1
|
Gao X, Ma J, Wang G, Huang S, Wu X, Hu L, Yu J. The S-nitrosylation of monodehydroascorbate reductase positively regulated the low temperature tolerance of mini Chinese cabbage. Int J Biol Macromol 2024; 281:136047. [PMID: 39357708 DOI: 10.1016/j.ijbiomac.2024.136047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
One of the main environmental stresses that considerably reduced vegetable yields are low temperature stress. Brassinosteroids (BRs) is essential for controlling a number of physiological functions. Protein S-nitrosylation is thought to be a crucial process in plants that use NO to carry out their biological functions. The exact process by which the mini Chinese cabbage responded to low temperature stress through BR-mediated S-nitrosylation modification of the monodehydroascorbate reductase (MDHAR) is still unknown. BR significantly increased the S-nitrosoylation level and antioxidant capacity at low temperature. One noteworthy development was the in vitroS-nitrosylation of the MDHAR protein. The overexpressed lines exhibited considerably high nitric oxide (NO) and S-nitrosothiol (SNO) contents at low temperature compared to the WT lines. Treatment of the WT and OE-BrMDHAR lines with BR at low temperature increased the antioxidant capacity. According to the biotin signaling, BR considerably enhanced the silenced lines total S-nitrosylation level in vivo at low temperature. Furthermore, BrMDHAR, BrAAO, and BrAPX gene transcript levels were dramatically up-regulated by BR, which in turn reduced the H2O2 content in the silenced lines. These findings demonstrated that the S-nitrosylation of MDHAR was essential to the improvement of BR on low-temperature tolerance in the mini Chinese cabbage.
Collapse
Affiliation(s)
- Xueqin Gao
- Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Jizhong Ma
- Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | | | - Shuchao Huang
- Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Xuetong Wu
- Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Linli Hu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| | - Jihua Yu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China; Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
2
|
Gao Y, Dong X, Wang R, Hao F, Zhang H, Zhang Y, Lin G. Exogenous Calcium Alleviates Oxidative Stress Caused by Salt Stress in Peanut Seedling Roots by Regulating the Antioxidant Enzyme System and Flavonoid Biosynthesis. Antioxidants (Basel) 2024; 13:233. [PMID: 38397831 PMCID: PMC10886236 DOI: 10.3390/antiox13020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Soil salinity is one of the adversity stresses plants face, and antioxidant defense mechanisms play an essential role in plant resistance. We investigated the effects of exogenous calcium on the antioxidant defense system in peanut seedling roots that are under salt stress by using indices including the transcriptome and absolute quantitative metabolome of flavonoids. Under salt stress conditions, the antioxidant defense capacity of enzymatic systems was weakened and the antioxidant capacity of the linked AsA-GSH cycle was effectively inhibited. In contrast, the ascorbate biosynthesis pathway and its upstream glycolysis metabolism pathway became active, which stimulated shikimate biosynthesis and the downstream phenylpropanoid metabolism pathway, resulting in an increased accumulation of flavonoids, which, as one of the antioxidants in the non-enzymatic system, provide hydroxyl radicals to scavenge the excess reactive oxygen species and maintain the plant's vital activities. However, the addition of exogenous calcium caused changes in the antioxidant defense system in the peanut root system. The activity of antioxidant enzymes and the antioxidant capacity of the AsA-GSH cycle were enhanced. Therefore, glycolysis and phenylpropanoid metabolism do not exert antioxidant function, and flavonoids were no longer synthesized. In addition, antioxidant enzymes and the AsA-GSH cycle showed a trade-off relationship with sugars and flavonoids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guolin Lin
- College of Land and Environment, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang 110866, China; (Y.G.); (X.D.); (R.W.); (F.H.); (H.Z.); (Y.Z.)
| |
Collapse
|
3
|
Rudenko NN, Vetoshkina DV, Marenkova TV, Borisova-Mubarakshina MM. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants (Basel) 2023; 12:2014. [PMID: 38001867 PMCID: PMC10669185 DOI: 10.3390/antiox12112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Daria V. Vetoshkina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Tatiana V. Marenkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Maria M. Borisova-Mubarakshina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| |
Collapse
|
4
|
Horváth E, Kulman K, Tompa B, Hajnal ÁB, Pelsőczi A, Bela K, Gallé Á, Csiszár J. Glutathione Transferases Are Involved in the Genotype-Specific Salt-Stress Response of Tomato Plants. Antioxidants (Basel) 2023; 12:1682. [PMID: 37759985 PMCID: PMC10525892 DOI: 10.3390/antiox12091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Glutathione transferases (GSTs) are one of the most versatile multigenic enzyme superfamilies. In our experiments, the involvement of the genotype-specific induction of GST genes and glutathione- or redox-related genes in pathways regulating salt-stress tolerance was examined in tomato cultivars (Solanum lycopersicum Moneymaker, Mobil, and Elán F1). The growth of the Mobil plants was adversely affected during salt stress (100 mM of NaCl), which might be the result of lowered glutathione and ascorbate levels, a more positive glutathione redox potential (EGSH), and reduced glutathione reductase (GR) and GST activities. In contrast, the Moneymaker and Elán F1 cultivars were able to restore their growth and exhibited higher GR and inducible GST activities, as well as elevated, non-enzymatic antioxidant levels, indicating their enhanced salt tolerance. Furthermore, the expression patterns of GR, selected GST, and transcription factor genes differed significantly among the three cultivars, highlighting the distinct regulatory mechanisms of the tomato genotypes during salt stress. The correlations between EGSH and gene expression data revealed several robust, cultivar-specific associations, underscoring the complexity of the stress response mechanism in tomatoes. Our results support the cultivar-specific roles of distinct GST genes during the salt-stress response, which, along with WRKY3, WRKY72, DREB1, and DREB2, are important players in shaping the redox status and the development of a more efficient stress tolerance in tomatoes.
Collapse
Affiliation(s)
- Edit Horváth
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
| | - Kitti Kulman
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránd Research Network, H-2462 Martonvásár, Hungary
| | - Bernát Tompa
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Ádám Barnabás Hajnal
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Alina Pelsőczi
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Krisztina Bela
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
| | - Ágnes Gallé
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (K.K.); (B.T.); (Á.B.H.); (A.P.); (K.B.); (Á.G.); (J.C.)
| |
Collapse
|
5
|
Tian Y, Peng K, Ma X, Ren Z, Lou G, Jiang Y, Xia J, Wang D, Yu J, Cang J. Overexpression of TaMYB4 Confers Freezing Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:11090. [PMID: 37446268 DOI: 10.3390/ijms241311090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Freezing stress is one of the main factors limiting the growth and yield of wheat. In this study, we found that TaMYB4 expression was significantly upregulated in the tillering nodes of the strong cold-resistant winter wheat variety Dongnongdongmai1 (Dn1) under freezing stress. Weighted gene co-expression network analysis, qRT-PCR and protein-DNA interaction experiments demonstrated that monodehydroascorbate reductase (TaMDHAR) is a direct target of TaMYB4. The results showed that overexpression of TaMYB4 enhanced the freezing tolerance of transgenic Arabidopsis. In TaMYB4 overexpression lines (OE-TaMYB4), AtMDHAR2 expression was upregulated and ascorbate-glutathione (AsA-GSH) cycle operation was enhanced. In addition, the expression of cold stress marker genes such as AtCBF1, AtCBF2, AtCBF3, AtCOR15A, AtCOR47, AtKIN1 and AtRD29A in OE-TaMYB4 lines was significantly upregulated. Therefore, TaMYB4 may increase freezing tolerance as a transcription factor (TF) in Arabidopsis through the AsA-GSH cycle and DREB/CBF signaling pathway. This study provides a potential gene for molecular breeding against freezing stress.
Collapse
Affiliation(s)
- Yu Tian
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Kankan Peng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xuan Ma
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhipeng Ren
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Lou
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunshuang Jiang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingqiu Xia
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Duojia Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jing Cang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
6
|
Zahra N, Wahid A, Hafeez MB, Shaukat K, Shahzad S, Shah T, Alyemeni MN. Plant Growth Promoters Alleviate Oxidative Damages and Improve the Growth of Milk Thistle (Silybum marianum L.) Under Salinity Stress. JOURNAL OF PLANT GROWTH REGULATION 2022. [PMID: 0 DOI: 10.1007/s00344-021-10498-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
|
7
|
Melandri G, Monteverde E, Riewe D, AbdElgawad H, McCouch SR, Bouwmeester H. Can biochemical traits bridge the gap between genomics and plant performance? A study in rice under drought. PLANT PHYSIOLOGY 2022; 189:1139-1152. [PMID: 35166848 PMCID: PMC9157150 DOI: 10.1093/plphys/kiac053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/17/2022] [Indexed: 05/13/2023]
Abstract
The possibility of introducing metabolic/biochemical phenotyping to complement genomics-based predictions in breeding pipelines has been considered for years. Here we examine to what extent and under what environmental conditions metabolic/biochemical traits can effectively contribute to understanding and predicting plant performance. In this study, multivariable statistical models based on flag leaf central metabolism and oxidative stress status were used to predict grain yield (GY) performance for 271 indica rice (Oryza sativa) accessions grown in the field under well-watered and reproductive stage drought conditions. The resulting models displayed significantly higher predictability than multivariable models based on genomic data for the prediction of GY under drought (Q2 = 0.54-0.56 versus 0.35) and for stress-induced GY loss (Q2 = 0.59-0.64 versus 0.03-0.06). Models based on the combined datasets showed predictabilities similar to metabolic/biochemical-based models alone. In contrast to genetic markers, models with enzyme activities and metabolite values also quantitatively integrated the effect of physiological differences such as plant height on GY. The models highlighted antioxidant enzymes of the ascorbate-glutathione cycle and a lipid oxidation stress marker as important predictors of rice GY stability under drought at the reproductive stage, and these stress-related variables were more predictive than leaf central metabolites. These findings provide evidence that metabolic/biochemical traits can integrate dynamic cellular and physiological responses to the environment and can help bridge the gap between the genome and the phenome of crops as predictors of GY performance under drought.
Collapse
Affiliation(s)
- Giovanni Melandri
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
- School of Integrative Plant Sciences, Plant Breeding and Genetics Section, Cornell University, Ithaca, New York, USA
| | - Eliana Monteverde
- School of Integrative Plant Sciences, Plant Breeding and Genetics Section, Cornell University, Ithaca, New York, USA
- Departamento de Biología Vegetal, Facultad de Agronomía, Laboratorio de Evolución y Domesticación de las Plantas, Universidad de La República, Montevideo, Uruguay
| | - David Riewe
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
- Department of Botany, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Susan R McCouch
- School of Integrative Plant Sciences, Plant Breeding and Genetics Section, Cornell University, Ithaca, New York, USA
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
- Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Lu F, Duan W, Cui Y, Zhang J, Zhu D, Zhang M, Yan Y. 2D-DIGE based proteome analysis of wheat-Thinopyrum intermedium 7XL/7DS translocation line under drought stress. BMC Genomics 2022; 23:369. [PMID: 35568798 PMCID: PMC9107758 DOI: 10.1186/s12864-022-08599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
Background Drought stress is the most limiting factor for plant growth and crop production worldwide. As a major cereal crop, wheat is susceptible to drought. Thus, discovering and utilizing drought-tolerant gene resources from related species are highly important for improving wheat drought resistance. In this study, the drought tolerance of wheat Zhongmai 8601-Thinopyrum intermedium 7XL/7DS translocation line YW642 was estimated under drought stress, and then two-dimensional difference gel electrophoresis (2D-DIGE) based proteome analysis of the developing grains was performed to uncover the drought-resistant proteins. Results The results showed that 7XL/7DS translocation possessed a better drought-tolerance compared to Zhongmai 8601. 2D-DIGE identified 146 differential accumulation protein (DAP) spots corresponding to 113 unique proteins during five grain developmental stages of YW642 under drought stress. Among them, 55 DAP spots corresponding to 48 unique proteins displayed an upregulated expression, which were mainly involved in stress/defense, energy metabolism, starch metabolism, protein metabolism/folding and transport. The cis-acting element analysis revealed that abundant stress-related elements were present in the promoter regions of the drought-responsive protein genes, which could play important roles in drought defense. RNA-seq and RT-qPCR analyses revealed that some regulated DAP genes also showed a high expression level in response to drought stress. Conclusions Our results indicated that Wheat-Th. intermedium 7XL/7DS translocation line carried abundant drought-resistant proteins that had potential application values for wheat drought tolerance improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08599-1.
Collapse
Affiliation(s)
- Fengkun Lu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Wenjing Duan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yue Cui
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Junwei Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Dong Zhu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Ming Zhang
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, 2269 Daxue Road, Heze, 274015, Shandong, China.
| | - Yueming Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Science, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
9
|
Chen M, Gan L, Zhang J, Shen Y, Qian J, Han M, Zhang C, Fan J, Sun S, Yan X. A Regulatory Network of Heat Shock Modules-Photosynthesis-Redox Systems in Response to Cold Stress Across a Latitudinal Gradient in Bermudagrass. FRONTIERS IN PLANT SCIENCE 2021; 12:751901. [PMID: 34868138 PMCID: PMC8636944 DOI: 10.3389/fpls.2021.751901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/13/2021] [Indexed: 05/03/2023]
Abstract
Bermudagrass (Cynodon dactylon Pers.) is a wild Poaceae turfgrass with various genotypes and phenotypes. In this study, 16 wild bermudagrass germplasms were collected from 16 different sites along latitudinal gradients, and different temperature treatments were compiled and used for physiological and transcriptome analysis. To explore the correlation between the key differentially expressed genes and physiological indicators, a total of 14,654 DEGs were integrated from the comparison of different temperature treatments and used for weighted gene co-expression network analysis. Through comparative transcriptome analysis and gene annotation, the results showed that differential gene expression profiles in networks are associated with the plant growth, photosystem, redox system, and transcriptional regulation to cold stress in bermudagrass. In particular, genes encoding HSP70/90 and HsfA3/A8 are not only regulated by temperature stress, but also directly or indirectly interplay with the processes of peroxide scavenging and chlorophyll synthesis under cold stress. Besides, through a weight evaluation analysis of various physiological indexes, we identified an accession of wild bermudagrass with relatively strong cold resistance. These results provide important clues and resources to further study the responses to low-temperature stress in bermudagrass.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xuebing Yan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
10
|
Costa JH, Roque ALM, Aziz S, Dos Santos CP, Germano TA, Batista MC, Thiers KLL, da Cruz Saraiva KD, Arnholdt-Schmitt B. Genome-wide identification of ascorbate-glutathione cycle gene families in soybean (Glycine max) reveals gene duplication events and specificity of gene members linked to development and stress conditions. Int J Biol Macromol 2021; 187:528-543. [PMID: 34302870 DOI: 10.1016/j.ijbiomac.2021.07.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022]
Abstract
Ascorbate-glutathione (AsA-GSH) cycle plays an important role in tuning beneficial ROS accumulation for intracellular signals and imparts plant tolerance to oxidative stress by detoxifying excess of ROS. Here, we present genome-wide identification of AsA-GSH cycle genes (APX, MDHAR, DHAR, and GR) in several leguminous species and expression analyses in G. max during stress, germination and tissue development. Our data revealed 24 genes in Glycine genus against the maximum of 15 in other leguminous species, which was due to 9 pars of duplicated genes mostly originated from sub/neofunctionalization. Cytosolic APX and MDHAR genes were highly expressed in different tissues and physiological conditions. Germination induced genes encoding AsA-GSH proteins from different cell compartments, whereas vegetative phase (leaves) stimulated predominantly genes related to chloroplast/mitochondria proteins. Moreover, cytosolic APX-1, 2, MDHAR-1a, 1b and GR genes were the primary genes linked to senescence and biotic stresses, while stAPX-a, b and GR (from organelles) were the most abiotic stress related genes. Biotic and abiotic stress tolerant genotypes generally showed increased MDHAR, DHAR and/or GR mRNA levels compared to susceptible genotypes. Overall, these data clarified evolutionary events in leguminous plants and point to the functional specificity of duplicated genes of the AsA-GSH cycle in G. max.
Collapse
Affiliation(s)
- José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal.
| | - André Luiz Maia Roque
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Shahid Aziz
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Clesivan Pereira Dos Santos
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Thais Andrade Germano
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Mathias Coelho Batista
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Karine Leitão Lima Thiers
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil
| | - Kátia Daniella da Cruz Saraiva
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Federal Institute of Education, Science and Technology, Paraíba, Brazil
| | - Birgit Arnholdt-Schmitt
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of Ceara, 60451-970 Fortaleza, Ceara, Brazil; Non-Institutional Competence Focus (NICFocus) 'Functional Cell Reprogramming and Organism Plasticity' (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| |
Collapse
|
11
|
Hu Y, Peng X, Wang F, Chen P, Zhao M, Shen S. Natural population re-sequencing detects the genetic basis of local adaptation to low temperature in a woody plant. PLANT MOLECULAR BIOLOGY 2021; 105:585-599. [PMID: 33651261 DOI: 10.1007/s11103-020-01111-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Total of 14 SNPs associated with overwintering-related traits and 75 selective regions were detected. Important candidate genes were identified and a possible network of cold-stress responses in woody plants was proposed. Local adaptation to low temperature is essential for woody plants to against changeable climate and safely survive the winter. To uncover the specific molecular mechanism of low temperature adaptation in woody plants, we sequenced 134 core individuals selected from 494 paper mulberry (Broussonetia papyrifera), which naturally distributed in different climate zones and latitudes. The population structure analysis, PCA analysis and neighbor-joining tree analysis indicated that the individuals were classified into three clusters, which showed forceful geographic distribution patterns because of the adaptation to local climate. Using two overwintering phenotypic data collected at high latitudes of 40°N and one bioclimatic variable, genome-phenotype and genome-environment associations, and genome-wide scans were performed. We detected 75 selective regions which possibly undergone temperature selection and identified 14 trait-associated SNPs that corresponded to 16 candidate genes (including LRR-RLK, PP2A, BCS1, etc.). Meanwhile, low temperature adaptation was also supported by other three trait-associated SNPs which exhibiting significant differences in overwintering traits between alleles within three geographic groups. To sum up, a possible network of cold signal perception and responses in woody plants were proposed, including important genes that have been confirmed in previous studies while others could be key potential candidates of woody plants. Overall, our results highlighted the specific and complex molecular mechanism of low temperature adaptation and overwintering of woody plants.
Collapse
Affiliation(s)
- Yanmin Hu
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianjun Peng
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
| | - Fenfen Wang
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peilin Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiling Zhao
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shihua Shen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
12
|
Yao M, Ge W, Zhou Q, Zhou X, Luo M, Zhao Y, Wei B, Ji S. Exogenous glutathione alleviates chilling injury in postharvest bell pepper by modulating the ascorbate-glutathione (AsA-GSH) cycle. Food Chem 2021; 352:129458. [PMID: 33714166 DOI: 10.1016/j.foodchem.2021.129458] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 11/25/2022]
Abstract
We investigated the effect of exogenous glutathione (GSH) on chilling injury (CI) in postharvest bell pepper fruits stored at low temperature and explored the mechanism of this treatment from the perspective of the ascorbate-glutathione (AsA-GSH) cycle. Compared with the control, fruits treated with exogenous GSH before refrigeration displayed only slight CI symptoms and mitigated CI-induced cell damage after 10 d. Moreover, the treated peppers had lower lipid peroxidation product, H2O2, and O2- content than those did the control. Glutathione treatment enhanced the ascorbate-glutathione cycle by upregulating CaAPX1, CaGR2, CaMDHAR1, and CaDHAR1 and the antioxidant enzymes APX, GR, and MDHAR associated with the ascorbate-glutathione cycle. Glutathione treatment also increased ascorbate and glutathione concentrations. Taken together, our results showed that exogenous GSH treatment could alleviate CI in pepper fruits during cold storage by triggering the AsA-GSH cycle and improving antioxidant capacity.
Collapse
Affiliation(s)
- Miaomiao Yao
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, PR China
| | - Wanying Ge
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, PR China
| | - Qian Zhou
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, PR China
| | - Xin Zhou
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, PR China
| | - Manli Luo
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, PR China
| | - Yingbo Zhao
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, PR China
| | - Baodong Wei
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, PR China
| | - Shujuan Ji
- College of Food Science, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang City 110866, PR China.
| |
Collapse
|
13
|
Kim IS, Choi W, Son J, Lee JH, Lee H, Lee J, Shin SC, Kim HW. Screening and Genetic Network Analysis of Genes Involved in Freezing and Thawing Resistance in DaMDHAR-Expressing Saccharomyces cerevisiae Using Gene Expression Profiling. Genes (Basel) 2021; 12:genes12020219. [PMID: 33546197 PMCID: PMC7913288 DOI: 10.3390/genes12020219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/24/2023] Open
Abstract
The cryoprotection of cell activity is a key determinant in frozen-dough technology. Although several factors that contribute to freezing tolerance have been reported, the mechanism underlying the manner in which yeast cells respond to freezing and thawing (FT) stress is not well established. Therefore, the present study demonstrated the relationship between DaMDHAR encoding monodehydroascorbate reductase from Antarctic hairgrass Deschampsia antarctica and stress tolerance to repeated FT cycles (FT2) in transgenic yeast Saccharomyces cerevisiae. DaMDHAR-expressing yeast (DM) cells identified by immunoblotting analysis showed high tolerance to FT stress conditions, thereby causing lower damage for yeast cells than wild-type (WT) cells with empty vector alone. To detect FT2 tolerance-associated genes, 3′-quant RNA sequencing was employed using mRNA isolated from DM and WT cells exposed to FT (FT2) conditions. Approximately 332 genes showed ≥2-fold changes in DM cells and were classified into various groups according to their gene expression. The expressions of the changed genes were further confirmed using western blot analysis and biochemical assay. The upregulated expression of 197 genes was associated with pentose phosphate pathway, NADP metabolic process, metal ion homeostasis, sulfate assimilation, β-alanine metabolism, glycerol synthesis, and integral component of mitochondrial and plasma membrane (PM) in DM cells under FT2 stress, whereas the expression of the remaining 135 genes was partially related to protein processing, selenocompound metabolism, cell cycle arrest, oxidative phosphorylation, and α-glucoside transport under the same condition. With regard to transcription factors in DM cells, MSN4 and CIN5 were activated, but MSN2 and MGA1 were not. Regarding antioxidant systems and protein kinases in DM cells under FT stress, CTT1, GTO, GEX1, and YOL024W were upregulated, whereas AIF1, COX2, and TRX3 were not. Gene activation represented by transcription factors and enzymatic antioxidants appears to be associated with FT2-stress tolerance in transgenic yeast cells. RCK1, MET14, and SIP18, but not YPK2, have been known to be involved in the protein kinase-mediated signalling pathway and glycogen synthesis. Moreover, SPI18 and HSP12 encoding hydrophilin in the PM were detected. Therefore, it was concluded that the genetic network via the change of gene expression levels of multiple genes contributing to the stabilization and functionality of the mitochondria and PM, not of a single gene, might be the crucial determinant for FT tolerance in DaMDAHR-expressing transgenic yeast. These findings provide a foundation for elucidating the DaMDHAR-dependent molecular mechanism of the complex functional resistance in the cellular response to FT stress.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Woong Choi
- Korea Polar Research Institute, Incheon 21990, Korea; (W.C.); (J.S.); (J.H.L.); (H.L.); (J.L.); (S.C.S.)
| | - Jonghyeon Son
- Korea Polar Research Institute, Incheon 21990, Korea; (W.C.); (J.S.); (J.H.L.); (H.L.); (J.L.); (S.C.S.)
| | - Jun Hyuck Lee
- Korea Polar Research Institute, Incheon 21990, Korea; (W.C.); (J.S.); (J.H.L.); (H.L.); (J.L.); (S.C.S.)
- Department of Polar Science, University of Science and Technology, Incheon 21990, Korea
| | - Hyoungseok Lee
- Korea Polar Research Institute, Incheon 21990, Korea; (W.C.); (J.S.); (J.H.L.); (H.L.); (J.L.); (S.C.S.)
- Department of Polar Science, University of Science and Technology, Incheon 21990, Korea
| | - Jungeun Lee
- Korea Polar Research Institute, Incheon 21990, Korea; (W.C.); (J.S.); (J.H.L.); (H.L.); (J.L.); (S.C.S.)
- Department of Polar Science, University of Science and Technology, Incheon 21990, Korea
| | - Seung Chul Shin
- Korea Polar Research Institute, Incheon 21990, Korea; (W.C.); (J.S.); (J.H.L.); (H.L.); (J.L.); (S.C.S.)
| | - Han-Woo Kim
- Korea Polar Research Institute, Incheon 21990, Korea; (W.C.); (J.S.); (J.H.L.); (H.L.); (J.L.); (S.C.S.)
- Department of Polar Science, University of Science and Technology, Incheon 21990, Korea
- Correspondence:
| |
Collapse
|
14
|
Ding H, Wang B, Han Y, Li S. The pivotal function of dehydroascorbate reductase in glutathione homeostasis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3405-3416. [PMID: 32107543 DOI: 10.1093/jxb/eraa107] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/25/2020] [Indexed: 05/20/2023]
Abstract
Under natural conditions, plants are exposed to various abiotic and biotic stresses that trigger rapid changes in the production and removal of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). The ascorbate-glutathione pathway has been recognized to be a key player in H2O2 metabolism, in which reduced glutathione (GSH) regenerates ascorbate by reducing dehydroascorbate (DHA), either chemically or via DHA reductase (DHAR), an enzyme belonging to the glutathione S-transferase (GST) superfamily. Thus, DHAR has been considered to be important in maintaining the ascorbate pool and its redox state. Although some GSTs and peroxiredoxins may contribute to GSH oxidation, analysis of Arabidopsis dhar mutants has identified the key role of DHAR in coupling H2O2 to GSH oxidation. The reaction of DHAR has been proposed to proceed by a ping-pong mechanism, in which binding of DHA to the free reduced form of the enzyme is followed by binding of GSH. Information from crystal structures has shed light on the formation of sulfenic acid at the catalytic cysteine of DHAR that occurs with the reduction of DHA. In this review, we discuss the molecular properties of DHAR and its importance in coupling the ascorbate and glutathione pools with H2O2 metabolism, together with its functions in plant defense, growth, and development.
Collapse
Affiliation(s)
- Haiyan Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Bipeng Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yi Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
15
|
Kim YS, Park SI, Kim JJ, Boyd JS, Beld J, Taton A, Lee KI, Kim IS, Golden JW, Yoon HS. Expression of Heterologous OsDHAR Gene Improves Glutathione (GSH)-Dependent Antioxidant System and Maintenance of Cellular Redox Status in Synechococcus elongatus PCC 7942. FRONTIERS IN PLANT SCIENCE 2020; 11:231. [PMID: 32194605 PMCID: PMC7063034 DOI: 10.3389/fpls.2020.00231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
An excess of reactive oxygen species (ROS) can cause severe oxidative damage to cellular components in photosynthetic cells. Antioxidant systems, such as the glutathione (GSH) pools, regulate redox status in cells to guard against such damage. Dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzes the glutathione-dependent reduction of oxidized ascorbate (dehydroascorbate) and contains a redox active site and glutathione binding-site. The DHAR gene is important in biological and abiotic stress responses involving reduction of the oxidative damage caused by ROS. In this study, transgenic Synechococcus elongatus PCC 7942 (TA) was constructed by cloning the Oryza sativa L. japonica DHAR (OsDHAR) gene controlled by an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter (Ptrc) into the cyanobacterium to study the functional activities of OsDHAR under oxidative stress caused by hydrogen peroxide exposure. OsDHAR expression increased the growth of S. elongatus PCC 7942 under oxidative stress by reducing the levels of hydroperoxides and malondialdehyde (MDA) and mitigating the loss of chlorophyll. DHAR and glutathione S-transferase activity were higher than in the wild-type S. elongatus PCC 7942 (WT). Additionally, overexpression of OsDHAR in S. elongatus PCC 7942 greatly increased the glutathione (GSH)/glutathione disulfide (GSSG) ratio in the presence or absence of hydrogen peroxide. These results strongly suggest that DHAR attenuates deleterious oxidative effects via the glutathione (GSH)-dependent antioxidant system in cyanobacterial cells. The expression of heterologous OsDHAR in S. elongatus PCC 7942 protected cells from oxidative damage through a GSH-dependent antioxidant system via GSH-dependent reactions at the redox active site and GSH binding site residues during oxidative stress.
Collapse
Affiliation(s)
- Young-Saeng Kim
- Research Institute for Dok-do and Ulleung-do, Kyungpook National University, Daegu, South Korea
| | - Seong-Im Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
- Department of Biology, Kyungpook National University, Daegu, South Korea
| | - Jin-Ju Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
- Department of Biology, Kyungpook National University, Daegu, South Korea
| | - Joseph S. Boyd
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Joris Beld
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Arnaud Taton
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Kyoung-In Lee
- Biotechnology Industrialization Center, Dongshin University, Naju, South Korea
| | - Il-Sup Kim
- Advanced Bio Resource Research Center, Kyungpook National University, Daegu, South Korea
| | - James W. Golden
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Ho-Sung Yoon
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
- Department of Biology, Kyungpook National University, Daegu, South Korea
- Advanced Bio Resource Research Center, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
16
|
Ebone LA, Caverzan A, Chavarria G. Physiologic alterations in orthodox seeds due to deterioration processes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 145:34-42. [PMID: 31665665 DOI: 10.1016/j.plaphy.2019.10.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 05/22/2023]
Abstract
Seed deterioration is a partially elucidated phenomenon that happen during the life of the seed. This review describes the processes that lead to seed deterioration, including loss of seed protection capacity against reactive oxygen species (ROS), damage to the plasma membrane, consumption of reserves, and damage to genetic material. A hypothesis of how seed deterioration occurs was also addressed; in this hypothesis, seed deterioration was divided into three phases. The first is the beginning of deterioration, with a slight reduction of vigor caused by the reactions of reducing sugars with antioxidant enzymes and genetic material. In the second, the cell shows oxidative damages, causing lipid peroxidation, which leads to the leaching of solutes, the formation of malondialdehyde, and, consequently, an increase in damages to genetic material. In the third phase, there is cell collapse with mitochondrial membrane deconstruction and a high accumulation of reactive oxygen species, malondialdehyde, and reducing sugars.
Collapse
Affiliation(s)
- Luciano Antônio Ebone
- Laboratory of Plant Physiology, Agronomy Post-Graduate Program, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Andréia Caverzan
- Laboratory of Plant Physiology, Agronomy Post-Graduate Program, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| | - Geraldo Chavarria
- Laboratory of Plant Physiology, Agronomy Post-Graduate Program, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
17
|
Hasanuzzaman M, Bhuyan MHMB, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M. Regulation of Ascorbate-Glutathione Pathway in Mitigating Oxidative Damage in Plants under Abiotic Stress. Antioxidants (Basel) 2019; 8:E384. [PMID: 31505852 PMCID: PMC6770940 DOI: 10.3390/antiox8090384] [Citation(s) in RCA: 412] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/25/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS) generation is a usual phenomenon in a plant both under a normal and stressed condition. However, under unfavorable or adverse conditions, ROS production exceeds the capacity of the antioxidant defense system. Both non-enzymatic and enzymatic components of the antioxidant defense system either detoxify or scavenge ROS and mitigate their deleterious effects. The Ascorbate-Glutathione (AsA-GSH) pathway, also known as Asada-Halliwell pathway comprises of AsA, GSH, and four enzymes viz. ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase, play a vital role in detoxifying ROS. Apart from ROS detoxification, they also interact with other defense systems in plants and protect the plants from various abiotic stress-induced damages. Several plant studies revealed that the upregulation or overexpression of AsA-GSH pathway enzymes and the enhancement of the AsA and GSH levels conferred plants better tolerance to abiotic stresses by reducing the ROS. In this review, we summarize the recent progress of the research on AsA-GSH pathway in terms of oxidative stress tolerance in plants. We also focus on the defense mechanisms as well as molecular interactions.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - M H M Borhannuddin Bhuyan
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
- Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet 3156, Bangladesh.
| | - Taufika Islam Anee
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Khursheda Parvin
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
- Department of Horticulture, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Kamrun Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Jubayer Al Mahmud
- Department of Agroforestry and Environmental Science, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan.
| |
Collapse
|
18
|
Zhao Y, Xu F, Liu J, Guan F, Quan H, Meng F. The adaptation strategies of Herpetospermum pedunculosum (Ser.) Baill at altitude gradient of the Tibetan plateau by physiological and metabolomic methods. BMC Genomics 2019; 20:451. [PMID: 31159723 PMCID: PMC6547600 DOI: 10.1186/s12864-019-5778-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Herpetospermum pedunculosum (Ser.) Baill is annual scandent herbs. They are used in the treatment of piles, inflammation of the stomach and the intestines. It can survive the extreme environment of the Tibetan Plateau (TP). However, the underlying mechanisms of this adaptation to H. pedunculosum from TP remain unclear. Here, we combined physiological and metabolomics methods to analyze H. pedunculosum response to altitude gradient differences. RESULTS At high altitude, increases in the activities of Ascorbate peroxidase (APX), Glutathione reductase (GR), Dehydroascorbate reductase (DHAR), Monodehydroascorbate reductase (MDHAR), Superoxide dismutase (SOD) have been observed in leaves. Total Glutathion content, total Ascorbate content and the ASA (ascorbic acid)/docosahexaenoic acid (DHA) ration were highly elevated from low altitude to high altitude. In addition, high altitude induces decrease of the Anthocyanidin content (ANTH) and increase of abscisic acid content (ABA). The GC-MS analyses identified of 50 metabolites from leaves of H. pedunculosum. In addition, a metabolic network was constructed based on metabolomic datasets using a weighted correlation network analysis (WGCNA) approach. The network analysis uncovered 4 distinguished metabolic modules highly associated with I, II, III and IV respectively. Furthermore, the analysis successfully classified 50 samples into seven groups: carbohydrates, amino acids, organic acids, lipid components, polyamine, secondary metabolism and others. CONCLUSIONS In the present study, the content of parts of amino acid components increased in samples collected at higher altitudes, and most of metabolites, including carbohydrates and organic acids were assigned to the carbon metabolic pathway comprising reductive pentose phosphate pathway, glycolysis and TCA cycle, indicating the direct relationship between adaptability and the carbon metabolic pathway and amino acids in H. pedunculosum response to high altitude. The results of this study laid the foundation of the molecular mechanism on H. pedunculosum from high altitude.
Collapse
Affiliation(s)
- Yong Zhao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Fuling Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jia Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Fachun Guan
- Jilin Academy of Agricultural Science, Changchun, 130033, China
- Tibet Agriculture and Animal Husbandry College, Nyingchi, 860000, China
| | - Hong Quan
- Tibet Agriculture and Animal Husbandry College, Nyingchi, 860000, China
| | - Fanjuan Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
19
|
Xie X, He Z, Chen N, Tang Z, Wang Q, Cai Y. The Roles of Environmental Factors in Regulation of Oxidative Stress in Plant. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9732325. [PMID: 31205950 PMCID: PMC6530150 DOI: 10.1155/2019/9732325] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/16/2019] [Indexed: 02/05/2023]
Abstract
Exposure to a variety of environmental factors such as salinity, drought, metal toxicity, extreme temperature, air pollutants, ultraviolet-B (UV-B) radiation, pesticides, and pathogen infection leads to subject oxidative stress in plants, which in turn affects multiple biological processes via reactive oxygen species (ROS) generation. ROS include hydroxyl radicals, singlet oxygen, and hydrogen peroxide in the plant cells and activates signaling pathways leading to some changes of physiological, biochemical, and molecular mechanisms in cellular metabolism. Excessive ROS, however, cause oxidative stress, a state of imbalance between the production of ROS and the neutralization of free radicals by antioxidants, resulting in damage of cellular components including lipids, nucleic acids, metabolites, and proteins, which finally leads to the death of cells in plants. Thus, maintaining a physiological level of ROS is crucial for aerobic organisms, which relies on the combined operation of enzymatic and nonenzymatic antioxidants. In order to improve plants' tolerance towards the harsh environment, it is vital to reinforce the comprehension of oxidative stress and antioxidant systems. In this review, recent findings on the metabolism of ROS as well as the antioxidative defense machinery are briefly updated. The latest findings on differential regulation of antioxidants at multiple levels under adverse environment are also discussed here.
Collapse
Affiliation(s)
- Xiulan Xie
- School of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhouqing He
- School of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Nifan Chen
- School of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Zizhong Tang
- School of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Qiang Wang
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Cai
- School of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
20
|
Wang J, Zhong X, Zhu K, Lv J, Lv X, Li F, Shi Z. Reactive oxygen species, antioxidant enzyme activity, and gene expression patterns in a pair of nearly isogenic lines of nicosulfuron-exposed waxy maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19012-19027. [PMID: 29721793 DOI: 10.1007/s11356-018-2105-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/23/2018] [Indexed: 05/18/2023]
Abstract
Nicosulfuron is a post-emergence herbicide used for weed control in maize fields (Zea mays L.). Here, the pair of nearly isogenic inbred lines SN509-R (nicosulfuron resistant) and SN509-S (nicosulfuron sensitive) was used to study the effect of nicosulfuron on growth, oxidative stress, and the activity and gene expression of antioxidant enzymes in waxy maize seedlings. Nicosulfuron treatment was applied at the five-leaf stage and water treatment was used as control. After nicosulfuron treatment, the death of SN509-S might be associated with increased oxidative stress. Compared with SN509-R, higher O2·- and H2O2 accumulations were observed in SN509-S, which can severely damage lipids and proteins, thus reducing membrane stability. The effects were exacerbated with extended exposure time. Both O2·- and H2O2 detoxification is regulated by enzymes. After nicosulfuron treatment, superoxide dismutase (SOD), catalase, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione-S-transferase (GST) of SN509-S were significantly lower than those of SN509-R. Compared to SN509-R, ascorbate content (AA), glutathione (GSH) content, GSH to glutathione disulfide ratios, and AA to dehydroascorbate ratios significantly declined with increasing exposure time in SN509-S. Compared to SN509-S, nicosulfuron treatment increased the transcript levels of most of the APX genes except for APX1, and in contrast to Gst1, upregulated the transcription of sod9, MDHAR, DHAR, and GR genes in SN509-R. These results suggest that on a transcription level and in accordance with their responses, detoxifying enzymes play a vital role in the O2·- and H2O2 detoxification of maize seedlings under nicosulfuron exposure.
Collapse
Affiliation(s)
- Jian Wang
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Xuemei Zhong
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Kangning Zhu
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Jingbo Lv
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Xiangling Lv
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Fenghai Li
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| | - Zhensheng Shi
- Department of Agronomy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| |
Collapse
|
21
|
Lou L, Kang J, Pang H, Li Q, Du X, Wu W, Chen J, Lv J. Sulfur Protects Pakchoi (Brassica chinensis L.) Seedlings against Cadmium Stress by Regulating Ascorbate-Glutathione Metabolism. Int J Mol Sci 2017; 18:ijms18081628. [PMID: 28933771 PMCID: PMC5578019 DOI: 10.3390/ijms18081628] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/18/2017] [Accepted: 07/22/2017] [Indexed: 12/13/2022] Open
Abstract
Cadmium (Cd) pollution in food chains pose a potential health risk for humans. Sulfur (S) is a significant macronutrient that plays a significant role in the regulation of plant responses to diverse biotic and abiotic stresses. However, no information is currently available about the impact of S application on ascorbate-glutathione metabolism (ASA-GSH cycle) of Pakchoi plants under Cd stress. The two previously identified genotypes, namely, Aikangqing (a Cd-tolerant cultivar) and Qibaoqing (a Cd-sensitive cultivar), were utilized to investigate the role of S to mitigate Cd toxicity in Pakchoi plants under different Cd regimes. Results showed that Cd stress inhibited plant growth and induced oxidative stress. Exogenous application of S significantly increased the tolerance of Pakchoi seedlings suffering from Cd stress. This effect was demonstrated by increased growth parameters; stimulated activities of the antioxidant enzymes and upregulated genes involved in the ASA-GSH cycle and S assimilation; and by the enhanced ASA, GSH, phytochelatins, and nonprotein thiol production. This study shows that applying S nutrition can mitigate Cd toxicity in Pakchoi plants which has the potential in assisting the development of breeding strategies aimed at limiting Cd phytoaccumulation and decreasing Cd hazards in the food chain.
Collapse
Affiliation(s)
- Lili Lou
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Jingquan Kang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Hongxi Pang
- College of Agronomy, Northwest A&F University, Yangling 712100, China.
| | - Qiuyu Li
- Innovation Experimental College, Northwest A&F University, Yangling 712100, China.
| | - Xiaoping Du
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Wei Wu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Junxiu Chen
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
22
|
Proteomics provides insights into biological pathways altered by plant growth promoting bacteria and arbuscular mycorrhiza in sorghum grown in marginal soil. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:243-251. [PMID: 27913282 DOI: 10.1016/j.bbapap.2016.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/10/2016] [Accepted: 11/28/2016] [Indexed: 01/09/2023]
Abstract
Sorghum is an economically important crop, a model system for gene discovery and a biofuel source. Sorghum seedlings were subjected to three microbial treatments, plant growth promoting bacteria (B), arbuscular mycorrhizal (AM) fungi mix with two Glomus species (G. aggregatum and G. etunicatum), Funelliformis mosseae and Rhizophagus irregularis (My), and B and My combined (My+B). Proteomic analysis was conducted followed by integration with metabolite, plant biomass and nutrient data. Out of 366 differentially expressed proteins in sorghum roots, 44 upregulated proteins overlapping among three treatment groups showed positive correlation with sorghum biomass or element uptake or both. Proteins upregulated only in B group include asparagine synthetase which showed negative correlation with biomass and uptake of elements. Phosphoribosyl amino imidazole succinocarboxamide protein with more than 50-fold change in My and My+B groups correlated positively with Ca, Cu, S and sucrose levels in roots. The B group showed the highest number of upregulated proteins among the three groups with negative correlation with sorghum biomass and element uptake. KEGG pathway analysis identified carbon fixation as the unique pathway associated with common upregulated proteins while biosynthesis of amino acids and fatty acid degradation were associated with common downregulated proteins. Protein-protein interaction analysis using STRING identified a major network with thirteen downregulated proteins. These findings suggest that plant-growth-promoting-bacteria alone or in combination with mycorrhiza enhanced radical scavenging system and increased levels of specific proteins thereby shifting the metabolism towards synthesis of carbohydrates resulting in sorghum biomass increase and uptake of nutrients.
Collapse
|
23
|
Xu HH, Liu SJ, Song SH, Wang WQ, Møller IM, Song SQ. Proteome changes associated with dormancy release of Dongxiang wild rice seeds. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:68-86. [PMID: 27697673 DOI: 10.1016/j.jplph.2016.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/20/2016] [Accepted: 08/28/2016] [Indexed: 06/06/2023]
Abstract
Seed dormancy provides optimum timing for seed germination and subsequent seedling growth, but the mechanism of seed dormancy is still poorly understood. Here, we used Dongxiang wild rice (DXWR) seeds to investigate the dormancy behavior and the differentially changed proteome in embryo and endosperm during dormancy release. DXWR seed dormancy was caused by interaction of embryo and its surrounding structure, and was an intermediate physiological dormancy. During seed dormancy release, a total of 109 and 97 protein spots showed significant change in abundance and were successfully identified in embryo and endosperm, respectively. As a result of dormancy release, the abundance of nine proteins involved in storage protein, cell defense and rescue and energy changed in the same way in both embryo and endosperm, while 67 and 49 protein spots changed differentially in embryo and endosperm, respectively. Dormancy release of DXWR seeds was closely associated with degradation of storage proteins in both embryo and endosperm. At the same time, the abundance of proteins involved in metabolism, glycolysis and TCA cycle, cell growth and division, protein synthesis and destination and signal transduction increased in embryos while staying constant or decreasing in endosperms.
Collapse
Affiliation(s)
- Heng-Heng Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shu-Jun Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shun-Hua Song
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark
| | - Song-Quan Song
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
24
|
Song C, Chung WS, Lim CO. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis. Mol Cells 2016; 39:477-83. [PMID: 27109422 PMCID: PMC4916399 DOI: 10.14348/molcells.2016.0027] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 11/27/2022] Open
Abstract
Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Chieun Song
- Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University, Jinju 660-701,
Korea
| | - Woo Sik Chung
- Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University, Jinju 660-701,
Korea
- Division of Life Science, Gyeongsang National University, Jinju 660-701,
Korea
| | - Chae Oh Lim
- Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University, Jinju 660-701,
Korea
- Division of Life Science, Gyeongsang National University, Jinju 660-701,
Korea
| |
Collapse
|
25
|
Song L, Wang J, Shafi M, Liu Y, Wang J, Wu J, Wu A. Hypobaric Treatment Effects on Chilling Injury, Mitochondrial Dysfunction, and the Ascorbate-Glutathione (AsA-GSH) Cycle in Postharvest Peach Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4665-74. [PMID: 27195461 DOI: 10.1021/acs.jafc.6b00623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this study, hypobaric treatment effects were investigated on chilling injury, mitochondrial dysfunction, and the ascorbate-glutathione (AsA-GSH) cycle in peach fruit stored at 0 °C. Internal browning of peaches was dramatically reduced by applying 10-20 kPa pressure. Hypobaric treatment markedly inhibited membrane fluidity increase, whereas it kept mitochondrial permeability transition pore (MPTP) concentration and cytochrome C oxidase (CCO) and succinic dehydrogenase (SDH) activity relatively high in mitochondria. Similarly, 10-20 kPa pressure treatment reduced the level of decrease observed in AsA and GSH concentrations, while it enhanced ascorbate peroxidase (APX), glutathione reductase (GR), and monodehydroascorbate reductase (MDHAR) activities related to the AsA-GSH cycle. Furthermore, comparative transcriptomic analysis showed that differentially expressed genes (DEGs) associated with the metabolism of glutathione, ascorbate, and aldarate were up-regulated in peaches treated with 10-20 kPa for 30 days at 0 °C. Genes encoding GR, MDHAR, and APX were identified and exhibited higher expression in fruits treated with low pressure than in fruits treated with normal atmospheric pressure. Our findings indicate that the alleviation of chilling injury by hypobaric treatment was associated with preventing mitochondrial dysfunction and triggering the AsA-GSH cycle by the transcriptional up-regulation of related enzymes.
Collapse
Affiliation(s)
- Lili Song
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University , Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Jinhua Wang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University , Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Mohammad Shafi
- Department of Agronomy, The University of Agriculture , Peshawar 25130, Pakistan
| | - Yuan Liu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University , Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Jie Wang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University , Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Jiasheng Wu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University , Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Aimin Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, and Guangdong Province Research Center of Woody Forage Engineering Technology, South China Agricultural University , Guangzhou 510642, China
| |
Collapse
|
26
|
Hu T, Ye J, Tao P, Li H, Zhang J, Zhang Y, Ye Z. The tomato HD-Zip I transcription factor SlHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:16-29. [PMID: 26610866 DOI: 10.1111/tpj.13085] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 05/03/2023]
Abstract
Ascorbate (AsA) is an antioxidant that can scavenge the reactive oxygen species (ROS) produced when plants encounter stressful conditions. Here, it was revealed by a yeast one-hybrid assay that a tomato (Solanum lycopersicum) HD-Zip I family transcription factor, SlHZ24, binds to the promoter of an AsA biosynthetic gene encoding GDP-D-mannose pyrophosphorylase 3 (SlGMP3). Both the transient expression system and electrophoretic mobility shift assay (EMSA) showed that SlHZ24 binds to a regulatory cis-element in the SlGMP3 promoter, and further overexpression of SlHZ24 in transgenic tomato lines resulted in increased AsA levels. In contrast, suppressing expression of the gene using RNA interference (RNAi) had the opposite effect. These data suggest that SlHZ24 can positively regulate the accumulation of AsA, and in support of this it was shown that SlGMP3 expression increased in the SlHZ24-overexpressing lines and declined in SlHZ24-RNAi lines. SlHZ24 also affected the expression of other genes in the D-mannose/L-galactose pathway, such as genes encoding GDP-mannose-3',5'-epimerase 2 (SlGME2), GDP-L-galactose phosphorylase (SlGGP) and SlGMP4. The EMSA indicated that SlHZ24 bound to the promoters of SlGME2 and SlGGP, suggesting multi-targeted regulation of AsA biosynthesis. Finally, SlHZ24-overexpressing plants showed less sensitivity to oxidative stress; we therefore conclude that SlHZ24 promotes AsA biosynthesis, which in turn enhances oxidative stress tolerance.
Collapse
Affiliation(s)
- Tixu Hu
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peiwen Tao
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanxia Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junhong Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuyang Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhibiao Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
27
|
Huerta-Ocampo JA, Barrera-Pacheco A, Mendoza-Hernández CS, Espitia-Rangel E, Mock HP, Barba de la Rosa AP. Salt stress-induced alterations in the root proteome of Amaranthus cruentus L. J Proteome Res 2014; 13:3607-27. [PMID: 24942474 DOI: 10.1021/pr500153m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salt stress is one of the major factors limiting crop productivity worldwide. Amaranth is a highly nutritious pseudocereal with remarkable nutraceutical properties; it is also a stress-tolerant plant, making it an alternative crop for sustainable food production in semiarid conditions. A two-dimensional electrophoresis gel coupled with a liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) approach was applied in order to analyze the changes in amaranth root protein accumulation in plants subjected to salt stress under hydroponic conditions during the osmotic phase (1 h), after recovery (24 h), and during the ionic phase of salt stress (168 h). A total of 101 protein spots were differentially accumulated in response to stress, in which 77 were successfully identified by LC-MS/MS and a database search against public and amaranth transcriptome databases. The resulting proteins were grouped into different categories of biological processes according to Gene Ontology. The identification of several protein isoforms with a change in pI and/or molecular weight reveals the importance of the salt-stress-induced posttranslational modifications in stress tolerance. Interestingly stress-responsive proteins unique to amaranth, for example, Ah24, were identified. Amaranth is a stress-tolerant alternative crop for sustainable food production, and the understanding of amaranth's stress tolerance mechanisms will provide valuable input to improve stress tolerance of other crop plants.
Collapse
Affiliation(s)
- José A Huerta-Ocampo
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C. , Camino a la Presa San José No. 2055, Lomas 4a Sección, 78216 San Luis Potosí, S.L.P., México
| | | | | | | | | | | |
Collapse
|
28
|
Do H, Kim IS, Kim YS, Shin SY, Kim JJ, Mok JE, Park SI, Wi AR, Park H, Kim HW, Yoon HS, Lee JH. Crystallization and preliminary X-ray crystallographic studies of dehydroascorbate reductase (DHAR) from Oryza sativa L. japonica. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:781-5. [PMID: 24915093 DOI: 10.1107/s2053230x14009133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/22/2014] [Indexed: 11/10/2022]
Abstract
Dehydroascorbate reductase from Oryza sativa L. japonica (OsDHAR), a key enzyme in the regeneration of vitamin C, maintains reduced pools of ascorbic acid to detoxify reactive oxygen species. In previous studies, the overexpression of OsDHAR in transgenic rice increased grain yield and biomass as well as the amount of ascorbate, suggesting that ascorbate levels are directly associated with crop production in rice. Hence, it has been speculated that the increased level of antioxidants generated by OsDHAR protects rice from oxidative damage and increases the yield of rice grains. However, the crystal structure and detailed mechanisms of this important enzyme need to be further elucidated. In this study, recombinant OsDHAR protein was purified and crystallized using the sitting-drop vapour-diffusion method at pH 8.0 and 298 K. Plate-shaped crystals were obtained using 0.15 M potassium bromide, 30%(w/v) PEG MME 2000 as a precipitant, and the crystals diffracted to a resolution of 1.9 Å on beamline 5C at the Pohang Accelerator Laboratory. The X-ray diffraction data indicated that the crystal contained one OsDHAR molecule in the asymmetric unit and belonged to space group P2₁ with unit-cell parameters a=47.03, b=48.38, c=51.83 Å, β=107.41°.
Collapse
Affiliation(s)
- Hackwon Do
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Il-Sup Kim
- Department of Biology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Young-Saeng Kim
- Department of Biology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Sun-Young Shin
- Department of Biology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jin-Ju Kim
- Department of Biology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Ji-Eun Mok
- Department of Biology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Seong-Im Park
- Department of Biology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Ah Ram Wi
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Hyun Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Han-Woo Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| | - Ho-Sung Yoon
- Department of Biology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jun Hyuck Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Republic of Korea
| |
Collapse
|