1
|
Fraser K, James SC, Young W, Gearry RB, Heenan PE, Keenan JI, Talley NJ, McNabb WC, Roy NC. Characterisation of the Plasma and Faecal Metabolomes in Participants with Functional Gastrointestinal Disorders. Int J Mol Sci 2024; 25:13465. [PMID: 39769229 PMCID: PMC11677738 DOI: 10.3390/ijms252413465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
There is evidence of perturbed microbial and host processes in the gastrointestinal tract of individuals with functional gastrointestinal disorders (FGID) compared to healthy controls. The faecal metabolome provides insight into the metabolic processes localised to the intestinal tract, while the plasma metabolome highlights the overall perturbances of host and/or microbial responses. This study profiled the faecal (n = 221) and plasma (n = 206) metabolomes of individuals with functional constipation (FC), constipation-predominant irritable bowel syndrome (IBS-C), functional diarrhoea (FD), diarrhoea-predominant IBS (IBS-D) and healthy controls (identified using the Rome Criteria IV) using multimodal LC-MS technologies. Discriminant analysis separated patients with the 'all constipation' group (FC and IBS-C) from the healthy control group and 'all diarrhoea' group (FD and IBS-D) from the healthy control group in both sample types. In plasma, almost all multimodal metabolite analyses separated the 'all constipation' or 'all diarrhoea' group from the healthy controls, and the IBS-C or IBS-D group from the healthy control group. Plasma phospholipids and metabolites linked to several amino acid and nucleoside pathways differed (p < 0.05) between healthy controls and IBS-C. In contrast, metabolites involved in bile acid and amino acid metabolism were the key differentiating classes in the plasma of subjects with IBS-D from healthy controls. Faecal lipids, particularly ceramides, diglycerides, and triglycerides, varied (p < 0.05) between healthy controls and the 'all constipation' group and between healthy controls and 'all diarrhoea' group. The faecal and plasma metabolomes showed perturbations between constipation, diarrhoea and healthy control groups that may reflect processes and mechanisms linked to FGIDs.
Collapse
Affiliation(s)
- Karl Fraser
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Shanalee C. James
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North 4472, New Zealand
| | - Wayne Young
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Richard B. Gearry
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Phoebe E. Heenan
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | | | - Nicholas J. Talley
- School of Medicine and Public Health, The University of Newcastle, Callaghan, Newcastle 2308, Australia
| | - Warren C. McNabb
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Nicole C. Roy
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
2
|
Mady EA, Osuga H, Toyama H, El-Husseiny HM, Inoue R, Murase H, Yamamoto Y, Nagaoka K. Relationship between the components of mare breast milk and foal gut microbiome: shaping gut microbiome development after birth. Vet Q 2024; 44:1-9. [PMID: 38733121 PMCID: PMC11089936 DOI: 10.1080/01652176.2024.2349948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The gut microbiota (GM) is essential for mammalian health. Although the association between infant GM and breast milk (BM) composition has been well established in humans, such a relationship has not been investigated in horses. Hence, this study was conducted to analyze the GM formation of foals during lactation and determine the presence of low-molecular-weight metabolites in mares' BM and their role in shaping foals' GM. The fecal and BM samples from six pairs of foals and mares were subjected to 16S ribosomal RNA metagenomic and metabolomic analyses, respectively. The composition of foal GM changed during lactation time; hierarchical cluster analysis divided the fetal GM into three groups corresponding to different time points in foal development. The level of most metabolites in milk decreased over time with increasing milk yield, while threonic acid and ascorbic acid increased. Further analyses revealed gut bacteria that correlated with changes in milk metabolites; for instance, there was a positive correlation between Bacteroidaceae in the foal's gut microbiota and serine/glycine in the mother's milk. These findings help improve the rearing environment of lactating horses and establish artificial feeding methods for foals.
Collapse
Affiliation(s)
- Eman A. Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Animal Hygiene, Behavior, and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya, Egypt
| | - Haruna Osuga
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haruka Toyama
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hussein M. El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Science, Setsunan University, Osaka, Japan
| | - Harutaka Murase
- Hidaka Training and Research Center, Japan Racing Association, Hokkaido, Japan
| | - Yuki Yamamoto
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
3
|
Zhang J, Jiang Q, Du Z, Geng Y, Hu Y, Tong Q, Song Y, Zhang HY, Yan X, Feng Z. Knowledge graph-derived feed efficiency analysis via pig gut microbiota. Sci Rep 2024; 14:13939. [PMID: 38886444 PMCID: PMC11182767 DOI: 10.1038/s41598-024-64835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Feed efficiency (FE) is essential for pig production, has been reported to be partially explained by gut microbiota. Despite an extensive body of research literature to this topic, studies regarding the regulation of feed efficiency by gut microbiota remain fragmented and mostly confined to disorganized or semi-structured unrestricted texts. Meanwhile, structured databases for microbiota analysis are available, yet they often lack a comprehensive understanding of the associated biological processes. Therefore, we have devised an approach to construct a comprehensive knowledge graph by combining unstructured textual intelligence with structured database information and applied it to investigate the relationship between pig gut microbes and FE. Firstly, we created the pgmReading knowledge base and the domain ontology of pig gut microbiota by annotating, extracting, and integrating semantic information from 157 scientific publications. Secondly, we created the pgmPubtator by utilizing PubTator to expand the semantic information related to microbiota. Thirdly, we created the pgmDatabase by mapping and combining the ADDAGMA, gutMGene, and KEGG databases based on the ontology. These three knowledge bases were integrated to form the Pig Gut Microbial Knowledge Graph (PGMKG). Additionally, we created five biological query cases to validate the performance of PGMKG. These cases not only allow us to identify microbes with the most significant impact on FE but also provide insights into the metabolites produced by these microbes and the associated metabolic pathways. This study introduces PGMKG, mapping key microbes in pig feed efficiency and guiding microbiota-targeted optimization.
Collapse
Affiliation(s)
- Junmei Zhang
- National Key Laboratory of Agricultural Microbiology, College of Informatics, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Jiang
- National Key Laboratory of Agricultural Microbiology, College of Informatics, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory (YNL), Sanya, 572025, China
| | - Zhihong Du
- National Key Laboratory of Agricultural Microbiology, College of Informatics, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yilin Geng
- National Key Laboratory of Agricultural Microbiology, College of Informatics, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuren Hu
- National Key Laboratory of Agricultural Microbiology, College of Informatics, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qichang Tong
- National Key Laboratory of Agricultural Microbiology, College of Informatics, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunfeng Song
- National Key Laboratory of Agricultural Microbiology, College of Informatics, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong-Yu Zhang
- National Key Laboratory of Agricultural Microbiology, College of Informatics, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianghua Yan
- National Key Laboratory of Agricultural Microbiology, College of Informatics, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zaiwen Feng
- National Key Laboratory of Agricultural Microbiology, College of Informatics, College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
4
|
Tang Z, Yang Y, Yang M, Jiang D, Ge Y, Zhang X, Liu H, Fu Q, Liu X, Yang Y, Wu Z, Ji Y. Elucidating the modulatory role of dietary hydroxyproline on the integrity and functional performance of the intestinal barrier in early-weaned piglets: A comprehensive analysis of its interplay with the gut microbiota and metabolites. Int Immunopharmacol 2024; 134:112268. [PMID: 38759371 DOI: 10.1016/j.intimp.2024.112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Piglets receive far less hydroxyproline (Hyp) from a diet after weaning than they obtained from sow's milk prior to weaning, suggesting that Hyp may play a protective role in preserving intestinal mucosal homeostasis. This study aimed to evaluate the effect of Hyp on intestinal barrier function and its associated gut microbiota and metabolites in early-weaned piglets. Eighty weaned piglets were divided into four groups and fed diets containing different Hyp levels (0 %, 0.5 %, 1 %, or 2 %) for 21 days. Samples, including intestinal contents, tissues, and blood, were collected on day 7 for analysis of microbial composition, intestinal barrier function, and metabolites. We demonstrated that dietary supplementation with 2 % Hyp improved the feed conversion ratio and reduced the incidence of diarrhea in early-weaned piglets compared to the control group. Concurrently, Hyp enhanced intestinal barrier function by facilitating tight junction protein (zonula occludens (ZO)-1 and occludin) expression and mucin production in the jejunal, ileal, and colonic mucosas. It also improved mucosal immunity (by increasing the amount of secretory IgA (sIgA) and the ratio of CD4+/CD8+ T lymphocytes and decreasing NF-κB phosphorylation) and increased antioxidant capacity (by raising total antioxidant capacity (T-AOC) and glutathione levels) in the intestinal mucosa. In addition, Hyp supplementation resulted in an increase in the levels of glycine, glutathione, and glycine-conjugated bile acids, while decreasing the concentrations of cortisol and methionine sulfoxide in plasma. Intriguingly, piglets fed diet containing Hyp exhibited a remarkable increase in the abundance of probiotic Enterococcus faecium within their colonic contents. This elevation occurred alongside an attenuation of pro-inflammatory responses and an enhancement in intestinal barrier integrity. Further, these changes were accompanied by a rise in anti-inflammatory metabolites, specifically glycochenodeoxycholic acid and guanosine, along with a suppression of pro-inflammatory lipid peroxidation products, including (12Z)-9,10-dihydroxyoctadec-12-enoic acid (9,10-DHOME) and 13-L-hydroperoxylinoleic acid (13(S)-HPODE). In summary, Hyp holds the capacity to enhance the intestinal barrier function in weaned piglets; this effect is correlated with changes in the gut microbiota and metabolites. Our findings provide novel insights into the role of Hyp in maintaining gut homeostasis, highlighting its potential as a dietary supplement for promoting intestinal health in early-weaned piglets.
Collapse
Affiliation(s)
- Zhining Tang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Yang Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Mingrui Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Da Jiang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Yao Ge
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Xinyu Zhang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Qingyao Fu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Xiyuan Liu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Zhou X, Liang J, Xiong X, Yin Y. Amino acids in piglet diarrhea: Effects, mechanisms and insights. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:267-274. [PMID: 38362520 PMCID: PMC10867606 DOI: 10.1016/j.aninu.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 02/17/2024]
Abstract
Piglet diarrhea is among one of the most serious health problems faced by the pig industry, resulting in significant economic losses. Diarrheal disease in piglets has a multifactorial etiology that is affected by physiology, environment, and management strategy. Diarrhea is the most apparent symptom of intestinal dysfunction. As a key class of essential nutrients in the piglet diet, amino acids confer a variety of beneficial effects on piglets in addition to being used as a substrate for protein synthesis, including maintaining appropriate intestinal integrity, permeability and epithelial renewal, and alleviating morphological damage and inflammatory and oxidative stress. Thus, provision of appropriate levels of amino acids could alleviate piglet diarrhea. Most amino acid effects are mediated by metabolites, gut microbes, and related signaling pathways. In this review, we summarize the current understanding of dietary amino acid effects on gut health and diarrhea incidence in piglets, and reveal the mechanisms involved. We also provide ideas for using amino acid blends and emphasize the importance of amino acid balance in the diet to prevent diarrhea in piglets.
Collapse
Affiliation(s)
- Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Xiong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
He D, Gao X, Wen J, Zhang Y, Yang S, Sun X, Cui M, Li Z, Fu S, Liu J, Liu D. Orally administered neohesperidin attenuates MPTP-induced neurodegeneration by inhibiting inflammatory responses and regulating intestinal flora in mice. Food Funct 2024; 15:1460-1475. [PMID: 38226659 DOI: 10.1039/d3fo04714h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disease, is the leading cause of movement disorders. Neuroinflammation plays a critical role in PD pathogenesis. Neohesperidin (Neo), a natural flavonoid extracted from citric fruits exhibits anti-inflammatory effects. However, the effect of Neo on PD progression is unclear. This study aimed to investigate the effects of Neo on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice and its underlying mechanism. Our results indicated that Neo administration ameliorated motor impairment and neural damage in MPTP-injected mice, by inhibiting neuroinflammation and regulating gut microbial imbalance. Additionally, Neo administration reduced colonic inflammation and tissue damage. Mechanistic studies revealed that Neo suppressed the MPTP-induced inflammatory response by inhibiting excessive activation of NF-κB and MAPK pathways. In summary, the present study demonstrated that Neo administration attenuates neurodegeneration in MPTP-injected mice by inhibiting inflammatory responses and regulating the gut microbial composition. This study may provide the scientific basis for the use of Neo in the treatment of PD and other related diseases.
Collapse
Affiliation(s)
- Dewei He
- College of Animal Science, Jilin University, Changchun 130062, China.
| | - Xiyu Gao
- College of Animal Science, Jilin University, Changchun 130062, China.
| | - Jingru Wen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Yiming Zhang
- College of Animal Science, Jilin University, Changchun 130062, China.
| | - Shuo Yang
- College of Animal Science, Jilin University, Changchun 130062, China.
| | - Xiaojia Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Mingchi Cui
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Zhe Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Dianfeng Liu
- College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
7
|
Liao SF, Ji F, Fan P, Denryter K. Swine Gastrointestinal Microbiota and the Effects of Dietary Amino Acids on Its Composition and Metabolism. Int J Mol Sci 2024; 25:1237. [PMID: 38279233 PMCID: PMC10816286 DOI: 10.3390/ijms25021237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Many researchers consider gut microbiota (trillions of microorganisms) an endogenous organ of its animal host, which confers a vast genetic diversity in providing the host with essential biological functions. Particularly, the gut microbiota regulates not only gut tissue structure but also gut health and gut functionality. This paper first summarized those common bacterial species (dominated by the Firmicutes, Bacteroidota, and Proteobacteria phyla) in swine gut and then briefly discussed their roles in swine nutrition and health, which include roles in nutrient metabolism, pathogen exclusion, and immunity modulation. Secondly, the current knowledge on how dietary nutrients and feed additives affect the gut bacterial composition and nutrient metabolism in pigs was discussed. Finally, how dietary amino acids affect the relative abundances and metabolism of bacteria in the swine gut was reviewed. Tryptophan supplementation promotes the growth of beneficial bacteria and suppresses pathogens, while arginine metabolism affects nitrogen recycling, impacting gut immune response and health. Glutamate and glutamine supplementations elevate the levels of beneficial bacteria and mitigate pathogenic ones. It was concluded that nutritional strategies to manipulate gut microbial ecosystems are useful measures to optimize gut health and gut functions. For example, providing pigs with nutrients that promote the growth of Lactobacillus and Bifidobacterium can lead to better gut health and growth performance, especially when dietary protein is limited. Further research to establish the mechanistic cause-and-effect relationships between amino acids and the dynamics of gut microbiota will allow swine producers to reap the greatest return on their feed investment.
Collapse
Affiliation(s)
- Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Peixin Fan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Kristin Denryter
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| |
Collapse
|
8
|
He W, Posey EA, Steele CC, Savell JW, Bazer FW, Wu G. Dietary glycine supplementation activates mechanistic target of rapamycin signaling pathway in tissues of pigs with intrauterine growth restriction. J Anim Sci 2024; 102:skae141. [PMID: 38761109 PMCID: PMC11217904 DOI: 10.1093/jas/skae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) cell signaling pathway serves as the central mechanism for the regulation of tissue protein synthesis and growth. We recently reported that supplementing 1% glycine to corn- and soybean meal-based diets enhanced growth performance between weaning and market weights in pigs with intrauterine growth restriction (IUGR). Results of recent studies have revealed an important role for glycine in activating mTOR and protein synthesis in C2C12 muscle cells. Therefore, the present study tested the hypothesis that dietary glycine supplementation enhanced the mTOR cell signaling pathway in skeletal muscle and other tissues of IUGR pigs. At weaning (21 d of age), IUGR pigs and litter mates with normal birth weights (NBW) were assigned randomly to one of the two groups: supplementation with either 1% glycine or 1.19% l-alanine (isonitrogenous control) to a corn- and soybean meal-based diet. Tissues were obtained from the pigs within 1 wk after the feeding trial ended at 188 d of age to determine the abundances of total and phosphorylated forms of mTOR and its two major downstream proteins: eukaryotic initiation factor 4E-binding protein-1 (4EBP1) and ribosomal protein S6 kinase-1 (p70S6K). Results showed that IUGR decreased (P < 0.05) the abundances of both total and phosphorylated mTOR, 4EBP1, and p70S6K in the gastrocnemius muscle and jejunum. In the longissimus lumborum muscle of IUGR pigs, the abundances of total mTOR did not differ (P > 0.05) but those for phosphorylated mTOR and both total and phosphorylated 4EBP1 and p70S6K were downregulated (P < 0.05), when compared to NBW pigs. These adverse effects of IUGR in the gastrocnemius muscle, longissimus lumborum muscle, and jejunum were prevented (P < 0.05) by dietary glycine supplementation. Interestingly, the abundances of total or phosphorylated mTOR, 4EBP1, and p70S6K in the liver were not affected (P > 0.05) by IUGR or glycine supplementation. Collectively, our findings indicate that IUGR impaired the mTOR cell signaling pathway in the tissues of pigs and that adequate glycine intake was crucial for maintaining active mTOR-dependent protein synthesis for the growth and development of skeletal muscle.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Erin A Posey
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Chandler C Steele
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Jeffrey W Savell
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Chen J, Zhang X, Zhang Y, Jiang S, Han Y, Zhang L, Zhang Y, Du H. Taurine enhances growth performance by improving intestinal integrity and antioxidant capacity of weaned piglets. J Anim Sci 2024; 102:skae311. [PMID: 39394665 PMCID: PMC11604117 DOI: 10.1093/jas/skae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024] Open
Abstract
Taurine is an amino acid that has been considered by animal husbandry as a feed additive due to its abundant biological functions. However, the effective dose of taurine added to feed is unknown. The aim of the current study was to determine the optimal taurine supplementation level by investigating its effects on growth performance, diarrhea index, intestinal health, and antioxidant capacity of weaned piglets. A total of 160 crossbred piglets (Landrace × Yorkshire, initially 8.39 ± 0.11 kg) were assigned to 4 groups (10 pigs/pen and 4 replicates/group). Basal diets containing 0 (control, CON), 0.1%, 0.3%, and 0.5% taurine were respectively provided to the piglets for a duration of 28 d. Six piglets from each group were selected for euthanasia and subsequent sample collection on day 29. The results showed that dietary 0.3% or 0.5% taurine supplementation increased average daily gain (P < 0.05), feed-to-gain ratio (P < 0.01), and serum albumin (P < 0.05), and decreased diarrhea index (P < 0.01) and diamine oxidase (DAO) level in the serum (P < 0.05). The greater expression of tight junction-related genes, including ZO-1 (P < 0.05) and Claudin-1 (P < 0.01), were observed in the duodenum after supplementation with 0.5% taurine. The supplementation of 0.3% or 0.5% taurine resulted in a significant reduction of crypt depth (P < 0.01) and an increase of villus height-to-crypt depth ratio (P < 0.01) in the duodenum. A greater abundance of goblet cells was detected in the duodenum and jejunum of piglets fed 0.5% taurine (P < 0.05). In addition, serum superoxide dismutase (SOD) level, liver catalase (CAT) level, and liver total antioxidant capacity level were all significantly (P < 0.05) increased with 0.1%, 0.3% or 0.5% dietary taurine supplementation. On the whole, dietary supplementation with 0.3% or 0.5% taurine has the potential to significantly enhance the growth performance of piglets by improving the integrity of the intestinal barrier and boosting their antioxidant capacity.
Collapse
Affiliation(s)
- Jianjun Chen
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310004, China
| | - Yuhui Zhang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shouchuan Jiang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Han
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Zhang
- Department of Animal Nutrition, Zhejiang NHU Group Corporation, Xinchang 312500, China
| | - Yuanyuan Zhang
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huahua Du
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Zhai R, Wang W, Zhang D, Li X, Zhang Y, Zhao Y, Zhao L, Wang J, Xu D, Cheng J, Li W, Zhou B, Lin C, Zeng X, Yang X, Ma Z, Liu J, Cui P, Zhang XX. Novel polymorphism at KLF15 gene and its association with growth traits in Hu sheep. Anim Biotechnol 2023; 34:3287-3293. [PMID: 36346056 DOI: 10.1080/10495398.2022.2138413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Growth traits are important economic characteristics of livestock and poultry. In the present study, the expression features of KLF15 and the relationship between KLF15 gene polymorphisms and growth traits in Hu sheep were investigated by using real-time quantitative PCR technology (qPCR), Sanger sequencing, and Kaspar genotyping technology. The qPCR results showed that the KLF15 gene is expressed widely in the tested tissues of Hu sheep, and the expression level of the KLF15 gene in the heart and the muscle was significantly higher than in other tissues (p < 0.05). Missense mutation c.62565119 A > G was found in KLF15, and an association analysis showed that it was correlated with the growth traits (body weight, body height, and body length) of Hu sheep (p < 0.05). The body weight, body height, and body length of the sheep carrying the AA genotype were remarkably higher than those of the GG and AG genotypes (p < 0.05). These results showed that novel polymorphisms at the KLF15 gene can be used as a genetic marker of growth traits of Hu sheep.
Collapse
Affiliation(s)
- Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiao Xue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Duan W, Cheng M. Diagnostic value of serum neuroactive substances in the acute exacerbation of chronic obstructive pulmonary disease complicated with depression. Open Life Sci 2023; 18:20220693. [PMID: 37671095 PMCID: PMC10476482 DOI: 10.1515/biol-2022-0693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/12/2023] [Accepted: 07/30/2023] [Indexed: 09/07/2023] Open
Abstract
We aimed to investigate the potential diagnostic value of five serum neuroactive substances in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) complicated with depression. A total of 103 patients with AECOPD were enrolled between August 2020 and August 2021. All patients were assessed using a self-rating depression scale and divided into AECOPD with or without depression groups. Baseline data and serum neuroactive substance levels were compared between the two groups. Logistic regression was used to identify the risk factors. The diagnostic performance of neuroactive substances was evaluated using receiver operating characteristic (ROC) curves. Patients with AECOPD complicated with depression exhibited higher partial pressure of CO2 values and higher chronic obstructive pulmonary disease assessment test (CAT) scores. An elevated proportion of patients with more than two acute exacerbations (AEs) in the previous year was observed in this patient group (all P < 0.001). The CAT score and number of AEs during the previous year were identified as independent risk factors for AECOPD complicated with depression. No significant differences were observed in the levels of aspartic acid and glutamate between the two groups (P > 0.05). Serum γ-aminobutyric acid (GABA) and glycine (Gly) levels were decreased. In contrast, serum nitric oxide (NO) levels were increased in the AECOPD complicated with the depression group (P < 0.05). Serum GABA and Gly levels exhibited a negative correlation, and NO levels positively correlated with the number of AEs in the previous year and the CAT score. The area under the ROC curve values for GABA, Gly, and NO were 0.755, 0.695, and 0.724, respectively. Serum GABA exhibited a sensitivity of 85.1% and a specificity of 58.9%, below the cut-off value of 4855.98 nmol/L. Serum GABA, Gly, and NO may represent potential biomarkers for AECOPD complicated with depression.
Collapse
Affiliation(s)
- Wei Duan
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengyu Cheng
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
13
|
Cheng B, Huang M, Zhou T, Deng Q, Teketay Wassie, Wu T, Wu X. Garlic essential oil supplementation modulates colonic microbiota compositions and regulates immune response in weaned piglets. Heliyon 2023; 9:e18729. [PMID: 37554781 PMCID: PMC10404742 DOI: 10.1016/j.heliyon.2023.e18729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023] Open
Abstract
The objective of this study was to investigate the colonic microbiome compositions and immune response and reveal their correlations in weaned piglets fed with garlic essential oil (GEO). Twelve 21-day-old crossbred piglets with the same parity and similar weight (BW = 7.07 ± 0.37 Kg) were randomly divided into control and experimental groups based on BW and sex, which fed either a basal diet (CON group), or a basal diet supplemented with 1.5 g/kg GEO (GEO group). UHPLC-QE-MS showed the main component of GEO were belonged to carbohydrates, organic acid, flavonoids, phenylpropanoids and terpenoids. GEO decreased serum IL-1β, IL-8 content and the down-regulated mRNA expression of IFN-γ, TLR2 in jejunal mucosa but increased serum IgG, IL-4 content and up-regulated the mRNA expression of IL-4, IL-1β, TNF-α in ileal mucosa. What's more, the metagenomic analysis demonstrated that GEO increased the abundance of Bacteroidetes, Euryarchaeota and Spirochaetes, while decreased the abundance of Firmicutes and Actinobacteria at Phylum level and Selenomonas_boris, Selenomonadaceae_bacterium_DSM_108025, Clostridiales_bacterium and Phascolarctobacterium_succinatutens at species level. Notably, the main function pathway of virulence factor (VFDB) enriched in GEO group were Fibronection-binding protein, Zn++ metallophrotease and Capsular polysaccharide, while the main function pathway of VFDB enriched in CON group were heme biosynthesis, Lap and FeoAB. Spearman correlation analysis indicated the Spirochaetes had a positive association with IL-6 and IL-4. Acinobacteria was positively correlated with IL-1β, while negative with the IL-6; In addition, Euryarchaeota had a positive correlation with IL-4, but a negative correlation with IL-1β; Tenericutes was negative with IL-8; Phascolarcolarctobacterium_succinatutens and was negative with IL-6; Ruminococcaceae_bacterium was negative with TNF-α. While Selenomonadaceae_bacterium_DSM_108025 had a positive correlation with IL-8. In conclusion, our results uncovered that immune regulation effects of GEO may be associated with the microbiome compositions in response to GEO.
Collapse
Affiliation(s)
- Bei Cheng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Mingyong Huang
- Hunan Tianxiang Biotechnology Co., Ltd, Shaoyang 422000, China
| | - Tiantian Zhou
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Qingqing Deng
- Henan Institute of Science and Technology, College of Animal Science and Veterinary Medicine, Xinxiang 453004, China
| | - Teketay Wassie
- Oregon Health and Science University, School of Medicine, department of Molecular Microbiology and Immunology, Portland, OR, USA
| | - Tao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xin Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
14
|
Zhang J, Zhang T, Xu D, Zhu M, Luo X, Zhang R, He G, Chen Z, Mei S, Zhou B, Wang K, Zhu E, Cheng Z, Chen C. Plasma Metabolomic Profiling after Feeding Dried Distiller's Grains with Solubles in Different Cattle Breeds. Int J Mol Sci 2023; 24:10677. [PMID: 37445854 DOI: 10.3390/ijms241310677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023] Open
Abstract
Dried distiller's grains with solubles (DDGS) are rich in nutrients and can enhance animals' growth and immunity. However, there are few reports on the effects of a diet of DDGS on plasma metabolism and the related action pathways in domestic animals. In this study, groups of Guanling yellow cattle (GY) and Guanling crossbred cattle (GC) having a basal diet served as the control groups (GY-CG and GC-CG), and DDGS replacing 25% of the diet of GY and GC served as the replacement groups (GY-RG and GC-RG), with three cattle in each group. Plasma samples were prepared for metabolomic analysis. Based on multivariate statistical and univariate analyses, differential metabolites and metabolic pathways were explored. Twenty-nine significantly different metabolites (p < 0.05) were screened in GY-RG compared with those in GY-CG and were found to be enriched in the metabolic pathways, including choline metabolism in cancer, linolenic acid metabolism, and amino acid metabolism. Nine metabolites showed significant differences (p < 0.05) between GC-RG and GC-CG and were mainly distributed in the metabolic pathways of choline metabolism in cancer, glycerophospholipid metabolism, prostate cancer metabolism, and gonadotropin-releasing hormone (GnRH) secretion. These results suggest that a DDGS diet may promote healthy growth and development of experimental cattle by modulating these metabolic pathways. Our findings not only shed light on the nutritional effects of the DDGS diet and its underlying mechanisms related to metabolism but also provide scientific reference for the feed utilization of DDGS.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Tiantian Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Duhan Xu
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Mingming Zhu
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Xiaofen Luo
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Rong Zhang
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Guangxia He
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ze Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Shihui Mei
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Bijun Zhou
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Kaigong Wang
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Erpeng Zhu
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Zhentao Cheng
- College of Animal Science, Guizhou University, Guiyang 550025, China
- Key Laboratory of Animal Diseases and Veterinary Public Health of Guizhou Province, College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Chao Chen
- College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Luise D, Chalvon-Demersay T, Correa F, Bosi P, Trevisi P. Review: A systematic review of the effects of functional amino acids on small intestine barrier function and immunity in piglets. Animal 2023; 17 Suppl 2:100771. [PMID: 37003917 DOI: 10.1016/j.animal.2023.100771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023] Open
Abstract
The need to reduce the use of antibiotics and zinc oxide at the pharmacological level, while preserving the performance of postweaning piglets, involves finding adequate nutritional strategies which, coupled with other preventive strategies, act to improve the sustainability of the piglet-rearing system. Amino acids (AAs) are the building blocks of proteins; however, they also have many other functions within the body. AA supplementation, above the suggested nutritional requirement for piglets, has been investigated in the diets of postweaning piglets to limit the detrimental consequences occurring during this stressful period. A systematic review was carried out to summarise the effects of AAs on gut barrier function and immunity, two of the parameters contributing to gut health. An initial manual literature search was completed using an organised search strategy on PubMed, utilising the search term " AND ". These searches yielded 302 articles (published before October 2021); 59 were selected. Based on the method for extracting data (synthesis of evidence), this review showed that L-Arginine, L-Glutamine and L-Glutamate are important functional AAs playing major roles in gut morphology and immune functions. Additional benefits of AA supplementation, refereed to a supplementation above the suggested nutritional requirement for piglets, could also be observed; however, data are needed to provide consistent evidence. Taken together, this review showed that supplementation with AAs during the weaning phase supported a plethora of the physiological functions of piglets. In addition, the data reported confirmed that each amino acid targets different parameters related to gut health, suggesting the existence of potential synergies among them.
Collapse
Affiliation(s)
- D Luise
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy.
| | | | - F Correa
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Bosi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| |
Collapse
|
16
|
Abbasi M, Taheri Mirghaed A, Hoseini SM, Rajabiesterabadi H, Hoseinifar SH, Van Doan H. Effects of Dietary Glycine Supplementation on Growth Performance, Immunological, and Erythrocyte Antioxidant Parameters in Common Carp, Cyprinus carpio. Animals (Basel) 2023; 13:ani13030412. [PMID: 36766300 PMCID: PMC9913273 DOI: 10.3390/ani13030412] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
The effects of dietary glycine supplementation, 0 (control), 5 (5 GL), and 10 (10 GL) g/kg, have been investigated on growth performance, hematological parameters, erythrocyte antioxidant capacity, humoral and mucosal immunity in common carp, Cyprinus carpio. After eight weeks feeding, the 5 GL treatment exhibited significant improvement in growth performance and feed efficacy, compared to the control treatment. Red blood cell (RBC) and white blood cell (WBC) counts, hemoglobin, hematocrit, neutrophil and monocyte counts/percentages, RBC reduced glutathione (GSH) content, and skin mucosal alkaline phosphatase, peroxidase, protease, and lysozyme activities were similar in the glycine-treated fish and significantly higher than the control treatment. Blood lymphocyte percentage decreased in the glycine-treated fish, but lymphocyte count increased, compared to the control fish. RBC glutathione reductase activities in the glycine-treated fish were similar and significantly lower than the control treatment. The highest plasma lysozyme and alternative complement activities were observed in GL treatment. The glycine-treated fish, particularly 5 GL, exhibited significant improvement in RBC osmotic fragility resistance. Dietary glycine had no significant effects on RBC glutathione peroxidase activity, plasma immunoglobulin, eosinophil percentage/count, and hematological indices. In conclusion, most of the benefits of dietary glycine supplementation may be mediated by increased glutathione synthesis and antioxidant power.
Collapse
Affiliation(s)
- Marzieh Abbasi
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara 4361996196, Iran
| | - Ali Taheri Mirghaed
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran 14119963111, Iran
| | - Seyyed Morteza Hoseini
- Inland Waters Aquatics Resources Research Center, Iranian Fisheries Sciences Research Institute, Agricultural Research, Education and Extension Organization, Gorgan 4916687631, Iran
| | - Hamid Rajabiesterabadi
- Young Researchers and Elite Club, Azadshahr Branch, Islamic Azad University, Golestan 8998549617, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
| | - Hien Van Doan
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: ; Tel.: +66-53-941-000
| |
Collapse
|
17
|
He W, Posey EA, Steele CC, Savell JW, Bazer FW, Wu G. Dietary glycine supplementation enhances postweaning growth and meat quality of pigs with intrauterine growth restriction. J Anim Sci 2023; 101:skad354. [PMID: 37837640 PMCID: PMC10630012 DOI: 10.1093/jas/skad354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
Pigs with intrauterine growth restriction (IUGR) have suboptimum growth performance and impaired synthesis of glycine (the most abundant amino acid in the body). Conventional corn- and soybean meal-based diets for postweaning pigs contain relatively low amounts of glycine and may not provide sufficient glycine to meet requirements for IUGR pigs. This hypothesis was tested using 52 IUGR pigs and 52 litter mates with normal birth weights (NBW). At weaning (21 d of age), IUGR or NBW pigs were assigned randomly to one of two nutritional groups: supplementation of a corn-soybean meal-based diet with either 1% glycine plus 0.19% cornstarch or 1.19% L-alanine (isonitrogenous control). Feed consumption and body weight (BW) of pigs were recorded daily and every 2 or 4 wks, respectively. All pigs had free access to their respective diets and clean drinking water. Within 1 wk after the feeding trial ended at 188 d of age, blood and other tissue samples were obtained from pigs to determine concentrations of amino acids and meat quality. Neither IUGR nor glycine supplementation affected (P > 0.05) feed intakes of pigs per kg BW. The final BW, gain:feed ratio, carcass dressing percentages, and four-lean-cuts percentages of IUGR pigs were 13.4 kg, 4.4%, 2%, and 15% lower (P < 0.05) for IUGR pigs than NBW pigs, respectively. Compared with pigs in the alanine group, dietary glycine supplementation increased (P < 0.05) final BW, gain:feed ratio, and meat a* value (a redness score) by 3.8 kg, 11%, and 10%, respectively, while reducing (P < 0.05) backfat thickness by 18%. IUGR pigs had lower (P < 0.05) concentrations of glycine in plasma (-45%), liver (-25%), jejunum (-19%), longissimus dorsi muscle (-23%), gastrocnemius muscle (-26%), kidney (-15%), and pancreas (-6%), as compared to NBW pigs. In addition, dietary glycine supplementation increased (P < 0.05) concentrations of glycine in plasma and all analyzed tissues. Thus, supplementing 1% of glycine to corn-soybean meal-based diets improves the growth performance, feed efficiency, and meat quality of IUGR pigs.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Erin A Posey
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Chandler C Steele
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Jeffrey W Savell
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| |
Collapse
|
18
|
Li X, He W, Wu G. Dietary glycine supplementation enhances the growth performance of hybrid striped bass (Morone saxatilis ♀× Morone chrysops ♂) fed soybean meal-based diets. J Anim Sci 2023; 101:skad345. [PMID: 37801645 PMCID: PMC10635675 DOI: 10.1093/jas/skad345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
This study was conducted to test the hypothesis that supplementing 1% and 2% glycine to soybean meal (SBM)-based diets can improve the growth performance of juvenile hybrid striped bass (HSB). The basal diets contained 15% fishmeal and 58% SBM (DM basis). Alanine was used as the isonitrogenous control in different diets. All diets contained 44% crude protein and 10% lipids (DM basis). There were four tanks (15 fish per tank) per dietary group, with the mean of the initial body weight (BW) of fish being 5.3 g. Fish were fed to apparent satiation twice daily, and their BW was recorded every 2 wk. The trial lasted for 8 wk. Results indicated that the BW, weight gain, protein efficiency ratio, and retention of dietary lipids in fish were enhanced (P < 0.05) by dietary supplementation with 1% or 2% glycine. In addition, dietary supplementation with glycine did not affect (P > 0.05) the feed intake of fish but increased (P < 0.05) the retention of dietary nitrogen, most amino acids, and phosphorus in the body, compared to the 0% glycine group. Dietary supplementation with 1% and 2% glycine dose-dependently augmented (P < 0.05) the villus height of the proximal intestine and reduced the submucosal thickness of the gut, while preventing submucosal and lamina propria hemorrhages. Compared with the 0% glycine group, dietary supplementation with 1% or 2% glycine decreased (P < 0.05) the proportion of skeletal-muscle fibers with diameters of 40 to 60 µm but increased (P < 0.05) the proportion of skeletal-muscle fibers with diameters of 80 to 100 µm and > 100 µm. Collectively, these findings indicate that glycine in SBM-based diets is inadequate for maximum growth of juvenile HSB and that dietary supplementation with 1% or 2% glycine is required to improve their weight gain and feed efficiency. Glycine is a conditionally essential amino acid for this fish.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
19
|
Zheng X, Liu B, Wang N, Yang J, Zhou Q, Sun C, Zhao Y. Low fish meal diet supplemented with probiotics ameliorates intestinal barrier and immunological function of Macrobrachium rosenbergii via the targeted modulation of gut microbes and derived secondary metabolites. Front Immunol 2022; 13:1074399. [PMID: 36466900 PMCID: PMC9713824 DOI: 10.3389/fimmu.2022.1074399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 09/03/2023] Open
Abstract
The unsuitable substitution ratio of fish meal by plant protein will reshape the intestinal microbial composition and intestine immunity. However, previous studies were mostly limited to investigating how different feed or probiotics characterized the microbial composition but ignored the biological interactions between bacteria and host physiology through secondary metabolites. Therefore, this study integrates the apparent indicators monitoring, 16S rDNA sequencing, and metabonomics to systematically investigate the effects of cottonseed protein concentrate (CPC) substitution of fish meal and Bacillus coagulans intervention on gut microbes, secondary metabolites, and intestinal immunity of Macrobrachium rosenbergii. Prawns were fed with three diets for 70 days: HF diets contained 25% fish meal, CPC in LF diets were replaced with 10% fish meal, and LF diets supplemented with 2 × 108 CFU/g diet B. coagulans were designated as BC diets. Results showed that CPC substitution induced a significant decrease in digestive enzyme activities (trypsin and lipase) and gut barrier protein PT-1 expression and a significant increase in γ-GT enzyme activity and inflammatory-related factors (Relish and Toll) expression. B. coagulans treatment mitigated the negative changes of the above indicators. Meanwhile, it significantly improved the expression levels of the barrier factor PT-1, the reparative cytokine IL-22, and Cu/Zn-SOD. CPC substitution resulted in a remarkable downregulated abundance of Firmicutes phyla, Flavobacterium spp., and Bacillus spp. B. coagulans treatment induced the callback of Firmicutes abundance and improved the relative abundance of Sphingomonas, Bacillus, and Ralstonia. Functional prediction indicated that CPC substitution resulted in elevated potential pathogenicity of microbial flora, and B. coagulans reduces the pathogenesis risk. Pearson's correlation analysis established a significant positive correlation between differential genera (Sphingomonas, Bacillus, and Ralstonia) and secondary metabolites (including sphingosine, dehydrophytosphingosine, amino acid metabolites, etc.). Meanwhile, the latter were significantly associated with intestinal immunoregulation-related genes (Cu/Zn-SOD, IL-22, PT-1, Toll, and Relish). This study indicated that B. coagulans could mediate specific gut microbes and the combined action of multiple functional secondary metabolites to affect intestinal barrier function, digestion, and inflammation. Our study revealed the decisive role of gut microbes and derived secondary metabolites in the model of dietary composition-induced intestinal injury and probiotic treatment from a new perspective.
Collapse
Affiliation(s)
- Xiaochuan Zheng
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Bo Liu
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Ning Wang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jie Yang
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Qunlan Zhou
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Cunxin Sun
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
| | - Yongfeng Zhao
- Key Laboratory for Genetic Breeding of Aquatic Animals and Aquaculture Biology, Freshwater Fisheries Research Center (FFRC), Chinese Academy of Fishery Sciences (CAFS), Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| |
Collapse
|
20
|
NMR-Based Metabolomic Analysis of Cardiac Tissues Clarifies Molecular Mechanisms of CVB3-Induced Viral Myocarditis and Dilated Cardiomyopathy. Molecules 2022; 27:molecules27186115. [PMID: 36144851 PMCID: PMC9500976 DOI: 10.3390/molecules27186115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
Viral myocarditis (VMC), which is defined as inflammation of the myocardium with consequent myocardial injury, may develop chronic disease eventually leading to dilated cardiomyopathy (DCM). Molecular mechanisms underlying the progression from acute VMC (aVMC), to chronic VMC (cVMC) and finally to DCM, are still unclear. Here, we established mouse models of VMC and DCM with Coxsackievirus B3 infection and conducted NMR-based metabolomic analysis of aqueous metabolites extracted from cardiac tissues of three histologically classified groups including aVMC, cVMC and DCM. We showed that these three pathological groups were metabolically distinct from their normal counterparts and identified three impaired metabolic pathways shared by these pathological groups relative to normal controls, including nicotinate and nicotinamide metabolism; alanine, aspartate and glutamate metabolism; and D-glutamine and D-glutamate metabolism. We also identified two extra impaired metabolic pathways in the aVMC group, including glycine, serine and threonine metabolism; and taurine and hypotaurine metabolism Furthermore, we identified potential cardiac biomarkers for metabolically distinguishing these three pathological stages from normal controls. Our results indicate that the metabolomic analysis of cardiac tissues can provide valuable insights into the molecular mechanisms underlying the progression from acute VMC to DCM.
Collapse
|
21
|
Bedford MR, Apajalahti JH. The influence of nutrition on intestinal disease with emphasis on coccidiosis. Avian Pathol 2022; 51:504-520. [PMID: 35791756 DOI: 10.1080/03079457.2022.2098692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Ever since the poultry industry began to intensify early last century, coccidiosis has been a significant problem with which it has had to contend. Losses due to mortality and morbidity can be significant and before the advent of control agents there were several practices, some of which were nutritional, which were implemented to limit these losses. The development of coccidiostats reduced these problems considerably and as a result some of the more extreme intervention measures were no longer necessary. Modern day interpretation of what may have been happening with some of these early interventions provide interesting insights into what may be possible today should cocciodiostats be removed. More recent research has also indicated that the diet has a significant influence on the ability of poultry to resist and resolve an infection through direct and indirect effects on the pathogen, the immune system and on the litter. This paper reviews the role of dietary ingredients and nutrients on the pathogen to establish and the host to resist such an infection. There is clearly no panacea, but the combination of a few practices may reduce the overall challenge experienced by the poultry producer.
Collapse
Affiliation(s)
- M R Bedford
- AB Vista, 3 Woodstock Court, Blenheim Rd, Marlborough UK
| | | |
Collapse
|
22
|
Xu Q, Jian H, Zhao W, Li J, Zou X, Dong X. Early Weaning Stress Induces Intestinal Microbiota Disturbance, Mucosal Barrier Dysfunction and Inflammation Response Activation in Pigeon Squabs. Front Microbiol 2022; 13:877866. [PMID: 35711747 PMCID: PMC9194612 DOI: 10.3389/fmicb.2022.877866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Early weaning stress has been reported to impair intestinal health in mammals. Like mammals, weaning of the pigeon squab, an altricial bird, is associated with social, environmental and dietary stress. However, understanding of weaning stress on intestinal functions is very limited in altricial birds, especially in squabs. This study was aimed to evaluate the effects of early weaning stress on intestinal microbiota diversity, architecture, permeability, the first line defense mechanisms, mucosal barrier functions, and immune cell responses. A total of 192 newly hatched squabs were randomly allocated into two groups, one weaned on day 7 and the other remained with the parent pigeons. Mucosal tissue and digesta in ileum, as well as blood samples, were collected from squabs (n = 8) on days 1, 4, 7, 10, and 14 postweaning. Our results showed that weaning stress induced immediate and long-term deleterious effects on both growth performance and intestinal barrier functions of squabs. Early weaning significantly increased ileal bacterial diversity and alters the relative abundance of several bacteria taxa. Weaning stress can also cause morphological and functional changes in ileum, including an atrophy in villi, an increase in permeability, and a variation in the mRNA expression of genes encoding mucins, immunoglobulins, tight junction proteins, toll-like receptors, and cytokines, as well as the concentration of secretory IgA. We concluded that the impaired intestinal barrier functions accompanied with early weaning stress seems to be the main reason for the poor growth rate after weaning in squabs. In addition, the disturbance of intestinal microbiota of early weaning stress in squabs coincided with dysfunction of intestinal mucosal barrier and activation of inflammation cell responses that were possibly mediated via the activation of toll-like receptors.
Collapse
Affiliation(s)
- Qianqian Xu
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Huafeng Jian
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Wenyan Zhao
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Jiankui Li
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Xiaoting Zou
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| | - Xinyang Dong
- Key Laboratory for Molecular Animal Nutrition of Ministry of Education, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Science, Zhejiang University (Zijingang Campus), Hangzhou, China
| |
Collapse
|
23
|
Shivakumar N, Hsu JW, Kashyap S, Thomas T, Kurpad AV, Jahoor F. Tryptophan oxidation in young children with environmental enteric dysfunction classified by the lactulose rhamnose ratio. Am J Clin Nutr 2022; 116:970-979. [PMID: 35700138 PMCID: PMC9535528 DOI: 10.1093/ajcn/nqac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In young children, associations between linear growth faltering, environmental enteric dysfunction (EED), and the plasma kynurenine (Kyn)/tryptophan (Trp) ratio (KTR) have led to the proposal that higher Trp catabolism in response to intestinal/systemic inflammation limits Trp availability for protein synthesis, resulting in impaired growth. OBJECTIVES We sought to estimate the Trp oxidation rate and the Trp conversion rate to Kyn in young children with and without EED. METHODS Children aged 18-24 mo, from urban slums, were assigned to EED (n = 19) or no-EED (n = 26) groups on the basis of a urinary lactulose/rhamnose ratio (LRR) cutoff based on mean + 2 SDs of LRR (≥0.068) in normal age- and sex-matched, high-socioeconomic status children. Plasma KTR and fecal biomarkers of EED were measured. Trp oxidation in the fed state was measured using 13C1-Trp in an oral plateau feeding protocol. RESULTS The median (quartile 1, quartile 3) fasted KTR was 0.089 (0.066, 0.110) in children with EED compared with 0.070 (0.050, 0.093) in children with no EED (P = 0.077). However, there was no difference in fed-state Trp oxidation [median (quartile 1, quartile 3) 3.1 (1.3, 5.8) compared with 3.9 (1.8, 6.0) µmol/kg FFM/h, respectively, P = 0.617] or Trp availability for protein synthesis [42.6 (36.5, 45.7) compared with 42.5 (37.9, 46.9) µmol/kg FFM/h, respectively, P = 0.868] between the groups. In contrast, the median (quartile 1, quartile 3) fractional synthesis rates of Kyn [12.5 (5.4, 20.0) compared with 21.3 (16.1, 24.7) %pool/h, P = 0.005] and the fraction of Ala derived from Trp [0.007 (0.005, 0.015) compared with 0.012 (0.008, 0.018), P = 0.037], respectively, in the plasma compartment were significantly slower in the EED group. Fecal biomarkers of EED did not differ between the groups. CONCLUSIONS The static plasma KTR value is not a good indicator of the dynamic Trp flux down its oxidative pathway. In a poor sanitary environment, children without EED actually have a faster Kyn synthesis rate, which might be beneficial, because of the cytoprotective and anti-inflammatory functions of downstream metabolites. This study was registered in the Clinical Trials Registry of India as CTRI/2017/02/007921.
Collapse
Affiliation(s)
- Nirupama Shivakumar
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Jean W Hsu
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sindhu Kashyap
- Division of Nutrition, St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore, India
| | - Tinku Thomas
- Department of Biostatistics, St. John's Medical College, St. John's National Academy of Health Sciences, Bangalore, India
| | | | - Farook Jahoor
- USDA/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
24
|
Liu Y, Tian X, Daniel RC, Okeugo B, Armbrister SA, Luo M, Taylor CM, Wu G, Rhoads JM. Impact of probiotic Limosilactobacillus reuteri DSM 17938 on amino acid metabolism in the healthy newborn mouse. Amino Acids 2022; 54:1383-1401. [PMID: 35536363 DOI: 10.1007/s00726-022-03165-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
Abstract
We studied the effect of feeding a single probiotic Limosilactobacillus reuteri DSM 17938 (LR 17938) on the luminal and plasma levels of amino acids and their derivatives in the suckling newborn mouse, using gas chromatography and high-performance liquid chromatography. We found that LR 17938 increased the relative abundance of many amino acids and their derivatives in stool, while it simultaneously significantly reduced the plasma levels of three amino acids (serine, citrulline, and taurine). Many peptides and dipeptides were increased in stool and plasma, notably gamma-glutamyl derivatives of amino acids, following ingestion of the LR 17938. Gamma-glutamyl transformation of amino acids facilitates their absorption. LR 17938 significantly upregulated N-acetylated amino acids, the levels of which could be useful biomarkers in plasma and warrant further investigation. Specific fecal microbiota were associated with higher levels of fecal amino acids and their derivatives. Changes in luminal and circulating levels of amino acid derivatives, polyamines, and tryptophan metabolites may be mechanistically related to probiotic efficacy.
Collapse
Affiliation(s)
- Yuying Liu
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA.
| | - Xiangjun Tian
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rhea C Daniel
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA
| | - Beanna Okeugo
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA
| | - Shabba A Armbrister
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA
| | - Meng Luo
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Christopher M Taylor
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - J Marc Rhoads
- Division of Gastroenterology, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.140A, Houston, TX, 77030, USA
| |
Collapse
|
25
|
Zhang Y, Mu T, Jia H, Yang Y, Wu Z. Protective effects of glycine against lipopolysaccharide-induced intestinal apoptosis and inflammation. Amino Acids 2022; 54:353-364. [PMID: 34085156 DOI: 10.1007/s00726-021-03011-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/27/2021] [Indexed: 12/25/2022]
Abstract
Intestinal dysfunction is commonly observed in humans and animals. Glycine (Gly) is a functional amino acid with anti-inflammatory and anti-apoptotic properties. The objective of this study was to test the protective effects of Gly against lipopolysaccharide (LPS)-induced intestinal injury. 28 C57BL/6 mice with a body weight (BW) of 18 ± 2 g were randomly assigned into four groups: CON (control), GLY (orally administered Gly, 5 g/kg BW/day for 6 days), LPS (5 mg/kg BW on day 7, i. p.), and GLY + LPS (Gly pretreatment and LPS administration). Histological alterations, inflammatory responses, epithelial cell apoptosis, and changes of the intestinal microbiota were analyzed. Results showed that, compared with the CON group, mice in the LPS treatment group showed decreased villus height, increased crypt depth, and decreased ratio of villus height to crypt depth, which were significantly attenuated by Gly. Neither LPS nor Gly treatment altered morphology of the distal colon tissues. LPS increased the apoptosis of jejunum and colon epithelial cells and protein abundance of cleaved caspase3 in the jejunum, which were markedly abrogated by Gly. LPS also elevated the mRNA levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MYD88), pro-inflammatory cytokines, and chemokines in the jejunum and colon. These alterations were significantly suppressed by Gly. In addition, Gly supplementation attenuated infiltration of CD4+, CD8+ T-lymphocytes, CD11b+ and F4/80+ macrophages in the colon. Furthermore, Gly increased the relative abundance of Mucispirillum, Lachnospiraceae-NK4A136-group, Anaerotruncus, Faecalibaculum, Ruminococcaceae-UCG-014, and decreased the abundance of Bacteroides at genus level. Supplementation with Gly might be a nutritional strategy to ameliorate LPS-induced intestinal injury in mice.
Collapse
Affiliation(s)
- Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Tianqi Mu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Hai Jia
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China.
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|