1
|
Li J, Liang Z, Feng J, Hu H, Nangia V, Mo F, Liu Y. Spermidine regulates wheat grain weight at high planting density by promoting the synthesis of sucrose and starch in inferior grains. PHYSIOLOGIA PLANTARUM 2024; 176:e14321. [PMID: 38686595 DOI: 10.1111/ppl.14321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024]
Abstract
Increasing density is an effective way to enhance wheat (Triticum aestivum L.) yield under limited cultivated areas. However, the physiological mechanisms underlying the reduction in grain weight when density increased are still unclear. Three field experiments were conducted during the 2014-2019 growing seasons to explore the physiological mechanisms by which polyamines affect grain weight formation. The results showed that when wheat planting density exceeded 450 × 104 seedlings ha-1 and 525 × 104 seedlings ha-1, wheat yield tended to decrease. Compared to moderate density (DM, 450 × 104 seedlings ha-1), the filling rate of inferior grains was reduced before 25 days after anthesis (DAA) and the active filling period was shortened by 6.4%-7.4% under high density (DH, 600 × 104 seedlings ha-1), resulting in a loss of 1000-grain weight by 5.4%-8.1%. DH significantly reduced sucrose and starch content in inferior grains at the filling stage. Meanwhile, DH inhibited the activity of key enzymes involved in polyamine synthesis [SAMDC (EC 4.1.1.50) and SpdSy (EC 2.5.1.16)] and induced the activity of ethylene (ETH) precursor synthase, resulting in a significant decrease in endogenous spermidine (Spd) content in inferior grains, but a significant increase in ETH release rate. Post-flowering application of exogenous Spd increased the accumulation of sucrose and starch in the inferior grains and positively regulated the filling and grain weight of the inferior grains, whereas exogenous ETH had a negative effect. Overall, Spd may affect wheat grain weight at high planting density by promoting the synthesis of sucrose and starch in inferior grains.
Collapse
Affiliation(s)
- Juan Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Zimeng Liang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Jingyi Feng
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Huihui Hu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Vinay Nangia
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Fei Mo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yang Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, PR China
| |
Collapse
|
2
|
Zhu Y, Su H, Liu XX, Sun JF, Xiang L, Liu YJ, Hu ZW, Xiong XY, Yang XM, Bhutto SH, Li GB, Peng YY, Wang H, Shen X, Zhao ZX, Zhang JW, Huang YY, Fan J, Wang WM, Li Y. Identification of NADPH Oxidase Genes Crucial for Rice Multiple Disease Resistance and Yield Traits. RICE (NEW YORK, N.Y.) 2024; 17:1. [PMID: 38170415 PMCID: PMC10764683 DOI: 10.1186/s12284-023-00678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Reactive oxygen species (ROS) act as a group of signaling molecules in rice functioning in regulation of development and stress responses. Respiratory burst oxidase homologues (Rbohs) are key enzymes in generation of ROS. However, the role of the nine Rboh family members was not fully understood in rice multiple disease resistance and yield traits. In this study, we constructed mutants of each Rboh genes and detected their requirement in rice multiple disease resistance and yield traits. Our results revealed that mutations of five Rboh genes (RbohA, RbohB, RbohE, RbohH, and RbohI) lead to compromised rice blast disease resistance in a disease nursery and lab conditions; mutations of five Rbohs (RbohA, RbohB, RbohC, RbohE, and RbohH) result in suppressed rice sheath blight resistance in a disease nursery and lab conditions; mutations of six Rbohs (RbohA, RbohB, RbohC, RbohE, RbohH and RbohI) lead to decreased rice leaf blight resistance in a paddy yard and ROS production induced by PAMPs and pathogen. Moreover, all Rboh genes participate in the regulation of rice yield traits, for all rboh mutants display one or more compromised yield traits, such as panicle number, grain number per panicle, seed setting rate, and grain weight, resulting in reduced yield per plant except rbohb and rbohf. Our results identified the Rboh family members involved in the regulation of rice resistance against multiple pathogens that caused the most serious diseases worldwide and provide theoretical supporting for breeding application of these Rbohs to coordinate rice disease resistance and yield traits.
Collapse
Affiliation(s)
- Yong Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Su
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Fen Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Xiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan-Jing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhang-Wei Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yu Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xue-Mei Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sadam Hussain Bhutto
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuan-Ying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Yu Z, Wang R, Dai T, Guo Y, Tian Z, Zhu Y, Chen J, Yu Y. Identification of hub genes and key pathways in arsenic-treated rice (Oryza sativa L.) based on 9 topological analysis methods of CytoHubba. Environ Health Prev Med 2024; 29:41. [PMID: 39111872 PMCID: PMC11310560 DOI: 10.1265/ehpm.24-00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/06/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Arsenic is a toxic metalloid that can cause acute and chronic adverse health problems. Unfortunately, rice, the primary staple food for more than half of the world's population, is generally regarded as a typical arsenic-accumulating crop plant. Evidence indicates that arsenic stress can influence the growth and development of the rice plant, and lead to high concentrations of arsenic in rice grain. But the underlying mechanisms remain unclear. METHODS In the present research, the possible molecules and pathways involved in rice roots in response to arsenic stress were explored using bioinformatics methods. Datasets that involving arsenic-treated rice root and the "study type" that was restricted to "Expression profiling by array" were selected and downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between the arsenic-treated group and the control group were obtained using the online web tool GEO2R. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed to investigate the functions of DEGs. The protein-protein interactions (PPI) network and the molecular complex detection algorithm (MCODE) of DEGs were analyzed using STRING and Cystoscope, respectively. Important nodes and hub genes in the PPI network were predicted and explored using the Cytoscape-cytoHubba plug-in. RESULTS Two datasets, GSE25206 and GSE71492, were downloaded from Gene Expression Omnibus (GEO) database. Eighty common DEGs from the two datasets, including sixty-three up-regulated and seventeen down-regulated genes, were then selected. After functional enrichment analysis, these common DEGs were enriched mainly in 10 GO items, including glutathione transferase activity, glutathione metabolic process, toxin catabolic process, and 7 KEGG pathways related to metabolism. After PPI network and MCODE analysis, 49 nodes from the DEGs PPI network were identified, filtering two significant modules. Next, the Cytoscape-cytoHubba plug-in was used to predict important nodes and hub genes. Finally, five genes [Os01g0644000, PRDX6 (Os07g0638400), PRX112 (Os07g0677300), ENO1(Os06g0136600), LOGL9 (Os09g0547500)] were verified and could serve as the best candidates associated with rice root in response to arsenic stress. CONCLUSIONS In summary, we elucidated the potential pathways and genes in rice root in response to arsenic stress through a comprehensive bioinformatics analysis.
Collapse
Affiliation(s)
- Zhen Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang 212100, Jiangsu, China
| | - Rongxuan Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Tian Dai
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Yuan Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Zanxuan Tian
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
| | - Yuanyuan Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Juan Chen
- College of Food Science and Engineering, Moutai Institute, Renhuai 564501, Guizhou, China
| | - Yongjian Yu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang 212100, Jiangsu, China
| |
Collapse
|
4
|
Segarra-Medina C, Pascual LS, Alseekh S, Fernie AR, Rambla JL, Gómez-Cadenas A, Zandalinas SI. Comparison of metabolomic reconfiguration between Columbia and Landsberg ecotypes subjected to the combination of high salinity and increased irradiance. BMC PLANT BIOLOGY 2023; 23:406. [PMID: 37620776 PMCID: PMC10463500 DOI: 10.1186/s12870-023-04404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Plants growing in the field are subjected to combinations of abiotic stresses. These conditions pose a devastating threat to crops, decreasing their yield and causing a negative economic impact on agricultural production. Metabolic responses play a key role in plant acclimation to stress and natural variation for these metabolic changes could be key for plant adaptation to fluctuating environmental conditions. RESULTS Here we studied the metabolomic response of two Arabidopsis ecotypes (Columbia-0 [Col] and Landsberg erecta-0 [Ler]), widely used as genetic background for Arabidopsis mutant collections, subjected to the combination of high salinity and increased irradiance. Our findings demonstrate that this stress combination results in a specific metabolic response, different than that of the individual stresses. Although both ecotypes displayed reduced growth and quantum yield of photosystem II, as well as increased foliar damage and malondialdehyde accumulation, different mechanisms to tolerate the stress combination were observed. These included a relocation of amino acids and sugars to act as potential osmoprotectants, and the accumulation of different stress-protective compounds such as polyamines or secondary metabolites. CONCLUSIONS Our findings reflect an initial identification of metabolic pathways that differentially change under stress combination that could be considered in studies of stress combination of Arabidopsis mutants that include Col or Ler as genetic backgrounds.
Collapse
Affiliation(s)
- Clara Segarra-Medina
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Lidia S Pascual
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - José L Rambla
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain.
| | - Sara I Zandalinas
- Departamento de Biología, Bioquímica Y Ciencias Naturales, Universitat Jaume I, 12071, Castelló de La Plana, Spain.
| |
Collapse
|
5
|
Dwivedi AK, Singh V, Anwar K, Pareek A, Jain M. Integrated transcriptome, proteome and metabolome analyses revealed secondary metabolites and auxiliary carbohydrate metabolism augmenting drought tolerance in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107849. [PMID: 37393858 DOI: 10.1016/j.plaphy.2023.107849] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Abstract
Drought is one of the major consequences of climate change and a serious threat to rice production. Drought stress activates interactions among genes, proteins and metabolites at the molecular level. A comparative multi-omics analysis of drought-tolerant and drought-sensitive rice cultivars can decipher the molecular mechanisms involved in drought tolerance/response. Here, we characterized the global-level transcriptome, proteome, and metabolome profiles, and performed integrated analyses thereof in a drought-sensitive (IR64) and a drought-tolerant (Nagina 22) rice cultivar under control and drought-stress conditions. The transcriptional dynamics and its integration with proteome analysis revealed the role of transporters in regulation of drought stress. The proteome response illustrated the contribution of translational machinery to drought tolerance in N22. The metabolite profiling revealed that aromatic amino acids and soluble sugars contribute majorly to drought tolerance in rice. The integrated transcriptome, proteome and metabolome analysis performed using statistical and knowledge-based methods revealed the preference for auxiliary carbohydrate metabolism through glycolysis and pentose phosphate pathway contributed to drought tolerance in N22. In addition, L-phenylalanine and the genes/proteins responsible for its biosynthesis were also found to contribute to drought tolerance in N22. In conclusion, our study provided mechanistic insights into the drought response/adaptation mechanism and is expected to facilitate engineering of drought tolerance in rice.
Collapse
Affiliation(s)
- Anuj Kumar Dwivedi
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Vikram Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Khalid Anwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
6
|
Pascual LS, López-Climent MF, Segarra-Medina C, Gómez-Cadenas A, Zandalinas SI. Exogenous spermine alleviates the negative effects of combined salinity and paraquat in tomato plants by decreasing stress-induced oxidative damage. FRONTIERS IN PLANT SCIENCE 2023; 14:1193207. [PMID: 37229124 PMCID: PMC10203479 DOI: 10.3389/fpls.2023.1193207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Plants are frequently exposed to different combinations of soil constraints including salinity and different herbicides. These abiotic conditions negatively affect photosynthesis, growth and plant development resulting in limitations in agriculture production. To respond to these conditions, plants accumulate different metabolites that restore cellular homeostasis and are key for stress acclimation processes. In this work, we analyzed the role of exogenous spermine (Spm), a polyamine involved in plant tolerance to abiotic stress, in tomato responses to the combination of salinity (S) and the herbicide paraquat (PQ). Our findings showed that application of Spm reduced leaf damage and enhanced survival, growth, photosystem II function and photosynthetic rate of tomato plants subjected to the combination of S and PQ. In addition, we revealed that exogenous Spm reduced H2O2 and malondialdehyde (MDA) accumulation in plants subjected to S+PQ, suggesting that the role of exogenous Spm in alleviating the negative effects of this stress combination could be attributed to a decrease in stress-induced oxidative damage in tomato plants. Taken together, our results identify a key role for Spm in improving plant tolerance to combined stress.
Collapse
Affiliation(s)
| | | | | | - Aurelio Gómez-Cadenas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castellón, Spain
| | - Sara I. Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castellón, Spain
| |
Collapse
|
7
|
Song J, Sun P, Kong W, Xie Z, Li C, Liu JH. SnRK2.4-mediated phosphorylation of ABF2 regulates ARGININE DECARBOXYLASE expression and putrescine accumulation under drought stress. THE NEW PHYTOLOGIST 2023; 238:216-236. [PMID: 36210523 DOI: 10.1111/nph.18526] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Arginine decarboxylase (ADC)-mediated putrescine (Put) biosynthesis plays an important role in plant abiotic stress response. SNF1-related protein kinases 2s (SnRK2s) and abscisic acid (ABA)-response element (ABRE)-binding factors (ABFs), are core components of the ABA signaling pathway involved in drought stress response. We previously reported that ADC of Poncirus trifoliata (PtrADC) functions in drought tolerance. However, whether and how SnRK2 and ABF regulate PtrADC to modulate putrescine accumulation under drought stress remains largely unclear. Herein, we employed a set of physiological, biochemical, and molecular approaches to reveal that a protein complex composed of PtrSnRK2.4 and PtrABF2 modulates putrescine biosynthesis and drought tolerance by directly regulating PtrADC. PtrABF2 was upregulated by dehydration in an ABA-dependent manner. PtrABF2 activated PtrADC expression by directly and specifically binding to the ABRE core sequence within its promoter and positively regulated drought tolerance via modulating putrescine accumulation. PtrSnRK2.4 interacts with and phosphorylates PtrABF2 at Ser93. PtrSnRK2.4-mediated PtrABF2 phosphorylation is essential for the transcriptional regulation of PtrADC. Besides, PtrSnRK2.4 was shown to play a positive role in drought tolerance by facilitating putrescine synthesis. Taken together, this study sheds new light on the regulatory module SnRK2.4-ABF2-ADC responsible for fine-tuning putrescine accumulation under drought stress, which advances our understanding on transcriptional regulation of putrescine synthesis.
Collapse
Affiliation(s)
- Jie Song
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peipei Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Weina Kong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunlong Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
8
|
Recent insights into the roles of circular RNAs in human brain development and neurologic diseases. Int J Biol Macromol 2023; 225:1038-1048. [PMID: 36410538 DOI: 10.1016/j.ijbiomac.2022.11.166] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs. They are single-stranded RNA transcripts characterized with a closed loop structure making them resistant to degrading enzymes. Recently, circRNAs have been suggested with regulatory roles in gene expression involved in controlling various biological processes. Notably, they have demonstrated abundance, dynamic expression, back-splicing events, and spatiotemporally regulation in the human brain. Accordingly, they are expected to be involved in brain functions and related diseases. Studies in animals and human brain have revealed differential expression of circRNAs in brain compartments. Interestingly, contributing roles of circRNAs in the regulation of central nervous system (CNS) development have been demonstrated in a number of studies. It has been proposed that circRNAs play role in substantial neurological functions like neurotransmitter-associated tasks, neural cells maturation, and functions of synapses. Furthermore, 3 main pathways have been identified in association with circRNAs's host genes including axon guidance, Wnt signaling, and transforming growth factor beta (TGF-β) signaling pathways, which are known to be involved in substantial functions like migration and differentiation of neurons and specification of axons, and thus play role in brain development. In this review, we have an overview to the biogenesis, biological functions of circRNAs, and particularly their roles in human brain development and the pathogenesis of neurodegenerative diseases including Alzheimer's diseases, multiple sclerosis, Parkinson's disease and brain tumors.
Collapse
|
9
|
Soudani S, Poza-Carrión C, De la Cruz Gómez N, González-Coloma A, Andrés MF, Berrocal-Lobo M. Essential Oils Prime Epigenetic and Metabolomic Changes in Tomato Defense Against Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2022; 13:804104. [PMID: 35422834 PMCID: PMC9002333 DOI: 10.3389/fpls.2022.804104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/07/2022] [Indexed: 05/10/2023]
Abstract
In this work, we studied the direct and indirect plant protection effects of an Artemisia absinthium essential oil (AEO) on tomato seedlings against Fusarium oxysporum sp. oxysporum radicis lycopersici (Fol). AEO exhibited a toxic effect in vitro against Fol. Additionally, tomato seedlings germinated from seeds pretreated with AEO and grown hydroponically were protected against Fol. Plant disease symptoms, including, water and fresh weight loss, tissue necrosis, and chlorosis were less pronounced in AEO-treated seedlings. AEO also contributed to plant defenses by increasing callose deposition and the production of reactive oxygen species (ROS) on seed surfaces without affecting seed germination or plant development. The essential oil seed coating also primed a durable tomato seedling defense against the fungus at later stages of plant development. RNA-seq and metabolomic analysis performed on seedlings after 12 days showed that the AEO treatment on seeds induced transcriptomic and metabolic changes. The metabolomic analysis showed an induction of vanillic acid, coumarin, lycopene, oleamide, and an unknown metabolite of m/z 529 in the presence of Fol. The StNRPD2 gene, the second largest component of RNA polymerases IV and V directly involved in de novo cytosine methylation by RNA-directed DNA methylation (RdDM), was highly induced in the presence of AEO. The host methionine cycle (MTC) controlling trans-methylation reactions, was also altered by AEO through the high induction of S-adenosyl methionine transferases (SAMts). Our results suggest that AEO treatment could induce de novo epigenetic changes in tomato, modulating the speed and extent of its immune response to Fol. The EO-seed coating could be a new strategy to prime durable tomato resistance, compatible with other environmentally friendly biopesticides.
Collapse
Affiliation(s)
- Serine Soudani
- Department of Systems and Natural Resources, School of Forestry Engineering and Natural Environment, Polytechnical University of Madrid, Madrid, Spain
| | - César Poza-Carrión
- Department of Systems and Natural Resources, School of Forestry Engineering and Natural Environment, Polytechnical University of Madrid, Madrid, Spain
| | - Noelia De la Cruz Gómez
- Department of Systems and Natural Resources, School of Forestry Engineering and Natural Environment, Polytechnical University of Madrid, Madrid, Spain
| | - Azucena González-Coloma
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María Fé Andrés
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Marta Berrocal-Lobo
- Department of Systems and Natural Resources, School of Forestry Engineering and Natural Environment, Polytechnical University of Madrid, Madrid, Spain
| |
Collapse
|
10
|
Performance of halotolerant bacteria associated with Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L. ameliorate tomato plant growth and tolerance to saline stress: from selective isolation to genomic analysis of potential determinants. World J Microbiol Biotechnol 2021; 38:16. [PMID: 34897563 DOI: 10.1007/s11274-021-03203-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022]
Abstract
The use of halotolerant beneficial plant-growth-promoting (PGP) bacteria is considered as a promising eco-friendly approach to improve the salt tolerance of cash crops. One strategy to enhance the possibility of obtaining stress-alleviating bacteria is to screen salt impacted soils. In this study, amongst the 40 endophytic bacteria isolated from the roots of Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L., 8 showed interesting NaCl tolerance in vitro. Their evaluation, through different tomato plant trials, permitted the isolate IS26 to be distinguished as the most effective seed inoculum for both plant growth promotion and mitigation of salt stress. On the basis of 16S rRNA gene sequence, the isolate was closely related to Stenotrophomonas rhizophila. It was then screened in vitro for multiple PGP traits and the strain-complete genome was sequenced and analysed to further decipher the genomic basis of the putative mechanisms underlying its osmoprotective and plant growth abilities. A remarkable number of genes putatively involved in mechanisms responsible for rhizosphere colonization, plant association, strong competition for nutrients, and the production of important plant growth regulator compounds, such as AIA and spermidine, were highlighted, as were substances protecting against stress, including different osmolytes like trehalose, glucosylglycerol, proline, and glycine betaine. By having genes related to complementary mechanisms of osmosensing, osmoregulation and osmoprotection, the strain confirmed its great capacity to adapt to highly saline environments. Moreover, the presence of various genes potentially related to multiple enzymatic antioxidant processes, able to reduce salt-induced overproduction of ROS, was also detected.
Collapse
|
11
|
Mechanisms of Sugar Beet Response to Biotic and Abiotic Stresses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:167-194. [PMID: 32383121 DOI: 10.1007/978-3-030-41283-8_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Sugar beet is used not only in the sugar production, but also in a wide range of industries including the production of bioethanol as a source of renewable energy, extraction of pectin and production of molasses. The red beetroot has attracted much attention as health-promoting and disease-preventing functional food. The negative effects of environmental stresses, including abiotic and biotic ones, significantly decrease the cash crop sugar beet productivity. In this paper, we outline the mechanisms of sugar beet response to biotic and abiotic stresses at the levels of physiological change, the genes' functions, transcription and translation. Regarding the physiological changes, most research has been carried out on salt and drought stress. The functions of genes from sugar beet in response to salt, cold and heavy metal stresses were mainly investigated by transgenic technologies. At the transcriptional level, the transcriptome analysis of sugar beet in response to salt, cold and biotic stresses were conducted by RNA-Seq or SSH methods. At the translational level, more than 800 differentially expressed proteins in response to salt, K+/Na+ ratio, iron deficiency and resupply and heavy metal (zinc) stress were identified by quantitative proteomics techniques. Understanding how sugar beet respond and tolerate biotic and abiotic stresses is important for boosting sugar beet productivity under these challenging conditions. In order to minimize the negative impact of these stresses, studying how the sugar beet has evolved stress coping mechanisms will provide new insights and lead to novel strategies for improving the breeding of stress-resistant sugar beet and other crops.
Collapse
|
12
|
Chen G, Hu J, Dong L, Zeng D, Guo L, Zhang G, Zhu L, Qian Q. The Tolerance of Salinity in Rice Requires the Presence of a Functional Copy of FLN2. Biomolecules 2019; 10:biom10010017. [PMID: 31877655 PMCID: PMC7022601 DOI: 10.3390/biom10010017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022] Open
Abstract
A panel of ethane-methyl-sulfonate-mutagenized japonica rice lines was grown in the presence of salinity in order to identify genes required for the expression of salinity tolerance. A highly nontolerant selection proved to harbor a mutation in FLN2, a gene which encodes fructokinase-like protein2. Exposure of wild-type rice to salinity up-regulated FLN2, while a CRISPR/Cas9-generated FLN2 knockout line was hypersensitive to the stress. Both ribulose 1,5-bisphosphate carboxylase/oxygenase activity and the abundance of the transcript generated by a number of genes encoding components of sucrose synthesis were lower in the knockout line than in wild-type plants’ leaves, while the sucrose contents of the leaf and root were, respectively, markedly increased and decreased. That sugar partitioning to the roots was impaired in FLN2 knockout plants was confirmed by the observation that several genes involved in carbon transport were down-regulated in both the leaf and in the leaf sheath. The levels of sucrose synthase, acid invertase, and neutral invertase activity were distinctly lower in the knockout plants’ roots than in those of wild-type plants, particularly when the plants were exposed to salinity stress. The compromised salinity tolerance exhibited by the FLN2 knockout plants was likely a consequence of an inadequate supply of the assimilate required to support growth, a problem which was rectifiable by providing an exogenous supply of sucrose. The conclusion was that FLN2, on account of its influence over sugar metabolism, is important in the context of seedling growth and the rice plant’s response to salinity stress.
Collapse
Affiliation(s)
- Guang Chen
- Correspondence: (G.C.); (L.Z.); (Q.Q.); Tel.: +86-571-6337-0179 (G.C. & L.Z.); +86-571-6337-0483 (Q.Q.)
| | | | | | | | | | | | - Li Zhu
- Correspondence: (G.C.); (L.Z.); (Q.Q.); Tel.: +86-571-6337-0179 (G.C. & L.Z.); +86-571-6337-0483 (Q.Q.)
| | - Qian Qian
- Correspondence: (G.C.); (L.Z.); (Q.Q.); Tel.: +86-571-6337-0179 (G.C. & L.Z.); +86-571-6337-0483 (Q.Q.)
| |
Collapse
|
13
|
Mäkinen K, De S. The significance of methionine cycle enzymes in plant virus infections. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:67-75. [PMID: 30959442 DOI: 10.1016/j.pbi.2019.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 05/22/2023]
Abstract
Both biotic and abiotic stresses cause changes in the activities of plant methionine cycle (MTC) enzymes. These changes contribute to the ability of the plant to manage stress. On the other hand, viruses utilize MTC enzymes to promote infection. Here, we review the growing but still limited knowledge of the interactions between plant viral proteins and MTC enzymes. Virus-induced changes in S-adenosyl methionine synthetase and S-adenosyl homocysteine hydrolase activities debilitate transcriptional and post-transcriptional RNA silencing and affect antiviral defense reactions connected to ethylene and polyamine biosynthesis pathways. Viral perturbations of host methionine homeostasis couple trans-sulfuration and gluthathione biosynthesis pathways to MTC functions. Large multiprotein complexes, which contain viral proteins and MTC enzymes, may represent metabolons assembled for specific viral functions or host defense responses. Proper understanding of the MTC-associated metabolic and regulatory interactions will reveal those with potential to create virus resistance in plants.
Collapse
Affiliation(s)
- Kristiina Mäkinen
- Faculty of Agriculture and Forestry, Department of Microbiology, Viikki Plant Sciences Center, P.O. Box 56, University of Helsinki, Finland.
| | - Swarnalok De
- Faculty of Agriculture and Forestry, Department of Microbiology, Viikki Plant Sciences Center, P.O. Box 56, University of Helsinki, Finland
| |
Collapse
|
14
|
Li Y, Cao X, Zhu Y, Yang X, Zhang K, Xiao Z, Wang H, Zhao J, Zhang L, Li G, Zheng Y, Fan J, Wang J, Chen X, Wu X, Zhao J, Dong OX, Chen X, Chern M, Wang W. Osa-miR398b boosts H 2 O 2 production and rice blast disease-resistance via multiple superoxide dismutases. THE NEW PHYTOLOGIST 2019; 222:1507-1522. [PMID: 30632163 PMCID: PMC6593823 DOI: 10.1111/nph.15678] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/03/2019] [Indexed: 05/18/2023]
Abstract
miRNAs contribute to plant resistance against pathogens. Previously, we found that the function of miR398b in immunity in rice differs from that in Arabidopsis. However, the underlying mechanisms are unclear. In this study, we characterized the mutants of miR398b target genes and demonstrated that multiple superoxide dismutase genes contribute to miR398b-regulated rice immunity against the blast fungus Magnaporthe oryzae. Out of the four target genes of miR398b, mutations in Cu/Zn-Superoxidase Dismutase1 (CSD1), CSD2 and Os11g09780 (Superoxide DismutaseX, SODX) led to enhanced resistance to M. oryzae and increased hydrogen peroxide (H2 O2 ) accumulation. By contrast, mutations in Copper Chaperone for Superoxide Dismutase (CCSD) resulted in enhanced susceptibility. Biochemical studies revealed that csd1, csd2 and sodx displayed altered expression of CSDs and other superoxide dismutase (SOD) family members, leading to increased total SOD enzyme activity that positively contributed to higher H2 O2 production. By contrast, the ccsd mutant showed CSD protein deletion, resulting in decreased CSD and total SOD enzyme activity. Our results demonstrate the roles of different SODs in miR398b-regulated resistance to rice blast disease, and uncover an integrative regulatory network in which miR398b boosts total SOD activity to upregulate H2 O2 concentration and thereby improve disease resistance.
Collapse
Affiliation(s)
- Yan Li
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - Xiao‐Long Cao
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - Yong Zhu
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - Xue‐Mei Yang
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - Kai‐Ni Zhang
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - Zhi‐Yuan Xiao
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - He Wang
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - Jing‐Hao Zhao
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - Ling‐Li Zhang
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - Guo‐Bang Li
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - Ya‐Ping Zheng
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - Jing Fan
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - Jing Wang
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - Xiao‐Qiong Chen
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - Xian‐Jun Wu
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinSichuan Agricultural UniversityChengdu611131China
| | - Ji‐Qun Zhao
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
| | - Oliver Xiaoou Dong
- Department of Plant PathologyUniversity of California DavisDavisCA95616USA
| | - Xue‐Wei Chen
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinSichuan Agricultural UniversityChengdu611131China
| | - Mawsheng Chern
- Department of Plant PathologyUniversity of California DavisDavisCA95616USA
| | - Wen‐Ming Wang
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengdu611131China
- Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinSichuan Agricultural UniversityChengdu611131China
| |
Collapse
|
15
|
Liu KS, Pan F, Mao XD, Liu C, Chen YJ. Biological functions of circular RNAs and their roles in occurrence of reproduction and gynecological diseases. Am J Transl Res 2019; 11:1-15. [PMID: 30787966 PMCID: PMC6357300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Circular RNAs (circRNAs) are a large class of non coding endogenous RNAs in eukaryotic that are formed through 3'-5' ligation of a single RNA molecule. According to the different sources of the sequences, circRNA can be divided into three types: exon circRNA (ecRNA), intron circRNA (ciRNA), and exon-intron circRNA. Accumulating studies have shown that circRNAs are abundant, diverse, stable, and cell or tissue specific expression, etc. CircRNA plays a regulating role in gene expression, and an essential role in the process of biological development, such as miRNA sponges, endogenous RNAs and biomarkers, as well as critical role in the diagnosis of diseases. Studies have verified the interplay between circRNAs and the development of embryos, sperms, ovarian epithelial tumors, endometrial cancer and preeclampsia, suggesting the potential of circRNAs to become biomarkers or therapeutical targets for human diseases. In this paper, we reviewed the researches on circRNAs' characteristics, databases of circRNA, high-throughput sequencing of circRNA, and effect on reproductive and gynecological diseases.
Collapse
Affiliation(s)
- Kang-Sheng Liu
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| | - Feng Pan
- Department of Andrology and Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| | - Xiao-Dong Mao
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
| | - Chao Liu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineNanjing 210028, Jiangsu, China
| | - Ya-Jun Chen
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210029, Jiangsu, China
| |
Collapse
|
16
|
Chen D, Shao Q, Yin L, Younis A, Zheng B. Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2019; 9:1945. [PMID: 30687350 PMCID: PMC6335389 DOI: 10.3389/fpls.2018.01945] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/13/2018] [Indexed: 05/10/2023]
Abstract
Polyamines (PAs) are low molecular weight aliphatic nitrogenous bases containing two or more amino groups. They are produced by organisms during metabolism and are present in almost all cells. Because they play important roles in diverse plant growth and developmental processes and in environmental stress responses, they are considered as a new kind of plant biostimulant. With the development of molecular biotechnology techniques, there is increasing evidence that PAs, whether applied exogenously or produced endogenously via genetic engineering, can positively affect plant growth, productivity, and stress tolerance. However, it is still not fully understood how PAs regulate plant growth and stress responses. In this review, we attempt to cover these information gaps and provide a comprehensive and critical assessment of the published literature on the relationships between PAs and plant flowering, embryo development, senescence, and responses to several (mainly abiotic) stresses. The aim of this review is to summarize how PAs improve plants' productivity, and to provide a basis for future research on the mechanism of action of PAs in plant growth and development. Future perspectives for PA research are also suggested.
Collapse
Affiliation(s)
- Dandan Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Adnan Younis
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
17
|
Response mechanisms induced by exposure to high temperature in anthers from thermo-tolerant and thermo-sensitive tomato plants: A proteomic perspective. PLoS One 2018; 13:e0201027. [PMID: 30024987 PMCID: PMC6053223 DOI: 10.1371/journal.pone.0201027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/07/2018] [Indexed: 11/19/2022] Open
Abstract
Constant global warming is one of the most detrimental environmental factors for agriculture causing significant losses in productivity as heat stress (HS) conditions damage plant growth and reproduction. In flowering plants such as tomato, HS has drastic repercussions on development and functionality of male reproductive organs and pollen. Response mechanisms to HS in tomato anthers and pollen have been widely investigated by transcriptomics; on the contrary, exhaustive proteomic evidences are still lacking. In this context, a differential proteomic study was performed on tomato anthers collected from two genotypes (thermo-tolerant and thermo-sensitive) to explore stress response mechanisms and identify proteins possibly associated to thermo-tolerance. Results showed that HS mainly affected energy and amino acid metabolism and nitrogen assimilation and modulated the expression of proteins involved in assuring protein quality and ROS detoxification. Moreover, proteins potentially associated to thermo-tolerant features, such as glutamine synthetase, S-adenosylmethionine synthase and polyphenol oxidase, were identified.
Collapse
|
18
|
Kusano T, Sagor GHM, Berberich T. Molecules for Sensing Polyamines and Transducing Their Action in Plants. Methods Mol Biol 2018; 1694:25-35. [PMID: 29080152 DOI: 10.1007/978-1-4939-7398-9_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polyamines play important roles in growth, development, and adaptive responses to various stresses. In the past two decades, progress in plant polyamine research has accelerated, and the key molecules and components involved in many biological events have been identified. Recently, polyamine sensors used to detect polyamine-enriched foods and polyamines derived from degrading flesh were identified in fly and zebrafish, respectively. Work has begun to identify such molecules in plants as well. Here, we summarize the current knowledge about polyamines in plants. Furthermore, we discuss the roles of key molecules, such as calcium ions, reactive oxygen species, nitric oxide, γ-aminobutyric acid, polyamine transporters, and the mitogen-activated protein kinase cascade, from the viewpoint of polyamine action.
Collapse
Affiliation(s)
- Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577, Japan.
| | - G H M Sagor
- Department of Genetics & Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Thomas Berberich
- Laboratory Center, Senckenberg Biodiversity and Climate Research Centre (BiK-F), George-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Overexpression of S-Adenosyl-l-Methionine Synthetase 2 from Sugar Beet M14 Increased Arabidopsis Tolerance to Salt and Oxidative Stress. Int J Mol Sci 2017; 18:ijms18040847. [PMID: 28420190 PMCID: PMC5412431 DOI: 10.3390/ijms18040847] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 11/23/2022] Open
Abstract
The sugar beet monosomic addition line M14 is a unique germplasm that contains genetic materials from Beta vulgaris L. and Beta corolliflora Zoss, and shows tolerance to salt stress. Our study focuses on exploring the molecular mechanism of the salt tolerance of the sugar beet M14. In order to identify differentially expressed genes in M14 under salt stress, a subtractive cDNA library was generated by suppression subtractive hybridization (SSH). A total of 36 unique sequences were identified in the library and their putative functions were analyzed. One of the genes, S-adenosylmethionine synthetase (SAMS), is the key enzyme involved in the biosynthesis of S-adenosylmethionine (SAM), a precursor of polyamines. To determine the potential role of SAMS in salt tolerance, we isolated BvM14-SAMS2 from the salt-tolerant sugar beet M14. The expression of BvM14-SAMS2 in leaves and roots was greatly induced by salt stress. Overexpression of BvM14-SAMS2 in Arabidopsis resulted in enhanced salt and H2O2 tolerance. Furthermore, we obtained a knock-down T-DNA insertion mutant of AtSAMS3, which shares the highest homology with BvM14-SAMS2. Interestingly, the mutant atsam3 showed sensitivity to salt and H2O2 stress. We also found that the antioxidant system and polyamine metabolism play an important role in salt and H2O2 tolerance in the BvM14-SAMS2-overexpressed plants. To our knowledge, the function of the sugar beet SAMS has not been reported before. Our results have provided new insights into SAMS functions in sugar beet.
Collapse
|
20
|
Zhou C, Ma Z, Zhu L, Xiao X, Xie Y, Zhu J, Wang J. Rhizobacterial Strain Bacillus megaterium BOFC15 Induces Cellular Polyamine Changes that Improve Plant Growth and Drought Resistance. Int J Mol Sci 2016; 17:ijms17060976. [PMID: 27338359 PMCID: PMC4926508 DOI: 10.3390/ijms17060976] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/31/2016] [Accepted: 06/03/2016] [Indexed: 12/11/2022] Open
Abstract
Plant-growth-promoting rhizobacteria can improve plant growth, development, and stress adaptation. However, the underlying mechanisms are still largely unclear. We investigated the effects of Bacillusmegaterium BOFC15 on Arabidopsis plants. BOFC15 produced and secreted spermidine (Spd), a type of polyamine (PA) that plays an important role in plant growth. Moreover, BOFC15 induced changes in the cellular PAs of plants that promoted an increase of free Spd and spermine levels. However, these effects were remarkably abolished by the addition of dicyclohexylamine (DCHA), a Spd biosynthetic inhibitor. Additionally, the inoculation with BOFC15 remarkably increased plant biomass, improved root system architecture, and augmented photosynthetic capacity. Inoculated plants also displayed stronger ability to tolerate drought stress than non-inoculated (control) plants. Abscisic acid (ABA) content was notably higher in the inoculated plants than in the control plants under drought stress and polyethylene glycol (PEG)-induced stress conditions. However, the BOFC15-induced ABA synthesis was markedly inhibited by DCHA. Thus, microbial Spd participated in the modulation of the ABA levels. The Spd-producing BOFC15 improved plant drought tolerance, which was associated with altered cellular ABA levels and activated adaptive responses.
Collapse
Affiliation(s)
- Cheng Zhou
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.
- Key Laboratory of Bio-Organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu 233100, China.
| | - Zhongyou Ma
- Key Laboratory of Bio-Organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu 233100, China.
| | - Lin Zhu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Xin Xiao
- Key Laboratory of Bio-Organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu 233100, China.
| | - Yue Xie
- Key Laboratory of Bio-Organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu 233100, China.
| | - Jian Zhu
- School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Jianfei Wang
- Key Laboratory of Bio-Organic Fertilizer Creation, Ministry of Agriculture, Anhui Science and Technology University, Bengbu 233100, China.
| |
Collapse
|
21
|
Lo SF, Fan MJ, Hsing YI, Chen LJ, Chen S, Wen IC, Liu YL, Chen KT, Jiang MJ, Lin MK, Rao MY, Yu LC, Ho THD, Yu SM. Genetic resources offer efficient tools for rice functional genomics research. PLANT, CELL & ENVIRONMENT 2016; 39:998-1013. [PMID: 26301381 DOI: 10.1111/pce.12632] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/13/2015] [Accepted: 08/16/2015] [Indexed: 05/07/2023]
Abstract
Rice is an important crop and major model plant for monocot functional genomics studies. With the establishment of various genetic resources for rice genomics, the next challenge is to systematically assign functions to predicted genes in the rice genome. Compared with the robustness of genome sequencing and bioinformatics techniques, progress in understanding the function of rice genes has lagged, hampering the utilization of rice genes for cereal crop improvement. The use of transfer DNA (T-DNA) insertional mutagenesis offers the advantage of uniform distribution throughout the rice genome, but preferentially in gene-rich regions, resulting in direct gene knockout or activation of genes within 20-30 kb up- and downstream of the T-DNA insertion site and high gene tagging efficiency. Here, we summarize the recent progress in functional genomics using the T-DNA-tagged rice mutant population. We also discuss important features of T-DNA activation- and knockout-tagging and promoter-trapping of the rice genome in relation to mutant and candidate gene characterizations and how to more efficiently utilize rice mutant populations and datasets for high-throughput functional genomics and phenomics studies by forward and reverse genetics approaches. These studies may facilitate the translation of rice functional genomics research to improvements of rice and other cereal crops.
Collapse
Affiliation(s)
- Shuen-Fang Lo
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Lioufeng Road, Wufeng, Taichung, 413, Taiwan, ROC
| | - Yue-Ie Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Liang-Jwu Chen
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Shu Chen
- Plant Germplasm Division, Taiwan Agricultural Research Institute, Wufeng, Taichung, 413, Taiwan, ROC
| | - Ien-Chie Wen
- Plant Germplasm Division, Taiwan Agricultural Research Institute, Wufeng, Taichung, 413, Taiwan, ROC
| | - Yi-Lun Liu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Ku-Ting Chen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
| | - Mirng-Jier Jiang
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Ming-Kuang Lin
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Meng-Yen Rao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
| | - Lin-Chih Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
| | - Tuan-Hua David Ho
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan, ROC
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, ROC
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan, ROC
- Department of Life Sciences, National Chung Hsing University, Taichung, 402, Taiwan, ROC
| |
Collapse
|
22
|
Trümper C, Paffenholz K, Smit I, Kössler P, Karlovsky P, Braun HP, Pawelzik E. Identification of Differently Regulated Proteins after
Fusarium graminearum Infection of Emmer ( Triticum dicoccum) at Several Grain Ripening Stages. Food Technol Biotechnol 2015; 53:261-268. [PMID: 27904357 PMCID: PMC5068377 DOI: 10.17113/ftb.53.03.15.3838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 03/23/2015] [Indexed: 11/12/2022] Open
Abstract
This study was conducted to improve the knowledge of molecular processes involved in the interaction between Fusarium graminearum and emmer in the course of grain ripening. Emmer plants were artificially inoculated with a F. graminearum spore suspension at anthesis. In the course of grain ripening from milk ripe to plant death stage, grains at four phenological growth stages were collected for analysis. The infection degree was evaluated based on the F. graminearum DNA content in emmer grain infolding tissues (glumes and rachis). For proteome analysis the albumin and globulin fractions of emmer grains, consisting of proteins with various functions related to the development and stress response, were analysed regarding the changes due to Fusarium infection by two-dimensional gel electrophoresis. Altogether, forty-three proteins affected by infection were identified by mass spectrometry. Enzymes detoxifying reactive oxygen species were regulated at all developmental stages. In the early stage of grain development, the abundance of proteins related to stress response, such as 2-Cys peroxiredoxin, a chitinase, a xylanase inhibitor and a spermidine synthase was increased. During later stage of grain development, the abundance of stress-related proteins, such as chitinases, heat shock proteins and an α-amylase inhibitor-like protein, decreased. During all ripening stages, but especially during medium milk stage (BBCH 75) and soft dough stage (BBCH 85), the abundance of proteins related to carbon metabolism, starch and protein biosynthesis as well as photosynthesis increased due to F. graminearum infection. At the plant death stage (BBCH 97) the abundance of only two proteins related to metabolism decreased.
Collapse
Affiliation(s)
- Christina Trümper
- Quality of Plant Products, Department of Crop Sciences, Faculty of Agriculture,
Georg-August-University of Göttingen, DE-37075 Göttingen, Germany
| | - Katrin Paffenholz
- Institute of Plant Genetics, Faculty of Natural Sciences, Leibniz University of Hannover,
DE-30419 Hannover, Germany
| | - Inga Smit
- Quality of Plant Products, Department of Crop Sciences, Faculty of Agriculture,
Georg-August-University of Göttingen, DE-37075 Göttingen, Germany
| | - Philip Kössler
- Molecular Phytopathology and Mycotoxin Research Division, Department of Crop Sciences, Faculty of Agriculture, Georg-August University of Göttingen, DE-37077 Göttingen, Germany
| | - Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research Division, Department of Crop Sciences, Faculty of Agriculture, Georg-August University of Göttingen, DE-37077 Göttingen, Germany
| | - Hans Peter Braun
- Institute of Plant Genetics, Faculty of Natural Sciences, Leibniz University of Hannover,
DE-30419 Hannover, Germany
| | - Elke Pawelzik
- Quality of Plant Products, Department of Crop Sciences, Faculty of Agriculture,
Georg-August-University of Göttingen, DE-37075 Göttingen, Germany
| |
Collapse
|
23
|
Zhang Q, Wang M, Hu J, Wang W, Fu X, Liu JH. PtrABF of Poncirus trifoliata functions in dehydration tolerance by reducing stomatal density and maintaining reactive oxygen species homeostasis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5911-27. [PMID: 26116025 PMCID: PMC4566982 DOI: 10.1093/jxb/erv301] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Abscisic acid-responsive element (ABRE)-binding factors (ABFs) play important roles in abiotic stress responses; however, the underlying mechanisms are poorly understood. In this study, it is reported that overexpression of Poncirus trifoliata PtrABF significantly enhanced dehydration tolerance. The transgenic lines displayed smaller stomatal apertures, reduced stomatal density/index, and lower expression levels of genes associated with stomatal development. PtrABF was found to interact with PtrICE1, a homologue of ICE1 (Inducer of CBF Expression 1) that has been shown to be critical for stomatal development. Microarray analysis revealed that a total of 70 genes were differentially expressed in the transgenic line, 42 induced and 28 repressed. At least two units of ABREs and coupling elements were present in the promoters of most of the induced genes, among which peroxidase and arginine decarboxylase were verified as bona fide targets of PtrABF. Transgenic plants exhibited higher antioxidant enzyme activities and free polyamine levels, but lower levels of reactive oxygen species (ROS) and malondialdehyde. Polyamines were revealed to be associated with ROS scavenging in the transgenic plants due to a modulation of antioxidant enzymes triggered by signalling mediated by H2O2 derived from polyamine oxidase (PAO)-mediated catabolism. Taken together, the results indicate that PtrABF functions positively in dehydration tolerance by limiting water loss through its influence on stomatal movement or formation and maintaining ROS homeostasis via modulation of antioxidant enzymes and polyamines through transcriptional regulation of relevant target genes.
Collapse
Affiliation(s)
- Qinghua Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianbing Hu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingzheng Fu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
24
|
Characterization and fine mapping of a female fertility associated gene Ff1(t) in rice. J Genet 2015; 94:67-73. [PMID: 25846878 DOI: 10.1007/s12041-015-0490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Female-sterile line can be used as a pollinator which has a great potential for hybrid seeds production. However, reports on female fertility are fewer than male fertility. Here, we characterized a recessive female fertility weakening mutant ff1(t) from rice. The spikelet fertility was seriously affected in the mutant. Reciprocal crosses and pollen vitality assay suggest that the decreased fertility was caused by the defective female gametophytes. Further investigation indicated that the mutant ovary development was inhibited before fertilization and failed swelling after flowering. Genetic analysis and fine mapping showed that the mutant was controlled by a single recessive gene, residing on a 16.8 kb region on the long arm of chromosome 1. The gene annotation indicated that there was only one putative gene encoding lysine decarboxylase-like protein in this region, which was allelic to LOG. Further, the sequence analysis was carried out and a substitution at the splice site of intron 2 / exon 3 was revealed in ff1(t) mutant, resulting in the change of reading frame. The finding of novel allele of LOG locus will facilitate the understanding of the mechanisms of female gametophyte development.
Collapse
|
25
|
Spermine alleviates drought stress in white clover with different resistance by influencing carbohydrate metabolism and dehydrins synthesis. PLoS One 2015; 10:e0120708. [PMID: 25835290 PMCID: PMC4383584 DOI: 10.1371/journal.pone.0120708] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/26/2015] [Indexed: 12/25/2022] Open
Abstract
The objective of this research was to analyse whether ameliorating drought stress through exogenously applied spermine (Spm) was related to carbohydrate metabolism, dehydrins accumulation and the transcription of genes encoding dehydrins in two white clovers (drought-susceptible cv. ‘Ladino’ and drought-resistant cv. ‘Haifa’) under controlled drying conditions for 10 days. The results show that the application of Spm effectively alleviates negative effects caused by drought stress in both cultivars. Exogenous Spm led to accumulation of more water-soluble carbohydrates (WSC), sucrose, fructose and sorbitol in both cultivars under drought stress, and also significantly elevated glucose content in leaves of drought-resistant cv. ‘Haifa’, but had no effect on drought-susceptible cv. ‘Ladino’. Accordingly, the key enzyme activities of sucrose and sorbitol metabolism changed along with the application of Spm under drought stress. Spm induced a significant increase in sucrose phosphate synthase (SPS) or sorbitol dehydrogenase (SDH) activity, but decrease in sucrose synthetase (SS) activity when two cultivars were subjected to drought. In addition, the improved accumulation of dehydrins induced by exogenous Spm coincided with three genes expression which was responsible for dehydrins synthesis. But Spm-induced transcript level of dehydrin genes increased earlier in cv. ‘Ladino’ than that in cv. ‘Haifa’. Thus, these results suggest that ameliorating drought stress through exogenously applied Spm may be associated with increased carbohydrate accumulation and dehydrins synthesis. There are differences between drought-susceptible and -resistant white clover cultivars related to Spm regulation of WSC metabolism and dehydrins expression.
Collapse
|
26
|
You J, Chan Z. ROS Regulation During Abiotic Stress Responses in Crop Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1092. [PMID: 26697045 PMCID: PMC4672674 DOI: 10.3389/fpls.2015.01092] [Citation(s) in RCA: 507] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/20/2015] [Indexed: 05/18/2023]
Abstract
Abiotic stresses such as drought, cold, salt and heat cause reduction of plant growth and loss of crop yield worldwide. Reactive oxygen species (ROS) including hydrogen peroxide (H2O2), superoxide anions (O2 (•-)), hydroxyl radical (OH•) and singlet oxygen ((1)O2) are by-products of physiological metabolisms, and are precisely controlled by enzymatic and non-enzymatic antioxidant defense systems. ROS are significantly accumulated under abiotic stress conditions, which cause oxidative damage and eventually resulting in cell death. Recently, ROS have been also recognized as key players in the complex signaling network of plants stress responses. The involvement of ROS in signal transduction implies that there must be coordinated function of regulation networks to maintain ROS at non-toxic levels in a delicate balancing act between ROS production, involving ROS generating enzymes and the unavoidable production of ROS during basic cellular metabolism, and ROS-scavenging pathways. Increasing evidence showed that ROS play crucial roles in abiotic stress responses of crop plants for the activation of stress-response and defense pathways. More importantly, manipulating ROS levels provides an opportunity to enhance stress tolerances of crop plants under a variety of unfavorable environmental conditions. This review presents an overview of current knowledge about homeostasis regulation of ROS in crop plants. In particular, we summarize the essential proteins that are involved in abiotic stress tolerance of crop plants through ROS regulation. Finally, the challenges toward the improvement of abiotic stress tolerance through ROS regulation in crops are discussed.
Collapse
|
27
|
Effect of biogenic polyamine spermine on the structure and function of photosystem I. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 141:76-83. [PMID: 25318020 DOI: 10.1016/j.jphotobiol.2014.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 11/22/2022]
Abstract
We located the binding sites of spermine (Spm) to PSI sub-membrane proteins and the impact of this interaction on the photoprotection of PSI activity, using spectroscopic methods and molecular modeling. Our results showed that at high Spm content the polyamine binds PSI polypeptides through H-bonding and induces major protein conformational changes with the reduction of α-helix from 52% to 42% and an increase of the β-sheet from 26% to 29%. However, polyamine does not affect significantly the photooxidizable P700 in control sample and considerably protects it against strong illumination. On the contrary, protein conformational changes coincide with an important inhibition of O2 uptake rates by polyamine, which revealed that the protein of the PSI donor side plastocyanin is a main target for Spm inhibition. The photoprotection of PSI photochemical activity may be due to the stabilization of the PSI stromal polypeptides by Spm as shown by the docking results. Spm binds to different amino acids with hydrophilic and hydrophobic characters, while the presence of several H-bondings stabilizes Spm-PSI complexation.
Collapse
|
28
|
Gong B, Li X, VandenLangenberg KM, Wen D, Sun S, Wei M, Li Y, Yang F, Shi Q, Wang X. Overexpression of S-adenosyl-L-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:694-708. [PMID: 24605920 DOI: 10.1111/pbi.12173] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 11/19/2013] [Accepted: 12/22/2013] [Indexed: 05/04/2023]
Abstract
S-adenosyl-L-methionine (SAM) synthetase is the key enzyme involved in the biosynthesis of SAM, which serves as a common precursor for polyamines (PAs) and ethylene. A SAM synthetase cDNA (SlSAMS1) was introduced into the tomato genome using the Agrobacterium tumefaciens transformation method. Transgenic plants overexpressing SlSAMS1 exhibited a significant increase in tolerance to alkali stress and maintained nutrient balance, higher photosynthetic capacity and lower oxidative stress compared with WT lines. Both in vivo and in vitro experiments indicated that the function of SlSAMS1 mainly depended on the accumulation of Spd and Spm in the transgenic lines. A grafting experiment showed that rootstocks from SlSAMS1-overexpressing plants provided a stronger root system, increased PAs accumulation, essential elements absorption, and decreased Na(+) absorption in the scions under alkali stress. As a result, fruit set and yield were significantly enhanced. To our knowledge, this is the first report to provide evidence that SlSAMS1 positively regulates tomato tolerance to alkali stress and plays a major role in modulating polyamine metabolism, resulting in maintainability of nutrient and ROS balance.
Collapse
Affiliation(s)
- Biao Gong
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region, Ministry of Agriculture), College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wi SJ, Seo SY, Cho K, Nam MH, Park KY. Lysophosphatidylcholine enhances susceptibility in signaling pathway against pathogen infection through biphasic production of reactive oxygen species and ethylene in tobacco plants. PHYTOCHEMISTRY 2014; 104:48-59. [PMID: 24837357 DOI: 10.1016/j.phytochem.2014.04.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 03/22/2014] [Accepted: 04/10/2014] [Indexed: 05/28/2023]
Abstract
It was previously reported that the amounts of lysophosphatidylcholines (lysoPCs), which are naturally occurring bioactive lipid molecules, significantly increase following pathogen inoculation, as determined using ultraperformance liquid chromatography-quadrupole-time of flight/mass spectrometry analyses. Here, real-time quantitative RT-PCR was performed for the phospholipase A2 (PLA2) genes, Nt1PLA2 and Nt2PLA2, which are responsible for LysoPCs generation. The transcription level of Nt2PLA2 in pathogen-infected tobacco plants transiently peaked at 1h and 36 h, whereas induction of Nt1PLA2 transcription peaked at 36 h. A prominent biphasic ROS accumulation in lysoPC (C18:1(9Z))-treated tobacco leaves was also observed. Transcription of NtRbohD, a gene member of NADPH oxidase, showed biphasic kinetics upon lysoPC 18:1 treatment, as evidenced by an early transient peak in phase I at 1h and a massive peak in phase II at 12h. Each increase in NtACS2 and NtACS4 transcription, gene members of the ACC synthase family, was followed by biphasic peaks of ethylene production after lysoPC 18:1 treatment. This suggested that lysoPC (C18:1)-induced ethylene production was regulated at the transcriptional level of time-dependent gene members. LysoPC 18:1 treatment also rapidly induced cell damage. LysoPC 18:1-induced cell death was almost completely abrogated in ROS generation-impaired transgenic plants (rbohD-as and rbohF-as), ethylene production-impaired transgenic plants (CAS-AS and CAO-AS), and ethylene signaling-impaired transgenic plants (Ein3-AS), respectively. Taken together, pathogen-induced lysoPCs enhance pathogen susceptibility accompanied by ROS and ethylene biosynthesis, resulting in chlorophyll degradation and cell death. Expression of PR genes (PR1-a, PR-3, and PR-4b) and LOX3 was strongly induced in lysoPC 18:1-treated leaves, indicating the involvement of lysoPC 18:1 in the defense response. However, lysoPC 18:1 treatment eventually resulted in cell death, as evidenced by metacaspase gene expression. Therefore, a hypothesis is proposed that the antipathogenic potential of lysoPC 18:1 is dependent on how quickly it is removed from cells for avoidance of lysoPC toxicity.
Collapse
Affiliation(s)
- Soo Jin Wi
- Department of Biology, Sunchon National University, Sunchon, Chonnam 540-742, Republic of Korea
| | - So yeon Seo
- Department of Biology, Sunchon National University, Sunchon, Chonnam 540-742, Republic of Korea
| | - Kyoungwon Cho
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 136-713, Republic of Korea
| | - Myung Hee Nam
- Seoul Center, Korea Basic Science Institute (KBSI), Seoul 136-713, Republic of Korea
| | - Ky Young Park
- Department of Biology, Sunchon National University, Sunchon, Chonnam 540-742, Republic of Korea.
| |
Collapse
|
30
|
Han M, Kim CY, Lee J, Lee SK, Jeon JS. OsWRKY42 represses OsMT1d and induces reactive oxygen species and leaf senescence in rice. Mol Cells 2014; 37:532-9. [PMID: 25081037 PMCID: PMC4132305 DOI: 10.14348/molcells.2014.0128] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 11/27/2022] Open
Abstract
We isolated a rice (Oryza sativa L.) WRKY gene which is highly upregulated in senescent leaves, denoted OsWRKY42. Analysis of OsWRKY42-GFP expression and its effects on transcriptional activation in maize protoplasts suggested that the OsWRKY42 protein functions as a nuclear transcriptional repressor. OsWRKY42-overexpressing (OsWR KY42OX) transgenic rice plants exhibited an early leaf senescence phenotype with accumulation of the reactive oxygen species (ROS) hydrogen peroxide and a reduced chlorophyll content. Expression analysis of ROS producing and scavenging genes revealed that the metallothionein genes clustered on chromosome 12, especially OsMT1d, were strongly repressed in OsWRKY42OX plants. An OsMT1d promoter:LUC construct was found to be repressed by OsWRKY42 overexpression in rice protoplasts. Finally, chromatin immunoprecipitation analysis demonstrated that OsWRKY42 binds to the W-box of the OsMT1d promoter. Our results thus suggest that OsWRKY42 represses OsMT1d-mediated ROS scavenging and thereby promotes leaf senescence in rice.
Collapse
Affiliation(s)
- Muho Han
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Chi-Yeol Kim
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Junok Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Sang-Kyu Lee
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
31
|
Wi SJ, Kim SJ, Kim WT, Park KY. Constitutive S-adenosylmethionine decarboxylase gene expression increases drought tolerance through inhibition of reactive oxygen species accumulation in Arabidopsis. PLANTA 2014; 239:979-88. [PMID: 24477528 DOI: 10.1007/s00425-014-2027-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/06/2014] [Indexed: 05/21/2023]
Abstract
Using subtractive hybridization analysis, the S-adenosylmethionine decarboxylase (SAMDC) gene from Capsicum annuum was isolated and renamed CaSAMDC. We generated independent transgenic Arabidopsis (Arabidopsis thaliana) lines constitutively expressing a 35S::CaSAMDC construct. Drought tolerance was significantly enhanced in Arabidopsis T4 transgenic homozygous lines as compared to wild-type (WT) plants. The levels of main polyamines (PAs) were more significantly increased in CaSAMDC-overexpressing transgenic plants after 6 h of drought stress as compared to stressed WT plants. Basal transcription of polyamine oxidase (PAO) showed at a much higher level in unstressed-transgenic plants as compared to unstressed WT plants. However, the difference in PAO transcription level between WT and transgenic plants was reduced after drought stress. Cellular accumulation of reactive oxygen species (ROS) was significantly reduced following drought stress in transgenic Arabidopsis plants as compared to WT plants. These results were in agreement with additional observations that stress-induced ROS generation, as determined by qRT-PCR analysis of NADPH oxidase (RbohD and RbohF), was significantly suppressed while transcription of ROS-detoxifying enzymes was notably elevated in transgenic lines in response to drought stress. Further, ROS-induced transcription of the metacaspase II gene was remarkably inhibited in transgenic plants. Collectively, these results suggest that drought stress tolerance due to reduction of ROS production and enhancement of ROS detoxification can be attributed to elevation of PAs.
Collapse
Affiliation(s)
- Soo Jin Wi
- Department of Biology, Sunchon National University, Sunchon, Chonnam, 540-742, Korea,
| | | | | | | |
Collapse
|
32
|
Chen T, Xu Y, Wang J, Wang Z, Yang J, Zhang J. Polyamines and ethylene interact in rice grains in response to soil drying during grain filling. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2523-38. [PMID: 23606413 DOI: 10.1093/jxb/ert115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This study tested the hypothesis that the interaction between polyamines and ethylene may mediate the effects of soil drying on grain filling of rice (Oryza sativa L.). Two rice cultivars were pot grown. Three treatments, well-watered, moderate soil drying (MD), and severe soil drying (SD), were imposed from 8 d post-anthesis until maturity. The endosperm cell division rate, grain-filling rate, and grain weight of earlier flowering superior spikelets showed no significant differences among the three treatments. However, those of the later flowering inferior spikelets were significantly increased under MD and significantly reduced under SD when compared with those which were well watered. The two cultivars showed the same tendencies. MD increased the contents of free spermidine (Spd) and free spermine (Spm), the activities of S-adenosyl-L-methionine decarboxylase and Spd synthase, and expression levels of polyamine synthesis genes, and decreased the ethylene evolution rate, the contents of 1-aminocylopropane-1-carboxylic acid (ACC) and hydrogen peroxide, the activities of ACC synthase, ACC oxidase, and polyamine oxidase, and the expression levels of ethylene synthesis genes in inferior spikelets. SD exhibited the opposite effects. Application of Spd, Spm, or an inhibitor of ethylene synthesis to rice panicles significantly reduced ethylene and ACC levels, but significantly increased Spd and Spm contents, grain-filling rate, and grain weight of inferior spikelets. The results were reversed when ACC or an inhibitor of Spd and Spm synthesis was applied. The results suggest that a potential metabolic interaction between polyamines and ethylene biosynthesis responds to soil drying and mediates the grain filling of inferior spikelets in rice.
Collapse
Affiliation(s)
- Tingting Chen
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu, China
| | | | | | | | | | | |
Collapse
|