1
|
Zakaria SS, Hanafy SM. Unraveling the Beneficial Role of Resveratrol in Fructose-Induced Non-Alcoholic Steatohepatitis with a Focus on the AMPK/Nrf2 Signaling Axis. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:139. [PMID: 39859121 PMCID: PMC11767180 DOI: 10.3390/medicina61010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Background and Objectives: High fructose intake is associated with non-alcoholic fatty liver disease (NAFLD), a chronic liver disease that is on the rise worldwide. New alternatives for treatment, such as bioactive phytochemicals, are needed. The aim of this study was to investigate the beneficial role of resveratrol in treating non-alcoholic steatohepatitis (NASH). Materials and Methods: Sixty male albino rats were allocated to three groups: group I, the normal control group; group II, the fructose-enriched diet group (FED), which was fed a 70% fructose diet for six weeks to induce NASH; and group III, the resveratrol-FED group (RES + FED), which was given the same FED diet plus an oral dose of 70 mg/kg resveratrol (RES) every day for an additional six weeks. We performed histological evaluations and assessed blood lipids and liver enzymes to study resveratrol's impact on NASH. Quantitative real-time PCR was used to assess the mRNA expression of nuclear factor E2-related factor 2 (Nrf2) in the liver samples. ELISA was used to measure Beclin 1, AMPK, IL-6, and the DNA-binding activity of Nrf2. Oxidative stress indicators, including GSH, SOD, and MDA, were evaluated spectrophotometrically. Results: Resveratrol effectively alleviated the biochemical and histopathological abnormalities associated with NASH, improving autophagy by raising Beclin 1 levels while reducing inflammation by decreasing IL-6 levels. Furthermore, resveratrol restored the liver architecture and the oxidative balance, as evidenced by the decreased MDA levels and improved antioxidant status via elevated GSH and SOD activities, as well as the activation of the AMPK/Nrf2 signaling axis. Conclusions: This study specifically examines resveratrol's therapeutic effects in a high-fructose diet-induced NASH model, focusing on the AMPK/Nrf2 signaling pathway to address oxidative stress and autophagy, providing novel insights into its molecular mechanism of action. Resveratrol reduces NASH by boosting autophagy and activating the AMPK/Nrf2 pathway. These findings underscore the potential of resveratrol as a promising therapeutic agent that can support treatment alongside conventional medications in the management of non-alcoholic steatohepatitis (NASH).
Collapse
Affiliation(s)
- Soha S. Zakaria
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia
| | - Safaa M. Hanafy
- Department of Anatomy and Physiology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317, Saudi Arabia;
| |
Collapse
|
2
|
Ezhilarasan D, Langeswaran K. Hepatocellular Interactions of Potential Nutraceuticals in the Management of Inflammatory NAFLD. Cell Biochem Funct 2024; 42:e4112. [PMID: 39238138 DOI: 10.1002/cbf.4112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/17/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Numerous studies highlight the potential of natural antioxidants, such as those found in foods and plants, to prevent or treat nonalcoholic fatty liver disease (NAFLD). Inflammation is a key factor in the progression from high-fat diet-induced NAFLD to nonalcoholic steatohepatitis (NASH). Injured liver cells and immune cells release inflammatory cytokines, activating hepatic stellate cells. These cells acquire a profibrogenic phenotype, leading to extracellular matrix accumulation and fibrosis. Persistent fibrosis can progress to cirrhosis. Fatty infiltration, oxidative stress, and inflammation exacerbate fatty liver diseases. Thus, many plant-derived antioxidants, like silymarin, silibinin, curcumin, resveratrol, berberine, and quercetin, have been extensively studied in experimental models and clinical patients with NAFLD. Experimentally, these compounds have shown beneficial effects in reducing lipid accumulation, oxidative stress, and inflammatory markers by modulating the ERK, NF-κB, AMPKα, and PPARγ pathways. They also help decrease metabolic endotoxemia, intestinal permeability, and gut inflammation. Clinically, silymarin and silibinin have been found to reduce transaminase levels, while resveratrol and curcumin help alleviate inflammation in NAFLD patients. However, these phytocompounds exhibit poor water solubility, leading to low oral bioavailability and hindering their biological efficacy. Additionally, inconclusive clinical results highlight the need for further trials with larger populations, longer durations, and standardized protocols.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Hepatology and Molecular Medicine Lab, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Kulanthaivel Langeswaran
- Department of Biomedical Science, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
3
|
Wang F, Neumann D, Kapsokalyvas D, Hoes MF, Schianchi F, Glatz JFC, Nabben M, Luiken JJFP. Specific Compounds Derived from Traditional Chinese Medicine Ameliorate Lipid-Induced Contractile Dysfunction in Cardiomyocytes. Int J Mol Sci 2024; 25:8131. [PMID: 39125700 PMCID: PMC11311577 DOI: 10.3390/ijms25158131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic lipid overconsumption, associated with the Western diet, causes excessive cardiac lipid accumulation, insulin resistance, and contractile dysfunction, altogether termed lipotoxic cardiomyopathy (LCM). Existing treatments for LCM are limited. Traditional Chinese Medicine (TCM) has been shown as beneficial in diabetes and its complications. The following compounds-Resveratrol, Quercetin, Berberine, Baicalein, and Isorhamnetin-derived from TCM and often used to treat type 2 diabetes. However, virtually nothing is known about their effects in the lipid-overexposed heart. Lipid-induced insulin resistance was generated in HL-1 cardiomyocytes and adult rat cardiomyocytes by 24 h exposure to high palmitate. Upon simultaneous treatment with each of the TCM compounds, we measured myocellular lipid accumulation, insulin-stimulated fatty acid and glucose uptake, phosphorylation levels of AKT and ERK1/2, plasma membrane appearance of GLUT4 and CD36, and expression of oxidative stress-/inflammation-related genes and contractility. In lipid-overloaded cardiomyocytes, all the selected TCM compounds prevented lipid accumulation. These compounds also preserved insulin-stimulated CD36 and GLUT4 translocation and insulin-stimulated glucose uptake in an Akt-independent manner. Moreover, all the TCM compounds prevented and restored lipid-induced contractile dysfunction. Finally, some (not all) of the TCM compounds inhibited oxidative stress-related SIRT3 expression, and others reduced inflammatory TNFα expression. Their ability to restore CD36 trafficking makes all these TCM compounds attractive natural supplements for LCM treatment.
Collapse
Affiliation(s)
- Fang Wang
- Department of Genetics & Cell Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (F.W.); (D.K.); (F.S.); (J.J.F.P.L.)
- Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Science, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.N.); (M.F.H.)
| | - Dietbert Neumann
- Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Science, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.N.); (M.F.H.)
- Department of Pathology, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Dimitris Kapsokalyvas
- Department of Genetics & Cell Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (F.W.); (D.K.); (F.S.); (J.J.F.P.L.)
- Interdisciplinary Centre for Clinical Research IZKF, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Martijn F. Hoes
- Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Science, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.N.); (M.F.H.)
- Department of Cardiology, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands;
| | - Francesco Schianchi
- Department of Genetics & Cell Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (F.W.); (D.K.); (F.S.); (J.J.F.P.L.)
| | - Jan F. C. Glatz
- Department of Clinical Genetics, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands;
| | - Miranda Nabben
- Department of Genetics & Cell Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (F.W.); (D.K.); (F.S.); (J.J.F.P.L.)
- Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Science, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.N.); (M.F.H.)
- Department of Cardiology, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands;
| | - Joost J. F. P. Luiken
- Department of Genetics & Cell Biology, Maastricht University, 6229 ER Maastricht, The Netherlands; (F.W.); (D.K.); (F.S.); (J.J.F.P.L.)
- Department of Clinical Genetics, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands;
| |
Collapse
|
4
|
Mohammadian K, Fakhar F, Keramat S, Stanek A. The Role of Antioxidants in the Treatment of Metabolic Dysfunction-Associated Fatty Liver Disease: A Systematic Review. Antioxidants (Basel) 2024; 13:797. [PMID: 39061866 PMCID: PMC11273623 DOI: 10.3390/antiox13070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global public health problem that causes liver-related morbidity and mortality. It is also an independent risk factor for non-communicable diseases. In 2020, a proposal was made to refer to it as "metabolic dysfunction-associated fatty liver disease (MAFLD)", with concise diagnostic criteria. Given its widespread occurrence, its treatment is crucial. Increased levels of oxidative stress cause this disease. This review aims to evaluate various studies on antioxidant therapies for patients with MAFLD. A comprehensive search for relevant research was conducted on the PubMed, SCOPUS, and ScienceDirect databases, resulting in the identification of 87 studies that met the inclusion criteria. In total, 31.1% of human studies used natural antioxidants, 53.3% used synthetic antioxidants, and 15.5% used both natural and synthetic antioxidants. In human-based studies, natural antioxidants showed 100% efficacy in the treatment of MAFLD, while synthetic antioxidants showed effective results in only 91% of the investigations. In animal-based research, natural antioxidants were fully effective in the treatment of MAFLD, while synthetic antioxidants demonstrated effectiveness in only 87.8% of the evaluations. In conclusion, antioxidants in their natural form are more helpful for patients with MAFLD, and preserving the correct balance of pro-oxidants and antioxidants is a useful way to monitor antioxidant treatment.
Collapse
Affiliation(s)
- Kiana Mohammadian
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran; (K.M.); (F.F.)
| | - Fatemeh Fakhar
- Division of Hematology and Blood Banking, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz 71348, Iran; (K.M.); (F.F.)
| | - Shayan Keramat
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy;
- Support Association of Patients of Buerger’s Disease, Buerger’s Disease NGO, Mashhad 9183785195, Iran
| | - Agata Stanek
- VAS-European Independent Foundation in Angiology/Vascular Medicine, Via GB Grassi 74, 20157 Milan, Italy;
- Department and Clinic of Internal Medicine, Angiology, and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-902 Bytom, Poland
| |
Collapse
|
5
|
Gong P, Long H, Guo Y, Wang Z, Yao W, Wang J, Yang W, Li N, Xie J, Chen F. Chinese herbal medicines: The modulator of nonalcoholic fatty liver disease targeting oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116927. [PMID: 37532073 DOI: 10.1016/j.jep.2023.116927] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants are a natural treasure trove; their secondary metabolites participate in several pharmacological processes, making them a crucial component in the synthesis of novel pharmaceuticals and serving as a reserve resource foundation in this process. Nonalcoholic fatty liver disease (NAFLD) is associated with the risk of progression to hepatitis and liver cancer. The "Treatise on Febrile Diseases," "Compendium of Materia Medica," and "Thousand Golden Prescriptions" have listed herbal remedies to treat liver diseases. AIM OF THE REVIEW Chinese herbal medicines have been widely used for the prevention and treatment of NAFLD owing to their efficacy and low side effects. The production of reactive oxygen species (ROS) during NAFLD, and the impact and potential mechanism of ROS on the pathogenesis of NAFLD are discussed in this review. Furthermore, common foods and herbs that can be used to prevent NAFLD, as well as the structure-activity relationships and potential mechanisms, are discussed. METHODS Web of Science, PubMed, CNKI database, Google Scholar, and WanFang database were searched for natural products that have been used to treat or prevent NAFLD in the past five years. The primary search was performed using the following keywords in different combinations in full articles: NAFLD, herb, natural products, medicine, and ROS. More than 400 research papers and review articles were found and analyzed in this review. RESULTS By classifying and discussing the literature, we obtained 86 herbaceous plants, 28 of which were derived from food and 58 from Chinese herbal medicines. The mechanism of NAFLD was proposed through experimental studies on thirteen natural compounds (quercetin, hesperidin, rutin, curcumin, resveratrol, epigallocatechin-3-gallate, salvianolic acid B, paeoniflorin, ginsenoside Rg1, ursolic acid, berberine, honokiol, emodin). The occurrence and progression of NAFLD could be prevented by natural antioxidants through several pathways to prevent ROS accumulation and reduce hepatic cell injuries caused by excessive ROS. CONCLUSION This review summarizes the natural products and routinely used herbs (prescription) in the prevention and treatment of NAFLD. Firstly, the mechanisms by which natural products improve NAFLD through antioxidant pathways are elucidated. Secondly, the potential of traditional Chinese medicine theory in improving NAFLD is discussed, highlighting the safety of food-medicine homology and the broader clinical potential of multi-component formulations in improving NAFLD. Aiming to provide theoretical basis for the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Pin Gong
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Hui Long
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yuxi Guo
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Zhineng Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenbo Yao
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jing Wang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Wenjuan Yang
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Nan Li
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jianwu Xie
- School of Food and Biotechnological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China.
| |
Collapse
|
6
|
Zhang Y, Shi J, Tan C, Liu Y, Xu YJ. Oilomics: An important branch of foodomics dealing with oil science and technology. Food Res Int 2023; 173:113301. [PMID: 37803609 DOI: 10.1016/j.foodres.2023.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 10/08/2023]
Abstract
Oil is one of three nutritious elements. The application of omics techniques in the field of oil science and technology is attracted increasing attention. Oilomics, which emerged as an important branch of foodomics, has been widely used in various aspects of oil science and technology. However, there are currently no articles systematically reviewing the application of oilomics. This paper aims to provide a critical overview of the advantages and value of oilomics technology compared to traditional techniques in various aspects of oil science and technology, including oil nutrition, oil processing, oil quality, safety, and traceability. Moreover, this article intends to review major issues in oilomics and give a comprehensive, critical overview of the current state of the art, future challenges and trends in oilomics, with a view to promoting the optimal application and development of oilomics technology in oil science and technology.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chinping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, 43400 Serdang, Selangor, Malaysia
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
He X, Li Y, Deng X, Xiao X, Zeng J. Integrative evidence construction for resveratrol treatment of nonalcoholic fatty liver disease: preclinical and clinical meta-analyses. Front Pharmacol 2023; 14:1230783. [PMID: 37767399 PMCID: PMC10520779 DOI: 10.3389/fphar.2023.1230783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Background: Resveratrol, a polyphenol found in various plants, is known for its diverse bioactivities and has been explored in relation to nonalcoholic fatty liver disease (NAFLD). However, no high-quality evidence exists regarding its efficacy. Objective: a meta-analysis was conducted to evaluate the potential efficacy of resveratrol in treating nonalcoholic fatty liver disease by analyzing both preclinical studies and clinical trials. Method: PubMed, Embase and Web of Science were searched for the included literature with the criteria for screening. Quantitative synthesis and meta-analyses were performed by STATA 16.0. Results: Twenty-seven studies were included, and the results indicated that resveratrol effectively improved liver function, reduced fatty liver indicators, and affected other indices in preclinical studies. The effective dosage ranged from 50 mg/kg-200 mg/kg, administered over a period of 4-8 weeks. While there were inconsistencies between clinical trials and preclinical research, both study types revealed that resveratrol significantly reduced tumor necrosis factor-α levels, further supporting its protective effect against nonalcoholic fatty liver disease. Additionally, resveratrol alleviated nonalcoholic fatty liver disease primarily via AMPK/Sirt1 and anti-inflammatory signaling pathways. Conclusion: Current meta-analysis could not consistently verify the efficacy of resveratrol in treating nonalcoholic fatty liver disease, but demonstrated the liver-protective effects on nonalcoholic fatty liver disease. The large-sample scale and single region RCTs were further needed to investigate the efficacy.
Collapse
Affiliation(s)
- Xuan He
- Department of Pharmacy, Xindu District Shibantan Street Community Healthcare Center, Chengdu, China
| | - Yubing Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Cao Y, Fang X, Sun M, Zhang Y, Shan M, Lan X, Zhu D, Luo H. Preventive and therapeutic effects of natural products and herbal extracts on nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Phytother Res 2023; 37:3867-3897. [PMID: 37449926 DOI: 10.1002/ptr.7932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common condition that is prevalent in patients who consume little or no alcohol, and is characterized by excessive fat accumulation in the liver. The disease is becoming increasingly common with the rapid economic development of countries. Long-term accumulation of excess fat can lead to NAFLD, which represents a global health problem with no effective therapeutic approach. NAFLD is a complex, multifaceted pathological process that has been the subject of extensive research over the past few decades. Herbal medicines have gained attention as potential therapeutic agents to prevent and treat NAFLD due to their high efficacy and low risk of side effects. Our overview is based on a PubMed and Web of Science database search as of Dec 22 with the keywords: NAFLD/NASH Natural products and NAFLD/NASH Herbal extract. In this review, we evaluate the use of herbal medicines in the treatment of NAFLD. These natural resources have the potential to inform innovative drug research and the development of treatments for NAFLD in the future.
Collapse
Affiliation(s)
- Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mingyang Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Xintian Lan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| | - Haoming Luo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
9
|
Cheng K, Niu J, Zhang J, Qiao Y, Dong G, Guo R, Zheng X, Song Z, Huang J, Wang J, Zhang Y. Hepatoprotective effects of chlorogenic acid on mice exposed to aflatoxin B1: Modulation of oxidative stress and inflammation. Toxicon 2023; 231:107177. [PMID: 37276986 DOI: 10.1016/j.toxicon.2023.107177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Aflatoxin B1 (AFB1) is widely distributed in crops and feeds, and ingestion of AFB1-contaminated crops is harmful to human/animal health. This study was designed to investigate hepatoprotective effects of chlorogenic acid (CGA), due to its excellent antioxidant and anti-inflammatory activities, on mice exposed to AFB1. Male Kunming mice were orally fed with CGA prior to daily AFB1 exposure for 18 consecutive days. The results showed that CGA treatment reduced the serum activity of aspartate aminotransferase, hepatic malondialdehyde content and pro-inflammatory cytokines synthesis, prevented histopathological changes of the liver, increased hepatic glutathione level, catalase activity and IL10 mRNA expression in mice subjected to AFB1. Taken together, CGA exerted the protective effect on AFB1-induced hepatic damage by modulating redox status and inflammation, suggesting that CGA may be a candidate compound for the treatment of aflatoxicosis.
Collapse
Affiliation(s)
- Kang Cheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China.
| | - Jingyi Niu
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jinyan Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yining Qiao
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Guorun Dong
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Rui Guo
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Xiaotong Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Zhihua Song
- School of International Education, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jin Huang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Jinrong Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China
| | - Yong Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, Henan, People's Republic of China.
| |
Collapse
|
10
|
Mosavi SS, Rabizadeh S, Yadegar A, Seifouri S, Mohammadi F, Qahremani R, Salehi SS, Rajab A, Esteghamati A, Nakhjavani M. Therapeutic effects of resveratrol and Omega-3 in mice atherosclerosis: focus on histopathological changes. BMC Complement Med Ther 2023; 23:81. [PMID: 36932392 PMCID: PMC10024363 DOI: 10.1186/s12906-023-03899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Resveratrol and omega-3 have been shown to prevent atherosclerosis. However, histopathological changes and their comparison have not been studied well. This study investigated the therapeutic effects of resveratrol and omega-3 in experimental atherosclerosis of mice. METHODS We divided sixty 6-week-old male C57BL/6 mice into six groups and followed for 10 weeks: (1) standard diet, (2) atherogenic diet, (3) atherogenic diet along with resveratrol from the start of the sixth week, (4) atherogenic diet along with omega-3 from the start of the sixth week, (5) standard diet along with resveratrol from the start of the sixth week, (6) standard diet along with omega-3 from the start of the sixth week. RESULTS The mice fed on an atherogenic diet had a larger fat area and a thicker aortic wall thickness than mice fed on a standard diet. The use of omega-3 and resveratrol in the mice with an atherogenic diet resulted in a significantly reduced fat area (p-value = 0.003), and resveratrol had a significantly higher effect. Omega-3 or resveratrol induced a significant reduction in aortic wall thickness in mice on an atherogenic diet, and there was no significant difference between them. Among the mice with a standard diet, this study did not observe any significant changes in the fat area or the aortic wall thickness with the consumption of omega-3 or resveratrol. CONCLUSIONS Resveratrol and omega-3 had a regressive and therapeutic role in atherosclerosis, with a more significant effect in favor of resveratrol.
Collapse
Affiliation(s)
- Shamsi Sadat Mosavi
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Soghra Rabizadeh
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Amirhossein Yadegar
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Sara Seifouri
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Fatemeh Mohammadi
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Reihane Qahremani
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Salome Sadat Salehi
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Armin Rajab
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Alireza Esteghamati
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| | - Manouchehr Nakhjavani
- grid.414574.70000 0004 0369 3463Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Imam Khomeini Hospital Complex, Tohid Squre, P.O Box: 13145-784, Tehran, Iran
| |
Collapse
|
11
|
Plants-based medicine implication in the evolution of chronic liver diseases. Biomed Pharmacother 2023; 158:114207. [PMID: 36916432 DOI: 10.1016/j.biopha.2022.114207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Hepatic disorders are considered major health problems, due to their high incidence, increased risk of chronicling or death and the costs involved in therapies. A large number of patients with chronic liver diseases use herbal medicines and dietary supplements in parallel with allopathic treatment. The current review provides a thorough analysis of the studies conducted on the most important species of medicinal plants used in this disease, bioactive compounds and on the activity of herbal medicines in the evolution of chronic liver diseases. However, a negative aspect is that there is frequently a lack of comprehensive data on the progression of the illness and the living standards of patients who are affected when evaluating the effects of these phytocomponents on the evolution of chronic liver disease, the patients' health, and their quality of life. It is essential to take this impairment into account when evaluating the long-term effects of herbal treatments on the health of individuals who suffer from liver illness. Bioactive phytocomponents may be a suitable source for the development of novel medications due to the correlation between traditional uses and medical advances. Additional high-quality preclinical examinations utilizing cutting-edge approaches are needed to assess safety and effectiveness and to detect, categorize, and standardize the active substances and their formulations for the most suitable therapeutic management of liver illnesses.
Collapse
|
12
|
Ciric D, Kravic-Stevovic T, Bumbasirevic V, Petricevic S, Jovanovic S, Trajkovic V, Martinovic T. Effects of metformin and simvastatin treatment on ultrastructural features of liver macrophages in HFD mice. Ultrastruct Pathol 2023; 47:1-11. [PMID: 36520527 DOI: 10.1080/01913123.2022.2156639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Type 2 diabetes is a major health burden to the society. Macrophages and liver inflammation emerged as important factors in its development. We investigated ultrastructural changes in the liver, with a special emphasis on macrophages in high fat diet (HFD) fed C57BL/6 J mice treated with metformin or simvastatin, two drugs that are used frequently in diabetes. Both metformin and simvastatin reduced the liver damage in HFD fed animals, manifested as the prevention of nonalcoholic steatohepatitis development and reduced activation and number of macrophages in the liver, as well as the percentage of these cells with lipid droplets in the cytoplasm compared to untreated HFD animals. In contrast with untreated HFD-fed animals, lipid droplets were not observed in lysosomes of macrophages in HFD animals treated with metformin and simvastatin. These findings provide new insight into the effects of metformin and simvastatin on the liver in this experimental model of type 2 diabetes and provide further rationale for implementation of statins in the therapeutic regimens in this disease.
Collapse
Affiliation(s)
- Darko Ciric
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Kravic-Stevovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Bumbasirevic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Department of Medical Science Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sasa Petricevic
- Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sofija Jovanovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tamara Martinovic
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Lin TY, Cheng AC, Chuang HC, Yao JY. Resveratrol Ameliorates Hyperglycemic Cultured Cells and Inhibits the Rheb/mTOR Interaction. Nat Prod Commun 2023; 18:1934578X2211473. [DOI: 10.1177/1934578x221147376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2024] Open
Abstract
Resveratrol (RSV) is a natural polyphenol with anti-diabetic effects and has been reported to ameliorate diabetes-induced metabolic disorders through regulating activities of the mTOR signaling pathway. To delineate the effects of RSV treatment on the mTOR signaling pathway, hyperglycemic HepG2 cells were used for the following experiments. Cellular glucose uptake assays showed that high-glucose levels in the culture medium decelerate the glucose uptake of cultured cells. Co-immunoprecipitation showed that high-glucose culture promotes the interaction between mTOR and Rheb-GTP, which is the active form of Rheb. RSV treatment of the cells suppressed this interaction and accelerated the glucose uptake. Western blotting revealed that RSV down-regulated members of the mTOR signaling pathway, namely SREBP1, p70, and S6. Additionally, RSV ameliorated the metabolic disorders, including the decreased levels of AMPK, glycogen synthase, and glucose-6-phosphatase, in hyperglycemic HepG2 cells. These results indicate that RSV inhibits the Rheb/mTOR interaction and ameliorates metabolic disorders associated with high-glucose levels.
Collapse
Affiliation(s)
- Tzu-Yung Lin
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Ann-Chang Cheng
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Hsiang-Chieh Chuang
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Jeng-Yuan Yao
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
- Department of Preventive Medicine, Public Health School, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
14
|
Guo J, Wang P, Cui Y, Hu X, Chen F, Ma C. Alleviation Effects of Microbial Metabolites from Resveratrol on Non-Alcoholic Fatty Liver Disease. Foods 2022; 12:foods12010094. [PMID: 36613310 PMCID: PMC9818778 DOI: 10.3390/foods12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Resveratrol (RSV), a polyphenolic stilbene, has been widely studied for its protective effects against non-alcoholic fatty liver disease (NAFLD) by modulating intestinal microbiota. The microbial metabolites after RSV supplement would contribute to the bioeffects of RSV, while their impacts on NAFLD were unclear. Therefore, this study aimed to investigate the beneficial effects of the main microbial metabolites from RSV on lipid metabolism by combining in vitro and in vivo models. The mice were fed a high-fat diet and injected with RSV, 3-hydroxyphenyl propionic acid (3-HPP), and 4-HPP for 13 weeks (n = 6). Body weight, serum parameters, histological analysis, and gene expression involved in lipid metabolism were quantified. Our results suggested that 100 μM of 3-HPP and 4-HPP inhibited lipid accumulation more significantly than parent RSV in an oleic acid-induced HepG2 cell line. Furthermore, 3-HPP, 4-HPP, and RSV effectively reduced liver weight and body weight, improved hepatic steatosis, and alleviated systemic inflammation in NAFLD mice. In addition, the results of quantitative real-time PCR showed that 3-HPP and 4-HPP altered the expression of cholesterol influx and efflux genes to a stronger extent than RSV. These results indicate that 3-HPP and 4-HPP are effective in regulating hepatic lipid metabolism.
Collapse
Affiliation(s)
- Jingling Guo
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetable Processing, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Pan Wang
- Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Institute of Agri-Food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yifan Cui
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetable Processing, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetable Processing, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetable Processing, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chen Ma
- National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetable Processing, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Correspondence: ; Tel.: +86-158-4777-3782
| |
Collapse
|
15
|
Shao G, Liu Y, Lu L, Zhang G, Zhou W, Wu T, Wang L, Xu H, Ji G. The Pathogenesis of HCC Driven by NASH and the Preventive and Therapeutic Effects of Natural Products. Front Pharmacol 2022; 13:944088. [PMID: 35873545 PMCID: PMC9301043 DOI: 10.3389/fphar.2022.944088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a clinical syndrome with pathological changes that are similar to those of alcoholic hepatitis without a history of excessive alcohol consumption. It is a specific form of nonalcoholic fatty liver disease (NAFLD) that is characterized by hepatocyte inflammation based on hepatocellular steatosis. Further exacerbation of NASH can lead to cirrhosis, which may then progress to hepatocellular carcinoma (HCC). There is a lack of specific and effective treatments for NASH and NASH-driven HCC, and the mechanisms of the progression of NASH to HCC are unclear. Therefore, there is a need to understand the pathogenesis and progression of these diseases to identify new therapeutic approaches. Currently, an increasing number of studies are focusing on the utility of natural products in NASH, which is likely to be a promising prospect for NASH. This paper reviews the possible mechanisms of the pathogenesis and progression of NASH and NASH-derived HCC, as well as the potential therapeutic role of natural products in NASH and NASH-derived HCC.
Collapse
Affiliation(s)
- Gaoxuan Shao
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangtao Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanchen Xu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Shu L, Hou X, Song G, Wang C, Ma H. Comparative analysis of long non‑coding RNA expression profiles induced by resveratrol and metformin treatment for hepatic insulin resistance. Int J Mol Med 2021; 48:206. [PMID: 34581420 PMCID: PMC8480386 DOI: 10.3892/ijmm.2021.5039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Resveratrol (RSV) and metformin (MET) play a role in the treatment of diabetes; however, the mechanisms through which they mediate insulin resistance by regulating long non‑coding RNAs (lncRNAs) remain unknown. The present study was conducted to determine whether RSV and MET can improve insulin resistance in the livers of high‑fat diet (HFD)‑fed mice by regulating lncRNAs. C57BL/6J mice were fed a HFD for 8 weeks to establish a model of insulin resistance. The mice were subsequently treated with RSV or MET for 8 weeks and liver tissue samples were then collected. High‑throughput sequencing was utilized to analyze mouse liver tissue samples to obtain differential lncRNA expression profiles. RSV or MET both reduced the blood glucose levels, the insulin index and the area under the curve in HFD‑fed mice. Treatment also improved liver structure and decreased lipid deposition in liver tissues, as shown by H&E and Oil Red O staining. Compared with the MET group, there were 55 lncRNAs and 19 mRNAs with a differential expression. In total, eight lncRNAs were randomly selected and evaluated by reverse transcription‑quantitative PCR (RT‑qPCR). The results of seven lncRNAs corresponded to those of the sequencing analysis. Pathway analysis revealed that the PI3K/Akt signaling pathway had the highest enrichment score. In addition, the results of western blot analysis and RT‑qPCR revealed that the expression levels of forkhead box O1, glucose‑6‑phosphatase catalytic subunit 1 and phosphoenolpyruvate carboxykinase 1 in the RSV and MET groups were significantly decreased compared with those in the HFD group. NONMMUT034936.2 and G6PC target genes exhibited similar expression patterns, indicating that RSV and MET may affect the PI3K/Akt signaling pathway through NONMMUT034936.2 to attenuate insulin resistance. On the whole, the present study provides novel biomarkers or contemporary perspectives for the use of RSV and MET in the treatment of insulin resistance and diabetes.
Collapse
Affiliation(s)
- Linyi Shu
- Research Center for Clinical Medical Sciences, Shijiazhuang Obstetrics and Gynecology Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaoyu Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Huijuan Ma
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
17
|
Caetano VDS, de Andrade RSB, França LFDC, Pessoa LDS, Rodrigues AA, Alves EHP, Lenardo DD, Nascimento HMS, Ayala KNR, Carvalho ADS, Brito TV, Barbosa ALDR, Vasconcelos ACCG, Vasconcelos DFP. Food restriction reduces hepatic alterations associated with experimental periodontitis. J Periodontol 2021; 93:156-165. [PMID: 33856704 DOI: 10.1002/jper.20-0772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/10/2021] [Accepted: 04/03/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Periodontitis is a chronic inflammatory and multifactorial disease that affects the periodontal structures and can cause alterations in the hepatic tissue. The aim of the present study was to evaluate whether a diet with food restriction can decrease oral and liver alterations associated with ligature-induced periodontitis. METHODS Twenty-four female Wistar rats were used in this study, randomized into three groups (n = 8 for each group): control (regular food); periodontitis (regular food + periodontitis induced with ligatures); and food restriction (diet with food restriction and periodontitis induction). The following periodontium parameters were analyzed tooth mobility (TM), probing pocket depth (PPD), gingival bleeding index (GBI), and alveolar bone height (ABH). In the liver, the levels of oxidative stress markers-malondialdehyde (MDA), glutathione (GSH), total cholesterol, and levels of myeloperoxidase (MPO) activity were measured. Liver samples were analyzed for histopathological score. In the blood tissue, the levels of enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose, total cholesterol, and the high-density lipoprotein (HDL) were also evaluated. RESULTS The animals that received a diet with food restriction + periodontitis showed a decrease in hepatic histopathological score (P < 0.05) when compared with the periodontitis group, the same for glucose, total cholesterol, ALT, AST, and ABH data. The group with food restriction + periodontitis showed a decrease in the histopathological liver score (P < 0.05) compared with the group with periodontitis. CONCLUSION This study revealed that food restriction reduced oral damages, as well as hepatic, blood and alveolar bone alterations associated with ligature-induced periodontitis in rats.
Collapse
Affiliation(s)
- Vinícius da Silva Caetano
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Raissa Silva Bacelar de Andrade
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Luiz Felipe de Carvalho França
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Larissa Dos Santos Pessoa
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Ayane Araújo Rodrigues
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Even Herlany Pereira Alves
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, PI, Brazil
| | - David Di Lenardo
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Hélio Mateus Silva Nascimento
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Karen Neisman Rodriguez Ayala
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, PI, Brazil
| | - André Dos Santos Carvalho
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Tarcísio Vieira Brito
- Laboratory of Experimental Physiopharmacology (LAFFEX), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, PI, Brazil
| | - André Luiz Dos Reis Barbosa
- Laboratory of Experimental Physiopharmacology (LAFFEX), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, PI, Brazil
| | - Any Carolina Cardoso Guimarães Vasconcelos
- Laboratory of Histological Analysis and Preparation (LAPHis), Federal University of the Parnaiba Delta (UFDPar), Parnaíba, PI, Brazil.,Medicine School, Education Institute of the Parnaiba Valley (IESVAP - Afya Educacional), Parnaíba, PI, Brazil
| | | |
Collapse
|
18
|
Subramanian G, Shanmugamprema D, Subramani R, Muthuswamy K, Ponnusamy V, Tankay K, Velusamy T, Krishnan V, Subramaniam S. Anti-Obesity Effect of T. Chebula Fruit Extract on High Fat Diet Induced Obese Mice: A Possible Alternative Therapy. Mol Nutr Food Res 2021; 65:e2001224. [PMID: 33754444 DOI: 10.1002/mnfr.202001224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Indexed: 12/23/2022]
Abstract
Occurrence of obesity and its associated metabolic disorders continues to escalate. The present study evaluates the anti-obesity effects of ethanolic fruit extract of Terminalia chebula (EETC) on high fat diet induced obese mice. The bioactive compounds present in the EETC is evaluated by Fourier-transform infrared (FT-IR), Gas chromatography-mass spectrometry (GC-MS), and Liquid chromatography-mass spectrometry (LC-MS) analysis. The effects of EETC on energy intake, glucose tolerance, and various biochemical parameters were analyzed using laboratory mice. Relative gene expression of Fatty acid synthase (FAS), Peroxisome proliferator-activated receptors α (PPARα), Carnitine palmitoyltransferase-1 (CPT-1), Tumor necrosis factor alpha (TNF-α) as well as Interleukin 6 (IL-6) were analyzed in liver and adipose tissues. The findings reveal the hypolipidemic and anti-obesity potential of EETC on high fat fed obese mice. EETC exerts its anti-obesity effects by suppressing lipogenesis through reduction in lipogenic enzyme (FAS) expression, increased fatty acid oxidation via PPARα and CPT-1 and by triggering the anti-inflammatory responses. To our knowledge, this is the first report of the effect of EETC on PPARα and CPT-1 in in vivo.
Collapse
Affiliation(s)
- Gowtham Subramanian
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Deepankumar Shanmugamprema
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Ramya Subramani
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Vinithra Ponnusamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Kalpana Tankay
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Thirunavukkarasu Velusamy
- Department of Biotechnology, School of Biotechnology and Genetic Engineering, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
19
|
The Role of Resveratrol in Liver Disease: A Comprehensive Review from In Vitro to Clinical Trials. Nutrients 2021; 13:nu13030933. [PMID: 33805795 PMCID: PMC7999728 DOI: 10.3390/nu13030933] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Many studies have shown that resveratrol has a lot of therapeutic effects on liver disorders. Its administration can significantly increase the survival rate after liver transplantation, reduce fat deposition and ischemia-induced necrosis and apoptosis in Wistar rats. Resveratrol can provide Liver protection against chemical, cholestatic, and alcohol-mediated damage. It can improve glucose metabolism and lipid profile, reduce liver fibrosis, and steatosis. Additionally, it is capable of altering the fatty acid composition of the liver cells. Resveratrol may be a potential treatment option for the management of non-alcoholic fatty liver disease (NAFLD) due to its anti-inflammatory, antioxidant, and calorie-restricting effects. There are also studies that have evaluated the effect of resveratrol on lipid and liver enzyme profiles among patients with metabolic syndrome (MetS) and related disorders. Based on the extent of liver disease worldwide and the need to find new treatment possibilities, this review critically examines current in vitro and in vivo preclinical studies and human clinical studies related to liver protection.
Collapse
|
20
|
Zhou H, Ma C, Wang C, Gong L, Zhang Y, Li Y. Research progress in use of traditional Chinese medicine monomer for treatment of non-alcoholic fatty liver disease. Eur J Pharmacol 2021; 898:173976. [PMID: 33639194 DOI: 10.1016/j.ejphar.2021.173976] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/06/2023]
Abstract
With the improvement of people's living standards and the change of eating habits, non-alcoholic fatty liver disease (NAFLD) has gradually become one of the most common chronic liver diseases in the world. However, there are no effective drugs for the treatment of NAFLD. Therefore, it is urgent to find safe, efficient, and economical anti-NAFLD drugs. Compared with western medicines that possess fast lipid-lowering effect, traditional Chinese medicines (TCM) have attracted increasing attention for the treatment of NAFLD due to their unique advantages such as multi-targets and multi-channel mechanisms of action. TCM monomers have been proved to treat NAFLD through regulating various pathways, including inflammation, lipid production, insulin sensitivity, mitochondrial dysfunction, autophagy, and intestinal microbiota. In particular, peroxisome proliferator-activated receptor α (PPAR-α), sterol regulatory element-binding protein 1c (SREBP-1c), nuclear transcription factor kappa (NF-κB), phosphoinositide 3-kinase (PI3K), sirtuin1 (SIRT1), AMP-activated protein kinase (AMPK), p53 and nuclear factor erythroid 2-related factor 2 (Nrf2) are considered as important molecular targets for ameliorating NAFLD by TCM monomers. Therefore, by searching PubMed, Web of Science and SciFinder databases, this paper updates and summarizes the experimental and clinical evidence of TCM monomers for the treatment of NAFLD in the past six years (2015-2020), thus providing thoughts and prospects for further exploring the pathogenesis of NAFLD and TCM monomer therapies.
Collapse
Affiliation(s)
- Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
21
|
Resveratrol confers neuroprotection against high-fat diet in a mouse model of Alzheimer's disease via modulation of proteolytic mechanisms. J Nutr Biochem 2020; 89:108569. [PMID: 33321185 DOI: 10.1016/j.jnutbio.2020.108569] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/15/2020] [Accepted: 11/24/2020] [Indexed: 12/23/2022]
Abstract
Cumulative evidence indicates that excessive consumption of calories from saturated fat contributes to the development of Alzheimer's disease (AD). Here, we assess the triggering and progression of AD pathology induced by a high-fat diet (HFD), and the effects of resveratrol, a polyphenol found in common dietary sources with pleiotropic neuroprotective activities. Over 16 weeks, male wild type (WT) and AD transgenic 5XFAD mice were fed a control diet, HFD (60% kcal from fat), or HFD supplemented with 0.1% resveratrol. Resveratrol protected against HFD-induced memory loss in WT mice and prevented memory loss in 5XFAD mice. Resveratrol also reduced the amyloid burden aggravated by HFD in 5XFAD, and protected against HFD-induced tau pathology in both WT and 5XFAD strains. At the mechanistic level, resveratrol inhibited the HFD-increased amyloidogenic processing of the amyloid precursor protein in both strains; it also restored abnormal high levels in the proteolytic activity of the ubiquitin-proteasome system induced by HFD, suggesting the presence of a compensatory mechanism to counteract the accumulation of aberrant proteins. Thus, our data suggest that resveratrol can correct the harmful effects of HFD in the brain and may be a potential therapeutic agent against obesity-related disorders and AD pathology.
Collapse
|
22
|
Cheng K, Jia P, Ji S, Song Z, Zhang H, Zhang L, Wang T. Improvement of the hepatic lipid status in intrauterine growth retarded pigs by resveratrol is related to the inhibition of mitochondrial dysfunction, oxidative stress and inflammation. Food Funct 2020; 12:278-290. [PMID: 33300526 DOI: 10.1039/d0fo01459a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction, oxidative stress and inflammation are crucial contributors to liver damage and nonalcoholic fatty liver disease (NAFLD) in adulthood in offspring affected by intrauterine growth retardation (IUGR). Resveratrol (RSV) has been reported to treat and/or prevent hepatic diseases under various pathological conditions. However, the therapeutic and/or preventive effects of RSV on hepatic abnormality in IUGR adults have not been investigated until now. The effects of IUGR and RSV on the hepatic metabolic status, mitochondrial function, redox homeostasis and inflammation in pigs in adulthood were investigated. A total of 36 pairs of IUGR and normal birth weight piglets were orally fed with 80 mg RSV per kg body weight per d or vehicle (0.5% carboxymethylcellulose) for 7-21 d after birth. And then the offspring were fed with a basal diet supplemented with 300 mg RSV per kg feed or a basal diet from weaning to slaughter at 150 d. The plasma and liver samples were collected for subsequent analysis. RSV exerted beneficial effects on hepatic injury and metabolic alterations in IUGR pigs, which may be due to improved mitochondrial function and fatty acid oxidation by intensified mitochondrial biogenesis, enhanced antioxidant levels such as glutathione reductase and total superoxide dismutase activities, increased interleukin 10 gene expression and repolarization of macrophages. RSV alleviated hepatic lipid accumulation in IUGR pigs by improving mitochondrial function, redox status and inflammation, implying that it is a potential candidate for further development as an effective clinical treatment for NAFLD associated with IUGR.
Collapse
Affiliation(s)
- Kang Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Peilu Jia
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Shuli Ji
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Zhihua Song
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
23
|
Iqubal A, Syed MA, Ali J, Najmi AK, Haque MM, Haque SE. Nerolidol protects the liver against cyclophosphamide-induced hepatic inflammation, apoptosis, and fibrosis via modulation of Nrf2, NF-κB p65, and caspase-3 signaling molecules in Swiss albino mice. Biofactors 2020; 46:963-973. [PMID: 32941697 DOI: 10.1002/biof.1679] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Cyclophosphamide (CP)-induced hepatotoxic manifestations are major concern for patients undergoing chemotherapy, which often limit its therapeutic utility. Nerolidol (NER) is a natural bioactive molecule having potent gonadoprotective, neuroprotective, and cardioprotective properties but has not been explored for its hepatoprotective effect and underlying mechanism. Therefore, in the current study hepatoprotective potential of nerolidol was studied in CP-induced hepatic oxidative stress, inflammation, apoptosis, and fibrosis via modulation of Nrf2, NF-κB p65, caspase-3, TGF-β1, and associated biochemical status in Swiss albino mice. NER (200, 400 mg/kg, p.o) and fenofibrate (FF) 80 mg/kg, p.o. were administered from first to fourteenth day and CP was administered at the dose of 200 mg/kg, i.p on seventh day. On fifteenth day, animals were sacrificed and estimation of oxidative stress, inflammation, apoptosis, fibrosis, histopathology (H E and MT staining), and immunohistochemistry was performed in the liver tissue. Administration of NER effectively normalized the elevated level of hepatic injury markers (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase), marker of oxidative stress that is, malondialdehyde, inflammatory cytokines (TNF-α, IL-6, IL-1β, and IL-10), NF-κB p65, apoptotic marker (cleaved caspase 3) and increased the level of Nrf2 and antioxidant enzymes (superoxide dismutase, CAT, and glutathione). Treatment with NER further reduced the structural damage of hepatocytes and markers of hepatic fibrosis such as TGF-β1, hyaluronic acid, 4-hydroxyproline and collagen-rich stained area, estimated by MT staining. Findings of the current study showed that nerolidol exhibited potent antioxidant, anti-inflammatory, anti-apoptotic, and anti-fibrotic potential and thus acted as hepatoprotective agent. Present study represents novel mechanism of nerolidol against CP-induced hepatotoxicity. However, further studies are needed to use nerolidol as an adjuvant in chemotherapeutically treated patients.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mansoor Ali Syed
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | | | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
24
|
Comparative Effects of Pterostilbene and Its Parent Compound Resveratrol on Oxidative Stress and Inflammation in Steatohepatitis Induced by High-Fat High-Fructose Feeding. Antioxidants (Basel) 2020; 9:antiox9111042. [PMID: 33114299 PMCID: PMC7690896 DOI: 10.3390/antiox9111042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/17/2022] Open
Abstract
Different studies have revealed that oxidative stress and inflammation are crucial in NAFLD (Non-alcoholic fatty liver disease). The aim of this study is to analyze whether pterostilbene and resveratrol are able to either avoid or delay the progression of non-alcoholic liver steatosis towards steatohepatitis. This has been performed by examining their effects on oxidative stress, inflammation, fibrosis and pre-carcinogenic stages. Rats were distributed into five experimental groups and were fed with either a standard diet or a high-fat high-fructose diet, supplemented or not with pterostilbene (15 or 30 mg/kg/d) or resveratrol (30 mg/kg/d), for 8 weeks. Liver histological analysis was carried out by haematoxylin-eosin staining. Serum and hepatic oxidative stress-related parameters were assessed using spectrophotometry, and the expression of genes related to inflammation, fibrosis and cancer by qRT-PCR. The dietary model used in this study led to the development of steatohepatitis, where rats displayed oxidative stress, inflammation and ballooning, although not fibrosis. It also modified the expression of hepatocarcinoma-related genes. The results show, for the first time, that pterostilbene was able to partially prevent these alterations, with the exception of changes in hepatocarcinoma-related genes, mainly at 30 mg/kg/d. Pterostilbene was more effective than its parent compound resveratrol, probably due to its high bioavailability and higher anti-oxidant and anti-inflammatory activities, attributable to its different chemical structure.
Collapse
|
25
|
Zhang Q, Kim JH, Kim Y, Kim W. Lactococcus chungangensis CAU 28 alleviates diet-induced obesity and adipose tissue metabolism in vitro and in mice fed a high-fat diet. J Dairy Sci 2020; 103:9803-9814. [PMID: 32896398 DOI: 10.3168/jds.2020-18681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
Abstract
Obesity, which has become a major public health problem, can arise from complex dyslipidemia, insulin resistance, and immune responses, among other mechanisms. Some Lactobacillus strains effectively ameliorate obesity; however, the beneficial effects of Lactococcus spp., which are often used as dairy starters, remain unclear. In the present study, we evaluated the efficacy of Lactococcus chungangensis CAU 28 using the 3T3-L1 cell line and obese mice fed a high-fat diet. Overall, administration of Lc. chungangensis CAU 28 effectively resolved obesity associated with weight gain and lipid accumulation. In differentiated 3T3-L1 cells, Lc. chungangensis CAU 28 treatment significantly diminished the total lipid quantity, inhibited triglyceride formation, and prevented the proliferation of adipogenic transcription factors (fatty acid synthase, adiponectin, peroxisome proliferator-activated receptor-gamma, and CCAAT-enhancer-binding protein-α) associated with lipid accumulation. In the obesity mouse model, wherein the intake of Lc. chungangensis CAU 28 effectively reduced body weight gain, along with fat differentiation and accumulation (white fat; abdominal and subcutaneous). Furthermore, Lc. chungangensis CAU 28 increased serum adiponectin levels, decreased serum leptin levels, and effectively regulated adipokine secretion. It also increased the high-density lipoprotein:cholesterol ratio, reduced total cholesterol and triglyceride levels, reduced the low-density lipoprotein:cholesterol ratio, and affected obesity-regulated inflammatory cytokines IL-6, tumor necrosis factor-α, IFN-γ, and IL-1β. Additionally, Lc. chungangensis CAU 28 was associated with an increase in the CD3+CD4+CD8- phenotype among obese mice. Thus, the administration of Lc. chungangensis CAU 28 induced antiobesity effects, suggesting potential applications of this species as a supplement for obesity mitigation.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Jong-Hwa Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Yena Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul 06974, Republic of Korea.
| |
Collapse
|
26
|
Cheng K, Ji S, Jia P, Zhang H, Wang T, Song Z, Zhang L, Wang T. Resveratrol Improves Hepatic Redox Status and Lipid Balance of Neonates with Intrauterine Growth Retardation in a Piglet Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7402645. [PMID: 32733952 PMCID: PMC7383311 DOI: 10.1155/2020/7402645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Abnormal lipid metabolism, oxidative stress (OS), and inflammation play a pivotal role in the increased susceptibility to neonatal fatty liver diseases associated with intrauterine growth retardation (IUGR). This study was firstly conducted to investigate whether resveratrol could alleviate IUGR-induced hepatic lipid accumulation, alteration of redox and immune status in a sucking piglet model and explore the possible mechanisms at transcriptional levels. A total of 36 pairs of 7 d old male normal birth weight (NBW) and IUGR piglets were orally fed with either 80 mg resveratrol/kg body weight/d or 0.5% carboxymethylcellulose sodium for a period of 14 days, respectively. Compared with the NBW piglets, the IUGR piglets displayed compromised growth performance and liver weight, reduced plasma free fatty acid (FFA) level, increased hepatic OS, abnormal hepatic lipid accumulation and weakened hepatic immune function, and hepatic aberrant transcriptional expression of some genes such as heme oxygenase 1, superoxide dismutase 1, sterol regulatory element-binding protein 1c, stearoyl-CoA desaturase 1, liver fatty acid-binding proteins 1, toll-like receptor 4, and tumor necrosis factor alpha (TNF-α). Oral administration of resveratrol to piglets decreased the levels of FFA and total triglycerides (TG) in the plasma and hepatic TNF-α concentration, and increased glutathione reductase activity and reduced glutathione level in the liver. Resveratrol restored the increased alanine aminotransferase activity in the plasma of IUGR piglets. Treatment with resveratrol ameliorated the increased hepatic malondialdehyde, protein carbonyl, TG, and FFA concentrations induced by IUGR. Resveratrol treatment alleviated the reduced lipoprotein lipase activity and its mRNA expression as well as TNF-α gene expression in the liver of IUGR piglets. Hepatic glutathione peroxidase 1 and monocyte chemotactic protein 1 genes expression of piglets was upregulated by oral resveratrol administration. In conclusion, resveratrol administration plays a beneficial role in hepatic redox status and lipid balance of the IUGR piglets.
Collapse
Affiliation(s)
- Kang Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuli Ji
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peilu Jia
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Cheng K, Yu C, Li Z, Li S, Yan E, Song Z, Zhang H, Zhang L, Wang T. Resveratrol improves meat quality, muscular antioxidant capacity, lipid metabolism and fiber type composition of intrauterine growth retarded pigs. Meat Sci 2020; 170:108237. [PMID: 32739758 DOI: 10.1016/j.meatsci.2020.108237] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/20/2020] [Accepted: 07/05/2020] [Indexed: 12/13/2022]
Abstract
This study investigated whether resveratrol could improve meat quality, muscular antioxidant capacity, lipid metabolism and fiber type composition of intrauterine growth retarded pigs. Thirty-six pairs of male normal birth weight and intrauterine growth retardation (IUGR) piglets were orally fed with 80 mg resveratrol/kg body weight/d or vehicle during the sucking period (7-21 d). Then the offspring were fed with a basal diet containing 300 mg resveratrol/kg or a basal diet from weaning to slaughter (150 d). The IUGR-impaired meat quality (luminance and yellowness) was associated with muscular oxidative stress via increased Keap1 protein level, fat accumulation, and higher MyHC IIb gene expression. Expectedly, resveratrol increased glutathione peroxidase activity and MyHC I gene expression, reduced protein carbonyl and malondialdehyde contents, enhanced fatty acid oxidation via upregulated PPARα and targeted genes expression, and thereby improving drip loss and yellowness. Results indicate that resveratrol improved meat quality of IUGR pigs through enhancing antioxidant capacity, increasing oxidative fiber composition, and suppressing lipid accumulation.
Collapse
Affiliation(s)
- Kang Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Caiyun Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihua Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Simian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Enfa Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhihua Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
28
|
Hu D, Yang W, Mao P, Cheng M. Combined Amelioration of Prebiotic Resveratrol and Probiotic Bifidobacteria on Obesity and Nonalcoholic Fatty Liver Disease. Nutr Cancer 2020; 73:652-661. [PMID: 32436410 DOI: 10.1080/01635581.2020.1767166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and obesity are becoming increasingly common globally and characteristic as gut microbiota disturbance. Supplement of probiotics is considered as a promising strategy for NAFLD and obesity treatment. However, this effect varied from each other in clinical trials. We proposed that combination with a prebiotic substrate may improve the effects of probiotics. Thus, in this study, we investigated the separated and combined effects of Bifidobacteria and resveratrol (RSV) against obesity and NAFLD. NAFLD was caused by high-fat diet (HFD) feeding for 8 weeks. HFD-treated mice were orally treated with B. longum (1 × 109 CFU/mouse/day), RSV (100 mg/kg/day), and both of them from the fifth week. HFD feeding caused obesity and NAFLD as indicated by significantly increased body and liver weights, liver steatosis, elevated serum transaminases and lipid profiles, increased inflammation and imbalanced redox status. Based on these physical and biochemical parameters, inflammatory and antioxidant markers, individual administration of B. longum and RSV alleviated obesity and NAFLD, while coadministration of both products further enhanced the efficacy. These data suggested that combined prebiotic RSV and probiotic B. longum would be a potential candidate or adjuvant for the treatment of obesity and NAFLD.
Collapse
Affiliation(s)
- Danhong Hu
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Wenjuan Yang
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Peijiang Mao
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou, Zhejiang, China
| | - Minyu Cheng
- Department of Pharmacy, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
29
|
Effects of Early Resveratrol Intervention on Skeletal Muscle Mitochondrial Function and Redox Status in Neonatal Piglets with or without Intrauterine Growth Retardation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4858975. [PMID: 32566083 PMCID: PMC7261333 DOI: 10.1155/2020/4858975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/29/2020] [Indexed: 12/19/2022]
Abstract
Skeletal muscle mitochondrial malfunction of offspring induced by intrauterine growth retardation (IUGR) may be a contributor to growth restriction and metabolic disorder at various periods of life. This study explored the effects of IUGR and resveratrol (RSV) on mitochondrial function and redox status in the longissimus dorsi muscle (LM) of piglets during the sucking period. A total of 36 pairs of IUGR and normal birth weight male piglets were orally fed with either 80 mg RSV/kg body weight/d or 0.5% carboxymethylcellulose sodium during days 7-21 after birth. The results showed that RSV treatment improved anomalous mitochondrial morphology, increased adenosine triphosphate and glycogen contents, and enhanced nicotinamide adenine dinucleotide/reduced form of nicotinamide-adenine dinucleotide ratio in the LM of IUGR piglets. Moreover, the IUGR-induced increased malondialdehyde and protein carbonyl concentrations, abnormal mtDNA number, and suppressed genes expression of mitochondrial biogenesis such as nuclear respiratory factor 1, estrogen-related receptor alpha, and polymerase gamma in the LM were restored to some extent by RSV treatment. Additionally, RSV increased mitochondrial complex V activity in the LM of piglets. Collectively, RSV administration alleviated the LM mitochondrial dysfunction and oxidative damage of IUGR piglets.
Collapse
|
30
|
Xu Y, Guo W, Zhang C, Chen F, Tan HY, Li S, Wang N, Feng Y. Herbal Medicine in the Treatment of Non-Alcoholic Fatty Liver Diseases-Efficacy, Action Mechanism, and Clinical Application. Front Pharmacol 2020; 11:601. [PMID: 32477116 PMCID: PMC7235193 DOI: 10.3389/fphar.2020.00601] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease with high prevalence in the developed countries. NAFLD has been considered as one of the leading causes of cryptogenic cirrhosis and chronic liver disease. The individuals with obesity, insulin resistance and diabetes mellitus, hyperlipidaemia, and hypertension cardiovascular disease have a high risk to develop NAFLD. The related critical pathological events are associated with the development of NAFLD including insulin resistance, lipid metabolism dysfunction, oxidative stress, inflammation, apoptosis, and fibrosis. The development of NAFLD range from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic steatosis is characterized by fat accumulation, which represents the early stage of NAFLD. Then, inflammation triggered by steatosis drives early NAFLD progression into NASH. Therefore, the amelioration of steatosis and inflammation is essential for NAFLD therapy. The herbal medicine have taken great effects on the improvement of steatosis and inflammation for treating NAFLD. It has been found out that these effects involved the multiple mechanisms underlying lipid metabolism and inflammation. In this review, we pay particular attention on herbal medicine treatment and make summary about the research of herbal medicine, including herb formula, herb extract and naturals compound on NAFLD. We make details about their protective effects, the mechanism of action involved in the amelioration steatosis and inflammation for NAFLD therapy as well as the clinical application.
Collapse
Affiliation(s)
- Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Wei Guo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Hor Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
31
|
Liu CW, Huang CC, Hsu CF, Li TH, Tsai YL, Lin MW, Tsai HC, Huang SF, Yang YY, Hsieh YC, Lee TY, Tsai CY, Huang YH, Hou MC, Lin HC. SIRT1-dependent mechanisms and effects of resveratrol for amelioration of muscle wasting in NASH mice. BMJ Open Gastroenterol 2020; 7:bmjgast-2020-000381. [PMID: 32371503 PMCID: PMC7228468 DOI: 10.1136/bmjgast-2020-000381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022] Open
Abstract
Background In non-alcoholic steatohepatitis (NASH), muscle wasting was an aggravating factor for the progression of hepatic steatosis. This study explores the potential benefits of chronic treatment with resveratrol, a strong activator of SIRT1 on the muscle wasting of NASH mice. Methods In vivo and in vitro study, we evaluate the SIRT1-dependent mechanisms and effects of resveratrol administration for 6 weeks with high-fat-methionine and choline deficient diet-induced NASH mice and palmitate-pretreated C2C12 myoblast cells. Results Resveratrol treatment improved grip strength and muscle mass of limbs, increased running distance and time on exercise wheels in NASH mice. There is a negative correlation between muscular SIRT1 activity and 3-nitrotyrosine levels of NASH and NASH-resv mice. The SIRT1-dependent effect of muscle wasting was associated with the suppression of oxidative stress, upregulation of antioxidants, inhibition of protein degradation, activation of autophagy, suppression of apoptotic activity, upregulation of lipolytic genes and the reduction of fatty infiltration in limb muscles of NASH mice. In vitro, resveratrol alleviated palmitate acid-induced oxidative stress, lipid deposition, autophagy dysfunction, apoptotic signals, and subsequently reduced fusion index and myotube formation of C2C12 cells. The beneficial effects of resveratrol were abolished by EX527. Conclusions Our study suggests that chronic resveratrol treatment is a potential strategy for amelioration of hepatic steatosis and muscle wasting in NASH mouse model.
Collapse
Affiliation(s)
- Chih-Wei Liu
- Division of Allergy, Immunology and Rheumatology, Taipei, Taiwan.,Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, Taipei, Taiwan
| | - Chia-Chang Huang
- Institute of Clinical Medicine, Taipei, Taiwan.,Division of Clinical Skills Center, Department of Medical Education, Taipei Veterans General Hospital, Taoyuan, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chien-Fu Hsu
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Hao Li
- Institute of Clinical Medicine, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yu-Lien Tsai
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Lin
- Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Cheng Tsai
- Division of Allergy, Immunology and Rheumatology, Taipei, Taiwan.,Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shiang-Fen Huang
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Infection Disease, Taipei, Taiwan
| | - Ying-Ying Yang
- Institute of Clinical Medicine, Taipei, Taiwan .,Division of Clinical Skills Center, Department of Medical Education, Taipei Veterans General Hospital, Taoyuan, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei, Taiwan
| | - Yun-Cheng Hsieh
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei, Taiwan
| | - Tzung-Yan Lee
- Graduate Institute of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy, Immunology and Rheumatology, Taipei, Taiwan.,Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Yi-Hsiang Huang
- Institute of Clinical Medicine, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei, Taiwan
| | - Ming-Chih Hou
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei, Taiwan
| | - Han-Chieh Lin
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Taipei, Taiwan
| |
Collapse
|
32
|
Zhou M, Hu N, Liu M, Deng Y, He L, Guo C, Zhao X, Li Y. A Candidate Drug for Nonalcoholic Fatty Liver Disease: A Review of Pharmacological Activities of Polygoni Multiflori Radix. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5462063. [PMID: 32382557 PMCID: PMC7193283 DOI: 10.1155/2020/5462063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/06/2020] [Indexed: 11/30/2022]
Abstract
Nonalcoholic fatty liver disease, a type of metabolic syndrome, continues to rise globally. Currently, there is no approved drug for its treatment. Improving lifestyle and exercise can alleviate symptoms, but patients' compliance is poor. More and more studies have shown the potential of Polygoni Multiflori Radix (PMR) in the treatment of NAFLD and metabolic syndrome. Therefore, this paper reviews the pharmacological effects of PMR and its main chemical components (tetrahydroxystilbene glucoside, emodin, and resveratrol) on NAFLD. PMR can inhibit the production of fatty acids and promote the decomposition of triglycerides, reduce inflammation, and inhibit the occurrence of liver fibrosis. At the same time, it maintains an oxidation equilibrium status in the body, to achieve the therapeutic purpose of NAFLD and metabolic syndrome. Although more standardized studies and clinical trials are needed to confirm its efficacy, PMR may be a potential drug for the treatment of NAFLD and its complications. However, the occurrence of adverse reactions of PMR has affected its extensive clinical application. Therefore, it is necessary to further study its toxicity mechanism, enhance efficacy and control toxicity, and even reduce toxicity, which will contribute to the safe clinical use of PMR.
Collapse
Affiliation(s)
- Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Meichen Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Ying Deng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Linfeng He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Chaocheng Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Xingtao Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, Chengdu 611137, China
- National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu 611137, China
| |
Collapse
|
33
|
Milton-Laskibar I, Aguirre L, Gómez-Zorita S, Rolo AP, Portillo MP. The influence of dietary conditions in the effects of resveratrol on hepatic steatosis. Food Funct 2020; 11:9432-9444. [DOI: 10.1039/d0fo01943g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the major cause for the development of chronic liver alterations.
Collapse
Affiliation(s)
- I. Milton-Laskibar
- Nutrition and Obesity group
- Department of Nutrition and Food Science
- Faculty of Pharmacy
- University of the Basque Country (UPV/EHU)
- Lucio Lascaray Research Center
| | - L. Aguirre
- Nutrition and Obesity group
- Department of Nutrition and Food Science
- Faculty of Pharmacy
- University of the Basque Country (UPV/EHU)
- Lucio Lascaray Research Center
| | - S. Gómez-Zorita
- Nutrition and Obesity group
- Department of Nutrition and Food Science
- Faculty of Pharmacy
- University of the Basque Country (UPV/EHU)
- Lucio Lascaray Research Center
| | - A. P. Rolo
- Department of Life Sciences
- Faculty of Sciences and Technology
- University of Coimbra
- Coimbra
- Portugal
| | - M. P. Portillo
- Nutrition and Obesity group
- Department of Nutrition and Food Science
- Faculty of Pharmacy
- University of the Basque Country (UPV/EHU)
- Lucio Lascaray Research Center
| |
Collapse
|
34
|
Doulberis M, Papaefthymiou A, Polyzos SA, Katsinelos P, Grigoriadis N, Srivastava DS, Kountouras J. Rodent models of obesity. MINERVA ENDOCRINOL 2019; 45:243-263. [PMID: 31738033 DOI: 10.23736/s0391-1977.19.03058-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Obese or overweight people exceed one-third of the global population and obesity along with diabetes mellitus consist basic components of metabolic syndrome, both of which are known cardio-cerebrovascular risk factors with detrimental consequences. These data signify the pandemic character of obesity and the necessity for effective treatments. Substantial advances have been accomplished in preclinical research of obesity by using animal models, which mimic the human disease. In particular, rodent models have been widely used for many decades with success for the elucidation of the pathophysiology of obesity, since they share physiological and genetic components with humans and appear advantageous in their husbandry. The most representative rodents include the laboratory mouse and rat. Within this review, we attempted to consolidate the most widely used mice and rat models of obesity and highlight their strengths as well as weaknesses in a critical way. Our aim was to bridge the gap between laboratory facilities and patient's bed and help the researcher find the appropriate animal model for his/her obesity research. This tactful selection of the appropriate model of obesity may offer more translational derived results. In this regard, we included, the main diet induced models, the chemical/mechanical ones, as well as a selection of monogenic or polygenic models.
Collapse
Affiliation(s)
- Michael Doulberis
- Department of Gastroenterology and Hepatology, University of Zurich, Zurich, Switzerland - .,Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece -
| | | | | | - Panagiotis Katsinelos
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - David S Srivastava
- Second Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jannis Kountouras
- Department of Internal Medicine, Second Medical Clinic, Ippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
35
|
Effects of resveratrol on intestinal oxidative status and inflammation in heat-stressed rats. J Therm Biol 2019; 85:102415. [PMID: 31657756 DOI: 10.1016/j.jtherbio.2019.102415] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/07/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Heat stress, experienced by humans and animals under high ambient temperatures, is known to induce oxidative stress and inflammation, which endangers human health as well as animal welfare and production. The gastrointestinal tract is predominantly responsive to heat stress and compromised intestinal functions can contribute to multi-organ injury under heat environment. Resveratrol (RSV) has significant antioxidant and anti-inflammatory activities. The aim of this study was to investigate the potential effects of RSV on intestinal function (digestion and barrier), oxidative stress and inflammation in heat-stressed rats. Male Sprague-Dawley rats were orally fed with 100 mg RSV/kg body weight/day prior to daily heat stress (40 °C per day for 1.5 h) exposure for 3 consecutive days. The results showed that RSV reversed the increased serum cortisol level and diamine oxidase activity, the altered jejunal morphology, the decreased jejunal disaccharidase activities, the elevated malondialdehyde and tumor necrosis factor alpha concentrations and antioxidant enzymes activities in the jejunum, as well as the increased jejunal mRNA expression of toll-like receptor 4, cytokines, antioxidant enzymes and tight junction proteins in heat-stressed rats, to various degrees. In conclusion, RSV could alleviate intestinal injury and dysfunctions by improving oxidative status and suppressing inflammation in heat-stressed rats.
Collapse
|
36
|
Zhou L, Xiao X, Zhang Q, Zheng J, Deng M. Deciphering the Anti-obesity Benefits of Resveratrol: The "Gut Microbiota-Adipose Tissue" Axis. Front Endocrinol (Lausanne) 2019; 10:413. [PMID: 31316465 PMCID: PMC6610334 DOI: 10.3389/fendo.2019.00413] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/07/2019] [Indexed: 12/15/2022] Open
Abstract
Excessive white adipose tissue (WAT) accumulation due to an imbalance between caloric intake and energy expenditure (EE) characterizes obesity. However, brown adipose tissue (BAT) is highly specialized for the dissipation of energy. Recent evidence indicated that the activation of BAT and the induction of WAT browning might be promising approaches to combat obesity by increasing EE and regulating glucose and lipid metabolism. Resveratrol, which is a polyphenolic compound, has been widely acknowledged to have protective effects against obesity and related metabolic disorders. The induction of WAT browning has been considered as one of the crucial factors in the metabolic benefits of resveratrol. Nevertheless, the specific mechanism that is involved is largely unclear. As a prebiotic-like polyphenol, resveratrol is able to modulate the composition of gut microbiota. In addition, in recent years, the impact of gut microbiota on the browning of WAT has received increasing attention and has been initially confirmed to play a role. By considering all these factors, this review explores the potential link between dietary resveratrol and the browning of WAT, which may be modulated by gut microbiota and their metabolites and proposes the "gut microbiota- adipose tissue" axis plays a vital role in the anti-obesity effects of resveratrol. This observation might provide novel insights and targets that could be used for fighting against obesity and associated metabolic disorders.
Collapse
|