrients from blood, the RPE is also supplied with lactate from adjacent photoreceptors. Moreover, RPE can phagocytose lipid-rich outer segments for degradation and recycling on a daily basis. Recent studies show RPE cells prefer proline as a major metabolic substrate, and they are highly enriched for the proline transporter, SLC6A20. In contrast, dysfunctional or poorly differentiated RPE fails to utilize proline. RPE uses proline to fuel mitochondrial metabolism, synthesize amino acids, build the extracellular matrix, fight against oxidative stress, and sustain differentiation. Remarkably, the neural retina rarely imports proline directly, but it uptakes and utilizes intermediates and amino acids derived from proline catabolism in the RPE. Mutations of genes in proline metabolism are associated with retinal degenerative diseases, and proline supplementation is reported to improve RPE-initiated vision loss. This review will cover proline metabolism in RPE and highlight the importance of proline transport and utilization in maintaining retinal metabolism and health.
Collapse
Affiliation(s)
- Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA. .,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA. .,One Medical Center Dr, WVU Eye Institute, PO Box 9193, Morgantown, WV, 26505, USA.
| | - Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Rayne R Lim
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
35
|
Organization of the Respiratory Supercomplexes in Cells with Defective Complex III: Structural Features and Metabolic Consequences. Life (Basel) 2021; 11:life11040351. [PMID: 33920624 PMCID: PMC8074069 DOI: 10.3390/life11040351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
The mitochondrial respiratory chain encompasses four oligomeric enzymatic complexes (complex I, II, III and IV) which, together with the redox carrier ubiquinone and cytochrome c, catalyze electron transport coupled to proton extrusion from the inner membrane. The protonmotive force is utilized by complex V for ATP synthesis in the process of oxidative phosphorylation. Respiratory complexes are known to coexist in the membrane as single functional entities and as supramolecular aggregates or supercomplexes (SCs). Understanding the assembly features of SCs has relevant biomedical implications because defects in a single protein can derange the overall SC organization and compromise the energetic function, causing severe mitochondrial disorders. Here we describe in detail the main types of SCs, all characterized by the presence of complex III. We show that the genetic alterations that hinder the assembly of Complex III, not just the activity, cause a rearrangement of the architecture of the SC that can help to preserve a minimal energetic function. Finally, the major metabolic disturbances associated with severe SCs perturbation due to defective complex III are discussed along with interventions that may circumvent these deficiencies.
Collapse
|
36
|
Palka J, Oscilowska I, Szoka L. Collagen metabolism as a regulator of proline dehydrogenase/proline oxidase-dependent apoptosis/autophagy. Amino Acids 2021; 53:1917-1925. [PMID: 33818628 PMCID: PMC8651534 DOI: 10.1007/s00726-021-02968-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Recent studies on the regulatory role of amino acids in cell metabolism have focused on the functional significance of proline degradation. The process is catalysed by proline dehydrogenase/proline oxidase (PRODH/POX), a mitochondrial flavin-dependent enzyme converting proline into ∆1-pyrroline-5-carboxylate (P5C). During this process, electrons are transferred to electron transport chain producing ATP for survival or they directly reduce oxygen, producing reactive oxygen species (ROS) inducing apoptosis/autophagy. However, the mechanism for switching survival/apoptosis mode is unknown. Although PRODH/POX activity and energetic metabolism were suggested as an underlying mechanism for the survival/apoptosis switch, proline availability for this enzyme is also important. Proline availability is regulated by prolidase (proline supporting enzyme), collagen biosynthesis (proline utilizing process) and proline synthesis from glutamine, glutamate, α-ketoglutarate (α-KG) and ornithine. Proline availability is dependent on the rate of glycolysis, TCA and urea cycles, proline metabolism, collagen biosynthesis and its degradation. It is well established that proline synthesis enzymes, P5C synthetase and P5C reductase as well as collagen prolyl hydroxylases are up-regulated in most of cancer types and control rates of collagen biosynthesis. Up-regulation of collagen prolyl hydroxylase and its exhaustion of ascorbate and α-KG may compete with DNA and histone demethylases (that require the same cofactors) to influence metabolic epigenetics. This knowledge led us to hypothesize that up-regulation of prolidase and PRODH/POX with inhibition of collagen biosynthesis may represent potential pharmacotherapeutic approach to induce apoptosis or autophagic death in cancer cells. These aspects of proline metabolism are discussed in the review as an approach to understand complex regulatory mechanisms driving PRODH/POX-dependent apoptosis/survival.
Collapse
Affiliation(s)
- Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Ilona Oscilowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Lukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| |
Collapse
|
37
|
Baschiera E, Sorrentino U, Calderan C, Desbats MA, Salviati L. The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency. Free Radic Biol Med 2021; 166:277-286. [PMID: 33667628 DOI: 10.1016/j.freeradbiomed.2021.02.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Coenzyme Q (CoQ) is a redox active lipid that plays a central role in cellular homeostasis. It was discovered more than 60 years ago because of its role as electron transporter in the mitochondrial respiratory chain. Since then it has become evident that CoQ has many other functions, not directly related to bioenergetics. It is a cofactor of several mitochondrial dehydrogenases involved in the metabolism of lipids, amino acids, and nucleotides, and in sulfide detoxification. It is a powerful antioxidant and it is involved in the control of programmed cell death by modulating both apoptosis and ferroptosis. CoQ deficiency is a clinically and genetically heterogeneous group of disorders characterized by the impairment of CoQ biosynthesis. CoQ deficient patients display defects in cellular bioenergetics, but also in the other pathways in which CoQ is involved. In this review we will focus on the functions of CoQ not directly related to the respiratory chain, and on how their impairment is relevant for the pathophysiology of CoQ deficiency. A better understanding of the complex set of events triggered by CoQ deficiency will allow to design novel approaches for the treatment of this condition.
Collapse
Affiliation(s)
- Elisa Baschiera
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Cristina Calderan
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy.
| |
Collapse
|
38
|
Stability of Reduced and Oxidized Coenzyme Q10 in Finished Products. Antioxidants (Basel) 2021; 10:antiox10030360. [PMID: 33673604 PMCID: PMC7997171 DOI: 10.3390/antiox10030360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022] Open
Abstract
The efficiency of coenzyme Q10 (CoQ10) supplements is closely associated with its content and stability in finished products. This study aimed to provide evidence-based information on the quality and stability of CoQ10 in dietary supplements and medicines. Therefore, ubiquinol, ubiquinone, and total CoQ10 contents were determined by a validated HPLC-UV method in 11 commercial products with defined or undefined CoQ10 form. Both forms were detected in almost all tested products, resulting in a total of CoQ10 content between 82% and 166% of the declared. Ubiquinol, ubiquinone, and total CoQ10 stability in these products were evaluated within three months of accelerated stability testing. Ubiquinol, which is recognized as the less stable form, was properly stabilized. Contrarily, ubiquinone degradation and/or reduction were observed during storage in almost all tested products. These reactions were also detected at ambient temperature within the products’ shelf-lives and confirmed in ubiquinone standard solutions. Ubiquinol, generated by ubiquinone reduction with vitamin C during soft-shell capsules’ storage, may lead to higher bioavailability and health outcomes. However, such conversion and inappropriate content in products, which specify ubiquinone, are unacceptable in terms of regulation. Therefore, proper CoQ10 stabilization through final formulations regardless of the used CoQ10 form is needed.
Collapse
|
39
|
Kuo MT, Chen HHW, Feun LG, Savaraj N. Targeting the Proline-Glutamine-Asparagine-Arginine Metabolic Axis in Amino Acid Starvation Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:ph14010072. [PMID: 33477430 PMCID: PMC7830038 DOI: 10.3390/ph14010072] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Proline, glutamine, asparagine, and arginine are conditionally non-essential amino acids that can be produced in our body. However, they are essential for the growth of highly proliferative cells such as cancers. Many cancers express reduced levels of these amino acids and thus require import from the environment. Meanwhile, the biosynthesis of these amino acids is inter-connected but can be intervened individually through the inhibition of key enzymes of the biosynthesis of these amino acids, resulting in amino acid starvation and cell death. Amino acid starvation strategies have been in various stages of clinical applications. Targeting asparagine using asparaginase has been approved for treating acute lymphoblastic leukemia. Targeting glutamine and arginine starvations are in various stages of clinical trials, and targeting proline starvation is in preclinical development. The most important obstacle of these therapies is drug resistance, which is mostly due to reactivation of the key enzymes involved in biosynthesis of the targeted amino acids and reprogramming of compensatory survival pathways via transcriptional, epigenetic, and post-translational mechanisms. Here, we review the interactive regulatory mechanisms that control cellular levels of these amino acids for amino acid starvation therapy and how drug resistance is evolved underlying treatment failure.
Collapse
Affiliation(s)
- Macus Tien Kuo
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence:
| | - Helen H. W. Chen
- Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan;
| | - Lynn G. Feun
- Department of Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Niramol Savaraj
- Division of Hematology and Oncology, Miami Veterans Affairs Heaithcare System, Miami, FL 33136, USA;
| |
Collapse
|
40
|
Wang G, Yu Y, Wang YZ, Zhu ZM, Yin PH, Xu K. Effects and mechanisms of fatty acid metabolism‑mediated glycolysis regulated by betulinic acid‑loaded nanoliposomes in colorectal cancer. Oncol Rep 2020; 44:2595-2609. [PMID: 33125108 PMCID: PMC7640364 DOI: 10.3892/or.2020.7787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/03/2020] [Indexed: 01/05/2023] Open
Abstract
Although previous studies have demonstrated that triterpenoids, such as betulinic acid (BA), can inhibit tumor cell growth, their potential targets in colorectal cancer (CRC) metabolism have not been systematically investigated. In the present study, BA‑loaded nanoliposomes (BA‑NLs) were prepared, and their effects on CRC cell lines were evaluated. The aim of the present study was to determine the anticancer mechanisms of action of BA‑NLs in fatty acid metabolism‑mediated glycolysis, and investigate the role of key targets, such as acyl‑CoA synthetase (ACSL), carnitine palmitoyltransferase (CPT) and acetyl CoA, in promoting glycolysis, which is activated by inducing hexokinase (HK), phosphofructokinase‑1 (PFK‑1), phosphoenolpyruvate (PEP) and pyruvate kinase (PK) expression. The results demonstrated that BA‑NLs significantly suppressed the proliferation and glucose uptake of CRC cells by regulating potential glycolysis and fatty acid metabolism targets and pathways, which forms the basis of the anti‑CRC function of BA‑NLs. Moreover, the effects of BA‑NLs were further validated by demonstrating that the key targets of HK2, PFK‑1, PEP and PK isoenzyme M2 (PKM2) in glycolysis, and of ACSL1, CPT1a and PEP in fatty acid metabolism, were blocked by BA‑NLs, which play key roles in the inhibition of glycolysis and fatty acid‑mediated production of pyruvate and lactate. The results of the present study may provide a deeper understanding supporting the hypothesis that liposomal BA may regulate alternative metabolic pathways implicated in CRC adjuvant therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, P.R. China
| | - Yang Yu
- Jiangsu University School of Pharmacy, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yu-Zhu Wang
- Jiangsu University School of Pharmacy, Zhenjiang, Jiangsu 212001, P.R. China
| | - Zhi-Min Zhu
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai 200235, P.R. China
| | - Pei-Hao Yin
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| | - Ke Xu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
| |
Collapse
|
41
|
The Janus-like role of proline metabolism in cancer. Cell Death Discov 2020; 6:104. [PMID: 33083024 PMCID: PMC7560826 DOI: 10.1038/s41420-020-00341-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
The metabolism of the non-essential amino acid L-proline is emerging as a key pathway in the metabolic rewiring that sustains cancer cells proliferation, survival and metastatic spread. Pyrroline-5-carboxylate reductase (PYCR) and proline dehydrogenase (PRODH) enzymes, which catalyze the last step in proline biosynthesis and the first step of its catabolism, respectively, have been extensively associated with the progression of several malignancies, and have been exposed as potential targets for anticancer drug development. As investigations into the links between proline metabolism and cancer accumulate, the complexity, and sometimes contradictory nature of this interaction emerge. It is clear that the role of proline metabolism enzymes in cancer depends on tumor type, with different cancers and cancer-related phenotypes displaying different dependencies on these enzymes. Unexpectedly, the outcome of rewiring proline metabolism also differs between conditions of nutrient and oxygen limitation. Here, we provide a comprehensive review of proline metabolism in cancer; we collate the experimental evidence that links proline metabolism with the different aspects of cancer progression and critically discuss the potential mechanisms involved.
Collapse
|
42
|
Disorders of Human Coenzyme Q10 Metabolism: An Overview. Int J Mol Sci 2020; 21:ijms21186695. [PMID: 32933108 PMCID: PMC7555759 DOI: 10.3390/ijms21186695] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Coenzyme Q10 (CoQ10) has a number of vital functions in all cells, both mitochondrial and extramitochondrial. In addition to its key role in mitochondrial oxidative phosphorylation, CoQ10 serves as a lipid soluble antioxidant, plays an important role in fatty acid, pyrimidine and lysosomal metabolism, as well as directly mediating the expression of a number of genes, including those involved in inflammation. In view of the central role of CoQ10 in cellular metabolism, it is unsurprising that a CoQ10 deficiency is linked to the pathogenesis of a range of disorders. CoQ10 deficiency is broadly classified into primary or secondary deficiencies. Primary deficiencies result from genetic defects in the multi-step biochemical pathway of CoQ10 synthesis, whereas secondary deficiencies can occur as result of other diseases or certain pharmacotherapies. In this article we have reviewed the clinical consequences of primary and secondary CoQ10 deficiencies, as well as providing some examples of the successful use of CoQ10 supplementation in the treatment of disease.
Collapse
|
43
|
Proline Protects Boar Sperm against Oxidative Stress through Proline Dehydrogenase-Mediated Metabolism and the Amine Structure of Pyrrolidine. Animals (Basel) 2020; 10:ani10091549. [PMID: 32883027 PMCID: PMC7552335 DOI: 10.3390/ani10091549] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/16/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Reactive oxygen species that accumulate during liquid storage of boar semen lead to oxidative stress to sperm. In this study, we found that proline significantly improved boar sperm quality and protected sperm against oxidative damages during liquid storage at 17 °C. Using the model of artificially induced oxidative stress, we found that proline exerted an antioxidative role by modulating redox homeostasis in boar sperm. The secondary amine structure of proline and proline dehydrogenase-mediated metabolism are involved in the antioxidative role. We suggest that addition of proline to the extender would be beneficial to improve boar sperm quality. Abstract Proline was reported to improve sperm quality in rams, stallions, cynomolgus monkeys, donkeys, and canines during cryopreservation. However, the underlying mechanism remains unclear. The aim of this study was to investigate the effect of proline on boar semen during liquid storage at 17 °C and explore the underlying mechanism. Freshly ejaculated boar semen was supplemented with different concentrations of proline (0, 25, 50, 75, 100, 125 mM) and stored at 17 °C for nine days. Sperm motility patterns, membrane integrity, ATP (adenosine triphosphate), reactive oxygen species (ROS), and GSH (glutathione) levels, and the activities of catalase (CAT) and superoxide dismutase (SOD) were evaluated after storage for up to five days. It was observed that boar sperm quality gradually decreased with the extension of storage time, while the ROS levels increased. Addition of 75 mM proline not only significantly improved sperm membrane integrity, motility, and ATP levels but also maintained the redox homeostasis via increasing the GSH levels and activities of CAT and SOD. When hydrogen peroxide (H2O2) was used to induce oxidative stress, addition of proline significantly improved sperm quality and reduced ROS levels. Moreover, addition of proline also improved sperm quality during the rapid cooling process. Notably, addition of DL-PCA (DL-pipecolinic acid) rescued the reduction of progressive motility and total motility caused by H2O2, and THFA (tetrahydro-2-furoic acid) failed to provide protection. Furthermore, addition of proline at 75 mM increased the activity of proline dehydrogenase (PRODH) and attenuated the H2O2-induced reduction in progressive motility. These data demonstrate that proline protects sperm against oxidative stress through the secondary amine structure and proline dehydrogenase-mediated metabolism.
Collapse
|
44
|
Marmol P, Krapacher F, Ibáñez CF. Control of brown adipose tissue adaptation to nutrient stress by the activin receptor ALK7. eLife 2020; 9:54721. [PMID: 32366358 PMCID: PMC7200161 DOI: 10.7554/elife.54721] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/21/2020] [Indexed: 12/22/2022] Open
Abstract
Adaptation to nutrient availability is crucial for survival. Upon nutritional stress, such as during prolonged fasting or cold exposure, organisms need to balance the feeding of tissues and the maintenance of body temperature. The mechanisms that regulate the adaptation of brown adipose tissue (BAT), a key organ for non-shivering thermogenesis, to variations in nutritional state are not known. Here we report that specific deletion of the activin receptor ALK7 in BAT resulted in fasting-induced hypothermia due to exaggerated catabolic activity in brown adipocytes. After overnight fasting, BAT lacking ALK7 showed increased expression of genes responsive to nutrient stress, including the upstream regulator KLF15, aminoacid catabolizing enzymes, notably proline dehydrogenase (POX), and adipose triglyceride lipase (ATGL), as well as markedly reduced lipid droplet size. In agreement with this, ligand stimulation of ALK7 suppressed POX and KLF15 expression in both mouse and human brown adipocytes. Treatment of mutant mice with the glucocorticoid receptor antagonist RU486 restored KLF15 and POX expression levels in mutant BAT, suggesting that loss of BAT ALK7 results in excessive activation of glucocorticoid signaling upon fasting. These results reveal a novel signaling pathway downstream of ALK7 which regulates the adaptation of BAT to nutrient availability by limiting nutrient stress-induced overactivation of catabolic responses in brown adipocytes.
Collapse
Affiliation(s)
- Patricia Marmol
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Favio Krapacher
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Physiology, National University of Singapore, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
45
|
Fatica EM, DeLeonibus GA, House A, Kodger JV, Pearce RW, Shah RR, Levi L, Sandlers Y. Barth Syndrome: Exploring Cardiac Metabolism with Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Metabolites 2019; 9:E306. [PMID: 31861102 PMCID: PMC6950123 DOI: 10.3390/metabo9120306] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Barth syndrome (BTHS) is an X-linked recessive multisystem disorder caused by mutations in the TAZ gene (TAZ, G 4.5, OMIM 300394) that encodes for the acyltransferase tafazzin. This protein is highly expressed in the heart and plays a significant role in cardiolipin biosynthesis. Heart disease is the major clinical manifestation of BTHS with a high incidence in early life. Although the genetic basis of BTHS and tetralinoleoyl cardiolipin deficiency in BTHS-affected individuals are well-established, downstream metabolic changes in cardiac metabolism are still uncovered. Our study aimed to characterize TAZ-induced metabolic perturbations in the heart. Control (PGP1-TAZWT) and TAZ mutant (PGP1-TAZ517delG) iPS-CM were incubated with 13C6-glucose and 13C5-glutamine and incorporation of 13C into downstream Krebs cycle intermediates was traced. Our data reveal that TAZ517delG induces accumulation of cellular long chain acylcarnitines and overexpression of fatty acid binding protein (FABP4). We also demonstrate that TAZ517delG induces metabolic alterations in pathways related to energy production as reflected by high glucose uptake, an increase in glycolytic lactate production and a decrease in palmitate uptake. Moreover, despite mitochondrial dysfunction, in the absence of glucose and fatty acids, TAZ517delG-iPS-CM can use glutamine as a carbon source to replenish the Krebs cycle.
Collapse
Affiliation(s)
- Erica M. Fatica
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Gina A. DeLeonibus
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Alisha House
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Jillian V. Kodger
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Ryan W. Pearce
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Rohan R. Shah
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| | - Liraz Levi
- Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Yana Sandlers
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, USA; (E.M.F.); (G.A.D.); (A.H.); (J.V.K.); (R.W.P.); (R.R.S.)
| |
Collapse
|
46
|
Raimondi V, Ciccarese F, Ciminale V. Oncogenic pathways and the electron transport chain: a dangeROS liaison. Br J Cancer 2019; 122:168-181. [PMID: 31819197 PMCID: PMC7052168 DOI: 10.1038/s41416-019-0651-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/30/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Driver mutations in oncogenic pathways, rewiring of cellular metabolism and altered ROS homoeostasis are intimately connected hallmarks of cancer. Electrons derived from different metabolic processes are channelled into the mitochondrial electron transport chain (ETC) to fuel the oxidative phosphorylation process. Electrons leaking from the ETC can prematurely react with oxygen, resulting in the generation of reactive oxygen species (ROS). Several signalling pathways are affected by ROS, which act as second messengers controlling cell proliferation and survival. On the other hand, oncogenic pathways hijack the ETC, enhancing its ROS-producing capacity by increasing electron flow or by impinging on the structure and organisation of the ETC. In this review, we focus on the ETC as a source of ROS and its modulation by oncogenic pathways, which generates a vicious cycle that resets ROS levels to a higher homoeostatic set point, sustaining the cancer cell phenotype.
Collapse
Affiliation(s)
| | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy. .,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
| |
Collapse
|
47
|
Yam M, Engel AL, Wang Y, Zhu S, Hauer A, Zhang R, Lohner D, Huang J, Dinterman M, Zhao C, Chao JR, Du J. Proline mediates metabolic communication between retinal pigment epithelial cells and the retina. J Biol Chem 2019; 294:10278-10289. [PMID: 31110046 PMCID: PMC6664195 DOI: 10.1074/jbc.ra119.007983] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/16/2019] [Indexed: 01/16/2023] Open
Abstract
The retinal pigment epithelium (RPE) is a monolayer of pigmented cells between the choroid and the retina. RPE dysfunction underlies many retinal degenerative diseases, including age-related macular degeneration, the leading cause of age-related blindness. To perform its various functions in nutrient transport, phagocytosis of the outer segment, and cytokine secretion, the RPE relies on an active energy metabolism. We previously reported that human RPE cells prefer proline as a nutrient and transport proline-derived metabolites to the apical, or retinal, side. In this study, we investigated how RPE utilizes proline in vivo and why proline is a preferred substrate. By using [13C]proline labeling both ex vivo and in vivo, we found that the retina rarely uses proline directly, whereas the RPE utilizes it at a high rate, exporting proline-derived mitochondrial intermediates for use by the retina. We observed that in primary human RPE cell culture, proline is the only amino acid whose uptake increases with cellular maturity. In human RPE, proline was sufficient to stimulate de novo serine synthesis, increase reductive carboxylation, and protect against oxidative damage. Blocking proline catabolism in RPE impaired glucose metabolism and GSH production. Notably, in an acute model of RPE-induced retinal degeneration, dietary proline improved visual function. In conclusion, proline is an important nutrient that supports RPE metabolism and the metabolic demand of the retina.
Collapse
Affiliation(s)
- Michelle Yam
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Abbi L Engel
- the Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - Yekai Wang
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Siyan Zhu
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Allison Hauer
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Rui Zhang
- From the Departments of Ophthalmology and
- the Save Sight Institute, University of Sydney, 8 Macquarie Street, Sydney, New South Wales 2000, Australia
| | - Daniel Lohner
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Jiancheng Huang
- From the Departments of Ophthalmology and
- the Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China, and
- the Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Marlee Dinterman
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Chen Zhao
- the Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China, and
| | - Jennifer R Chao
- the Department of Ophthalmology, University of Washington, Seattle, Washington 98109,
| | - Jianhai Du
- From the Departments of Ophthalmology and
- Biochemistry, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
48
|
Shekhova E, Ivanova L, Krüger T, Stroe MC, Macheleidt J, Kniemeyer O, Brakhage AA. Redox Proteomic Analysis Reveals Oxidative Modifications of Proteins by Increased Levels of Intracellular Reactive Oxygen Species during Hypoxia Adaptation of Aspergillus fumigatus. Proteomics 2019; 19:e1800339. [PMID: 30632700 DOI: 10.1002/pmic.201800339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/20/2018] [Indexed: 12/28/2022]
Abstract
Aspergillus fumigatus faces abrupt changes in oxygen concentrations at the site of infection. An increasing number of studies has demonstrated that elevated production of intracellular reactive oxygen species (ROS) under low oxygen conditions plays a regulatory role in modulating cellular responses for adaptation to hypoxia. To learn more about this process in A. fumigatus, intracellular ROS production during hypoxia has been determined. The results confirm increased amounts of intracellular ROS in A. fumigatus exposed to decreased oxygen levels. Moreover, nuclear accumulation of the major oxidative stress regulator AfYap1 is observed after low oxygen cultivation. For further analysis, iodoTMT labeling of redox-sensitive cysteine residues is applied to identify proteins that are reversibly oxidized. This analysis reveals that proteins with important roles in maintaining redox balance and protein folding, such as the thioredoxin Asp f 29 and the disulfide-isomerase PdiA, undergo substantial thiol modification under hypoxia. The data also show that the mitochondrial respiratory complex IV assembly protein Coa6 is significantly oxidized by hypoxic ROS. Deletion of the corresponding gene results in a complete absence of hypoxic growth, indicating the importance of complex IV during adaptation of A. fumigatus to oxygen-limiting conditions.
Collapse
Affiliation(s)
- Elena Shekhova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Lia Ivanova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Maria C Stroe
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Juliane Macheleidt
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Department of Microbiology and Molecular Biology, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
49
|
Abstract
SIGNIFICANCE It is increasingly clear that proline metabolism plays an important role in metabolic reprogramming, not only in cancer but also in related fields such as aging, senescence, and development. Although first focused on proline catabolism, recent studies from a number of laboratories have emphasized the regulatory effects of proline synthesis and proline cycling. Recent Advances: Although proline dehydrogenase/proline oxidase (PRODH/POX) has been known as a tumor protein 53 (P53)-activated source of redox signaling for initiating apoptosis and autophagy, senescence has been added to the responses. On the biosynthetic side, two well-recognized oncogenes, c-MYC and phosphoinositide 3-kinase (PI3K), markedly upregulate enzymes of proline synthesis; mechanisms affected include augmented redox cycling and maintenance of pyridine nucleotides. The reprogramming has been shown to shift in clonogenesis and/or metastasis. CRITICAL ISSUES Although PRODH/POX generates reactive oxygen species (ROS) for signaling, the cellular endpoint is variable and dependent on metabolic context; the switches for these responses remain unknown. On the synthetic side, the enzymes require more complete characterization in various cancers, and demonstration of coupling of proline metabolites to other pathways may require studies of protein-protein interactions, membrane transporters, and shuttles. FUTURE DIRECTIONS The proline metabolic axis can serve as a scaffold on which a variety of regulatory mechanisms are integrated. Once understood as a central mechanism in cancer metabolism, proline metabolism may be a good target for adjunctive cancer therapy.
Collapse
Affiliation(s)
- James M Phang
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute at Frederick, NIH , Frederick, Maryland
| |
Collapse
|
50
|
“Alternative” fuels contributing to mitochondrial electron transport: Importance of non-classical pathways in the diversity of animal metabolism. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:185-194. [DOI: 10.1016/j.cbpb.2017.11.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022]
|