1
|
Luo Q, Liu P, Yu P, Qin T. Cancer Stem Cells are Actually Stem Cells with Disordered Differentiation: the Monophyletic Origin of Cancer. Stem Cell Rev Rep 2023; 19:827-838. [PMID: 36648606 PMCID: PMC10185654 DOI: 10.1007/s12015-023-10508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Cancer stem cells (CSCs) play an important role in cancer development. Based on advancements in CSC research, we propose a monophyletic model of cancer. This model is based on the idea that CSCs are stem cells with disordered differentiation whose original purpose was to repair damaged tissues. Inflammatory responses and damage repair signals are crucial for the creation and maintenance of CSCs. Normal quiescent stem cells are activated by environmental stimulation, such as an inflammatory response, and undergo cell division and differentiation. In the initial stage of cancer development, stem cell differentiation leads to heteromorphism due to the accumulation of gene mutations, resulting in the development of metaplasia or precancerosis. In the second stage, accumulated mutations induce poor differentiation and lead to cancer development. The monophyletic model illustrates the evolution, biological behavior, and hallmarks of CSCs, proposes a concise understanding of the origin of cancer, and may encourage a novel therapeutic approach.
Collapse
Affiliation(s)
- Qiankun Luo
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Pan Liu
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Pengfei Yu
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China
| | - Tao Qin
- Department of Hepatobilliary and Pancreatic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan University People's Hospital, Jinshui District, No. 7, Weiwu Rd., Zhengzhou, 450003, Henan, China.
| |
Collapse
|
2
|
Shichi Y, Gomi F, Sasaki N, Nonaka K, Arai T, Ishiwata T. Epithelial and Mesenchymal Features of Pancreatic Ductal Adenocarcinoma Cell Lines in Two- and Three-Dimensional Cultures. J Pers Med 2022; 12:jpm12050746. [PMID: 35629168 PMCID: PMC9146102 DOI: 10.3390/jpm12050746] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an intractable cancer that is difficult to diagnose early, and there is no cure other than surgery. PDAC is classified as an adenocarcinoma that has limited effective anticancer drug and molecular-targeted therapies compared to adenocarcinoma found in other organs. A large number of cancer cell lines have been established from patients with PDAC that have different genetic abnormalities, including four driver genes; however, little is known about the differences in biological behaviors among these cell lines. Recent studies have shown that PDAC cell lines can be divided into epithelial and mesenchymal cell lines. In 3D cultures, morphological and functional differences between epithelial and mesenchymal PDAC cell lines were observed as well as the drug effects of different anticancer drugs. These effects included gemcitabine causing an increased growth inhibition of epithelial PDAC cells, while nab-paclitaxel caused greater mesenchymal PDAC cell inhibition. Thus, examining the characteristics of epithelial or mesenchymal PDAC cells with stromal cells using a 3D co-culture may lead to the development of new anticancer drugs.
Collapse
Affiliation(s)
- Yuuki Shichi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan; (Y.S.); (F.G.); (K.N.)
| | - Fujiya Gomi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan; (Y.S.); (F.G.); (K.N.)
| | - Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan;
| | - Keisuke Nonaka
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan; (Y.S.); (F.G.); (K.N.)
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Hospital and Institute of Gerontology, Tokyo 173-0015, Japan;
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan; (Y.S.); (F.G.); (K.N.)
- Correspondence: ; Tel.: +81-3-3964-1141 (ext. 4414)
| |
Collapse
|
3
|
Xu Q, Chen S, Hu Y, Huang W. Single-cell RNA transcriptome reveals the intra-tumoral heterogeneity and regulators underlying tumor progression in metastatic pancreatic ductal adenocarcinoma. Cell Death Discov 2021; 7:331. [PMID: 34732701 PMCID: PMC8566471 DOI: 10.1038/s41420-021-00663-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most frequent and aggressive pancreatic tumor characterized by high metastatic risk and special tumor microenvironment. To comprehensively delineate the complex intra-tumoral heterogeneity and the underlying mechanism during metastatic lesions malignant progression, single-cell RNA sequencing (scRNA-seq) was employed. PCA and TSNE were used for dimensionality reduction analysis and cell clustering. Find All Markers function was used to calculate differential genes in each cluster, and Do Heatmap function was used to plot the distribution of differential genes in each cluster. GSVA was employed to assign pathway activity estimates to individual cells. Lineage trajectory progression was inferred by monocle. CNV status was inferred to compare the heterogeneity among patients and subtypes by infercnv. Ligand-receptor interactions were identified by CellPhoneDB, and regulons network of cells was analyzed by SCENIC. Through RNA-sequencing of 6236 individual cells from 5 liver metastatic PDAC lesions, 10 major cell clusters are identified by using unbiased clustering analysis of expression profiling and well-known cell markers. Cells with high CNV level were considered as malignant cells and pathway analyses were carried out to highlight intratumor heterogeneity in PDAC. Pseudotime trajectory analysis revealed that components of multiple tumor-related pathways and transcription factors (TFs) were differentially expressed along PDAC progression. The complex cellular communication suggested potential immunotherapeutic targets in PDAC. Regulon network identified multiple candidates for promising cell-specific transcriptional factors. Finally, metastatic-related genes expression levels and signaling pathways were validated in bulk RNA Sequencing data. This study contributed a comprehensive single-cell transcriptome atlas and contributed into novel insight of intratumor heterogeneity and molecular mechanism in metastatic PDAC.
Collapse
Affiliation(s)
- Qianhui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.,Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Shaohuai Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuanbo Hu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wen Huang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
4
|
Shiozaki A, Konishi T, Kosuga T, Kudou M, Kurashima K, Inoue H, Shoda K, Arita T, Konishi H, Morimura R, Komatsu S, Ikoma H, Toma A, Kubota T, Fujiwara H, Okamoto K, Otsuji E. Roles of voltage‑gated potassium channels in the maintenance of pancreatic cancer stem cells. Int J Oncol 2021; 59:76. [PMID: 34414448 PMCID: PMC8425586 DOI: 10.3892/ijo.2021.5256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/16/2021] [Indexed: 11/10/2022] Open
Abstract
The targeting of membrane proteins that are activated in cancer stem cells (CSCs) represents one of the key recent strategies in cancer therapy. The present study analyzed ion channel expression profiles and functions in pancreatic CSCs (PCSCs). Cells strongly expressing aldehyde dehydrogenase 1 family member A1 (ALDH1A1) were isolated from the human pancreatic PK59 cell line using fluorescence-activated cell sorting, and PCSCs were identified based on tumorsphere formation. Microarray analysis was performed to investigate the gene expression profiles in PCSCs. ALDH1A1 messenger RNA levels were higher in PCSCs compared with non-PCSCs. PCSCs were resistant to 5-fluorouracil and capable of redifferentiation. The results of the microarray analysis revealed that gene expression related to ion channels, including voltage-gated potassium channels (Kv), was upregulated in PCSCs compared with non-PCSCs. 4-Aminopyridine (4-AP), a potent Kv inhibitor, exhibited greater cytotoxicity in PCSCs compared with non-PCSCs. In a xenograft model in nude mice, tumor volumes were significantly lower in mice inoculated with PK59 cells pre-treated with 4-AP compared with those in mice injected with non-treated cells. The present results identified a role of Kv in the persistence of PCSCs and suggested that the Kv inhibitor 4-AP may have potential as a therapeutic agent for pancreatic carcinoma.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Tomoki Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Kento Kurashima
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hiroyuki Inoue
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Ryo Morimura
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hisashi Ikoma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Atsushi Toma
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| |
Collapse
|
5
|
Yoshimura H, Moriya M, Yoshida A, Yamamoto M, Machida Y, Ochiai K, Michishita M, Nakagawa T, Matsuda Y, Takahashi K, Kamiya S, Ishiwata T. Involvement of Nestin in the Progression of Canine Mammary Carcinoma. Vet Pathol 2021; 58:994-1003. [PMID: 34056976 DOI: 10.1177/03009858211018656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nestin, a class VI intermediate filament protein, is known to be expressed in various types of human neoplasms, including breast cancer, and is associated with their progression. However, its expression and role in canine mammary tumors remain unknown. We analyzed nestin expression in canine mammary tumors using in situ hybridization and immunohistochemistry. We also investigated its role in a canine mammary carcinoma cell line using RNA interference. Nestin expression was not observed in luminal epithelial cells of any of the 62 cases of benign mammary lesions examined, although myoepithelial cells showed its expression in most cases. In 16/50 (32%) primary mammary carcinomas and 6/15 (40%) metastases of mammary carcinomas, cytoplasmic nestin expression was detected in luminal epithelial cells. In luminal cells of primary mammary carcinomas, its expression was positively related to several pathological parameters that indicate high-grade malignancy, including histological grading (P < .01), vascular/lymphatic invasion (P < .01), Ki-67 index (P < .01), and metastasis (P < .05). Immunohistochemistry revealed that nestin expression was related to vimentin expression in mammary carcinomas (P < .01). This relationship was confirmed using reverse transcription-quantitative polymerase chain reaction using 9 cell lines derived from canine mammary carcinoma (P < .01). Finally, nestin knockdown in canine mammary carcinoma cells using small interfering RNA inhibited cell proliferation and migration based on WST-8, Boyden chamber, and cell-tracking assays. These findings suggest that nestin may at least partially mediate these behaviors of canine mammary carcinoma cells.
Collapse
Affiliation(s)
| | - Maiko Moriya
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Ayaka Yoshida
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masami Yamamoto
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yukino Machida
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kazuhiko Ochiai
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | | | | | | | | | - Shinji Kamiya
- 12989Nippon Veterinary and Life Science University, Tokyo, Japan
| | | |
Collapse
|
6
|
Alshenawy HA. Significance of Expression of Cancer Stem Cell Markers CD133 and Nestin in Pancreatic Intraepithelial Carcinoma-invasive Adenocarcinoma Sequence. Appl Immunohistochem Mol Morphol 2020; 28:205-212. [PMID: 32197003 DOI: 10.1097/pai.0000000000000722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies and one of the most leading causes of cancer related deaths. It has a very poor prognosis with high recurrence rate. We investigated the expression of CSC markers (CD133 and nestin) in 100 patients [30 pancreatic intraepithelial tumor cases (PanIN) and 70 PDAC cases] and correlate the expression levels of these markers with clinicopathological data with the aid of Ki67 expression. Our findings showed that both cancer stem markers are related to the grade, stage, metastasis of PDAC and to the grade of PanIN cases and revealed that both markers are associated with PanIN-PDAC sequence with inverse relation between them. Both markers may contribute to proliferation, differentiation, invasiveness, and histologic types of PDAC. Sothey may also be useful for developing new therapeutic modalities for PDAC.
Collapse
Affiliation(s)
- Hanan A Alshenawy
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
7
|
Intermediate Filaments as Effectors of Cancer Development and Metastasis: A Focus on Keratins, Vimentin, and Nestin. Cells 2019; 8:cells8050497. [PMID: 31126068 PMCID: PMC6562751 DOI: 10.3390/cells8050497] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
Intermediate filament (IF) proteins make up the largest family of cytoskeletal proteins in metazoans, and are traditionally known for their roles in fostering structural integrity in cells and tissues. Remarkably, individual IF genes are tightly regulated in a fashion that reflects the type of tissue, its developmental and differentiation stages, and biological context. In cancer, IF proteins serve as diagnostic markers, as tumor cells partially retain their original signature expression of IF proteins. However, there are also characteristic alterations in IF gene expression and protein regulation. The use of high throughput analytics suggests that tumor-associated alterations in IF gene expression have prognostic value. Parallel research is also showing that IF proteins directly and significantly impact several key cellular properties, including proliferation, death, migration, and invasiveness, with a demonstrated impact on the development, progression, and characteristics of various tumors. In this review, we draw from recent studies focused on three IF proteins most associated with cancer (keratins, vimentin, and nestin) to highlight how several “hallmarks of cancer” described by Hanahan and Weinberg are impacted by IF proteins. The evidence already in hand establishes that IF proteins function beyond their classical roles as markers and serve as effectors of tumorigenesis.
Collapse
|
8
|
Fendiline Enhances the Cytotoxic Effects of Therapeutic Agents on PDAC Cells by Inhibiting Tumor-Promoting Signaling Events: A Potential Strategy to Combat PDAC. Int J Mol Sci 2019; 20:ijms20102423. [PMID: 31100813 PMCID: PMC6567171 DOI: 10.3390/ijms20102423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/10/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023] Open
Abstract
The L-type calcium channel blocker fendiline has been shown to interfere with Ras-dependent signaling in K-Ras mutant cancer cells. Earlier studies from our lab had shown that treatment of pancreatic cancer cells with fendiline causes significant cytotoxicity and interferes with proliferation, survival, migration, invasion and anchorage independent growth. Currently there are no effective therapies to manage PDACs. As fendiline has been approved for treatment of patients with angina, we hypothesized that, if proven effective, combinatorial therapies using this agent would be easily translatable to clinic for testing in PDAC patients. Here we tested combinations of fendiline with gemcitabine, visudyne (a YAP1 inhibitor) or tivantinib (ARQ197, a c-Met inhibitor) for their effectiveness in overcoming growth and oncogenic characteristics of PDAC cells. The Hippo pathway component YAP1 has been shown to bypass K-Ras addiction, and allow tumor growth, in a Ras-null mouse model. Similarly, c-Met expression has been associated with poor prognosis and metastasis in PDAC patients. Our results presented here show that combinations of fendiline with these inhibitors show enhanced anti-tumor activity in Panc1, MiaPaCa2 and CD18/HPAF PDAC cells, as evident from the reduced viability, migration, anchorage-independent growth and self-renewal. Biochemical analysis shows that these agents interfere with various signaling cascades such as the activation of Akt and ERK, as well as the expression of c-Myc and CD44 that are altered in PDACs. These results imply that inclusion of fendiline may improve the efficacy of various chemotherapeutic agents that could potentially benefit PDAC patients.
Collapse
|
9
|
Sasaki N, Toyoda M, Hasegawa F, Fujiwara M, Gomi F, Ishiwata T. Fetal bovine serum enlarges the size of human pancreatic cancer spheres accompanied by an increase in the expression of cancer stem cell markers. Biochem Biophys Res Commun 2019; 514:112-117. [PMID: 31027735 DOI: 10.1016/j.bbrc.2019.04.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major histological type of pancreatic cancer and remains one of the most lethal cancers with a high mortality rate owing to its aggressive growth, high metastatic rate, and recurrence. Recent studies on cancer stem cells (CSCs) have suggested that the aggressive growth, high metastatic rate, and recurrence might be caused by the ability of CSCs to self-renew, differentiate, and drive tumorigenesis. Thus, CSCs are expected to be a therapeutic target for PDAC. Sphere forming assay of cancer cells, including PDAC cells, is commonly performed using epidermal growth factor and fibroblast growth factor-2 containing serum-free medium to identify and isolate the enriched CSCs. Recently, we observed that PDAC spheres cultured in fetal bovine serum containing medium are morphologically similar to spheres cultured in the growth factor containing medium. In this study, we cultured two PDAC cell lines, PANC-1 and PK-1, in growth factor containing serum-free medium or serum containing medium, and compared the morphology of the spheres formed in detail by electron microscopy and examined the expression of major CSC marker genes. Both the PDAC cells formed larger spheres in the serum containing medium than in the growth factor containing medium. PK-1 cells formed more morphologically differentiated spheres, with peripheral flat lining cells, in the serum containing medium. Expression levels of most of the CSC markers were higher in the spheres of the two PDAC cells in both the culture mediums than in the cells cultured under adherent conditions. The expression levels of CSC markers in PDAC spheres cultured in the growth factor containing medium were not necessarily higher than that in the spheres cultured in the serum containing medium. These findings suggest that sphere forming assay using serum containing medium, by which large PDAC spheres with enriched CSCs are formed, may be useful for deciphering the characteristics of CSCs and for developing anti-CSC therapies for PDAC.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Fumio Hasegawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Masakazu Fujiwara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Science, Nippon Medical School, Kanagawa, 211-8533, Japan
| | - Fujiya Gomi
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan.
| |
Collapse
|
10
|
Matsuda Y, Tanaka M, Sawabe M, Mori S, Muramatsu M, Mieno MN, Ishiwata T, Arai T. The stem cell-specific intermediate filament nestin missense variation p.A1199P is associated with pancreatic cancer. Oncol Lett 2019; 17:4647-4654. [PMID: 30988821 DOI: 10.3892/ol.2019.10106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/21/2019] [Indexed: 11/06/2022] Open
Abstract
The intermediate filament nestin is upregulated in stem/progenitor cells and cancers, and regulates cell proliferation, migration, invasion and stemness. The present study comparatively analyzed serial autopsies of Japanese patients (n=2,206; males, 1,225; females, 981; median, 80.7 years old; range, 33-104 years old) with malignant tumors of whole organs, with respect to the clinical information, and 5 single nucleotide polymorphisms of the nestin gene. p.A1199P associated with pancreatic cancer (odds ratio, 4.4; 95% confidence interval, 1.9-10.0, P=0.001) while it did not associate with malignant neoplasms in other organs. p.A1199P did not associate with precancerous lesions of the pancreas. Single nucleotide polymorphisms of nestin were not associated with sex, drinking, smoking, or body weight. In conclusion, the amino acid 1,199 of nestin is localized in the tail structure of the filament and polymerizes with other intermediate filament proteins. The present results suggest that missense variations of nestin affect pancreatic carcinogenesis in Japanese patients.
Collapse
Affiliation(s)
- Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka 567-0085, Japan
| | - Motoji Sawabe
- Department of Molecular Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Makiko Naka Mieno
- Department of Medical Informatics, Center for Information, Jichi Medical University, Tochigi 329-0498, Japan
| | - Toshiyuki Ishiwata
- Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo 173-0015, Japan
| |
Collapse
|
11
|
Dusart P, Fagerberg L, Perisic L, Civelek M, Struck E, Hedin U, Uhlén M, Trégouët DA, Renné T, Odeberg J, Butler LM. A systems-approach reveals human nestin is an endothelial-enriched, angiogenesis-independent intermediate filament protein. Sci Rep 2018; 8:14668. [PMID: 30279450 PMCID: PMC6168570 DOI: 10.1038/s41598-018-32859-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
The intermediate filament protein nestin is expressed during embryonic development, but considered largely restricted to areas of regeneration in the adult. Here, we perform a body-wide transcriptome and protein-profiling analysis to reveal that nestin is constitutively, and highly-selectively, expressed in adult human endothelial cells (EC), independent of proliferative status. Correspondingly, we demonstrate that it is not a marker for tumour EC in multiple malignancy types. Imaging of EC from different vascular beds reveals nestin subcellular distribution is shear-modulated. siRNA inhibition of nestin increases EC proliferation, and nestin expression is reduced in atherosclerotic plaque neovessels. eQTL analysis reveals an association between SNPs linked to cardiovascular disease and reduced aortic EC nestin mRNA expression. Our study challenges the dogma that nestin is a marker of proliferation, and provides insight into its regulation and function in EC. Furthermore, our systems-based approach can be applied to investigate body-wide expression profiles of any candidate protein.
Collapse
Affiliation(s)
- Philip Dusart
- Science for Life Laboratory, School of Biotechnology, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, School of Biotechnology, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - Ljubica Perisic
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, SE-171 76, Stockholm, Sweden
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, USA
| | - Eike Struck
- Science for Life Laboratory, School of Biotechnology, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - Ulf Hedin
- Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, SE-171 76, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, School of Biotechnology, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SE-171 21, Stockholm, Sweden
| | - David-Alexandre Trégouët
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris, France.,ICAN Institute for Cardiometabolism and Nutrition, Paris, France
| | - Thomas Renné
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, D-20246, Hamburg, Germany
| | - Jacob Odeberg
- Science for Life Laboratory, School of Biotechnology, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SE-171 21, Stockholm, Sweden.,Coagulation Unit, Centre for Hematology, Karolinska University Hospital, SE-171 76, Stockholm, Sweden
| | - Lynn M Butler
- Science for Life Laboratory, School of Biotechnology, Kungliga Tekniska Högskolan (KTH) Royal Institute of Technology, SE-171 21, Stockholm, Sweden. .,Clinical Chemistry and Blood Coagulation, Department of Molecular Medicine and Surgery, Karolinska Institute, SE-171 76, Stockholm, Sweden. .,Institute for Clinical Chemistry and Laboratory Medicine, University Medical Centre Hamburg-Eppendorf, D-20246, Hamburg, Germany.
| |
Collapse
|
12
|
Ishiwata T, Matsuda Y, Yoshimura H, Sasaki N, Ishiwata S, Ishikawa N, Takubo K, Arai T, Aida J. Pancreatic cancer stem cells: features and detection methods. Pathol Oncol Res 2018; 24:797-805. [PMID: 29948612 DOI: 10.1007/s12253-018-0420-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 05/17/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a high incidence of distant metastasis and recurrence. Cancer stem cells (CSCs), which are pluripotent, self-renewable, and capable of forming tumors, contribute to PDAC initiation and metastasis and are responsible for resistance to chemotherapy and radiation. Three types of experimental methods are commonly used to identify CSCs: CSC-specific marker detection, a sphere-formation assay that reveals cell proliferation under non-adherent conditions, and detection of side-population (SP) cells that possess high intracellular-to-extracellular pump functions. Several CSC-specific markers have been reported in PDACs, including CD133, CD24, CD44, CXCR4, EpCAM, ABCG2, c-Met, ALDH-1, and nestin. There remains controversy regarding which markers are specific to PDAC CSCs and which are expressed alone or in combination in CSCs. Examining characteristics of isolated CSCs and discovering CSC-specific treatment options are important to improve the prognosis of PDAC cases. This review summarizes CSC-detection methods for PDAC, including CSC-marker detection, the sphere-formation assay, and detection of SP cells.
Collapse
Affiliation(s)
- Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Hisashi Yoshimura
- Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, 180-0022, Japan
| | - Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Shunji Ishiwata
- Division of Medical Pharmaceutics & Therapeutics, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Naoshi Ishikawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kaiyo Takubo
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, 173-0015, Japan
| | - Junko Aida
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| |
Collapse
|
13
|
Djirackor L, Shakir D, Kalirai H, Petrovski G, Coupland SE. Nestin expression in primary and metastatic uveal melanoma - possible biomarker for high-risk uveal melanoma. Acta Ophthalmol 2018; 96:503-509. [PMID: 29338117 DOI: 10.1111/aos.13645] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/01/2017] [Indexed: 12/31/2022]
Abstract
PURPOSE Nestin, a member of the intermediate filament protein family, has been described as a putative cancer stem cell marker (CSC) in uveal melanoma and poor prognostic factor in a variety of tumours, including cutaneous melanoma. In this study, we examined the expression of nestin in primary (PUM) and metastatic uveal melanoma (MUM) samples, and correlated the findings with histological, clinical and survival data. METHODS Nestin expression was assessed by immunohistochemistry in 141 PUM and 26 MUM samples; 11 PUM cases were matched with their corresponding metastases. The percentage of tumour cells expressing nestin was scored by three independent observers. Statistical analysis of all data was performed with SPSS. RESULTS Nestin expression was identified in both the cytoplasm and membrane of UM cells. Increased expression of nestin in PUM samples was associated with known poor prognostic parameters, including epithelioid cell morphology (p < 0.001), closed loops (p = 0.001), higher mitotic count (p < 0.001), monosomy 3 (p = 0.007) and chromosome 8q gain (p < 0.001). Primary uveal melanoma (PUM) with nestin expression levels above a cut-off value of 10% [as determined by receiver operating characteristic (ROC) analysis] was associated with a significantly reduced survival time (Log-rank, p = 0.002). In MUM, a higher percentage of nestin-positive tumour cells combined with poor prognostic markers in the PUM led to a shorter survival time following the development of metastases. CONCLUSION In conclusion, increased nestin expression in PUM is a predictor of a tumour phenotype associated with metastatic progression and reduced survival time at onset of metastasis.
Collapse
Affiliation(s)
- Luna Djirackor
- Department of Molecular and Clinical Cancer Medicine; Institute of Translational Medicine; University of Liverpool; Liverpool UK
| | - Dilem Shakir
- Department of Molecular and Clinical Cancer Medicine; Institute of Translational Medicine; University of Liverpool; Liverpool UK
| | - Helen Kalirai
- Department of Molecular and Clinical Cancer Medicine; Institute of Translational Medicine; University of Liverpool; Liverpool UK
| | - Goran Petrovski
- Stem Cells and Eye Research Laboratory; Department of Ophthalmology; Faculty of Medicine; Albert Szent-Gyorgyi Clinical Center; University of Szeged; Szeged Hungary
- Centre for Eye Research; Department of Ophthalmology; Oslo University Hospital and University of Oslo; Oslo Norway
| | - Sarah E. Coupland
- Department of Molecular and Clinical Cancer Medicine; Institute of Translational Medicine; University of Liverpool; Liverpool UK
| |
Collapse
|
14
|
Scotti FM, Mitt VC, Vieira DS, Biz MT, Castro RG, Modolo F. Expression of stem cell markers Nanog and Nestin in lip squamous cell carcinoma and actinic cheilitis. Oral Dis 2018; 24:1209-1216. [PMID: 29761881 DOI: 10.1111/odi.12891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022]
Abstract
Cancer stem cell (CSC) proteins have been observed in several lesions and are associated with tumor beginning, evolution, and resistance to treatment. OBJECTIVES To investigate the presence of NANOG, NESTIN, and β-tubulin in lip squamous cell carcinoma (LSCC), actinic cheilitis (AC), and normal epithelium (NE). MATERIALS AND METHODS Thirty cases of LSCC, thirty cases of AC (both analyzed according to the WHO classification and AC according to the binary classification), and twenty cases of NE were submitted to an immunohistochemical study. RESULTS NANOG was more expressed in the nuclei of AC compared to NE (p = 0.007), as well as in high-risk AC cases (p = 0.017) and well-differentiated LSCCs (no significance). There was an accumulation of nuclear NANOG from mild to moderate and severe ACs. NESTIN was significantly less present in NE compared to AC (p = 0.001) and LSCC (p = 0.003). There was a higher expression in severe dysplasia or high-risk AC and well-differentiated LSCC. These results indicate an upregulation of NANOG and NESTIN in the early stages of carcinogenesis. β-tubulin was intensely present in all lesions. CONCLUSION The results suggest an upregulation of NANOG and NESTIN in the biological behavior these diseases, mainly in the transformation from AC to LSCC.
Collapse
Affiliation(s)
- Fernanda M Scotti
- Dentistry Graduate Program, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Verônica C Mitt
- Multidisciplinary Residence Program, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Daniella Sc Vieira
- Pathology Department, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Michelle T Biz
- Morphology Sciences Department, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Renata G Castro
- Dentistry Department, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Filipe Modolo
- Dentistry Graduate Program, Federal University of Santa Catarina, Florianopolis, Brazil.,Pathology Department, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
15
|
Sasaki N, Ishiwata T, Hasegawa F, Michishita M, Kawai H, Matsuda Y, Arai T, Ishikawa N, Aida J, Takubo K, Toyoda M. Stemness and anti-cancer drug resistance in ATP-binding cassette subfamily G member 2 highly expressed pancreatic cancer is induced in 3D culture conditions. Cancer Sci 2018; 109:1135-1146. [PMID: 29444383 PMCID: PMC5891171 DOI: 10.1111/cas.13533] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
The expression of ATP-binding cassette subfamily G member 2 (ABCG2) is related to tumorigenic cancer stem cells (CSC) in several cancers. However, the effects of ABCG2 on CSC-related malignant characteristics in pancreatic ductal adenocarcinoma (PDAC) are not well elucidated. In this study, we compared the characteristics of low (ABCG2-) and high (ABCG2+)-ABCG2-expressing PDAC cells after cell sorting. In adherent culture condition, human PDAC cells, PANC-1, contained approximately 10% ABCG2+ cell populations, and ABCG2+ cells displayed more and longer microvilli compared with ABCG2- cells. Unexpectedly, ABCG2+ cells did not show significant drug resistance against fluorouracil, gemcitabine and vincristine, and ABCG2- cells exhibited higher sphere formation ability and stemness marker expression than those of ABCG2+ cells. Cell growth and motility was greater in ABCG2- cells compared with ABCG2+ cells. In contrast, epithelial-mesenchymal transition ability between ABCG2- and ABCG2+ cells was comparable. In 3D culture conditions, spheres derived from ABCG2- cells generated a large number of ABCG2+ cells, and the expression levels of stemness markers in these spheres were higher than spheres from ABCG2+ cells. Furthermore, spheres containing large populations of ABCG2+ cells exhibited high resistance against anti-cancer drugs presumably depending on ABCG2. ABCG2+ cells in PDAC in adherent culture are not correlated with stemness and malignant behaviors, but ABCG2+ cells derived from ABCG2- cells after sphere formation have stemness characteristics and anti-cancer drug resistance. These findings suggest that ABCG2- cells generate ABCG2+ cells and the malignant potential of ABCG2+ cells in PDAC varies depending on their environments.
Collapse
Affiliation(s)
- Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine)Tokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Toshiyuki Ishiwata
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Fumio Hasegawa
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Masaki Michishita
- Department of Veterinary PathologySchool of Veterinary MedicineNippon Veterinary and Life Science UniversityTokyoJapan
| | - Hiroki Kawai
- Research and Development DepartmentLPixleTokyoJapan
| | - Yoko Matsuda
- Department of PathologyTokyo Metropolitan Geriatric Hospital and Institute of GerontologyTokyoJapan
| | - Tomio Arai
- Department of PathologyTokyo Metropolitan Geriatric Hospital and Institute of GerontologyTokyoJapan
| | - Naoshi Ishikawa
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Junko Aida
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Kaiyo Takubo
- Division of Aging and CarcinogenesisResearch Team for Geriatric PathologyTokyo Metropolitan Institute of GerontologyTokyoJapan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine)Tokyo Metropolitan Institute of GerontologyTokyoJapan
| |
Collapse
|
16
|
Zhao Q, Zhou H, Liu Q, Cao Y, Wang G, Hu A, Ruan L, Wang S, Bo Q, Chen W, Hu C, Xu D, Tao F, Cao J, Ge Y, Yu Z, Li L, Wang H. Prognostic value of the expression of cancer stem cell-related markers CD133 and CD44 in hepatocellular carcinoma: From patients to patient-derived tumor xenograft models. Oncotarget 2018; 7:47431-47443. [PMID: 27329727 PMCID: PMC5216952 DOI: 10.18632/oncotarget.10164] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 06/06/2016] [Indexed: 12/31/2022] Open
Abstract
High expression of cancer stem cell (CSC) markers is related to poor prognosis of patients with hepatocellular carcinoma (HCC). However, the expression of these markers in patient-derived xenograft (PDX) models and the relationship of the expression levels of these markers between HCC patients and their PDX models at subsequent low passages are unclear. To investigate the prognostic impact of putative CSC markers in patients with HCC and in related PDX models, the expression of CD133, CD90, CD44, ALDH1, CK7, CK19, OCT4, SOX2, vimentin, nestin, CD13 and EpCam were assessed by quantitative reverse transcription-PCR (qRT-PCR) and then were validated using immunohistochemistry in tumor or peritumoral tissues from patients and tumor tissues from PDX models. Cumulative survival analysis of the patients and animals was conducted using the Kaplan-Meier method and the log-rank test. Only the expression levels of CD133 and CD44 were higher in tumor tissues than in the peritumoral tissues of HCC patients by qRT-PCR. High consistency of the prognostic value of the expression of CD133/CD44 was observed in HCC patients and the PDX models. High expression levels of CD133 and CD44 were positively related to the poor prognosis of HCC patients and to that in the PDX models. PDX HCC models in the present study have been suggested to be predictive of disease outcome, which could shed light on personalized medicine and the mechanisms of CSC marker expression on prognosis.
Collapse
Affiliation(s)
- Qihong Zhao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Heng Zhou
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qifei Liu
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Ye Cao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Gang Wang
- Department of Oncology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Anla Hu
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Liang Ruan
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Sufang Wang
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Qingli Bo
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Wenjun Chen
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Chuanlai Hu
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Dexiang Xu
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Fangbiao Tao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Jiyu Cao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Yongsheng Ge
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, China
| | - Zongfan Yu
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Li
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei, China
| | - Hua Wang
- School of Pharmacy, Anhui Medical University, Hefei, China.,Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Institute for Liver Disease, Anhui Medical University, Hefei, China
| |
Collapse
|
17
|
Todoric J, Antonucci L, Di Caro G, Li N, Wu X, Lytle NK, Dhar D, Banerjee S, Fagman JB, Browne CD, Umemura A, Valasek MA, Kessler H, Tarin D, Goggins M, Reya T, Diaz-Meco M, Moscat J, Karin M. Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas. Cancer Cell 2017; 32:824-839.e8. [PMID: 29153842 PMCID: PMC5730340 DOI: 10.1016/j.ccell.2017.10.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/21/2017] [Accepted: 10/20/2017] [Indexed: 02/06/2023]
Abstract
Despite expression of oncogenic KRAS, premalignant pancreatic intraepithelial neoplasia 1 (PanIN1) lesions rarely become fully malignant pancreatic ductal adenocarcinoma (PDAC). The molecular mechanisms through which established risk factors, such as chronic pancreatitis, acinar cell damage, and/or defective autophagy increase the likelihood of PDAC development are poorly understood. We show that accumulation of the autophagy substrate p62/SQSTM1 in stressed KrasG12D acinar cells is associated with PDAC development and maintenance of malignancy in human cells and mice. p62 accumulation promotes neoplastic progression by controlling the NRF2-mediated induction of MDM2, which acts through p53-dependent and -independent mechanisms to abrogate checkpoints that prevent conversion of differentiated acinar cells to proliferative ductal progenitors. MDM2 targeting may be useful for preventing PDAC development in high-risk individuals.
Collapse
Affiliation(s)
- Jelena Todoric
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Giuseppe Di Caro
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Ning Li
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xuefeng Wu
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nikki K Lytle
- Departments of Pharmacology and Medicine, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Debanjan Dhar
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sourav Banerjee
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Johan B Fagman
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Cecille D Browne
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Atsushi Umemura
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 602-8566 Kyoto, Japan
| | - Mark A Valasek
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Hannes Kessler
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - David Tarin
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Goggins
- Departments of Medicine (Gastroenterology) and Radiology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | - Tannishtha Reya
- Departments of Pharmacology and Medicine, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Maria Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
18
|
Ishiwata T, Hasegawa F, Michishita M, Sasaki N, Ishikawa N, Takubo K, Matsuda Y, Arai T, Aida J. Electron microscopic analysis of different cell types in human pancreatic cancer spheres. Oncol Lett 2017; 15:2485-2490. [PMID: 29434962 DOI: 10.3892/ol.2017.7554] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/20/2017] [Indexed: 12/27/2022] Open
Abstract
Cancer stem cells (CSCs), which are pluripotent and self-renewable, contribute to the initiation and metastasis of cancer, and are responsible for resistance to chemotherapy and radiation. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive type of cancer that is associated with a high incidence of distant metastasis and recurrence. Sphere formation reveals cell proliferation under nonadherent conditions and is commonly used to identify CSCs; measurements of the number, area and volume of the spheres are used to estimate stemness of PDAC cells. However, detailed morphological analysis of such spheres has not been performed. The aim of the present study was to examine the morphology of spheres isolated from PANC-1 human pancreatic cancer cells via scanning electron microscopy (SEM) and transmission electron microscopy (TEM). PANC-1 cells formed round to irregular oblong spheres within 1 week following seeding in ultra-low-attachment plates. These spheres exhibited higher levels of expression of CSC markers, including nestin, sex determining region Y-box 2, and CD44 containing variant exon 9, compared with adherent cells. SEM analysis revealed that the spheres exhibited a grape-like appearance, harboring cancer cells with smooth or rough surfaces. Similarly, TEM analysis detected cancer cells with varying surface types within the spheres: Those with smooth surfaces, irregular large protrusions, protrusions and a small number of microvilli, and those with many microvilli throughout the entire cell surface. These morphological differences among cancer cells may be indicative of different stages in the differentiation process, from CSCs to non-CSCs, within the spheres.
Collapse
Affiliation(s)
- Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Fumio Hasegawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Masaki Michishita
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Norihiko Sasaki
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Naoshi Ishikawa
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Kaiyo Takubo
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Junko Aida
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| |
Collapse
|
19
|
Shatos MA, Hodges RR, Morinaga M, McNay DE, Islam R, Bhattacharya S, Li D, Turpie B, Makarenkova HP, Masli S, Utheim TP, Dartt DA. Alteration in cellular turnover and progenitor cell population in lacrimal glands from thrombospondin 1 -/- mice, a model of dry eye. Exp Eye Res 2016; 153:27-41. [PMID: 27697548 DOI: 10.1016/j.exer.2016.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 09/22/2016] [Accepted: 09/30/2016] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to investigate the changes that occur in the lacrimal glands (LGs) in female thrombospondin 1 knockout (TSP1-/-) mice, a mouse model of the autoimmune disease Sjogren's syndrome. The LGs of 4, 12, and 24 week-old female TSP1-/- and C57BL/6J (wild type, WT) mice were used. qPCR was performed to measure cytokine expression. To study the architecture, LG sections were stained with hematoxylin and eosin. Cell proliferation was measured using bromo-deoxyuridine and immunohistochemistry. Amount of CD47 and stem cell markers was analyzed by western blot analysis and location by immunofluorescence microscopy. Expression of stem cell transcription factors was performed using Mouse Stem Cell Transcription Factors RT2 Profiler PCR Array. Cytokine levels significantly increased in LGs of 24 week-old TSP1-/- mice while morphological changes were detected at 12 weeks. Proliferation was decreased in 12 week-old TSP1-/- mice. Three transcription factors were overexpressed and eleven underexpressed in TSP1-/- compared to WT LGs. The amount of CD47, Musashi1, and Sox2 was decreased while the amount of ABCG2 was increased in 12 week-old TSP1-/- mice. We conclude that TSP1 is necessary for maintaining normal LG homeostasis. Absence of TSP1 alters cytokine levels and stem cell transcription factors, LG cellular architecture, decreases cell proliferation, and alters amount of stem cell markers.
Collapse
Affiliation(s)
- Marie A Shatos
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States
| | - Robin R Hodges
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States
| | - Masahiro Morinaga
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States
| | - David E McNay
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States
| | - Rakibul Islam
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States
| | - Sumit Bhattacharya
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States
| | - Dayu Li
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States
| | - Bruce Turpie
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Helen P Makarenkova
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Sharmila Masli
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| | - Tor P Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Darlene A Dartt
- Schepens Eye Research Institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, United States.
| |
Collapse
|
20
|
PIM-1 contributes to the malignancy of pancreatic cancer and displays diagnostic and prognostic value. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:133. [PMID: 27596051 PMCID: PMC5011911 DOI: 10.1186/s13046-016-0406-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/11/2016] [Indexed: 12/16/2022]
Abstract
Background The effects of PIM-1 on the progression of pancreatic cancer remain unclear, and the prognostic value of PIM-1 levels in tissues is controversial. Additionally, the expression levels and clinical value of PIM-1 in plasma have not been reported. Methods The effects of PIM-1 on biological behaviours were analysed. PIM-1 levels in tissues and plasma were detected, and the clinical value was evaluated. Results We found that PIM-1 knockdown in pancreatic cancer cells suppressed proliferation, induced cell cycle arrest, enhanced apoptosis, resensitized cells to gemcitabine and erlotinib treatment, and inhibited ABCG2 and EZH2 mRNA expression. Our results indicated that PIM-1 and the EGFR pathway formed a positive feedback loop. We also found that PIM-1 expression in pancreatic cancer tissues was significantly upregulated and that a high level of expression was negatively associated with prognosis (P = 0.025, hazard ratio [HR] =2.113, 95 % confidence interval: 1.046–4.266). Additionally, we found that plasma PIM-1 levels in patients with pancreatic cancer were significantly increased and could be used in the diagnosis of pancreatic cancer. High plasma PIM-1 expression was an independent adverse prognostic factor for pancreatic cancer (P = 0.037, HR = 1.87, 95 % CI: 1.04–3.35). Conclusion Our study suggests that PIM-1 contributes to malignancy and has diagnostic and prognostic value in pancreatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0406-z) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Ishiwata T. Cancer stem cells and epithelial-mesenchymal transition: Novel therapeutic targets for cancer. Pathol Int 2016; 66:601-608. [PMID: 27510923 DOI: 10.1111/pin.12447] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/11/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023]
Abstract
Despite the development of various therapeutic approaches, recurrence and metastasis remain major problems for patients with advanced cancer. Recent studies have shown that cancer stem cells (CSCs) play an important role in cancer aggressiveness. In cancer tissues, a small number of CSCs are able to self-renew and differentiate into heterogeneous cancer cells. CSCs usually remain in the resting phase of the cell cycle and possess efficient drug efflux pathways. Thus, they are resistant to chemoradiotherapy and surviving CSCs contribute to recurrence. During cancer metastasis, CSCs undergo epithelial-mesenchymal transition (EMT), thereby acquiring mesenchymal features, migrating to adjacent stromal tissues, and invading blood or lymph vessels. Recent studies showed that EMT-inducible factors also enhance or induce CSC-like features in cancer cells. These findings suggest that EMT is closely correlated with cancer recurrence and metastasis. Inhibition of nestin, a CSC marker, reduces the aggressiveness of several types of cancer. Suppression of the mesenchymal variant of fibroblast growth factor (FGFR)-2, FGFR-2 IIIc, and regulation of the EMT using epithelial splicing regulatory protein 1 (ESRP1) are effective in the treatment of immunodeficient mice with pancreatic cancer. The roles of CSCs and EMT in cancer and possible therapies are discussed in this review.
Collapse
Affiliation(s)
- Toshiyuki Ishiwata
- Division of Aging and Carcinogenesis, Research Team for Geriatric Pathology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
22
|
Long LM, Zhan JK, Wang HQ, Li S, Chen YY, Liu YS. The Clinical Significance of miR-34a in Pancreatic Ductal Carcinoma and Associated Molecular and Cellular Mechanisms. Pathobiology 2016; 84:38-48. [PMID: 27458977 DOI: 10.1159/000447302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) exhibits poor prognosis and resistance to chemotherapy. This study was to identify the biomarkers associated with the progression, poor prognosis and chemoresistance of PDAC. METHODS miR-34a and miR-150 levels in the plasma and tissues from PDAC patients were measured by real-time PCR. Xenograft PDAC tumor models were established in mice by inoculation of CD133+ stem cells isolated from PDAC tumors. Protein expression was measured by Western blot. RESULTS The plasma miR-34a and miR-150 levels were significantly lower in PDAC patients than in patients with benign pancreatic lesions and in healthy subjects. The miR-34a and miR-150 levels in the tumor tissues were significantly lower than in pancreatic tissues with benign lesions. The protein levels of CD133, Notch1, Notch2 and Notch4 receptors in PDAC tumor tissues were significantly higher than in pancreatic tissues with benign lesions. miR-34a injection significantly inhibited the tumor growth of PDAC tumors and sensitized the anticancer effects of 5-fluorouracil (5-FU). miR-34a significantly inhibited Notch1, Notch2 and Notch4 expression in xenograft tumor tissues in vivo and BxPC-3 cells in vitro. miR-34a and miR-150 significantly induced apoptosis and inhibited proliferation, invasion and migration in BxPC-3 cells. miR-34a, but not miR-150, significantly sensitized the anticancer effect of 5-FU in BxPC-3 cells in vitro. CONCLUSION A loss of expression of miR-34a, but not of miR-150, is associated with disease progression and poor prognosis in PDAC patients, and may be involved in the chemoresistance of PDAC cells.
Collapse
Affiliation(s)
- Li-Min Long
- Department of Geriatrics, Institute of Aging and Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Skoda J, Hermanova M, Loja T, Nemec P, Neradil J, Karasek P, Veselska R. Co-Expression of Cancer Stem Cell Markers Corresponds to a Pro-Tumorigenic Expression Profile in Pancreatic Adenocarcinoma. PLoS One 2016; 11:e0159255. [PMID: 27414409 PMCID: PMC4945008 DOI: 10.1371/journal.pone.0159255] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/29/2016] [Indexed: 01/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers—CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin—by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile.
Collapse
Affiliation(s)
- Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marketa Hermanova
- 1st Department of Pathological Anatomy, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Loja
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Nemec
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jakub Neradil
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Karasek
- Department of Complex Oncology Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Pediatric Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
24
|
Wang H, Ning Z, Li Y, Zhu X, Meng Z. Bufalin suppresses cancer stem-like cells in gemcitabine-resistant pancreatic cancer cells via Hedgehog signaling. Mol Med Rep 2016; 14:1907-14. [PMID: 27432228 PMCID: PMC4991682 DOI: 10.3892/mmr.2016.5471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 03/29/2016] [Indexed: 01/05/2023] Open
Abstract
Cancer stem cells (CSCs) are important in cancer, as these cells possess enhanced tumor-forming capabilities and are resistant to current anticancer therapies. Agents with the ability to suppress CSCs are likely to provide novel opportunities for combating tumor proliferation and metastasis. The present study aimed to evaluate the effects of bufalin on pancreatic CSCs in vivo and in vitro. Using a serum-free suspension culture, tumor spheres were enriched in a gemcitabine-resistant human pancreatic cancer cell line, which had a higher percentage of CSCs, and western blotting, flow cytometry, and colony and tumor formation assays were used to demonstrate that these sphere cells exhibited CSC characteristics. Using these cancer stem-like cells as a model, the present study examined the effect of bufalin on pancreatic CSCs. It was demonstrated that bufalin inhibited the number of tumor spheres, and western blotting and immunohistochemical assays showed that the expression levels of CD24 and epithelial specific antigen (ESA) were downregulated by bufalin. Furthermore, in a subcutaneous xenograft model of implanted gemcitabine-resistant MiaPaCa2 cells, bufalin inhibited tumor growth and prolonged the duration of tumor formation. Additionally, the expression levels of CD24 and ESA were inhibited in the bufalin-treated mice. Notably, in another cancer model injected with tumor cells via the tail vein, fewer metastatic lesions were detected in the group in which tumor cells were pretreated with bufalin in vitro, compared with those without pretreatment. Of note, the Hedgehog (Hh) signaling pathway was found to be inhibited in the bufalin-treated cells. Taken together, these results suggested that bufalin suppressed pancreatic CSCs in gemcitabine-resistant MiaPaCa2 cells, and the Hh signaling pathway may be involved in this process.
Collapse
Affiliation(s)
- Haiyong Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Zhouyu Ning
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Yingyi Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Xiaoyan Zhu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
25
|
Liu JK, Chen WC, Ji XZ, Zheng WH, Han W, An J. Correlation of overexpression of nestin with expression of epithelial-mesenchymal transition-related proteins in gastric adenocarcinoma. Asian Pac J Cancer Prev 2016; 16:2777-83. [PMID: 25854362 DOI: 10.7314/apjcp.2015.16.7.2777] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nestin is associated with neoplastic transformation. However, the mechanisms by which nestin contributes regarding invasion and malignancy of gastric adenocarcinoma (GAC) remain unknown. Recent studies have shown that the epithelial-mesenchymal transition (EMT) is important in invasion and migration of cancer cells. In the present study, we aimed to investigate the expression of nestin and its correlation with EMT-related proteins in GAC. MATERIALS AND METHODS The expression of nestin and EMT-related proteins was examined in GAC specimens and cell lines by immunohistochemistry and Western blotting. Clinicopathological features and survival outcomes were retrospectively analyzed. RESULTS Positive nestin immunostaining was most obviously detected in the cytoplasm, nucleus or both cytoplasm and nucleus of tumor cells in 19.2% (24/125) of GAC tissues, which was significantly higher than that in normal gastric mucosa tissues (1.7%, 1/60) (p=0.001). Nestin expression was closely related to several clinicopathological factors and EMT-related proteins (E-cadherin, vimentin and Snail) and displayed a poor prognosis. Interestingly, simultaneous cytoplasmic and nuclear nestin expression correlated with EMT-related proteins (E-cadherin, vimentin and Snail) (p<0.05) and lymph node metastasis (p=0.041) and a shorter survival time (p<0.05), but this was not the case with cytoplasmic or nuclear nestin expression. CONCLUSIONS Nestin, particularly expression in both cytoplasm and nucleus, might be involved in regulating EMT and malignant progression in GAC, with potential as an unfavorable indicator in tumor diagnosis and a target for clinical therapy.
Collapse
Affiliation(s)
- Jin-Kai Liu
- Cancer Research Institute, Southern Medical University, Guangzhou, China E-mail :
| | | | | | | | | | | |
Collapse
|
26
|
Haghpanah V, Fallah P, Naderi M, Tavakoli R, Soleimani M, Larijani B. Cancer stem-like cell behavior in anaplastic thyroid cancer: A challenging dilemma. Life Sci 2016; 146:34-9. [PMID: 26772823 DOI: 10.1016/j.lfs.2015.12.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/10/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023]
Abstract
AIMS Anaplastic thyroid carcinoma (ATC) is an undifferentiated tumor of the thyroid which is characterized with poor prognosis, leading to its aggressive behavior and resistance to conventional therapies. Cancer stem cells (CSCs) are tumor cells that have self-renewal and clonal tumor initiation. Like other cancers, many studies have shown that ATC also has tumor cells with properties like stem cells. To evaluate the concept of cancer stem-like cell theory of ATC, we conducted this study to emphasize both on the concept of cancer stemness origin of these cells and target them for further therapeutic purposes. In the current study, we showed that two ATC cell lines, SW1736 and C643, have subpopulations (SP) that are similar to CSCs. MATERIALS AND METHODS Using MACS technique, cells positive for CD133 were isolated and subsequently validated with flow cytometry. For further analysis, expression of some stemness markers was evaluated. KEY FINDINGS ABCG2, CD133, and Sox2 were significantly up-regulated, while Nestin was down-regulated in CD133(pos) subpopulation compared to CD133(neg) cells. In contrast to previous reports that over-expression of Nestin was considered as a marker for thyroid CSCs, we noticed that expression of Nestin was declined in stem cell-like tumor cells, derived from ATC cell lines. SIGNIFICANCE This study reconfirmed the concept of cancer stem-like cell identity of SW1736 and C643 cells. Indeed, the characterization of CSCs should not be merely based on surface markers. Cell origin and genetic background should be additionally considered on CSCs subpopulation of ATCs for therapeutics.
Collapse
Affiliation(s)
- Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Fallah
- Department of Laboratory Science, Faculty of Allied Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahmood Naderi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Tavakoli
- Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Rao CV, Mohammed A. New insights into pancreatic cancer stem cells. World J Stem Cells 2015; 7:547-555. [PMID: 25914762 PMCID: PMC4404390 DOI: 10.4252/wjsc.v7.i3.547] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/10/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) has been one of the deadliest of all cancers, with almost uniform lethality despite aggressive treatment. Recently, there have been important advances in the molecular, pathological and biological understanding of pancreatic cancer. Even after the emergence of recent new targeted agents and the use of multiple therapeutic combinations, no treatment option is viable in patients with advanced cancer. Developing novel strategies to target progression of PC is of intense interest. A small population of pancreatic cancer stem cells (CSCs) has been found to be resistant to chemotherapy and radiation therapy. CSCs are believed to be responsible for tumor initiation, progression and metastasis. The CSC research has recently achieved much progress in a variety of solid tumors, including pancreatic cancer to some extent. This leads to focus on understanding the role of pancreatic CSCs. The focus on CSCs may offer new targets for prevention and treatment of this deadly cancer. We review the most salient developments in important areas of pancreatic CSCs. Here, we provide a review of current updates and new insights on the role of CSCs in pancreatic tumor progression with special emphasis on DclK1 and Lgr5, signaling pathways altered by CSCs, and the role of CSCs in prevention and treatment of PC.
Collapse
|
28
|
Zhu YY, Yuan Z. Pancreatic cancer stem cells: Advances and perspectives. Shijie Huaren Xiaohua Zazhi 2015; 23:1703-1711. [DOI: 10.11569/wcjd.v23.i11.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of certain types of malignancies including pancreatic carcinoma, as verified in mountains of literature published since the 1970s, is due in great measure to cancer stem cells located within the hierarchically organized tumor structure. However, by now, the results of numerous attempts to relate cancer stem cell theory to malignant biological behavior of cancers have appeared rather discouraging in terms of explaining and overcoming tumor heterogeneity in both in vitro and in vivo conditions. In seeking to describe the cancer stem cells in pancreatic adenocarcinoma, in the current editorial, we rely primarily on the existing evidence to gain a comprehensive perspective toward this area.
Collapse
|
29
|
Cao SG, Ming ZJ, Zhang YP, Yang SY. Sex-determining region of Y chromosome-related high-mobility-group box 2 in malignant tumors: current opinions and anticancer therapy. Chin Med J (Engl) 2015; 128:384-9. [PMID: 25635436 PMCID: PMC4837871 DOI: 10.4103/0366-6999.150112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE To gain insight into the mechanism by which sex-determining region of Y chromosome (SRY)-related high-mobility-group box 2 (SOX2) involved in carcinogenesis and cancer stem cells (CSCs). DATA SOURCES The data used in this review were mainly published in English from 2000 to present obtained from PubMed. The search terms were "SOX2," "cancer," "tumor" or "CSCs." STUDY SELECTION Articles studying the mitochondria-related pathologic mechanism and treatment of glaucoma were selected and reviewed. RESULTS SOX2, a transcription factor that is the key in maintaining pluripotent properties of stem cells, is a member of SRY-related high-mobility group domain proteins. SOX2 participates in many biological processes, such as modulation of cell proliferation, regulation of cell death signaling, cell apoptosis, and most importantly, tumor formation and development. Although SOX2 has been implicated in the biology of various tumors and CSCs, the findings are highly controversial, and information regarding the underlying mechanism remains limited. Moreover, the mechanism by which SOX2 involved in carcinogenesis and tumor progression is rather unclear yet. CONCLUSIONS Here, we review the important biological functions of SOX2 in different tumors and CSCs, and the function of SOX2 signaling in the pathobiology of neoplasia, such as Wnt/β-catenin signaling pathway, Hippo signaling pathway, Survivin signaling pathway, PI3K/Akt signaling pathway, and so on. Targeting towards SOX2 may be an effective therapeutic strategy for cancer therapy.
Collapse
Affiliation(s)
- Shi-Guang Cao
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Zong-Juan Ming
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Yu-Ping Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| | - Shuan-Ying Yang
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi 710004, China
| |
Collapse
|
30
|
Zhou N, Wu X, Yang B, Yang X, Zhang D, Qing G. Stem cell characteristics of dormant cells and cisplatin‑induced effects on the stemness of epithelial ovarian cancer cells. Mol Med Rep 2014; 10:2495-504. [PMID: 25119644 DOI: 10.3892/mmr.2014.2483] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 07/01/2014] [Indexed: 01/06/2023] Open
Abstract
Tumor dormancy is a common biological property of malignancies and a leading factor in treatment failure, metastasis and tumor recurrence. The present study generated mouse xenograft models by injection of PKH26‑labeled SKOV3 ovarian cancer cells, which were divided into two groups: The control group (SKOV3‑P tumors,) and the treatment group that generated resistant tumors following prolonged administration of cisplatin (SKOV3‑R tumors). Administration of cisplatin resulted in inhibition of the tumor growth and SKOV3‑R tumors coexisted with their host at a stable size. According to fluorochrome PKH26 retention, there were multiple cell clones (PKH26hi, PKH26low and PKH26neg cells) in the single cell line generated from xenograft tumors. PKH26hi subsets in SKOV3‑P and SKOV3‑R tumors were dormant cells, as the majority were arrested in G0/G1 phase and expressed high levels of the stem cell markers Oct‑4, Nestin, CD117 and CD44. PKH26hi subsets also demonstrated greater clonogenic capability in vitro and tumorigenicity in vivo, as compared with PKH26low and PKH26neg cells. Notably, chemotherapy was demonstrated to lead to the enrichment and enhanced stem‑like characteristics of dormant/slow‑cycling PKH26hi cells. The results of the present study have demonstrated for the first time, to the best of our knowledge, that dormant tumor cells exhibit stem‑like characteristics, and that cisplatin enhances these characteristics in epithelial ovarian cancer cells.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Xiaohua Wu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Bo Yang
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Xu Yang
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Dingding Zhang
- Department of Obstetrics and Gynecology, Bethune International Peace Hospital, Shijiazhuang, Hebei 050082, P.R. China
| | - Guo Qing
- Department of Obstetrics and Gynecology, First Hospital of Shijiazhuang, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
31
|
Prognostic significance of neural stem cell markers, Nestin and Musashi-1, in oral squamous cell carcinoma: expression pattern of Nestin in the precancerous stages of oral squamous epithelium. Clin Oral Investig 2014; 19:1251-60. [PMID: 25352468 DOI: 10.1007/s00784-014-1341-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 10/19/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Besides the tissue-specific stem cell markers, neural and hematopoietic stem cell markers were found to play an important role in carcinogenesis. Based on this background, we have investigated the expression pattern and prognostic significance of neural stem cell markers, Nestin and Musashi-1, in oral cancer. METHODS We used immunohistochemistry and immunofluorescence analyses to study the expression pattern and correlation between Nestin and Musashi-1 in oral squamous cell carcinoma. The Kaplan-Meier method was used to construct overall and disease-free survival curves, and the differences were calculated using log-rank test. RESULTS Nestin expression was gradually increased in the transformation stages of oral cancer. Both Nestin and Musashi-1 expressions were associated with higher stage and poorly differentiated status of oral carcinoma. Interestingly, Nestin and Musashi-1 double positive cases showed statistically highly significant correlation with poorer survival of oral carcinoma patients. CONCLUSIONS Expression of Nestin in the preneoplastic lesions indicates its role in the transformation of oral squamous epithelium. Clinicopathological and survival analyses suggest that Nestin and Musashi-1 might be associated with invasion, differentiation and poorer survival in oral squamous cell carcinoma. In addition to their role as independent prognostic indicators, Nestin and Musashi-1 double positivity can be used to select high-risk cases for effective therapy and this is the novel finding of this study. CLINICAL RELEVANCE Nestin and Musashi-1 are found to be independent prognostic markers of oral cancer, and they might be used as molecular targets for effective therapy.
Collapse
|
32
|
Kim IG, Lee JH, Kim SY, Kim JY, Cho EW. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines. Biochem Biophys Res Commun 2014; 454:369-75. [PMID: 25451256 DOI: 10.1016/j.bbrc.2014.10.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 01/16/2023]
Abstract
Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation.
Collapse
Affiliation(s)
- In-Gyu Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353, Republic of Korea; Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-daero, Yusong-gu, Daejeon 305-353, Republic of Korea.
| | - Jae-Ha Lee
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353, Republic of Korea; Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-daero, Yusong-gu, Daejeon 305-353, Republic of Korea
| | - Seo-Yoen Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353, Republic of Korea
| | - Jeong-Yul Kim
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353, Republic of Korea
| | - Eun-Wie Cho
- Epigenomics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| |
Collapse
|
33
|
Bolyard C, Yoo JY, Wang PY, Saini U, Rath KS, Cripe TP, Zhang J, Selvendiran K, Kaur B. Doxorubicin synergizes with 34.5ENVE to enhance antitumor efficacy against metastatic ovarian cancer. Clin Cancer Res 2014; 20:6479-94. [PMID: 25294909 DOI: 10.1158/1078-0432.ccr-14-0463] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Novel therapeutic regimens are needed to improve dismal outcomes associated with late-stage ovarian cancer. Oncolytic viruses are currently being tested in patients with ovarian cancer. Here, we tested the therapeutic efficacy of combining doxorubicin with 34.5ENVE, an oncolytic herpes simplex virus transcriptionally driven by a modified stem cell-specific nestin promoter, and encoding for antiangiogenic Vasculostatin-120 (VStat120) for use against progressive ovarian cancer. EXPERIMENTAL DESIGN Antitumor efficacy of 34.5ENVE was assessed in ovarian cancer cell lines, mouse ascites-derived tumor cells, and primary patient ascites-derived tumor cells by standard MTT assay. The ability of conditioned medium derived from 34.5ENVE-infected ovarian cancer cells to inhibit endothelial cell migration was measured by a Transwell chamber assay. Scope of cytotoxic interactions between 34.5ENVE and doxorubicin were evaluated using Chou-Talalay synergy analysis. Viral replication, herpes simplex virus receptor expression, and apoptosis were evaluated. Efficacy of oncolytic viral therapy in combination with doxorubicin was evaluated in vivo in the murine xenograft model of human ovarian cancer. RESULTS Treatment with 34.5ENVE reduced cell viability of ovarian cancer cell lines, and mouse ascites-derived and patient ascites-derived ovarian tumor cells. Conditioned media from tumor cells infected with 34.5ENVE reduced endothelial cell migration. When combined with doxorubicin, 34.5ENVE killed synergistically with a significant increase in caspase-3/7 activation, and an increase in sub-G1 population of cells. The combination of doxorubicin and 34.5ENVE significantly prolonged survival in nude mice bearing intraperitoneal ovarian cancer tumors. CONCLUSIONS This study indicates significant antitumor efficacy of 34.5ENVE alone, and in combination with doxorubicin against disseminated peritoneal ovarian cancer.
Collapse
Affiliation(s)
- Chelsea Bolyard
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, The Ohio State University, Columbus, Ohio
| | - Ji Young Yoo
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, The Ohio State University, Columbus, Ohio
| | - Pin-Yi Wang
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Uksha Saini
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| | - Kellie S Rath
- Ohio Health Gynecologic Cancer Surgeons, Ohio Health Systems, Columbus, Ohio
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Jianying Zhang
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Karuppaiyah Selvendiran
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| | - Balveen Kaur
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
34
|
Abstract
Dr. Tuveson and colleagues provide a comprehensive review on the fundamental role of cancer-associated fibroblasts in shaping the tumor microenvironment and promoting tumor initiation and progression. Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
35
|
Tanase CP, Neagu AI, Necula LG, Mambet C, Enciu AM, Calenic B, Cruceru ML, Albulescu R. Cancer stem cells: Involvement in pancreatic cancer pathogenesis and perspectives on cancer therapeutics. World J Gastroenterol 2014; 20:10790-10801. [PMID: 25152582 PMCID: PMC4138459 DOI: 10.3748/wjg.v20.i31.10790] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/07/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive and lethal malignancies. Despite remarkable progress in understanding pancreatic carcinogenesis at the molecular level, as well as progress in new therapeutic approaches, pancreatic cancer remains a disease with a dismal prognosis. Among the mechanisms responsible for drug resistance, the most relevant are changes in individual genes or signaling pathways and the presence of highly resistant cancer stem cells (CSCs). In pancreatic cancer, CSCs represent 0.2%-0.8% of pancreatic cancer cells and are considered to be responsible for tumor growth, invasion, metastasis and recurrence. CSCs have been extensively studied as of late to identify specific surface markers to ensure reliable sorting and for signaling pathways identified to play a pivotal role in CSC self-renewal. Involvement of CSCs in pancreatic cancer pathogenesis has also highlighted these cells as the preferential targets for therapy. The present review is an update of the results in two main fields of research in pancreatic cancer, pathogenesis and therapy, focused on the narrow perspective of CSCs.
Collapse
|
36
|
Chen L, Fan J, Chen H, Meng Z, Chen Z, Wang P, Liu L. The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Sci Rep 2014; 4:5911. [PMID: 25081383 PMCID: PMC4118151 DOI: 10.1038/srep05911] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/02/2014] [Indexed: 12/25/2022] Open
Abstract
CXCR1, a receptor for CXCL8/IL-8, has recently been demonstrated to be associated with cancer stem cell (CSC) populations in certain types of human cancers. However, the effect of CXCR1 on CSC and its prognostic value in human pancreatic cancer remain unknown. In this study, we evaluated the expression of CXCR1 in human pancreatic duct adenocarcinoma (PDAC) and found that positive CXCR1 expression correlated with lymph node metastasis (P = 0.017) and a poor survival rate (HR, 3.748; 95% CI, 1.822 to 7.712; P < 0.001) in patients with PDAC. In addition, we identified significant positive correlations between CXCR1 and CD44 (P = 0.002) and CD133 (P = 0.017). Further functional studies confirmed that IL-8 addition increased sphere formation, CSC populations, and cell invasion of pancreatic cancer cells and that these effects could be reversed by antagonizing CXCR1 with a CXCR1-specific antibody. Therefore, our study demonstrated that the IL-8/CXCR1 axis is associated with the CSC-like properties of pancratic cancer cells and prognosis in human pancreatic cancer. This suggested a way of targeting pancreatic CSCs by disrupting IL-8/CXCR1 axis.
Collapse
Affiliation(s)
- Lianyu Chen
- 1] Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China [2] Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jie Fan
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Hao Chen
- 1] Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China [2] Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhiqiang Meng
- 1] Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China [2] Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhen Chen
- 1] Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China [2] Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Peng Wang
- 1] Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China [2] Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Luming Liu
- 1] Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China [2] Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
37
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
38
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
39
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
40
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
41
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
42
|
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med 2014. [DOI: 10.1084/jem.20140692 order by 1-- dyrj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
43
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
44
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
45
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
46
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
47
|
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med 2014. [DOI: 10.1084/jem.20140692 order by 1#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
48
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
49
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
50
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|