1
|
Koyama R, Suzuki A, Ohnishi K, Hikichi Y, Kiba A. Lipid transfer protein VAS inhibits the hypersensitive response via reactive oxygen species signaling in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2025:erae473. [PMID: 39921679 DOI: 10.1093/jxb/erae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Lipid transfer proteins (LTPs) are small cysteine-rich soluble proteins that affect flower and seed development, cuticular wax deposition, and biotic and abiotic stress responses. We isolated an LTP-encoding gene homologous to LTPVAS in Nicotiana benthamiana and designated it LTP-VASCULAR TISSUE SIZE (NbLTPVAS). This gene was expressed in seeds, leaves, roots, and stems. Additionally, NbLTPVAS expression was induced by hypersensitive response (HR)-inducing agents. Cell death was accelerated and the phytopathogenic bacterial population decreased significantly in NbLTPVAS-silenced plants infected with the incompatible Ralstonia solanacearum strain 8107. The expression of HR marker gene hin1 in NbLTPVAS-silenced plants was markedly induced by R. solanacearum 8107, indicative of the acceleration of HR. HR cell death in NbLTPVAS-silenced plants was also promoted by the Agrobacterium-mediated expression of HR-inducing proteins including INF1, AvrA, and PopP1. Excessive production of reactive oxygen species (ROS) was detected in NbLTPVAS-silenced plants. The expression of NbrbohB (encoding a ROS-generating enzyme) also increased in NbLTPVAS-silenced plants, but the expression of the antioxidant enzyme-encoding genes NbSOD and NbAPX decreased. The silencing of both NbLTPVAS and NbrbohB adversely affected HR induction. Moreover, NbLTPVAS was secreted into the intercellular washing fluid. The transient expression of the full-length NbLTPVAS induced the expression of antioxidant genes, attenuated ROS production, and suppressed the induction of HR cell death. This is the first functional analysis of LTPVAS in plant-microbe interactions. Our study provides novel insights into the role of NbLTPVAS as a negative regulator of HR via ROS homeostasis in N. benthamiana.
Collapse
Affiliation(s)
- Rina Koyama
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akira Suzuki
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
2
|
Gupta R, Kumar V, Verma N, Tewari RK. Nitric oxide-mediated regulation of macronutrients in plants. Nitric Oxide 2024; 153:13-25. [PMID: 39389288 DOI: 10.1016/j.niox.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/08/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
In plant physiology, nitric oxide (NO) is a widely used signaling molecule. It is a free radical and an important component of the N-cycle. NO is produced endogenously inside plant cells, where it participates in multiple functions and provides protection against several abiotic and biotic stresses. NO and its interplay with macronutrients had remarkable effects on plant growth and development, the signaling pathway, and defense mechanisms. Its chemical properties, synthetic pathways, physiological effects, antioxidant action, signal transduction, and regulation of transporter genes and proteins have been studied. NO emerges as a key regulator under macronutrient deficiency. In plants, NO also affects reactive oxygen species (ROS), reactive nitrogen species (RNS), and post-translational modifications (PTMs). The function of NO and its significant control in the functions and adjustments of macronutrients under macronutrient deficit were summed up in this review. NO regulate functions of macronutrients and associated signaling events involved with macronutrient transporters in different plants.
Collapse
Affiliation(s)
- Roshani Gupta
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Vijay Kumar
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Nikita Verma
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | | |
Collapse
|
3
|
Asha S, Kattupalli D, Vijayanathan M, Soniya EV. Identification of nitric oxide mediated defense signaling and its microRNA mediated regulation during Phytophthora capsici infection in black pepper. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:33-47. [PMID: 38435849 PMCID: PMC10901764 DOI: 10.1007/s12298-024-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
Nitric oxide plays a significant role in the defense signaling during pathogen interaction in plants. Quick wilt disease is a devastating disease of black pepper, and leads to sudden mortality of pepper vines in plantations. In this study, the role of nitric oxide was studied during Phytophthora capsici infection in black pepper variety Panniyur-1. Nitric oxide was detected from the different histological sections of P. capsici infected leaves. Furthermore, the genome-wide transcriptome analysis characterized typical domain architect and structural features of nitrate reductase (NR) and nitric oxide associated 1 (NOA1) gene that are involved in nitric oxide biosynthesis in black pepper. Despite the upregulation of nitrate reductase (Pn1_NR), a reduced expression of Pn1_NOA1 was detected in the P. capsici infected black pepper leaf. Subsequent sRNAome-assisted in silico analysis revealed possible microRNA mediated regulation of Pn1_NOA mRNAs. Furthermore, sRNA/miRNA mediated cleavage on Pn1_NOA1 mRNA was validated through modified 5' RLM RACE experiments. Several hormone-responsive cis-regulatory elements involved in stress response was detected from the promoter regions of Pn_NOA1, Pn_NR1 and Pn_NR2 genes. Our results revealed the role of nitric oxide during stress response of P. capsici infection in black pepper, and key genes involved in nitric oxide biosynthesis and their post-transcriptional regulatory mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01414-z.
Collapse
Affiliation(s)
- Srinivasan Asha
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
- Present Address: Department of Molecular Biology and Biotechnology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, India
| | - Divya Kattupalli
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, Capital Region, Denmark
| | - E. V. Soniya
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
| |
Collapse
|
4
|
Vanacore MFG, Sartori M, Giordanino F, Barros G, Nesci A, García D. Physiological Effects of Microbial Biocontrol Agents in the Maize Phyllosphere. PLANTS (BASEL, SWITZERLAND) 2023; 12:4082. [PMID: 38140407 PMCID: PMC10747270 DOI: 10.3390/plants12244082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023]
Abstract
In a world with constant population growth, and in the context of climate change, the need to supply the demand of safe crops has stimulated an interest in ecological products that can increase agricultural productivity. This implies the use of beneficial organisms and natural products to improve crop performance and control pests and diseases, replacing chemical compounds that can affect the environment and human health. Microbial biological control agents (MBCAs) interact with pathogens directly or by inducing a physiological state of resistance in the plant. This involves several mechanisms, like interference with phytohormone pathways and priming defensive compounds. In Argentina, one of the world's main maize exporters, yield is restricted by several limitations, including foliar diseases such as common rust and northern corn leaf blight (NCLB). Here, we discuss the impact of pathogen infection on important food crops and MBCA interactions with the plant's immune system, and its biochemical indicators such as phytohormones, reactive oxygen species, phenolic compounds and lytic enzymes, focused mainly on the maize-NCLB pathosystem. MBCA could be integrated into disease management as a mechanism to improve the plant's inducible defences against foliar diseases. However, there is still much to elucidate regarding plant responses when exposed to hemibiotrophic pathogens.
Collapse
Affiliation(s)
- María Fiamma Grossi Vanacore
- PHD Student Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Río Cuarto 5800, Córdoba, Argentina;
| | - Melina Sartori
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Río Cuarto 5800, Córdoba, Argentina; (M.S.); (G.B.); (A.N.)
| | - Francisco Giordanino
- Microbiology Student Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Río Cuarto 5800, Córdoba, Argentina;
| | - Germán Barros
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Río Cuarto 5800, Córdoba, Argentina; (M.S.); (G.B.); (A.N.)
| | - Andrea Nesci
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Río Cuarto 5800, Córdoba, Argentina; (M.S.); (G.B.); (A.N.)
| | - Daiana García
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Laboratorio de Ecología Microbiana, Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36 km 601, Río Cuarto 5800, Córdoba, Argentina; (M.S.); (G.B.); (A.N.)
| |
Collapse
|
5
|
Takasato S, Bando T, Ohnishi K, Tsuzuki M, Hikichi Y, Kiba A. Phosphatidylinositol-phospholipase C3 negatively regulates the hypersensitive response via complex signaling with MAP kinase, phytohormones, and reactive oxygen species in Nicotiana benthamiana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4721-4735. [PMID: 37191942 PMCID: PMC10433933 DOI: 10.1093/jxb/erad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
Phospholipid signaling plays important roles in plant immune responses. Here, we focused on two phospholipase C3 (PLC3) orthologs in the Nicotiana benthamiana genome, NbPLC3-1 and NbPLC3-2. We generated NbPLC3-1 and NbPLC3-2-double-silenced plants (NbPLC3s-silenced plants). In NbPLC3s-silenced plants challenged with Ralstonia solanacearum 8107, induction of hypersensitive response (HR)-related cell death and bacterial population reduction was accelerated, and the expression level of Nbhin1, a HR marker gene, was enhanced. Furthermore, the expression levels of genes involved in salicylic acid and jasmonic acid signaling drastically increased, reactive oxygen species production was accelerated, and NbMEK2-induced HR-related cell death was also enhanced. Accelerated HR-related cell death was also observed by bacterial pathogens Pseudomonas cichorii, P. syringae, bacterial AvrA, oomycete INF1, and TMGMV-CP with L1 in NbPLC3s-silenced plants. Although HR-related cell death was accelerated, the bacterial population was not reduced in double NbPLC3s and NbCoi1-suppressed plants nor in NbPLC3s-silenced NahG plants. HR-related cell death acceleration and bacterial population reduction resulting from NbPLC3s-silencing were compromised by the concomitant suppression of either NbPLC3s and NbrbohB (respiratory oxidase homolog B) or NbPLC3s and NbMEK2 (mitogen activated protein kinase kinase 2). Thus, NbPLC3s may negatively regulate both HR-related cell death and disease resistance through MAP kinase- and reactive oxygen species-dependent signaling. Disease resistance was also regulated by NbPLC3s through jasmonic acid- and salicylic acid-dependent pathways.
Collapse
Affiliation(s)
- Shiori Takasato
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Takuya Bando
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Laboratory of Defense in Plant–Pathogen Interactions, Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Masayuki Tsuzuki
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
6
|
Fukui K, Ohnishi K, Hikichi Y, Kiba A. Phosphatidylinositol-phospholipase C4 suppresses the hypersensitive response of Nicotiana benthamiana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:87-92. [PMID: 38213930 PMCID: PMC10777131 DOI: 10.5511/plantbiotechnology.22.1207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2024]
Abstract
Phospholipid signaling plays an important role in plant immune responses. Here, we isolated two phospholipase C4 (PLC4) orthologs in the Nicotiana benthamiana genome, designated as N. benthamiana PLC4-1 and PLC4-2 (NbPLC4-1 and NbPLC4-2). We created NbPLC4-1- and NbPLC4-2- silenced plants. Induction of the hypersensitive response (HR), including HR cell death and bacterial population reduction, was accelerated in both NbPLC4-1- and NbPLC4-2-silenced plants challenged with N. benthamiana-incompatible Ralstonia solanacearum 8107. The NbPLC4-1- and NbPLC4-2-silenced plants also showed enhanced expression of Nbhin1, a HR marker gene. Expressions of genes for salicylic acid (SA) and jasmonic acid (JA) signaling were drastically increased in NbPLC4-1- and NbPLC4-2-silenced plants by R. solanacearum inoculation. In addition, NbPLC4-1 and NbPLC4-2 silencing triggered reactive oxygen species (ROS) hyper-production. These results suggest that NbPLC4s are closely associated with JA, SA, and ROS signaling and act as negative regulators of the HR in N. benthamiana.
Collapse
Affiliation(s)
- Kotoko Fukui
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Laboratory of Defense in Plant-Pathogen Interactions, Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
7
|
Watanabe M, Ohnishi K, Hikichi Y, Kiba A. Suppressed expression of ErbB3-binding protein 1 (EBP1) genes compromised the hypersensitive response cell death in Nicotiana benthamiana. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:77-81. [PMID: 38213926 PMCID: PMC10777138 DOI: 10.5511/plantbiotechnology.22.1121a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 01/13/2024]
Abstract
Target of rapamycin (TOR) regulates essential processes associated with plant growth, development, and cell death by modulating metabolic activities and translation in response to environmental signals. The ATP-competitive TOR inhibitor AZD8055 suppressed the hypersensitive response (HR) cell death in Nicotiana benthamiana infected with the incompatible Ralstonia solanacearum. The induced expression of the HR marker gene hin1 was also inhibited by the AZD8055 treatment. To further clarify the mechanisms underlying TOR-regulated HR cell death, we focused on TOR-related ErbB3-binding protein 1 (EBP1) in N. benthamiana (NbEBP1). We found four EBP1 orthologs in the N. benthamiana genome. The expression levels of all four EBP1 orthologs in N. benthamiana were up-regulated by the R. solanacearum infection. The silencing of the four NbEBP1 orthologs suppressed the induction of HR cell death, hin1 expression, and the production of reactive oxygen species. These results suggest that the TOR signaling pathway helps regulate HR cell death along with reactive oxygen species-related signaling in N. benthamiana.
Collapse
Affiliation(s)
- Maho Watanabe
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Laboratory of Defense in Plant–Pathogen Interactions, Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
8
|
Guo H, Bi X, Wang Z, Jiang D, Cai M, An M, Xia Z, Wu Y. Reactive oxygen species-related genes participate in resistance to cucumber green mottle mosaic virus infection regulated by boron in Nicotiana benthamiana and watermelon. FRONTIERS IN PLANT SCIENCE 2022; 13:1027404. [PMID: 36438146 PMCID: PMC9691971 DOI: 10.3389/fpls.2022.1027404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Cucumber green mottle mosaic virus (CGMMV) infection causes acidification and rot of watermelon flesh, resulting in serious economic losses. It is widely reported the interaction relationship between boron and reactive oxygen species (ROS) in regulating normal growth and disease resistance in plants. Our previous results demonstrated that exogenous boron could improve watermelon resistance to CGMMV infection. However, the roles of ROS-related genes regulated by boron in resistance to CGMMV infection are unclear. Here, we demonstrated that CGMMV symptoms were alleviated, and viral accumulations were decreased by boron application in Nicotiana benthamiana, indicating that boron contributed to inhibiting CGMMV infection. Meanwhile, we found that a number of differentially expressed genes (DEGs) associated with inositol biosynthesis, ethylene synthesis, Ca2+ signaling transduction and ROS scavenging system were up-regulated, while many DEGs involved in ABA catabolism, GA signal transduction and ascorbic acid metabolism were down-regulated by boron application under CGMMV infection. Additionally, we individually silenced nine ROS-related genes to explore their anti-CGMMV roles using a tobacco rattle virus (TRV) vector. The results showed that NbCat1, NbGME1, NbGGP and NbPrx Q were required for CGMMV infection, while NbGST and NbIPS played roles in resistance to CGMMV infection. The similar results were obtained in watermelon by silencing of ClCat, ClPrx or ClGST expression using a pV190 vector. This study proposed a new strategy for improving plant resistance to CGMMV infection by boron-regulated ROS pathway and provided several target genes for watermelon disease resistance breeding.
Collapse
Affiliation(s)
- Huiyan Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xinyue Bi
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Dong Jiang
- Green Agricultural Technology Center of Liaoning Province, Shenyang, China
| | - Ming Cai
- Green Agricultural Technology Center of Liaoning Province, Shenyang, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
9
|
Lv M, Ye S, Hu M, Xue Y, Liang Z, Zhou X, Zhang L, Zhou J. Two-component system ArcBA modulates cell motility and biofilm formation in Dickeya oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:1033192. [PMID: 36340374 PMCID: PMC9634086 DOI: 10.3389/fpls.2022.1033192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Phytopathogen Dickeya oryzae is a causal agent of rice foot rot disease and the pathogen has an array of virulence factors, such as phytotoxin zeamines, plant cell wall degrading enzymes, cell motility, and biofilms, collectively contributing to the bacterial pathogenesis. In this study, through deletion analysis of predicted regulatory genes in D. oryzae EC1, we identified a two-component system associated with the regulation of bacterial virulence. The two-component system contains a histidine kinase ArcB and a response regulator ArcA, and deletion of their coding genes resulted in changed phenotypes in cell motility, biofilm formation, and bacterial virulence. Electrophoretic mobility shift assay revealed that ArcA bound to the promoters of the bcs operon and bssS, which respectively encode enzymes for the synthesis of celluloses and a biofilm formation regulatory protein. ArcA could also bind to the promoters of three virulence associated transcriptional regulatory genes, i.e., fis, slyA and ohrR. Surprisingly, although these three regulators were shown to modulate the production of cell wall degrading enzymes and zeamines, deletion of arcB and arcA did not seem to affect these phenotypes. Taken together, the findings from this study unveiled a new two-component system associated with the bacterial pathogenesis, which contributes to the virulence of D. oryzae mainly through its action on bacterial motility and biofilm formation.
Collapse
Affiliation(s)
- Mingfa Lv
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sixuan Ye
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ming Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yang Xue
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Zhibin Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Jiang B, Liu Y, Niu H, He Y, Ma D, Li Y. Mining the Roles of Wheat ( Triticum aestivum) SnRK Genes in Biotic and Abiotic Responses. FRONTIERS IN PLANT SCIENCE 2022; 13:934226. [PMID: 35845708 PMCID: PMC9280681 DOI: 10.3389/fpls.2022.934226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/01/2022] [Indexed: 05/27/2023]
Abstract
Sucrose non-fermenting-1-related protein kinases (SnRKs) play vital roles in plant growth and stress responses. However, little is known about the SnRK functions in wheat. In this study, 149 TaSnRKs (wheat SnRKs) were identified and were divided into three subfamilies. A combination of public transcriptome data and real-time reverse transcription-polymerase chain reaction (qRT-PCR) analysis revealed the distinct expression patterns of TaSnRKs under various abiotic and biotic stresses. TaSnRK2.4-B, a member of SnRK2s, has different expression patterns under polyethylene glycol (PEG), sodium chloride (NaCl) treatment, and high concentrations of abscisic acid (ABA) application. Yeast two-hybrid assay indicated that TaSnRK2.4-B could interact with the SnRK2-interacting calcium sensor (SCS) in wheat and play a role in the ABA-dependent pathway. Moreover, TaSnRK2.4-B might be a negative regulator in wheat against pathogen infection. The present study provides valuable information for understanding the functions of the TaSnRK family and provides recommendations for future genetic improvement in wheat stress resistance.
Collapse
Affiliation(s)
- Baihui Jiang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Yike Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Hongli Niu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Yiqin He
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Longgan Lake National Nature Reserve Authority of Hubei, Huanggang, China
| | - Dongfang Ma
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Wheat Disease Biology Research Station for Central China, Wuhan, China
| | - Yan Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Wheat Disease Biology Research Station for Central China, Wuhan, China
| |
Collapse
|
11
|
Sun Y, Wu H, Xu S, Tang S, Hao J, Liu X, Zhang H, Han L. Roles of the EPS66A polysaccharide from Streptomyces sp. in inducing tobacco resistance to tobacco mosaic virus. Int J Biol Macromol 2022; 209:885-894. [PMID: 35439473 DOI: 10.1016/j.ijbiomac.2022.04.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
Abstract
EPS66A was derived from an unidentified Streptomyces sp. HL-66 by chemical fraction and disease-resistance assays. It was identified as a polysaccharide through a series of chemical characterization, including infrared spectrum analysis, methylation, gas chromatography-mass spectrometry, nuclear magnetic resonance, and high-performance gel permeation chromatography. To determine its effect in plant, EPS66A was applied to tobacco leaves infected with TMV, resulting in the plant with enhanced systemic resistance with a significant reduction of TMV severity. Plant defense was confirmed by early responses, including hypersensitive response (HR) indicated by programed cell death, moderate alkalization, oxidative burst, increase in nitric oxide (NO) and salicylic acid (SA). Furthermore, EPS66A induced callose deposition to form defense barriers against pathogen invasion and the expression of pathogenesis-related (PR) genes, which confirmed the second level of plant defense. Therefore, EPS66A served as a resistance inducer, which was reorganized by tobacco cells that triggered the production of signal molecules. The signals moved in long distance and systemically in plant, which coordinated the expression of defense responses. The study provided a new perspective in understanding the mechanism of EPS66A in regulating plants on environmental adaptability and provided a theoretical foundation for designing safe and sustainable pesticides.
Collapse
Affiliation(s)
- Yubo Sun
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hao Wu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shanshan Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shiqi Tang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianjun Hao
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Xili Liu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongyan Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lirong Han
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Wang YH, Dai Y, Kong WL, Zhu ML, Wu XQ. Improvement of Sphaeropsis Shoot Blight Disease Resistance by Applying the Ectomycorrhizal Fungus Hymenochaete sp. Rl and Mycorrhizal Helper Bacterium Bacillus pumilus HR10 to Pinus thunbergii. PHYTOPATHOLOGY 2022; 112:1226-1234. [PMID: 35476587 DOI: 10.1094/phyto-09-21-0392-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ectomycorrhizal fungi (EMFs) form symbioses with plant roots to promote nutrient uptake by plants but it is controversial as to whether they induce disease resistance in plants. Here, we inoculated pine seedlings with Sphaeropsis sapinea, which was presymbiotic with the EMF Hymenochaete sp. Rl, and the mycorrhizal helper bacterium (MHB) Bacillus pumilus HR10, which promotes the formation of Pinus thunbergia-Hymenochaete sp. Rl mycorrhizae. The results showed that inoculation with Hymenochaete sp. Rl, B. pumilus HR10, and the consortium significantly reduced pine shoot blight disease caused by S. sapinea. After inoculation with pathogenic fungi, callose deposition was significantly increased in needles of pine seedlings inoculated with Hymenochaete sp. Rl, B. pumilus HR10, and the consortium, together with an increase in enzymatic and nonenzymatic systemic antioxidant activity as well as early priming for upregulated expression of PR3 and PR5 genes. Our findings suggest that ectomycorrhizal colonization enhances the resistance of pine seedlings to Sphaeropsis shoot blight by triggering a systemic defense response and that interactions between EMFs and MHBs are essential for mycorrhizal-induced disease resistance.
Collapse
Affiliation(s)
- Ya-Hui Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yun Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Mei-Ling Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
13
|
Huang J, Han R, Ji F, Yu Y, Wang R, Hai Z, Liang W, Wang H. Glucose-6-phosphate dehydrogenase and abscisic acid mediate programmed cell death induced by aluminum toxicity in soybean root tips. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127964. [PMID: 34891015 DOI: 10.1016/j.jhazmat.2021.127964] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Programmed cell death (PCD) induced by aluminum (Al) is considered an important reason of Al phytotoxicity. However, the underlying mechanism of how Al induces PCD remains largely unknown in plants. The roles of glucose-6-phosphate dehydrogenase (G6PDH) and abscisic acid (ABA) in regulating Al-induced PCD were investigated in soybean roots. Al treatment increased G6PDH activity, while inhibition of G6PDH activity alleviated PCD occurrence and reactive oxygen species (ROS) accumulation under Al stress. Overexpression of cytosolic G6PDH1 enhanced G6PDH activity, thus promoting ROS production and cell death under Al exposure. Inhibition of NADPH oxidase activity mitigated ROS generation and cell death under Al stress. Further investigation demonstrated that G6PDH positively regulated the activity of NADPH oxidase under Al treatment using pharmacological and transgenic approach. Furthermore, Al stress increased ABA production, while inhibition of ABA biosynthesis alleviated PCD occurrence and ROS accumulation under Al stress. Interestingly, ABA upregulated G6PDH1 expression and G6PDH activity under Al stress. These results suggest that G6PDH mediates Al-induced PCD occurrence through the activation of NADPH oxidase-dependent ROS production, and ABA acts upstream of G6PDH in this process. This study will provide novel clues for the improvement of Al phytotoxicity in acidic soils.
Collapse
Affiliation(s)
- Junjun Huang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Rongzhi Han
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Fang Ji
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanyuan Yu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ruoyi Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhaoxin Hai
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Weihong Liang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, Henan 453007, China
| | - Huahua Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, Henan 453007, China.
| |
Collapse
|
14
|
Mitogen-Activated Protein Kinase and Substrate Identification in Plant Growth and Development. Int J Mol Sci 2022; 23:ijms23052744. [PMID: 35269886 PMCID: PMC8911294 DOI: 10.3390/ijms23052744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) form tightly controlled signaling cascades that play essential roles in plant growth, development, and defense response. However, the molecular mechanisms underlying MAPK cascades are still very elusive, largely because of our poor understanding of how they relay the signals. The MAPK cascade is composed of MAPK, MAPKK, and MAPKKK. They transfer signals through the phosphorylation of MAPKKK, MAPKK, and MAPK in turn. MAPKs are organized into a complex network for efficient transmission of specific stimuli. This review summarizes the research progress in recent years on the classification and functions of MAPK cascades under various conditions in plants, especially the research status and general methods available for identifying MAPK substrates, and provides suggestions for future research directions.
Collapse
|
15
|
Ai G, Liu J, Fu X, Li T, Zhu H, Zhai Y, Xia C, Pan W, Li J, Jing M, Shen D, Xia A, Dou D. Making Use of Plant uORFs to Control Transgene Translation in Response to Pathogen Attack. BIODESIGN RESEARCH 2022; 2022:9820540. [PMID: 37850142 PMCID: PMC10521741 DOI: 10.34133/2022/9820540] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2023] Open
Abstract
Reducing crop loss to diseases is urgently needed to meet increasing food production challenges caused by the expanding world population and the negative impact of climate change on crop productivity. Disease-resistant crops can be created by expressing endogenous or exogenous genes of interest through transgenic technology. Nevertheless, enhanced resistance by overexpressing resistance-produced genes often results in adverse developmental affects. Upstream open reading frames (uORFs) are translational control elements located in the 5' untranslated region (UTR) of eukaryotic mRNAs and may repress the translation of downstream genes. To investigate the function of three uORFs from the 5' -UTR of ACCELERATED CELL 11 (uORFsACD11), we develop a fluorescent reporter system and find uORFsACD11 function in repressing downstream gene translation. Individual or simultaneous mutations of the three uORFsACD11 lead to repression of downstream translation efficiency at different levels. Importantly, uORFsACD11-mediated translational inhibition is impaired upon recognition of pathogen attack of plant leaves. When coupled with the PATHOGENESIS-RELATED GENE 1 (PR1) promoter, the uORFsACD11 cassettes can upregulate accumulation of Arabidopsis thaliana LECTIN RECEPTOR KINASE-VI.2 (AtLecRK-VI.2) during pathogen attack and enhance plant resistance to Phytophthora capsici. These findings indicate that the uORFsACD11 cassettes can be a useful toolkit that enables a high level of protein expression during pathogen attack, while for ensuring lower levels of protein expression at normal conditions.
Collapse
Affiliation(s)
- Gan Ai
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Liu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaowei Fu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianli Li
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hai Zhu
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Chuyan Xia
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiye Pan
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jialu Li
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai Xia
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- College of Plant Protection, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Han X, Shen D, Xiong Q, Bao B, Zhang W, Dai T, Zhao Y, Borriss R, Fan B. The Plant-Beneficial Rhizobacterium Bacillus velezensis FZB42 Controls the Soybean Pathogen Phytophthora sojae Due to Bacilysin Production. Appl Environ Microbiol 2021; 87:e0160121. [PMID: 34550751 PMCID: PMC8580012 DOI: 10.1128/aem.01601-21] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Soybean root rot caused by the oomycete Phytophthora sojae is a serious soilborne disease threatening soybean production in China. Bacillus velezensis FZB42 is a model strain for Gram-positive plant growth-promoting rhizobacteria and is able to produce multiple antibiotics. In this study, we demonstrated that B. velezensis FZB42 can efficiently antagonize P. sojae. The underlying mechanism for the inhibition was then investigated. The FZB42 mutants deficient in the synthesis of lipopeptides (bacillomycin D and fengycin), known to have antifungal activities, and polyketides (bacillaene, difficidin, and macrolactin), known to have antibacterial activities, were not impaired in their antagonism toward P. sojae; in contrast, mutants deficient in bacilysin biosynthesis completely lost their antagonistic activities toward P. sojae, indicating that bacilysin was responsible for the activity. Isolated pure bacilysin confirmed this inference. Bacilysin was previously shown to be antagonistic mainly toward prokaryotic bacteria rather than eukaryotes. Here, we found that bacilysin could severely damage the hyphal structures of P. sojae and lead to the loss of its intracellular contents. A device was invented allowing interactions between P. sojae and B. velezensis FZB42 on nutrient agar. In this manner, the effect of FZB42 on P. sojae was studied by transcriptomics. FZB42 significantly inhibited the expression of P. sojae genes related to growth, macromolecule biosynthesis, pathogenicity, and ribosomes. Among them, the genes for pectate lyase were the most significantly downregulated. Additionally, we showed that bacilysin effectively prevents soybean sprouts from being infected by P. sojae and could antagonize diverse Phytophthora species, such as Phytophthora palmivora, P. melonis, P. capsici, P. litchi, and, most importantly, P. infestans. IMPORTANCEPhytophthora spp. are widespread eukaryotic phytopathogens and often extremely harmful. Phytophthora can infect many types of plants important to agriculture and forestry and thus cause large economic losses. Perhaps due to inappropriate recognition of Phytophthora as a common pathogen in history, research on the biological control of Phytophthora is limited. This study shows that B. velezensis FZB42 can antagonize various Phytophthora species and prevent the infection of soybean seedlings by P. sojae. The antibiotic produced by FZB42, bacilysin, which was already known to have antibacterial effectiveness, is responsible for the inhibitory action against Phytophthora. We further showed that some Phytophthora genes and pathways may be targeted in future biocontrol studies. Therefore, our data provide a basis for the development of new tools for the prevention and control of root and stem rot in soybean and other plant diseases caused by Phytophthora.
Collapse
Affiliation(s)
- Xingshan Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Dongxia Shen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Qin Xiong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Beihua Bao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbo Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Tingting Dai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yinjuan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt Universität Berlin, Greifswald, Germany
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
17
|
Yan Y, Wang P, Wei Y, Bai Y, Lu Y, Zeng H, Liu G, Reiter RJ, He C, Shi H. The dual interplay of RAV5 in activating nitrate reductases and repressing catalase activity to improve disease resistance in cassava. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:785-800. [PMID: 33128298 PMCID: PMC8051611 DOI: 10.1111/pbi.13505] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/14/2020] [Accepted: 09/27/2020] [Indexed: 05/05/2023]
Abstract
Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) seriously affects cassava yield. Nitrate reductase (NR) plays an important role in plant nitrogen metabolism in plants. However, the in vivo role of NR and the corresponding signalling pathway remain unclear in cassava. In this study, we isolated MeNR1/2 and revealed their novel upstream transcription factor MeRAV5. We also identified MeCatalase1 (MeCAT1) as the interacting protein of MeRAV5. In addition, we investigated the role of MeCatalase1 and MeRAV5-MeNR1/2 module in cassava defence response. MeNRs positively regulates cassava disease resistance against CBB through modulation of nitric oxide (NO) and extensive transcriptional reprogramming especially in mitogen-activated protein kinase (MAPK) signalling. Notably, MeRAV5 positively regulates cassava disease resistance through the coordination of NO and hydrogen peroxide (H2 O2 ) level. On the one hand, MeRAV5 directly activates the transcripts of MeNRs and NO level by binding to CAACA motif in the promoters of MeNRs. On the other hand, MeRAV5 interacts with MeCAT1 to inhibit its activity, so as to negatively regulate endogenous H2 O2 level. This study highlights the precise coordination of NR activity and CAT activity by MeRAV5 through directly activating MeNRs and interacting with MeCAT1 in plant immunity.
Collapse
Affiliation(s)
- Yu Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Peng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Yi Lu
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Russel J. Reiter
- Department of Anatomy and Cell SystemUT Health San AntonioSan AntonioTXUSA
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| |
Collapse
|
18
|
Ding T, Zhang W, Li Y, Duan T. Effect of the AM Fungus Sieverdingia tortuosa on Common Vetch Responses to an Anthracnose Pathogen. Front Microbiol 2021; 11:542623. [PMID: 33391193 PMCID: PMC7775565 DOI: 10.3389/fmicb.2020.542623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/17/2020] [Indexed: 11/13/2022] Open
Abstract
Colletotrichum lentis Damm causes anthracnose in Vicia sativa L, otherwise known as common vetch. It was first reported in China in 2019. This study evaluates the effects of the arbuscular mycorrhizal (AM) fungus Sieverdingia tortuosa (N.C. Schenck & G.S. Sm.) Błaszk., Niezgoda, & B.T. Goto on growth and disease severity in common vetch. Our main finding is that the AM fungus increased root biomass and reduced anthracnose severity of common vetch. Responses correlated with defense, such as chitinase activity, polyphenol oxidase (PPO) activity, the concentrations of jasmonic acid and proline, and the expression of resistance-related genes (e.g., upregulated "signal transduction," "MAPK signaling pathway," "chitinase activity," "response to stress," and the KEGG pathways "phenylpropanoid biosynthesis," "MAPK signaling pathways," and "plant-pathogen interactions"), were also affected These findings provide insight into the mechanism by which this AM fungus regulates the defense response of common vetch to C. lentis.
Collapse
Affiliation(s)
- Tingting Ding
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Weizhen Zhang
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Yingde Li
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
| | - Tingyu Duan
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou, China.,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China.,Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Kong M, Sheng T, Liang J, Ali Q, Gu Q, Wu H, Chen J, Liu J, Gao X. Melatonin and Its Homologs Induce Immune Responses via Receptors trP47363-trP13076 in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2021; 12:691835. [PMID: 34276740 PMCID: PMC8278317 DOI: 10.3389/fpls.2021.691835] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 05/17/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), a naturally occurring small molecule, can protect plants against abiotic stress after exogenous treatmenting with it. It is not known if melatonin homologs, such as 5-methoxytryptamine and 5-methoxyindole, that are easy and more cost-effective to synthesize can stimulate the plant immune system in the same manner as melatonin. In the present study, we assessed the biological activity of the melatonin homologs, 5-methoxytryptamin and 5-methoxyindole. The results showed that melatonin and its homologs all induced disease resistance against Phytophthora nicotianae in Nicotiana benthamiana plants. The application of all three compounds also induced stomatal closure and the production of reactive oxygen species. Gene expression analysis indicated that the expression of genes involved in hydrogen peroxide (H2O2), nitric oxide (NO) production, and salicylic acid (SA) biosynthesis was significantly upregulated by all three compounds. Four homologs of the melatonin receptors were identified by blasting search with the phytomelatonin receptor in Arabidopsis. Molecular docking studies were also used to identify four putative melatonin receptors in N. benthamiana. Further experimentation revealed that silencing of the melatonin receptors trP47363 and trP13076 in N. benthamiana compromised the induction of stomatal closure, PR-1a gene expression and SA accumulation by all three compounds. Collectively, our data indicate that the induction of defense responses in N. benthamiana by melatonin, 5-methoxytryptamine, and 5-methoxyindole involves the melatonin receptors trP47363 and trP13076.
Collapse
Affiliation(s)
- Mengmeng Kong
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Tao Sheng
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Jing Liang
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Qurban Ali
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Qin Gu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Huijun Wu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
- Jian Chen,
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
- Jia Liu,
| | - Xuewen Gao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Xuewen Gao,
| |
Collapse
|
20
|
Zhang Z, Zhang X, Na R, Yang S, Tian Z, Zhao Y, Zhao J. StRac1 plays an important role in potato resistance against Phytophthora infestans via regulating H 2O 2 production. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153249. [PMID: 32829122 DOI: 10.1016/j.jplph.2020.153249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
ROP GTPases (Rho-related GTPases from plant), a unique subgroup of the Rho family in plants, is a group of key regulators of different signaling pathways controlling plant growth and development, cell polarity and differentiation, and plant response against biotic and abiotic stresses. The present study determined the potential regulatory mechanism of potato ROP GTPase (StRac1) against Phytophthora infestans (P. infestans) infection. Protein secondary structure analysis indicated that StRAC1 is a Rho GTPase. The expression level of StRac1 was variable in different tissues of potato, with the highest expression in young leaves of both Shepody and Hutou potato varieties. After challenging with P. infestans, the expression level of StRac1was higher in resistance varieties Zihuabai and Longshu 7 than in susceptible varieties Shepody and Desiree. StRAC1 fusion with GFP subcellularly localized at the plasma membrane (PM) in tobacco epidermal cells. The potato with transient or stable over-expression of CA-StRac1 (constitutively active form of StRac1)exhibited a dramatic enhancement of its resistance against P. infestans infections. The increased resistance level in transgenic potato was accompanied with elevated H2O2 levels. Importantly, silencing StRac1 via virus-induced gene silencing (VIGS) in potato resulted in higher susceptibility to P. infestans infection than in control plants. In summary, our data reveal that StRac1 regulates potato resistance against P. infestans via positively modulating the accumulation of H2O2.
Collapse
Affiliation(s)
- Zhiwei Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019 China.
| | - Xiaoluo Zhang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019 China.
| | - Ren Na
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035 China.
| | - Shuqing Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019 China.
| | - Zaimin Tian
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019 China.
| | - Yan Zhao
- Institutes of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, 100101 China.
| | - Jun Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, 010019 China.
| |
Collapse
|
21
|
Ding L, Li M, Guo X, Tang M, Cao J, Wang Z, Liu R, Zhu K, Guo L, Liu S, Tan X. Arabidopsis GDSL1 overexpression enhances rapeseed Sclerotinia sclerotiorum resistance and the functional identification of its homolog in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1255-1270. [PMID: 31693306 PMCID: PMC7152613 DOI: 10.1111/pbi.13289] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/17/2019] [Accepted: 10/27/2019] [Indexed: 05/18/2023]
Abstract
Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is a devastating disease of rapeseed (Brassica napus L.). To date, the genetic mechanisms of rapeseed' interactions with S. sclerotiorum are not fully understood, and molecular-based breeding is still the most effective control strategy for this disease. Here, Arabidopsis thaliana GDSL1 was characterized as an extracellular GDSL lipase gene functioning in Sclerotinia resistance. Loss of AtGDSL1 function resulted in enhanced susceptibility to S. sclerotiorum. Conversely, overexpression of AtGDSL1 in B. napus enhanced resistance, which was associated with increased reactive oxygen species (ROS) and salicylic acid (SA) levels, and reduced jasmonic acid levels. In addition, AtGDSL1 can cause an increase in lipid precursor phosphatidic acid levels, which may lead to the activation of downstream ROS/SA defence-related pathways. However, the rapeseed BnGDSL1 with highest sequence similarity to AtGDSL1 had no effect on SSR resistance. A candidate gene association study revealed that only one AtGDSL1 homolog from rapeseed, BnaC07g35650D (BnGLIP1), significantly contributed to resistance traits in a natural B. napus population, and the resistance function was also confirmed by a transient expression assay in tobacco leaves. Moreover, genomic analyses revealed that BnGLIP1 locus was embedded in a selected region associated with SSR resistance during the breeding process, and its elite allele type belonged to a minor allele in the population. Thus, BnGLIP1 is the functional equivalent of AtGDSL1 and has a broad application in rapeseed S. sclerotiorum-resistance breeding.
Collapse
Affiliation(s)
- Li‐Na Ding
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ming Li
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Xiao‐Juan Guo
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Min‐Qiang Tang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Jun Cao
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Zheng Wang
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Rui Liu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Ke‐Ming Zhu
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| | - Liang Guo
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Sheng‐Yi Liu
- The Oil Crops Research Institute (OCRI) of the Chinese Academy of Agricultural Sciences (CAAS)WuhanChina
| | - Xiao‐Li Tan
- Institute of Life SciencesJiangsu UniversityZhenjiangChina
| |
Collapse
|
22
|
Hong Y, Ni SJ, Zhang GP. Transcriptome and metabolome analysis reveals regulatory networks and key genes controlling barley malting quality in responses to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:1-11. [PMID: 32361397 DOI: 10.1016/j.plaphy.2020.04.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/20/2020] [Indexed: 05/22/2023]
Abstract
Malting quality will be greatly deteriorated when barley plants suffer from post-anthesis drought stress, however there is a marked difference among barley genotypes in the responses of malting quality to drought stress, and the molecular mechanisms underlying the genotypic difference remain unclear. We made transcriptome and metabolome analysis on the developing grains of two barley genotypes differing in the responses to drought stress. Post-anthesis drought treatments led to decreased grain weight and β-glucan content, increased grain protein content and β-amylase activity. Drought stress enhanced H2O2 and heat-shock protein accumulation in the two barley genotypes, with the drought-tolerant genotype showing higher capacity of scavenging H2O2 and reducing misfolded protein accumulation than the drought-susceptible genotype. Moreover, the drought-tolerant genotype was more efficient in redistributing assimilates stored in the vegetative tissues into the developing grains. After re-watering to relieve drought stress, the drought-tolerant genotype can further modify auxin transport and ethylene signaling, enhancing redistribution of assimilates into grains. Transcriptome comparisons and weighted correlation network analysis (WGCNA) identified some key genes regulating the responses of malting quality traits to drought stress, such as RLK-LRR, β-glucosidase and HSP . In conclusion, less change of main malting quality traits in the drought-tolerant genotype under post-anthesis drought stress is attributed to its higher capacity of alleviating the stress injury through scavenging ROS and redistributing the metabolites stored in the vegetative organs into the developing grains.
Collapse
Affiliation(s)
- Ye Hong
- Agronomy Department, Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Jing Ni
- Agronomy Department, Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Guo-Ping Zhang
- Agronomy Department, Zhejiang Key Lab of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
23
|
Maurya R, Singh Y, Sinha M, Singh K, Mishra P, Singh SK, Verma S, Prabha K, Kumar K, Verma PK. Transcript profiling reveals potential regulators for oxidative stress response of a necrotrophic chickpea pathogen Ascochyta rabiei. 3 Biotech 2020; 10:117. [PMID: 32117678 DOI: 10.1007/s13205-020-2107-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 02/02/2020] [Indexed: 12/20/2022] Open
Abstract
Necrotrophic pathogens experience host-generated oxidative stress during pathogenesis. They overcome such hostile environment by intricate mechanisms which are largely understudied. In this article, reference-based transcriptome analysis of a devastating Ascochyta Blight (AB) disease causing chickpea pathogen Ascochyta rabiei was explored to get insights into survival mechanisms under oxidative stress. Here, expression profiling of mock-treated and menadione-treated fungus was carried out by RNA-Seq approach. A significant number of genes in response to oxidative stress were overrepresented, suggestive of a robust and coordinated defense system of A. rabiei. A total 73 differentially expressed genes were filtered out from both the transcriptomes, among them 64 were up-regulated and 9 were found down-regulated. The gene ontology and KEGG mapping were conducted to comprehend the possible regulatory roles of differentially expressed genes in metabolic networks and biosynthetic pathways. Transcript profiling, KEGG pathway and gene ontology-based enrichment analysis revealed 12 (16.43%) stress responsive factors, 25 (34.24%) virulence associated genes, 10 (13.69%) putative effectors and 28 (38.35%) important interacting proteins associated with various metabolic pathways. In addition, genes with differential expression were further explored for underlying putative pathogenicity factors. We identified five genes ST47_g10291, ST47_g9396, ST47_g10294, ST47_g4395, and ST47_g7191 that were common to stress and fungal pathogenicity. The factors recognized in this work can be used to establish molecular tools to explain the regulatory gene networks engaged in stress response of fungal pathogens and disease management.
Collapse
Affiliation(s)
- Ranjeet Maurya
- 1Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Yeshveer Singh
- 1Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Manisha Sinha
- 1Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Kunal Singh
- 1Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
- 2Present Address: Molecular Plant Pathology Laboratory, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061 India
| | - Pallavi Mishra
- 1Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Shreenivas Kumar Singh
- 1Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sandhya Verma
- 1Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Kanchan Prabha
- 1Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Kamal Kumar
- 1Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Praveen Kumar Verma
- 1Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
24
|
Wang W, Jiao F. Effectors of Phytophthora pathogens are powerful weapons for manipulating host immunity. PLANTA 2019; 250:413-425. [PMID: 31243548 DOI: 10.1007/s00425-019-03219-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/18/2019] [Indexed: 05/11/2023]
Abstract
This article provides an overview of the interactions between Phytophthora effectors and plant immune system components, which form a cross-linked complex network that regulates plant pathogen resistance. Pathogens secrete numerous effector proteins into plants to promote infections. Several Phytophthora species (e.g., P. infestans, P. ramorum, P. sojae, P. capsici, P. cinnamomi, and P. parasitica) are notorious pathogens that are extremely damaging to susceptible plants. Analyses of genomic data revealed that Phytophthora species produce a large group of effector proteins, which are critical for pathogenesis. And, the targets and functions of many identified Phytophthora effectors have been investigated. Phytophthora effectors can affect various aspects of plant immune systems, including plant cell proteases, phytohormones, RNAs, the MAPK pathway, catalase, the ubiquitin proteasome pathway, the endoplasmic reticulum, NB-LRR proteins, and the cell membrane. Clarifying the effector-plant interactions is important for unravelling the functions of Phytophthora effectors during pathogenesis. In this article, we review the effectors identified in recent decades and provide an overview of the effector-directed regulatory network in plants following infections by Phytophthora species.
Collapse
Affiliation(s)
- Wenjing Wang
- Key Laboratory of Tobacco Pest Monitoring, Controlling and Integrated Management, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, No. 11 Forth Longitudinal Keyuan Rd, Laoshan District, Qingdao, 266101, People's Republic of China.
| | - Fangchan Jiao
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, People's Republic of China
| |
Collapse
|
25
|
Spatial and Temporal Calcium Signaling and Its Physiological Effects in Moso Bamboo under Drought Stress. FORESTS 2019. [DOI: 10.3390/f10030224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Elevations in cytosolic free calcium concentration constitute a fundamental signal transduction mechanism in plants; however, the particular characteristics of calcium ion (Ca2+) signal occurrence in plants is still under debate. Little is known about how stimulus-specific Ca2+ signal fluctuations are generated. Therefore, we investigated the identity of the Ca2+ signal generation pathways, influencing factors, and the effects of the signaling network under drought stress on Phyllostachys edulis (Carrière) J. Houz. Non-invasive micro testing and laser confocal microscopy technology were used as platforms to detect and record Ca2+ signaling in live root tip and leaf cells of P. edulis under drought stress. We found that Ca2+ signal intensity (absorption capacity) positively correlated with degree of drought stress in the P. edulis shoots, and that Ca2+ signals in different parts of the root tip of P. edulis were different when emitted in response to drought stress. This difference was reflected in the Ca2+ flux and in regional distribution of Ca2+. Extracellular Ca2+ transport requires the involvement of the plasma membrane Ca2+ channels, while abscisic acid (ABA) can activate the plasma membrane Ca2+ channels. Additionally, Ca2+ acted as the upstream signal of H2O2 in the signaling network of P. edulis under drought stress. Ca2+ was also involved in the signal transduction process of ABA, and ABA can promote the production of Ca2+ signals in P. edulis leaves. Our findings revealed the physiological role of Ca2+ in drought resistance of P. edulis. This study establishes a theoretical foundation for research on the response to Ca2+ signaling in P. edulis.
Collapse
|
26
|
Singh BN, Dwivedi P, Sarma BK, Singh GS, Singh HB. A novel function of N-signaling in plants with special reference to Trichoderma interaction influencing plant growth, nitrogen use efficiency, and cross talk with plant hormones. 3 Biotech 2019; 9:109. [PMID: 30863693 DOI: 10.1007/s13205-019-1638-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/16/2019] [Indexed: 10/27/2022] Open
Abstract
Trichoderma spp. is considered as a plant growth promoter and biocontrol fungal agents. They colonize on the surface of root in most of the agriculture crops. They secrete different secondary metabolites and enzymes which promote different physiological processes as well as protect plants from various environmental stresses. This is part of their vital functions. They are widely exploited as a biocontrol agent and plant growth promoter in agricultural fields. Colonization of Trichoderma with roots can enhance nutrient acquisition from surrounding soil to root and can substantially increase nitrogen use efficiency (NUE) in crops and linked with activation of plant signaling cascade. Among Trichoderma species, only some Trichoderma species were well characterized which help in the uptake of nitrogen-containing compound (especially nitrate form) and induced nitric oxide (NO) in plants. Both nitrate and NO are known as a signaling agent, involved in plant growth and development and disease resistance. Activation of these signaling molecules may crosstalk with other signaling molecule (Ca2+) and phytohormone (auxin, gibberellins, cytokinin and ethylene). This ability of Trichoderma is important to agriculture not only for increased plant growth but also to control plant diseases. Recently, Trichoderma strains have been shown to encompass the ability to regulate transcripts level of high-affinity nitrate transporters and probably it was positively regulated by NO. This review aims to focus the usage of Trichoderma strains on crops by their abilities to regulate transcript levels, probably through activation of plant N signaling transduction that improve plant health.
Collapse
|
27
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
28
|
Du XM, Ni XL, Ren XL, Xin GL, Jia GL, Liu HD, Liu WZ. De novo transcriptomic analysis to identify differentially expressed genes during the process of aerenchyma formation in Typha angustifolia leaves. Gene 2018; 662:66-75. [PMID: 29625266 DOI: 10.1016/j.gene.2018.03.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/13/2018] [Accepted: 03/29/2018] [Indexed: 11/16/2022]
Abstract
Lysigenous aerenchyma is formed through programmed cell death (PCD) in Typha angustifolia leaves. However, the genome and transcriptome data for this species are unknown. To further elucidate the molecular basis of PCD during aerenchyma formation in T. angustifolia leaves, transcriptomic analysis of T. angustifolia leaves was performed using Illumina sequencing technology, revealing 73,821 unigenes that were produced by assembly of the reads in T1, T2 and T3 samples. The important pathways, such as programmed cell death (PCD), aerenchyma formation, and ethylene responsiveness were regulated by these unigenes. 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO) were highly up-regulated as key enzymes for ethylene synthesis, along with respiratory burst oxidase homolog (RBOH), metallothionein, calmodulin-like protein (CML), and polygalacturonase (PG), may collectively explain the PCD involved in T. angustifolia aerenchyma formation. We hypothesize that fermentation, metabolism and glycolysis generate ATP for PCD. We searched the 73,821 unigenes against protein databases, and 24,712 were annotated. Based on sequence homology, 16,012 of the 73,821 annotated unigenes were assigned to one or more Gene Ontology (GO) terms. Meanwhile, a total of 9537 unigenes were assigned to 126 pathways in the KEGG database. In summary, this investigation provides important guidelines for exploring the molecular mechanisms of aerenchyma formation in aquatic plants.
Collapse
Affiliation(s)
- Xiao-Min Du
- School of Life Science, Northwest University, Xi'an 710069, China
| | - Xi-Lu Ni
- State Key Laboratory of Seedling Bioengineering, Ningxia Forestry Institute, Yinchuan, 750004, China
| | - Xiao-Long Ren
- School of Life Science, Northwest University, Xi'an 710069, China
| | - Gui-Liang Xin
- School of Life Science, Northwest University, Xi'an 710069, China
| | - Guo-Lun Jia
- School of Life Science, Northwest University, Xi'an 710069, China
| | - Hui-Dong Liu
- School of Life Science, Northwest University, Xi'an 710069, China
| | - Wen-Zhe Liu
- School of Life Science, Northwest University, Xi'an 710069, China.
| |
Collapse
|
29
|
Mur LAJ, Simpson C, Kumari A, Gupta AK, Gupta KJ. Moving nitrogen to the centre of plant defence against pathogens. ANNALS OF BOTANY 2017; 119:703-709. [PMID: 27594647 PMCID: PMC5378193 DOI: 10.1093/aob/mcw179] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/08/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Plants require nitrogen (N) for growth, development and defence against abiotic and biotic stresses. The extensive use of artificial N fertilizers has played an important role in the Green Revolution. N assimilation can involve a reductase series ( NO3- → NO2- → NH4+ ) followed by transamination to form amino acids. Given its widespread use, the agricultural impact of N nutrition on disease development has been extensively examined. SCOPE When a pathogen first comes into contact with a host, it is usually nutrient starved such that rapid assimilation of host nutrients is essential for successful pathogenesis. Equally, the host may reallocate its nutrients to defence responses or away from the site of attempted infection. Exogenous application of N fertilizer can, therefore, shift the balance in favour of the host or pathogen. In line with this, increasing N has been reported either to increase or to decrease plant resistance to pathogens, which reflects differences in the infection strategies of discrete pathogens. Beyond considering only N content, the use of NO3- or NH4+ fertilizers affects the outcome of plant-pathogen interactions. NO3- feeding augments hypersensitive response- (HR) mediated resistance, while ammonium nutrition can compromise defence. Metabolically, NO3- enhances production of polyamines such as spermine and spermidine, which are established defence signals, with NH4+ nutrition leading to increased γ-aminobutyric acid (GABA) levels which may be a nutrient source for the pathogen. Within the defensive N economy, the roles of nitric oxide must also be considered. This is mostly generated from NO2- by nitrate reductase and is elicited by both pathogen-associated microbial patterns and gene-for-gene-mediated defences. Nitric oxide (NO) production and associated defences are therefore NO3- dependent and are compromised by NH4+ . CONCLUSION This review demonstrates how N content and form plays an essential role in defensive primary and secondary metabolism and NO-mediated events.
Collapse
Affiliation(s)
- Luis A. J. Mur
- Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK
- For correspondence. E-mail or
| | - Catherine Simpson
- Institute of Environmental and Rural Science, Aberystwyth University, Edward Llwyd Building, Aberystwyth SY23 3DA, UK
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi
| | - Alok Kumar Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi
| | - Kapuganti Jagadis Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 110067, New Delhi
- For correspondence. E-mail or
| |
Collapse
|
30
|
Sewelam N, Kazan K, Schenk PM. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road. FRONTIERS IN PLANT SCIENCE 2016; 7:187. [PMID: 26941757 PMCID: PMC4763064 DOI: 10.3389/fpls.2016.00187] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/04/2016] [Indexed: 05/18/2023]
Abstract
Current technologies have changed biology into a data-intensive field and significantly increased our understanding of signal transduction pathways in plants. However, global defense signaling networks in plants have not been established yet. Considering the apparent intricate nature of signaling mechanisms in plants (due to their sessile nature), studying the points at which different signaling pathways converge, rather than the branches, represents a good start to unravel global plant signaling networks. In this regard, growing evidence shows that the generation of reactive oxygen species (ROS) is one of the most common plant responses to different stresses, representing a point at which various signaling pathways come together. In this review, the complex nature of plant stress signaling networks will be discussed. An emphasis on different signaling players with a specific attention to ROS as the primary source of the signaling battery in plants will be presented. The interactions between ROS and other signaling components, e.g., calcium, redox homeostasis, membranes, G-proteins, MAPKs, plant hormones, and transcription factors will be assessed. A better understanding of the vital roles ROS are playing in plant signaling would help innovate new strategies to improve plant productivity under the circumstances of the increasing severity of environmental conditions and the high demand of food and energy worldwide.
Collapse
Affiliation(s)
- Nasser Sewelam
- Botany Department, Faculty of Science, Tanta UniversityTanta, Egypt
| | - Kemal Kazan
- Commonwealth Scientific and Industrial Research Organization Agriculture, Queensland Bioscience Precinct, St LuciaQLD, Australia
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, BrisbaneQLD, Australia
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, The University of Queensland, BrisbaneQLD, Australia
| |
Collapse
|
31
|
Wang F, Wang C, Yan Y, Jia H, Guo X. Overexpression of Cotton GhMPK11 Decreases Disease Resistance through the Gibberellin Signaling Pathway in Transgenic Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2016; 7:689. [PMID: 27242882 PMCID: PMC4876126 DOI: 10.3389/fpls.2016.00689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/05/2016] [Indexed: 05/21/2023]
Abstract
Many changes in development, growth, hormone activity and environmental stimuli responses are mediated by mitogen-activated protein kinase (MAPK) cascades. However, in plants, studies on MAPKs have mainly focused on MPK3, MPK4 and MPK6. Here, a novel group B MAPK gene, GhMPK11, was isolated from cotton (Gossypium hirsutum L.) and characterized. Both promoter and expression pattern analyses revealed that GhMPK11 is involved in defense responses and signaling pathways. GhMPK11 overexpression in Nicotiana benthamiana plants could increase gibberellin 3 (GA3) content through the regulation of GA-related genes. Interestingly, either GhMPK11 overexpression or exogenous GA3 treatment in N. benthamiana plants could enhance the susceptibility of these plants to the infectious pathogens Ralstonia solanacearum and Rhizoctonia solani. Moreover, reactive oxygen species (ROS) accumulation was increased after pathogen infiltration due to the increased expression of ROS-related gene respiratory burst oxidative homologs (RbohB) and the decreased expression or activity of ROS detoxification enzymes regulated by GA3, such as superoxide dismutases (SODs), peroxidases (PODs), catalase (CAT) and glutathione S-transferase (GST). Taken together, these results suggest that GhMPK11 overexpression could enhance the susceptibility of tobacco to pathogen infection through the GA3 signaling pathway via down-regulation of ROS detoxification enzymes.
Collapse
|
32
|
Xia XJ, Zhou YH, Shi K, Zhou J, Foyer CH, Yu JQ. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2839-56. [PMID: 25788732 DOI: 10.1093/jxb/erv089] [Citation(s) in RCA: 365] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
As a consequence of a sessile lifestyle, plants are continuously exposed to changing environmental conditions and often life-threatening stresses caused by exposure to excessive light, extremes of temperature, limiting nutrient or water availability, and pathogen/insect attack. The flexible coordination of plant growth and development is necessary to optimize vigour and fitness in a changing environment through rapid and appropriate responses to such stresses. The concept that reactive oxygen species (ROS) are versatile signalling molecules in plants that contribute to stress acclimation is well established. This review provides an overview of our current knowledge of how ROS production and signalling are integrated with the action of auxin, brassinosteroids, gibberellins, abscisic acid, ethylene, strigolactones, salicylic acid, and jasmonic acid in the coordinate regulation of plant growth and stress tolerance. We consider the local and systemic crosstalk between ROS and hormonal signalling pathways and identify multiple points of reciprocal control, as well as providing insights into the integration nodes that involve Ca(2+)-dependent processes and mitogen-activated protein kinase phosphorylation cascades.
Collapse
Affiliation(s)
- Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China
| | - Christine H Foyer
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058, PR China Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, PR China
| |
Collapse
|
33
|
Wei A, Fu B, Wang Y, Zhai X, Xin X, Zhang C, Cao D, Zhang X. Involvement of NO and ROS in sulfur dioxide induced guard cells apoptosis in Tagetes erecta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:198-203. [PMID: 25645141 DOI: 10.1016/j.ecoenv.2015.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
Both nitric oxide (NO) and reactive oxygen species (ROS) are very important signal molecules, but the roles they play in signal transduction of sulfur dioxide (SO2) induced toxicities on ornamental plants is not clear. In this study, the functions of NO and ROS in SO2-induced death of lower epidermal guard cells in ornamental plant Tagetes erecta were investigated. The results showed that SO2 derivatives (0.4-4.0 mmol L(-1) of final concentrations) could reduce the guard cells' viability and increase their death rates in a dose-dependent manner. Meanwhile, the significant increase of cellular NO, ROS, and Ca(2+) levels (P<0.05) and typical apoptosis features including nucleus condensation, nucleus break and nucleus fragmentation were observed. However, exposure to 2.0 mmol L(-1) of SO2 derivatives combined with either NO antagonists (NO scavenger c-PTIO; nitrate reductase inhibitor NaN3; NO synthase inhibitor L-NAME), ROS scavenger (AsA or CAT) or Ca(2+) antagonists (Ca(2+) scavenger EGTA or plasma membrane Ca(2+) channel blocker LaCl3) can effectively block SO2-induced guard cells death and corresponding increase of NO, ROS and Ca(2+) levels. In addition, addition of L-NAME or AsA in 2.0 mmol L(-1) of SO2 derivatives led to significant decrease in the levels of NO, ROS and Ca(2+), whereas addition of LaCl3 in them just resulted in the decrease of Ca(2+) levels, hardly making effects on NO and ROS levels. It was concluded that NO and ROS were involved in the apoptosis induced by SO2 in T. erecta, which regulated the cell apoptosis at the upstream of Ca(2+).
Collapse
Affiliation(s)
- Aili Wei
- Department of Biology, Taiyuan Normal University, Taiyuan 030031, China
| | - Baocun Fu
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China.
| | - Yunshan Wang
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China.
| | - Xiaoyan Zhai
- Department of Biology, Taiyuan Normal University, Taiyuan 030031, China.
| | - Xiaojing Xin
- Department of Plant Biology and Ecology, College of Life Science, Nankai University, Tianjin 300071, China.
| | - Chao Zhang
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China.
| | - Dongmei Cao
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China.
| | - Xiaobing Zhang
- Department of Biology, Taiyuan Normal University, Taiyuan 030031, China.
| |
Collapse
|
34
|
Zhao Y, Xi Q, Xu Q, He M, Ding J, Dai Y, Keller NP, Zheng W. Correlation of nitric oxide produced by an inducible nitric oxide synthase-like protein with enhanced expression of the phenylpropanoid pathway in Inonotus obliquus cocultured with Phellinus morii. Appl Microbiol Biotechnol 2015; 99:4361-72. [PMID: 25582560 DOI: 10.1007/s00253-014-6367-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/23/2014] [Accepted: 12/25/2014] [Indexed: 11/25/2022]
Abstract
Fungal interspecific interactions enhance biosynthesis of phenylpropanoid metabolites (PM), and production of nitric oxide (NO) is known to be involved in this process. However, it remains unknown which signaling pathway(s) or regulator(s) mediate fungal PM biosynthesis. In this study, we cocultured two white-rot fungi, Inonotus obliquus and Phellinus morii, to examine NO production, expression of the genes involved in phenylpropanoid metabolism and accumulation of phenylpropanoid-derived polyphenols by I. obliquus. Coculture of the two fungi caused an enhanced NO biosynthesis followed by increased transcription of the genes encoding phenylalanine ammonia lyase (PAL) and 4-coumarate CoA ligase (4CL), as well as an upregulated biosynthesis of styrylpyrone polyphenols in I. obliquus. Addition of the NO synthase (NOS) selective inhibitor aminoguanidine (AG) inhibited NO production by more than 90% followed by cease in transcription of PAL and 4Cl. Treatment of guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one did not affect NO production but suppressed transcription of PAL and 4CL and reduced accumulation of total phenolic constituents. Genome-wide analysis of I. obliquus revealed two genes encoding a constitutive and an inducible NOS-like protein, respectively (cNOSL and iNOSL). Coculture of the two fungi did not increase the expression of the cNOSL gene but triggered expression of the iNOSL gene. Cloned iNOSL from Escherichia coli shows higher activity in transferring L-arginine to NO, and this activity is lost upon AG addition. Thus, iNOSL is more responsible for NO production in I. obliquus and may act as an important regulator governing PM production during fungal interspecific interactions.
Collapse
Affiliation(s)
- Yanxia Zhao
- Key Laboratory for Biotechnology on Medicinal Plants, Jiangsu Normal University, Xuzhou, 221116, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Li X, Zhang H, Tian L, Huang L, Liu S, Li D, Song F. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. FRONTIERS IN PLANT SCIENCE 2015; 235:14-24. [PMID: 26157450 DOI: 10.1016/j.plantsci.2015.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/21/2015] [Accepted: 02/21/2015] [Indexed: 05/13/2023]
Abstract
NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato.
Collapse
Affiliation(s)
- Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Limei Tian
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou China
| |
Collapse
|
36
|
Li X, Zhang H, Tian L, Huang L, Liu S, Li D, Song F. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress. FRONTIERS IN PLANT SCIENCE 2015; 6:463. [PMID: 26157450 PMCID: PMC4477072 DOI: 10.3389/fpls.2015.00463] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/11/2015] [Indexed: 05/19/2023]
Abstract
NADPH oxidases (also known as respiratory burst oxidase homologs, Rbohs) are key enzymes that catalyze the generation of reactive oxygen species (ROS) in plants. In the present study, eight SlRboh genes were identified in tomato and their possible involvement in resistance to Botrytis cinerea and drought tolerance was examined. Expression of SlRbohs was induced by B. cinerea and Pseudomonas syringae pv. tomato but displayed distinct patterns. Virus-induced gene silencing based silencing of SlRbohB resulted in reduced resistance to B. cinerea but silencing of other SlRbohs did not affect the resistance. Compared to non-silenced plants, the SlRbohB-silenced plants accumulated more ROS and displayed attenuated expression of defense genes after infection with B. cinerea. Silencing of SlRbohB also suppressed flg22-induced ROS burst and the expression of SlLrr22, a marker gene related to PAMP-triggered immunity (PTI). Transient expression of SlRbohB in Nicotiana benthamiana led to enhanced resistance to B. cinerea. Furthermore, silencing of SlRbohB resulted in decreased drought tolerance, accelerated water loss in leaves and the altered expression of drought-responsive genes. Our data demonstrate that SlRbohB positively regulates the resistance to B. cinerea, flg22-induced PTI, and drought tolerance in tomato.
Collapse
Affiliation(s)
| | | | | | | | | | - Dayong Li
- *Correspondence: Dayong Li, National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China,
| | | |
Collapse
|
37
|
Kiba A, Galis I, Hojo Y, Ohnishi K, Yoshioka H, Hikichi Y. SEC14 phospholipid transfer protein is involved in lipid signaling-mediated plant immune responses in Nicotiana benthamiana. PLoS One 2014; 9:e98150. [PMID: 24845602 PMCID: PMC4028302 DOI: 10.1371/journal.pone.0098150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/29/2014] [Indexed: 11/19/2022] Open
Abstract
We previously identified a gene related to the SEC14-gene phospholipid transfer protein superfamily that is induced in Nicotiana benthamiana (NbSEC14) in response to infection with Ralstonia solanacearum. We here report that NbSEC14 plays a role in plant immune responses via phospholipid-turnover. NbSEC14-silencing compromised expression of defense-related PR-4 and accumulation of jasmonic acid (JA) and its derivative JA-Ile. Transient expression of NbSEC14 induced PR-4 gene expression. Activities of diacylglycerol kinase, phospholipase C and D, and the synthesis of diacylglycerol and phosphatidic acid elicited by avirulent R. solanacearum were reduced in NbSEC14-silenced plants. Accumulation of signaling lipids and activation of diacylglycerol kinase and phospholipases were enhanced by transient expression of NbSEC14. These results suggest that the NbSEC14 protein plays a role at the interface between lipid signaling-metabolism and plant innate immune responses.
Collapse
Affiliation(s)
- Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| | - Ivan Galis
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi, Japan
| | - Hirofumi Yoshioka
- Laboratory of Defense in Plant-Pathogen Interactions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
38
|
Gupta KJ, Mur LAJ, Brotman Y. Trichoderma asperelloides suppresses nitric oxide generation elicited by Fusarium oxysporum in Arabidopsis roots. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:307-314. [PMID: 24283937 DOI: 10.1094/mpmi-06-13-0160-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Inoculations with saprophytic fungus Trichoderma spp. are now extensively used both to promote plant growth and to suppress disease development. The underlying mechanisms for both roles have yet to be fully described so that the use of Trichoderma spp. could be optimized. Here, we show that Trichoderma asperelloides effects include the manipulation of host nitric oxide (NO) production. NO was rapidly formed in Arabidopsis roots in response to the soil-borne necrotrophic pathogen Fusarium oxysporum and persisted for about 1 h but is only transiently produced (approximately 10 min) when roots interact with T. asperelloides (T203). However, inoculation of F. oxysporum-infected roots with T. asperelloides suppressed F. oxysporum-initiated NO production. A transcriptional study of 78 NO-modulated genes indicated most genes were suppressed by single and combinational challenge with F. oxysporum or T. asperelloides. Only two F. oxysporum-induced genes were suppressed by T. asperelloides inoculation undertaken either 10 min prior to or after pathogen infection: a concanavlin A-like lectin protein kinase (At4g28350) and the receptor-like protein RLP30. Thus, T. asperelloides can actively suppress NO production elicited by F. oxysporum and impacts on the expression of some genes reported to be NO-responsive. Of particular interest was the reduced expression of receptor-like genes that may be required for F. oxysporum-dependent necrotrophic disease development.
Collapse
|
39
|
Zhang Y, Yang X, Zeng H, Guo L, Yuan J, Qiu D. Fungal elicitor protein PebC1 from Botrytis cinerea improves disease resistance in Arabidopsis thaliana. Biotechnol Lett 2014; 36:1069-78. [PMID: 24563295 DOI: 10.1007/s10529-014-1462-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/08/2014] [Indexed: 12/16/2022]
Abstract
We previously identified a novel protein elicitor, PebC1, from Botrytis cinerea and described its enhancement of plant growth, drought tolerance and disease resistance in tomato. Here, we have investigated the defense-associated molecular responses in Arabidopsis thaliana after treatment with recombinant PebC1. PebC1 was expressed in Escherichia coli. Recombinant protein treatments improved plant resistance to Botrytis infection and maintained plant defenses for more than 21 days. The purified protein at 10 μg ml(-1) activated extracellular medium alkalization (pH) and reactive oxygen species and nitric oxide generation and also induced defense gene expression. Arabidopsis mutants that are insensitive to salicylic acid had increased resistance to Botrytis infection after PebC1 treatment but PebC1 did not affect the resistance of mutants with jasmonic acid and ethylene transduction pathways. The results suggest that PebC1 can function as an activator of plant disease resistance and can promote disease resistance to Botrytis in A. thaliana through the ethylene signal transduction pathway.
Collapse
Affiliation(s)
- Yunhua Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Beijing, 100081, China
| | | | | | | | | | | |
Collapse
|
40
|
Kaur G, Sharma A, Guruprasad K, Pati PK. Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnol Adv 2014; 32:551-63. [PMID: 24561450 DOI: 10.1016/j.biotechadv.2014.02.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 01/24/2014] [Accepted: 02/07/2014] [Indexed: 02/01/2023]
Abstract
NADPH oxidase (NOX) is a key player in the network of reactive oxygen species (ROS) producing enzymes. It catalyzes the production of superoxide (O2(-)), that in turn regulates a wide range of biological functions in a broad range of organisms. Plant Noxes are known as respiratory burst oxidase homologs (Rbohs) and are homologs of catalytic subunit of mammalian phagocyte gp91(phox). They are unique among other ROS producing mechanisms in plants as they integrate different signal transduction pathways in plants. In recent years, there has been addition of knowledge on various aspects related to its structure, regulatory components and associated mechanisms, and its plethora of biological functions. This update highlights some of the recent developments in the field with particular reference to important members of the plant kingdom.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India.
| | - Ashutosh Sharma
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India.
| | - Kunchur Guruprasad
- Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500007, Andhra Pradesh, India.
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India.
| |
Collapse
|
41
|
Samalova M, Meyer AJ, Gurr SJ, Fricker MD. Robust anti-oxidant defences in the rice blast fungus Magnaporthe oryzae confer tolerance to the host oxidative burst. THE NEW PHYTOLOGIST 2014; 201:556-573. [PMID: 24117971 DOI: 10.1111/nph.12530] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/20/2013] [Indexed: 05/22/2023]
Abstract
Plants respond to pathogen attack via a rapid burst of reactive oxygen species (ROS). However, ROS are also produced by fungal metabolism and are required for the development of infection structures in Magnaporthe oryzae. To obtain a better understanding of redox regulation in M. oryzae, we measured the amount and redox potential of glutathione (E(GSH)), as the major cytoplasmic anti-oxidant, the rates of ROS production, and mitochondrial activity using multi-channel four-dimensional (x,y,z,t) confocal imaging of Grx1-roGFP2 and fluorescent reporters during spore germination, appressorium formation and infection. High levels of mitochondrial activity and ROS were localized to the growing germ tube and appressorium, but E(GSH) was highly reduced and tightly regulated during development. Furthermore, germlings were extremely resistant to external H2O2 exposure ex planta. EGSH remained highly reduced during successful infection of the susceptible rice cultivar CO39. By contrast, there was a dramatic reduction in the infection of resistant (IR68) rice, but the sparse hyphae that did form also maintained a similar reduced E(GSH). We conclude that M. oryzae has a robust anti-oxidant defence system and maintains tight control of EGSH despite substantial oxidative challenge. Furthermore, the magnitude of the host oxidative burst alone does not stress the pathogen sufficiently to prevent infection in this pathosystem.
Collapse
Affiliation(s)
- Marketa Samalova
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Andreas J Meyer
- INRES, Universität Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Sarah J Gurr
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
- Biosciences, University of Exeter, Devon, EX4 4QD, UK
| | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
42
|
Wei A, Xin X, Wang Y, Zhang C, Cao D. Signal regulation involved in sulfur dioxide-induced guard cell apoptosis in Hemerocallis fulva. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:41-45. [PMID: 24125868 DOI: 10.1016/j.ecoenv.2013.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 09/20/2013] [Accepted: 09/21/2013] [Indexed: 06/02/2023]
Abstract
Chronic and acute exposure to SO₂ is associated with increased risks of various damages to plants. In the present study, epidermal strip experiment was employed to investigate SO₂-induced guard cells apoptosis and the signal regulation in Hemerocallis fulva. The results showed that with the increase of treatment concentrate of SO₂ derivates (a mixture of sodium sulfite and sodium bisulfite, 3:1, mmol L⁻¹/mmol L⁻¹, 1.0-5.0 mmol L⁻¹), the physiological activity of the guard cells declined and cell death occurred. While the concentration of SO₂ derivatives exceeded 2.0 mmol L⁻¹, the percentage of cell death increased significantly (P<0.05). Typical features of apoptosis including nuclear condensation, nuclear elongation, fragmentation etc. were found. Meanwhile, concomitant presence of nitric oxide (NO), reactive oxygen species (ROS) and Ca²⁺ level increment appeared. However, SO₂-induced cell death can be effectively blocked by either of the following substances with their respective optimal concentrations: antioxidant ascorbic acid (Asc; 0.05 mmol L⁻¹) or catalase (CAT; 200 U mL⁻¹), nitric oxide (NO) scavenger 2-(4-carboxyphenyl)-4, 4, 5, 5- tetramethylmidiazoline-1-oxyl-3-oxide (c-PTIO; 0.20 mmol L⁻¹), nitrate reductase inhibitor NaN₃ (0.20 mmol L⁻¹), Ca²⁺ chelating agent EGTA (0.05 mmol L⁻¹) or plasma membrane Ca²⁺ channel blocker LaCl₃ (0.05 mmol L⁻¹). In addition to a significant decrease in cell death rate, a reduction in the levels of reactive oxygen species (ROS), NO and Ca²⁺ was observed. Further study showed that compared to treatment with SO₂ alone, Asc treatment led to a decrease in NO and Ca²⁺ levels and NaN₃ treatment led to a decrease in ROS and Ca²⁺ levels, but the NO and ROS levels of the LaCl₃ treatment changed little. All results suggested that NO, ROS and Ca²⁺ were involved in the apoptosis induced by SO₂ in H. fulva. The process might be related to the burst of NO or ROS, which would activate the plasma Ca²⁺ channel and result in the increase of intercellular Ca²⁺.
Collapse
Affiliation(s)
- Aili Wei
- Department of Biology, Taiyuan Normal University, Taiyuan 030031, China.
| | | | | | | | | |
Collapse
|
43
|
de Oliveira MLP, de Lima Silva CC, Abe VY, Costa MGC, Cernadas RA, Benedetti CE. Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1190-9. [PMID: 23777433 DOI: 10.1094/mpmi-04-13-0122-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mitogen-activated protein kinases (MAPK) play crucial roles in plant immunity. We previously identified a citrus MAPK (CsMAPK1) as a differentially expressed protein in response to infection by Xanthomonas aurantifolii, a bacterium that causes citrus canker in Mexican lime but a hypersensitive reaction in sweet oranges. Here, we confirm that, in sweet orange, CsMAPK1 is rapidly and preferentially induced by X. aurantifolii relative to Xanthomonas citri. To investigate the role of CsMAPK1 in citrus canker resistance, we expressed CsMAPK1 in citrus plants under the control of the PR5 gene promoter, which is induced by Xanthomonas infection and wounding. Increased expression of CsMAPK1 correlated with a reduction in canker symptoms and a decrease in bacterial growth. Canker lesions in plants with higher CsMAPK1 levels were smaller and showed fewer signs of epidermal rupture. Transgenic plants also revealed higher transcript levels of defense-related genes and a significant accumulation of hydrogen peroxide in response to wounding or X. citri infection. Accordingly, nontransgenic sweet orange leaves accumulate both CsMAPK1 and hydrogen peroxide in response to X. aurantifolii but not X. citri infection. These data, thus, indicate that CsMAPK1 functions in the citrus canker defense response by inducing defense gene expression and reactive oxygen species accumulation during infection.
Collapse
|
44
|
Gupta M, Yoshioka H, Ohnishi K, Mizumoto H, Hikichi Y, Kiba A. A translationally controlled tumor protein negatively regulates the hypersensitive response in Nicotiana benthamiana. PLANT & CELL PHYSIOLOGY 2013; 54:1403-14. [PMID: 23788648 DOI: 10.1093/pcp/pct090] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We have been isolating and characterizing Ralstonia solanacearum-responsive genes (RsRGs) in Nicotiana plants. In this study we focused on RsRG308, which we renamed NbTCTP (N. benthamiana translationally controlled tumor protein) because it encodes a polypeptide showing similarity to translationally controlled tumor proteins. Induction of the hypersensitive response (HR) was accelerated in NbTCTP-silenced N. benthamiana plants challenged with R. solanacearum 8107 (Rs8107). The Rs8107 population decreased significantly, whereas hin1 gene expression was enhanced in the silenced plant. Accelerated induction of HR was observed in NbTCTP-silenced plants inoculated with Pseudomonas cichorii and P. syringae pv. syringae. Silencing of NbTCTP also accelerated the induction of HR cell death by Agrobacterium-mediated transient expression of HR inducers, such as AvrA, BAX, INF1 and NbMEK2(DD). NbTCTP silencing enhanced NbrbohB- and NbMEK2-mediated reactive oxygen species production, leading to HR. Transient expression of both the full-length sequence and the Bcl-xL domain of NbTCTP decreased HR cell death induced by Agrobacterium-mediated transient expression of HR inducers. NbTCTP-silenced plants also showed slightly dwarf phenotypes. Therefore, NbTCTP might have a role in cell death regulation during HR to fine-tune programmed cell death-associated plant defense responses.
Collapse
Affiliation(s)
- Meenu Gupta
- Laboratory of Plant Pathology and Biotechnology, Faculty of Agriculture, Kochi University, Nankoku, Kochi 783-8502, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Souza SR, Blande JD, Holopainen JK. Pre-exposure to nitric oxide modulates the effect of ozone on oxidative defenses and volatile emissions in lima bean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 179:111-119. [PMID: 23669460 DOI: 10.1016/j.envpol.2013.03.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 06/02/2023]
Abstract
The roles that ozone and nitric oxide (NO), the chief O₃ precursor, play in the antioxidative balance and inducible volatile emissions of lima bean were assessed. Exposure to O₃ inhibited APX, CAT, and GR, decreased GSH content and induced emissions of (E)-β-ocimene, limonene, 1,8-cineole, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene (E)-DMNT, 2-butanone and nonanal. O₃ did not induce emissions of (E)-β-caryophyllene and appeared to reduce the antioxidative capacity of plants to a greater extent than NO and NO followed by O₃ (NO/O₃) treatments. There were significant differences in emissions of (E)-β-ocimene and linalool between NO/O₃ treated plants and controls, but no differences in antioxidant concentrations. A model to explain the relationships between the ascorbate-glutathione cycle and O₃ and NO inducible volatiles was proposed. Our findings suggest that prior exposure to NO modulates the oxidative effect of ozone by the process of cross-tolerance, which might regulate the antioxidative system and induction of volatile organic compounds.
Collapse
Affiliation(s)
- Silvia R Souza
- Department of Environmental Science, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | | | |
Collapse
|
46
|
Bashir Z, Ahmad A, Shafique S, Anjum T, Shafique S, Akram W. Hypersensitive response - A biophysical phenomenon of producers. Eur J Microbiol Immunol (Bp) 2013; 3:105-10. [PMID: 24265926 DOI: 10.1556/eujmi.3.2013.2.3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/05/2013] [Indexed: 01/24/2023] Open
Abstract
Hypersensitive response/reaction is a form of the cellular demise frequently linked alongside plant resistance against pathogen infection. Main transducers for this reaction are the intermediates of reactive oxygen and ion fluxes which are plausibly needed for hypersensitive response (Hpr Sen Rsp). An immediate and enormous energy production and its intra-cellular biochemical conduction are imperative for an Hpr Sen Rsp to be occurred. A number of studies proved that there are such diverse types of factors involved in triggering of Hpr Sen Rsp that morphologies of dead cells have become a vast topic of study. Hpr Sen Rsp could play a frolic role in plants as certain programmed cellular disintegrations in other organisms, to restrict pathogen growth. In fact, Hpr Sen Rsp can be involved in all types of tissues and most of the developmental stages.
Collapse
|
47
|
Kulye M, Liu H, Zhang Y, Zeng H, Yang X, Qiu D. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco. PLANT, CELL & ENVIRONMENT 2012; 35:2104-20. [PMID: 22591019 DOI: 10.1111/j.1365-3040.2012.02539.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Here, we report the identification, purification, characterization and gene cloning of a novel hypersensitive response inducing protein secreted by necrotrophic fungus, Alternaria tenuissima, designated as hypersensitive response inducing protein 1 (Hrip1). The protein caused the formation of necrotic lesions that mimic a typical hypersensitive response and apoptosis-related events including DNA laddering. The protein-encoding gene was cloned by rapid amplification of cDNA ends (RACE) method. The sequence analysis revealed that the cDNA is 495 bp in length and the open reading frame (ORF) encodes for a polypeptide of 163 amino acids with theoretical pI of 5.50 and molecular weight of 17 562.5 Da. Hrip1 induced calcium influx, medium alkalinization, activation of salicylic acid-induced protein kinase and several defence-related genes after infiltration in tobacco leaves. Cellular damage, restricted to the infiltrated zone, occurred only several hours later, at a time when expression of defence-related genes was activated. After several days, systemic acquired resistance was also induced. The tobacco plant cells that perceived the Hrip1 generated a cascade of signals acting at local, short, and long distances, and caused the coordinated expression of specific defence responses in a way similar to hypersensitivity to tobacco mosaic virus. Thus, Hrip1 represents a powerful tool to investigate further the signals and their transduction pathways involved in induced disease resistance in necrotrophic fungi.
Collapse
Affiliation(s)
- Mahesh Kulye
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing 100081, China.
| | | | | | | | | | | |
Collapse
|
48
|
Tripathy BC, Oelmüller R. Reactive oxygen species generation and signaling in plants. PLANT SIGNALING & BEHAVIOR 2012; 7:1621-33. [PMID: 23072988 PMCID: PMC3578903 DOI: 10.4161/psb.22455] [Citation(s) in RCA: 348] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS.
Collapse
|
49
|
Floryszak-Wieczorek J, Arasimowicz-Jelonek M, Milczarek G, Janus L, Pawlak-Sprada S, Abramowski D, Deckert J, Billert H. Nitric oxide-mediated stress imprint in potato as an effect of exposure to a priming agent. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1469-77. [PMID: 22835274 DOI: 10.1094/mpmi-02-12-0044-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We investigated how potato exposed to a chemical agent could activate nitric oxide (NO)-dependent events facilitating more potent defense responses to a subsequent pathogen attack. Obtained data revealed that all applied inducers, i.e., β-aminobutyric acid (BABA), γ-aminobutyric acid (GABA), laminarin, or 2,6-dichloroisonicotinic acid (INA), were active stimuli in potentiating NO synthesis in the primed potato. It is assumed, for the mechanism proposed in this paper, that priming involves reversible S-nitrosylated protein (S-nitrosothiols [SNO]) storage as one of the short-term stress imprint components, apart from epigenetic changes sensitized by NO. Based on BABA- and GABA-induced events, it should be stated that a rise in NO generation and coding the NO message in SNO storage at a relatively low threshold together with histone H2B upregulation might create short-term imprint activation, facilitating acquisition of a competence to react faster after challenge inoculation. Laminarin elicited strong NO upregulation with an enhanced SNO pool-altered biochemical imprint in the form of less effective local recall, nevertheless being fully protective in distal responses against P. infestans. In turn, INA showed the most intensified NO generation and abundant formation of SNO, both after the inducer treatment and challenge inoculation abolishing potato resistance against the pathogen. Our results indicate, for the first time, that a precise control of synthesized NO in cooperation with reversible SNO storage and epigenetic modifications might play an important role in integrating and coordinating defense potato responses in the priming phenomenon.
Collapse
|
50
|
Im JH, Lee H, Kim J, Kim HB, An CS. Soybean MAPK, GMK1 is dually regulated by phosphatidic acid and hydrogen peroxide and translocated to nucleus during salt stress. Mol Cells 2012; 34:271-8. [PMID: 22886763 PMCID: PMC3887844 DOI: 10.1007/s10059-012-0092-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/07/2012] [Accepted: 06/19/2012] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) is activated by various biotic and abiotic stresses. Salt stress induces two well-characterized MAPK activating signaling molecules, phosphatidic acid (PA) via phospholipase D and phospholipase C, and reactive oxygen species (ROS) via nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase. In our previous study, the activity of soybean MAPK, GMK1 was strongly induced within 5 min of 300 mM NaCl treatment and this early activity was regulated by PA. In this study, we focused on the regulation of GMK1 at the later stage of the salt stress, because its activity was strongly persistent for up to 30 min. H(2)O(2) activated GMK1 even in the presence of PA generation inhibitors, but GMK1 activity was greatly decreased in the presence of diphenyleneiodonium, an inhibitor of NADPH-oxidase after 5 min of the treatment. On the contrary, the n-butanol and neomycin reduced GMK1 activity within 5 min of the treatment. Thus, GMK1 activity may be sustained by H(2)O(2) 10 min after the treatment. Further, GMK1 was translocated into the nucleus 60 min after NaCl treatment. In the relationship between GMK1 and ROS generation, ROS generation was reduced by SB202190, a MAPK inhibitor, but was increased in protoplast overexpressing TESD-GMKK1. However, these effects were occurred at prolonged time of NaCl treatment. These data suggest that GMK1 indirectly regulates ROS generation. Taken together, we propose that soybean GMK1 is dually regulated by PA and H(2)O(2) at a time dependant manner and translocated to the nucleus by the salt stress signal.
Collapse
Affiliation(s)
- Jong Hee Im
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
| | - Hyoungseok Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
- Present address: Division of Life Sciences, Korea Polar Research Institute (KOPRI), Songdo Techno Park, Incheon 406-840,
Korea
| | - Jitae Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
- Present address: Department of Plant Biology, Cornell University, Ithaca, New York, 14853,
USA
| | - Ho Bang Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
- Present address: Life Sciences Research Institute, Biomedic Co. Ltd., Bucheon 420-852,
Korea
| | - Chung Sun An
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747,
Korea
| |
Collapse
|