1
|
Zhang Y, Fan M, Zhang Y. Revolutionizing bone defect healing: the power of mesenchymal stem cells as seeds. Front Bioeng Biotechnol 2024; 12:1421674. [PMID: 39497791 PMCID: PMC11532096 DOI: 10.3389/fbioe.2024.1421674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/10/2024] [Indexed: 11/07/2024] Open
Abstract
Bone defects can arise from trauma or pathological factors, resulting in compromised bone integrity and the loss or absence of bone tissue. As we are all aware, repairing bone defects is a core problem in bone tissue engineering. While minor bone defects can self-repair if the periosteum remains intact and normal osteogenesis occurs, significant defects or conditions such as congenital osteogenesis imperfecta present substantial challenges to self-healing. As research on mesenchymal stem cell (MSC) advances, new fields of application have emerged; however, their application in orthopedics remains one of the most established and clinically valuable directions. This review aims to provide a comprehensive overview of the research progress regarding MSCs in the treatment of diverse bone defects. MSCs, as multipotent stem cells, offer significant advantages due to their immunomodulatory properties and ability to undergo osteogenic differentiation. The review will encompass the characteristics of MSCs within the osteogenic microenvironment and summarize the research progress of MSCs in different types of bone defects, ranging from their fundamental characteristics and animal studies to clinical applications.
Collapse
Affiliation(s)
- Yueyao Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Mengke Fan
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| | - Yingze Zhang
- Trauma Emergency Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, Shijiazhuang, China
| |
Collapse
|
2
|
Luo X, Li J, Yang M, Tu L, Xie Y, Lv Q, Wen S, Wen X, Zhou L, Gu J. Alterations in peripheral T-cell and B-cell subsets in the ankylosing spondylitis patients with gut inflammation. Int J Rheum Dis 2024; 27:e15324. [PMID: 39380421 DOI: 10.1111/1756-185x.15324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 10/10/2024]
Abstract
AIM This study investigates changes in immune cell subsets in peripheral blood of ankylosing spondylitis (AS) patients with colitis or terminal ileitis. It aims to explore the connection between changes in lymphocyte subsets and gut inflammation, providing insights for early detection. METHODS Overall, 50 AS patients undergoing colonoscopy were enrolled. Flow cytometry was employed to analyze lymphocyte subsets, including T and B cells, in peripheral blood. Disease activity was assessed using CRP, ESR, BASDAI, ASDAS-CRP, and ASDAS-ESR. RESULTS Compared to AS patients without gut inflammation, those with colorectal inflammation showed a significant increase in total T cells (p < .05), an increase in exhausted CD4+ T cells (p < .05), and a decrease in Th2 cells and total Tc cells (p < .05). Notably, in AS patients with terminal ileitis, there was an increase in total B cells and classic switched B cells (p < .05), with a decrease in double-positive T cells (p < .05). However, no significant differences were observed in the distribution of Tfh-cell subpopulations (Tfh1, Tfh2, Tfh17) and Tc-cell subpopulations (Tc1, Tc2, Tc17) between AS patients with either colorectal inflammation or terminal ileitis (p > .05). We explored the relationship between disease activity scores, ESR, CRP, and lymphocyte subsets, but found no statistically significant correlation between them. CONCLUSION Distinct immune patterns may exist in AS with different types of intestinal inflammation. Colitis in AS is primarily characterized by a significant increase in exhausted CD4+ T cells, along with a decrease in Th2 cells. In contrast, terminal ileum inflammation in AS is marked by an increase in total B cells and classic switched B cells. These findings offer new insights for early detection and therapeutic intervention.
Collapse
Affiliation(s)
- Xiqing Luo
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinwei Li
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingcan Yang
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liudan Tu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ya Xie
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Lv
- Department of Rheumatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shenghui Wen
- Department of Rheumatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xianghui Wen
- Shenzhen Institute of Immunomedicine Transformation (Longhua), Shenzhen, China
| | - Liuzhong Zhou
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Giannopapas V, Smyrni V, Kitsos DK, Stasi S, Chasiotis AK, Moschovos C, Papagiannopoulou G, Stavrogianni K, Kosmidou M, Bakalidou D, Tzartos JS, Tsivgoulis G, Giannopoulos S. Osteoarthritis in People with Multiple Sclerosis: A Systematic Review and Meta-Analysis. J Clin Med 2024; 13:5015. [PMID: 39274226 PMCID: PMC11396250 DOI: 10.3390/jcm13175015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Arthritis, particularly osteoarthritis (OA), is a common synovial condition observed in individuals with multiple sclerosis (MS). Despite its high prevalence and significant impact on the quality of life of MS individuals, there is a gap in the current literature regarding the prevalence of OA in this population and its relation to MS pathology. This systematic review and meta-analysis aimed to estimate the prevalence of OA in the MS population and explore potential associations with demographic and MS-specific characteristics. Methods: Adhering to PRISMA guidelines, a systematic search of the MEDLINE PubMed, Scopus and Google Scholar databases was conducted. Results: Fifteen studies were included in the systematic review and meta-analysis. The aggregated prevalence of OA in the MS population was 27% (95% CI: 15-40%), with substantial heterogeneity (I2 = 99.9%). Sensitivity analysis, excluding one study, showed a prevalence of 21% (95% CI: 16-28%). The risk ratio of OA in MS versus controls was 1.07 (95% CI: 0.84-1.37), indicating no significant difference. Meta-regression revealed no associations between OA prevalence and age or disease duration in MS patients. Conclusions: This study reports a 21-27% prevalence of OA in people with MS. Understanding the implications of OA in pain and mobility domains, as well as the challenges in distinguishing OA symptoms from MS manifestations, underscores the need for further research to elucidate the pathophysiological mechanisms and interactions between these conditions. Additional studies are warranted to enhance clinical management and improve outcomes for individuals with MS and co-existing OA.
Collapse
Affiliation(s)
- Vasileios Giannopapas
- Second Department of Neurology, National and Kapodistrian University of Athens, 15772 Athens, Greece
- Department of Physical Therapy, University of West Attica, 12243 Egaleo, Greece
| | - Vassiliki Smyrni
- Second Department of Neurology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Dimitrios K Kitsos
- Second Department of Neurology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophia Stasi
- Department of Physical Therapy, University of Peloponnese, 23100 Sparti, Greece
| | - Athanasios K Chasiotis
- Second Department of Neurology, National and Kapodistrian University of Athens, 15772 Athens, Greece
- Department of Physical Therapy, University of West Attica, 12243 Egaleo, Greece
| | - Christos Moschovos
- Second Department of Neurology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgia Papagiannopoulou
- Second Department of Neurology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Konstantina Stavrogianni
- Second Department of Neurology, National and Kapodistrian University of Athens, 15772 Athens, Greece
- Department of Physiology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Maria Kosmidou
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Daphne Bakalidou
- Second Department of Neurology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - John S Tzartos
- Second Department of Neurology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, National and Kapodistrian University of Athens, 15772 Athens, Greece
| |
Collapse
|
4
|
Wu Y, Hu H, Wang T, Guo W, Zhao S, Wei R. Characterizing mitochondrial features in osteoarthritis through integrative multi-omics and machine learning analysis. Front Immunol 2024; 15:1414301. [PMID: 39026663 PMCID: PMC11254675 DOI: 10.3389/fimmu.2024.1414301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Purpose Osteoarthritis (OA) stands as the most prevalent joint disorder. Mitochondrial dysfunction has been linked to the pathogenesis of OA. The main goal of this study is to uncover the pivotal role of mitochondria in the mechanisms driving OA development. Materials and methods We acquired seven bulk RNA-seq datasets from the Gene Expression Omnibus (GEO) database and examined the expression levels of differentially expressed genes related to mitochondria in OA. We utilized single-sample gene set enrichment analysis (ssGSEA), gene set enrichment analysis (GSEA), and weighted gene co-expression network analysis (WGCNA) analyses to explore the functional mechanisms associated with these genes. Seven machine learning algorithms were utilized to identify hub mitochondria-related genes and develop a predictive model. Further analyses included pathway enrichment, immune infiltration, gene-disease relationships, and mRNA-miRNA network construction based on these hub mitochondria-related genes. genome-wide association studies (GWAS) analysis was performed using the Gene Atlas database. GSEA, gene set variation analysis (GSVA), protein pathway analysis, and WGCNA were employed to investigate relevant pathways in subtypes. The Harmonizome database was employed to analyze the expression of hub mitochondria-related genes across various human tissues. Single-cell data analysis was conducted to examine patterns of gene expression distribution and pseudo-temporal changes. Additionally, The real-time polymerase chain reaction (RT-PCR) was used to validate the expression of these hub mitochondria-related genes. Results In OA, the mitochondria-related pathway was significantly activated. Nine hub mitochondria-related genes (SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH, and PDK4) were identified. They constructed predictive models with good ability to predict OA. These genes are primarily associated with macrophages. Unsupervised consensus clustering identified two mitochondria-associated isoforms that are primarily associated with metabolism. Single-cell analysis showed that they were all expressed in single cells and varied with cell differentiation. RT-PCR showed that they were all significantly expressed in OA. Conclusion SIRT4, DNAJC15, NFS1, FKBP8, SLC25A37, CARS2, MTHFD2, ETFDH, and PDK4 are potential mitochondrial target genes for studying OA. The classification of mitochondria-associated isoforms could help to personalize treatment for OA patients.
Collapse
Affiliation(s)
- Yinteng Wu
- Department of Orthopedic and Trauma Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Haifeng Hu
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tao Wang
- Department of Orthopedic Joint, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenliang Guo
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shijian Zhao
- Department of Cardiology, the Affiliated Cardiovascular Hospital of Kunming Medical University (Fuwai Yunnan Cardiovascular Hospital), Kunming, China
| | - Ruqiong Wei
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Wang S, Xiao W, Duan Z, Fu Y, Fang J, Xu T, Yang D, Li G, Guan Y, Zhang Y. Depression heightened the association of the systemic immune-inflammation index with all-cause mortality among osteoarthritis patient. J Affect Disord 2024; 355:239-246. [PMID: 38552917 DOI: 10.1016/j.jad.2024.03.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/04/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Systemic immune-inflammatory index (SII) has been recognized as a novel inflammatory indicator in numerous diseases. It remains unknown how SII affects all-cause mortality among patients with osteoarthritis (OA). In this prospective cohort study, we intended to examine the relationship of SII with all-cause mortality among OA populations and assess the interaction between depression and SII. METHODS Data was collected from National Health and Nutrition Examination Survey (NHANES) in 2005-2018. The National Death Index (NDI) provided vital status records. Multivariable Cox regression analyses with cubic spines were applied to estimate the association between SII and all-cause and CVD mortality. Stratified analysis and interaction tests assessed the interaction of SII and depression on all-cause mortality. RESULTS In total 3174 OA adults were included. The lowest quartile Q1 (HR:1.44, 95%CI:1.02-2.04) and highest quartile Q4 (HR:1.44, 95%CI:1.02-2.04) of SII presented a higher risk of death compared with those in second quartile Q2 (Ref.) and third quartile Q3 (HR:1.23, 95%CI:0.89-1.68. Restricted cubic splines analysis revealed a U-shaped association of SII with all-cause mortality, the inflection points were 412.93 × 109/L. The interaction test observed a more significant relationship of SII with all-cause mortality in depression patients than in non-depression patients, indicating that depression can modify this association. LIMITATIONS First, the observational study design failed to make causal inferences. Second, the baseline SII cannot reflect the long-term level of inflammation. Finally, there may be potential bias. CONCLUSION SII was U-shaped associated with all-cause mortality in OA patients, and this association was significantly heightened by depression.
Collapse
Affiliation(s)
- Sen Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenyu Xiao
- Department of Orthopaedics, Shanghai Tenth People's Hospital Chongming Branch, School of Medicine, Tongji University, Shanghai 202157, China
| | - Zhengwei Duan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yuesong Fu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiaqi Fang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tianyang Xu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Dong Yang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Guodong Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yonghao Guan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| | - Yiwei Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
6
|
Dai Y, Chen L, Zhang Z, Liu X. Identification and validation of immune-related genes in osteoarthritic synovial fibroblasts. Heliyon 2024; 10:e28330. [PMID: 38571590 PMCID: PMC10988018 DOI: 10.1016/j.heliyon.2024.e28330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
Objective OA was generally considered as a non-inflammatory disease dominated by articular cartilage degeneration. However, the role of synovitis in OA pathogenesis has received increasing attention. Recent studies support that OA patients have a pro-inflammatory/catabolic synovial environment similar to RA patients, promoting the occurrence and development of OA. Therefore, we investigated the co-immune-related genes and pathways of OA and RA to explore whether part of the pathogenesis of RA synovitis can be used to explain OA synovitis. Methods Data of GSE29746 and GSE12021 were downloaded from the Gene Expression Omnibus (GEO) database. Compared with control group, differentially expressed genes (DEGs) of OA and RA groups were screened separately by R software, Venny website was used to screen co-DEGs. Metascape was used to screen the common enriched terms and pathways between OA and RA. STRING website and Cytoscape software were used to map protein-protein interaction (PPI) networks and screen co-hub genes. GSE29746 was selected as the test dataset, and GSE12021 as the validation dataset for validate the co-hub genes. The results were validated by western blotting (WB) and real-time quantitative polymerase chain reaction (qPCR) of clinical synovial samples. Results We identified 573 OA-related DEGs, 148 RA-related DEGs, and 52 co-DEGs, revealing 14 common enriched terms, most of which were related to immune inflammation. IL7R was the only upregulated co-hub gene between OA and RA in the PPI network, consistent with the validation dataset. IL7R was highly expressed in clinical osteoarthritic synovial samples (P < 0.001). Conclusion Our findings suggested that IL7R is a critical co-DEG in OA and RA and confirmed the involvement of immune inflammation in disease pathogenesis. Furthermore, it confirms the role of IL7R in synovial inflammation in RA and OA synovitis and provides evidence for further investigation of OA immune inflammation.
Collapse
Affiliation(s)
- Yaduan Dai
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lin Chen
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhan Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueyong Liu
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Ma J, Yu P, Ma S, Li J, Wang Z, Hu K, Su X, Zhang B, Cheng S, Wang S. Bioinformatics and Integrative Experimental Method to Identifying and Validating Co-Expressed Ferroptosis-Related Genes in OA Articular Cartilage and Synovium. J Inflamm Res 2024; 17:957-980. [PMID: 38370466 PMCID: PMC10871044 DOI: 10.2147/jir.s434226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/13/2024] [Indexed: 02/20/2024] Open
Abstract
Purpose Osteoarthritis (OA) is the most common joint disease worldwide and is the primary cause of disability and chronic pain in older adults.Ferroptosis is a type of programmed cell death characterized by aberrant iron metabolism and reactive oxygen species accumulation; however, its role in OA is not known. Methods To identify ferroptosis markers co-expressed in articular cartilage and synovium samples from patients with OA, in silico analysis was performed.Signature genes were analyzed and the results were evaluated using a ROC curve prediction model.The biological function, correlation between Signature genes, immune cell infiltration, and ceRNA network analyses were performed. Signature genes and ferroptosis phenotypes were verified through in vivo animal experiments and clinical samples. The expression levels of non-coding RNAs in samples from patients with OA were determined using qRT-PCR. ceRNA network analysis results were confirmed using dual-luciferase assays. Results JUN, ATF3, and CDKN1A were identified as OA- and ferroptosis-associated signature genes. GSEA analysis demonstrated an enrichment of these genes in immune and inflammatory responses, and amino acid metabolism. The CIBERSORT algorithm showed a negative correlation between T cells and these signature genes in the cartilage, and a positive correlation in the synovium. Moreover, RP5-894D12.5 and FAM95B1 regulated the expression of JUN, ATF3, and CDKN1A by competitively binding to miR-1972, miR-665, and miR-181a-2-3p. In vivo, GPX4 was downregulated in both OA cartilage and synovium; however, GPX4 and GSH were downregulated, while ferrous ions were upregulated in patient OA cartilage and synovium samples, indicating that ferroptosis was involved in the pathogenesis of OA. Furthermore, JUN, ATF3, and CDKN1A expression was downregulated in both mouse and human OA synovial and cartilage tissues. qRT-PCR demonstrated that miR-1972, RP5-894D12.5, and FAM95B1 were differentially expressed in OA tissues. Targeted interactions between miR-1972 and JUN, and a ceRNA regulatory mechanism between RP5-894D12.5, miR-1972, and JUN were confirmed by dual-luciferase assays. Conclusion This study identified JUN, ATF3, and CDKN1A as possible diagnostic biomarkers and therapeutic targets for joint synovitis and OA. Furthermore, our finding indicated that RP5-894D12.5/miR-1972/JUN was a potential ceRNA regulatory axis in OA, providing an insight into the connection between ferroptosis and OA.
Collapse
Affiliation(s)
- Jinxin Ma
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Peng Yu
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Shang Ma
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Jinjin Li
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Zhen Wang
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Kunpeng Hu
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Xinzhe Su
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Bei Zhang
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Shao Cheng
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Department of Arthropathy, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People’s Republic of China
- School of Osteopathy, Henan Province Engineering Research Center of Basic and Clinical Research of Bone and Joint Repair in Chinese Medicine, Zhengzhou, People’s Republic of China
| | - Shangzeng Wang
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, People’s Republic of China
- Department of Arthropathy, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, People’s Republic of China
- School of Osteopathy, Henan Province Engineering Research Center of Basic and Clinical Research of Bone and Joint Repair in Chinese Medicine, Zhengzhou, People’s Republic of China
| |
Collapse
|
8
|
Lesnak JB, Mazhar K, Price TJ. Neuroimmune Mechanisms Underlying Post-acute Sequelae of SARS-CoV-2 (PASC) Pain, Predictions from a Ligand-Receptor Interactome. Curr Rheumatol Rep 2023; 25:169-181. [PMID: 37300737 PMCID: PMC10256978 DOI: 10.1007/s11926-023-01107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE OF REVIEW Individuals with post-acute sequelae of SARS-CoV-2 (PASC) complain of persistent musculoskeletal pain. Determining how COVID-19 infection produces persistent pain would be valuable for the development of therapeutics aimed at alleviating these symptoms. RECENT FINDINGS To generate hypotheses regarding neuroimmune interactions in PASC, we used a ligand-receptor interactome to make predictions about how ligands from PBMCs in individuals with COVID-19 communicate with dorsal root ganglia (DRG) neurons to induce persistent pain. In a structured literature review of -omics COVID-19 studies, we identified ligands capable of binding to receptors on DRG neurons, which stimulate signaling pathways including immune cell activation and chemotaxis, the complement system, and type I interferon signaling. The most consistent finding across immune cell types was an upregulation of genes encoding the alarmins S100A8/9 and MHC-I. This ligand-receptor interactome, from our hypothesis-generating literature review, can be used to guide future research surrounding mechanisms of PASC-induced pain.
Collapse
Affiliation(s)
- Joseph B Lesnak
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA
| | - Khadijah Mazhar
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA
| | - Theodore J Price
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA.
| |
Collapse
|
9
|
Xie X, Doody GM, Shuweihdi F, Conaghan PG, Ponchel F. B-cell capacity for expansion and differentiation into plasma cells are altered in osteoarthritis. Osteoarthritis Cartilage 2023; 31:1176-1188. [PMID: 37290499 DOI: 10.1016/j.joca.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/30/2023] [Accepted: 03/04/2023] [Indexed: 06/10/2023]
Abstract
OBJECTIVE Autoantibody (autoAbs) production in osteoarthritis (OA), coupled with evidence of disturbed B-cell homoeostasis, suggest a potential role for B-cells in OA. B-cells can differentiate with T-cell help (T-dep) or using alternative Toll like recptor (TLR) co-stimulation (TLR-dep). We analysed the capacity for differentiation of B-cells in OA versus age-matched healthy controls (HCs) and compared the capacity of OA synovitis-derived stromal cells to provide support for plasma cell (PC) maturation. METHODS B-cells were isolated from OA and HC. Standardised in vitro models of B-cell differentiation were used comparing T-dep (CD40 (cluster of differentiation-40/BCR (B-cell receptor)-ligation) versus TLR-dep (TLR7/BCR-activation). Differentiation marker expression was analysed by flow-cytometry; antibody secretion (immunnoglobulins IgM/IgA/IgG) by ELISA (enzyme-linked immunosorbent assay), gene expression by qPCR (quantitative polymerase chain reaction). RESULTS Compared to HC, circulating OA B-cells showed an overall more mature phenotype. The gene expression profile of synovial OA B-cells resembled that of PCs. Circulating B-cells differentiated under both TLR-dep and T-dep, however OA B-cells executed differentiation faster in terms of change in surface marker and secreted more antibody at Day 6, while resulting in similar PC numbers at Day 13, with an altered phenotype at Day 13 in OA. The main difference was reduced early B-cells expansion in OA (notably in TLR-dep) and reduced cell death. Stromal cells support from OA-synovitis allowed better PC survival compared to bone marrow, with an additional population of cells and higher Ig-secretion. CONCLUSION Our findings suggest that OA B-cells present an altered capacity for proliferation and differentiation while remaining able to produce antibodies, notably in synovium. These findings may partly contribute to autoAbs development as recently observed in OA synovial fluids.
Collapse
Affiliation(s)
- Xuanxiao Xie
- Translational Research in Immune Mediated Inflammatory Disease, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK.
| | - Gina M Doody
- Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK.
| | - Farag Shuweihdi
- Leeds Institute of Health Sciences, School of Medicine, University of Leeds, Leeds, UK.
| | - Philip G Conaghan
- Translational Research in Immune Mediated Inflammatory Disease, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK; Leeds Institute of Health Sciences, School of Medicine, University of Leeds, Leeds, UK; The NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospital Trust, Leeds, UK.
| | - Frederique Ponchel
- Translational Research in Immune Mediated Inflammatory Disease, Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; Division of Haematology and Immunology, Leeds Institute of Medical Research, University of Leeds, Leeds, UK; Leeds Institute of Health Sciences, School of Medicine, University of Leeds, Leeds, UK; The NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospital Trust, Leeds, UK.
| |
Collapse
|
10
|
Yuan S, Li G, Zhang J, Chen X, Su J, Zhou F. Mesenchymal Stromal Cells-Derived Extracellular Vesicles as Potential Treatments for Osteoarthritis. Pharmaceutics 2023; 15:1814. [PMID: 37514001 PMCID: PMC10385170 DOI: 10.3390/pharmaceutics15071814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints characterized by cartilage damage and severe pain. Despite various pharmacological and surgical interventions, current therapies fail to halt OA progression, leading to high morbidity and an economic burden. Thus, there is an urgent need for alternative therapeutic approaches that can effectively address the underlying pathophysiology of OA. Extracellular Vesicles (EVs) derived from mesenchymal stromal cells (MSCs) represent a new paradigm in OA treatment. MSC-EVs are small membranous particles released by MSCs during culture, both in vitro and in vivo. They possess regenerative properties and can attenuate inflammation, thereby promoting cartilage healing. Importantly, MSC-EVs have several advantages over MSCs as cell-based therapies, including lower risks of immune reactions and ethical issues. Researchers have recently explored different strategies, such as modifying EVs to enhance their delivery, targeting efficiency, and security, with promising results. This article reviews how MSC-EVs can help treat OA and how they might work. It also briefly discusses the benefits and challenges of using MSC-EVs and talks about the possibility of allogeneic and autologous MSC-EVs for medical use.
Collapse
Affiliation(s)
- Shunling Yuan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Guangfeng Li
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Jinbo Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- Department of Pharmacy, Tianjin Rehabilitation Center of Joint Logistics Support Force, Tianjin 300110, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Institute of Advanced Interdisciplinary Materials Science, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| |
Collapse
|
11
|
Motta F, Barone E, Sica A, Selmi C. Inflammaging and Osteoarthritis. Clin Rev Allergy Immunol 2023; 64:222-238. [PMID: 35716253 DOI: 10.1007/s12016-022-08941-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis is a highly prevalent disease particularly in subjects over 65 years of age worldwide. While in the past it was considered a mere consequence of cartilage degradation leading to anatomical and functional joint impairment, in recent decades, there has been a more dynamic view with the synovium, the cartilage, and the subchondral bone producing inflammatory mediators which ultimately lead to cartilage damage. Inflammaging is defined as a chronic, sterile, low-grade inflammation state driven by endogenous signals in the absence of infections, occurring with aging. This chronic status is linked to the production of reactive oxygen species and molecules involved in the development of age-related disease such as cancer, diabetes, and cardiovascular and neurodegenerative diseases. Inflammaging contributes to osteoarthritis development where both the innate and the adaptive immune response are involved. Elevated systemic and local inflammatory cytokines and senescent molecules promote cartilage degradation, and antigens derived from damaged joints further trigger inflammation through inflammasome activation. B and T lymphocyte populations also change with inflammaging and OA, with reduced regulatory functions, thus implicating self-reactivity as an additional mechanism of joint damage. The discovery of the underlying pathogenic pathways may help to identify potential therapeutic targets for the management or the prevention of osteoarthritis. We will provide a comprehensive evaluation of the current literature on the role of inflammaging in osteoarthritis and discuss the emerging therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| | - Elisa Barone
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy
| | - Antonio Sica
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56, 20089, Rozzano, Milan, Italy. .,Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini, 20090, Pieve Emanuele, Milan, Italy.
| |
Collapse
|
12
|
Fine N, Lively S, Séguin CA, Perruccio AV, Kapoor M, Rampersaud R. Intervertebral disc degeneration and osteoarthritis: a common molecular disease spectrum. Nat Rev Rheumatol 2023; 19:136-152. [PMID: 36702892 DOI: 10.1038/s41584-022-00888-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/27/2023]
Abstract
Intervertebral disc degeneration (IDD) and osteoarthritis (OA) affecting the facet joint of the spine are biomechanically interdependent, typically occur in tandem, and have considerable epidemiological and pathophysiological overlap. Historically, the distinctions between these degenerative diseases have been emphasized. Therefore, research in the two fields often occurs independently without adequate consideration of the co-dependence of the two sites, which reside within the same functional spinal unit. Emerging evidence from animal models of spine degeneration highlight the interdependence of IDD and facet joint OA, warranting a review of the parallels between these two degenerative phenomena for the benefit of both clinicians and research scientists. This Review discusses the pathophysiological aspects of IDD and OA, with an emphasis on tissue, cellular and molecular pathways of degeneration. Although the intervertebral disc and synovial facet joint are biologically distinct structures that are amenable to reductive scientific consideration, substantial overlap exists between the molecular pathways and processes of degeneration (including cartilage destruction, extracellular matrix degeneration and osteophyte formation) that occur at these sites. Thus, researchers, clinicians, advocates and policy-makers should consider viewing the burden and management of spinal degeneration holistically as part of the OA disease continuum.
Collapse
Affiliation(s)
- Noah Fine
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Starlee Lively
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Cheryle Ann Séguin
- Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Bone and Joint Institute, University of Western Ontario London, London, Ontario, Canada
| | - Anthony V Perruccio
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Raja Rampersaud
- Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Semenistaja S, Skuja S, Kadisa A, Groma V. Healthy and Osteoarthritis-Affected Joints Facing the Cellular Crosstalk. Int J Mol Sci 2023; 24:4120. [PMID: 36835530 PMCID: PMC9964755 DOI: 10.3390/ijms24044120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive, severely debilitating, and multifactorial joint disease that is recognized as the most common type of arthritis. During the last decade, it shows an incremental global rise in prevalence and incidence. The interaction between etiologic factors that mediate joint degradation has been explored in numerous studies. However, the underlying processes that induce OA remain obscure, largely due to the variety and complexity of these mechanisms. During synovial joint dysfunction, the osteochondral unit undergoes cellular phenotypic and functional alterations. At the cellular level, the synovial membrane is influenced by cartilage and subchondral bone cleavage fragments and extracellular matrix (ECM) degradation products from apoptotic and necrotic cells. These "foreign bodies" serve as danger-associated molecular patterns (DAMPs) that trigger innate immunity, eliciting and sustaining low-grade inflammation in the synovium. In this review, we explore the cellular and molecular communication networks established between the major joint compartments-the synovial membrane, cartilage, and subchondral bone of normal and OA-affected joints.
Collapse
Affiliation(s)
- Sofija Semenistaja
- Department of Doctoral Studies, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Sandra Skuja
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Anda Kadisa
- Department of Internal Diseases, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Valerija Groma
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|
14
|
Boneva B, Ralchev N, Ganova P, Tchorbanov A, Mihaylova N. Collagenase-Induced Mouse Model of Osteoarthritis-A Thorough Flow Cytometry Analysis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111938. [PMID: 36431073 PMCID: PMC9694943 DOI: 10.3390/life12111938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Osteoarthritis (OA) is a chronic degenerative disorder of the joint characterized by cartilage breakdown and synovial inflammation. A number of different cells of innate and adaptive immunity contribute to joint pathology during OA inflammation. The interaction between the local synovial and systemic inflammatory cellular response and the structural changes in the joint is still unknown. The objective of this study was to investigate the role of the different types of immune cells in the development of OA. METHODS Collagenase-induced osteoarthritis was induced in Balb/c mice; flow cytometry analysis; and histopathological damages were assessed in histological sections stained with H&E, Toluidine blue, and Safranin O. RESULTS Flow cytometry analysis showed B lymphocyte infiltration in the active phase of inflammation and an increase in the effector T cell population into the synovium. An increased activation state of cytotoxic T cells and of NK cell populations in the spleen and synovium was also found. The differentiation of NK cells from a cytotoxic phenotype in early OA to cells with an effector phenotype in the chronic phase of the disease followed. CONCLUSIONS A number of different cells contribute to inflammatory processes in OA. The correlation between their phenotype and the inflammatory pathophysiology could result in the development of novel approaches to suppress destructive changes in the joint.
Collapse
Affiliation(s)
- Blagovesta Boneva
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nikola Ralchev
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Petya Ganova
- Laboratory of Immunohistochemistry and Immunopathology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Andrey Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Nikolina Mihaylova
- Laboratory of Immunohistochemistry and Immunopathology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-979-3140; Fax: +359-2-870-0109
| |
Collapse
|
15
|
Liu J, Dan R, Zhou X, Xiang J, Wang J, Liu J. Immune senescence and periodontitis: From mechanism to therapy. J Leukoc Biol 2022; 112:1025-1040. [PMID: 36218054 DOI: 10.1002/jlb.3mr0822-645rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/12/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is one of the most prevalent infectious inflammatory diseases, characterized by irreversible destruction of the supporting tissues of teeth, which is correlated with a greater risk of multiple systemic diseases, thus regarded as a major health concern. Dysregulation between periodontal microbial community and host immunity is considered to be the leading cause of periodontitis. Comprehensive studies have unveiled the double-edged role of immune response in the development of periodontitis. Immune senescence, which is described as age-related alterations in immune system, including a diminished immune response to endogenous and exogenous stimuli, a decline in the efficiency of immune protection, and even failure in immunity build-up after vaccination, leads to the increased susceptibility to infection. Recently, the intimate relationship between immune senescence and periodontitis has come into focus, especially in the aging population. In this review, both periodontal immunity and immune senescence will be fully introduced, especially their roles in the pathology and progression of periodontitis. Furthermore, novel immunotherapies targeting immune senescence are presented to provide potential targets for research and clinical intervention in the future.
Collapse
Affiliation(s)
- Jiaqi Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ruichen Dan
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xueman Zhou
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Xiang
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases; Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory for Aging Research, State Key Laboratory of Biotherapy & National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
16
|
Trivanovic D, Harder J, Leucht M, Kreuzahler T, Schlierf B, Holzapfel BM, Rudert M, Jakob F, Herrmann M. Immune and stem cell compartments of acetabular and femoral bone marrow in hip osteoarthritis patients. Osteoarthritis Cartilage 2022; 30:1116-1129. [PMID: 35569800 DOI: 10.1016/j.joca.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Hip osteoarthritis (OA) affects all components of the osteochondral unit, leading to bone marrow (BM) lesions, and unknown consequences on BM cell functionality. We analyzed the cellular composition in OA-affected acetabula compared to proximal femur shafts obtained of hip OA patients to reveal yet not explored immune and stem cell compartments. DESIGN Combining flow cytometry, cellular assays and transcription analyses, we performed extensive ex vivo phenotyping of acetabular BM cells from 18 hip OA patients, comparing them with their counterparts from patient-matched femoral shaft BM samples. Findings were related to differences in skeletal sites and age. RESULTS Acetabular BM had a greater frequency of T-lymphocytes, non-hematopoietic cells and colony-forming units fibroblastic potential than femoral BM. The incidence of acetabular CD45+CD3+ T-lymphocytes increased (95% CI: 0.1770 to 0.0.8416), while clonogenic hematopoietic progenitors declined (95% CI: -0.9023 to -0.2399) with age of patients. On the other side, in femoral BM, we observed higher B-lymphocyte, myeloid and erythroid cell frequencies. Acetabular mesenchymal stromal cells (MSCs) showed a senescent profile associated with the expression of survival and inflammation-related genes. Efficient osteogenic and chondrogenic differentiation was detected in acetabular MSCs, while adipogenesis was more pronounced in their femoral counterparts. CONCLUSION Our results suggest that distinctions in BM cellular compartments and MSCs may be due to the influence of the OA-stressed microenvironment, but also acetabular vs femoral shaft-specific peculiarities cannot be excluded. These results bring new knowledge on acetabular BM cell populations and may be addressed as novel pathogenic mechanisms and therapeutic targets in OA.
Collapse
Affiliation(s)
- D Trivanovic
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Bavaria, 97070, Germany; Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany
| | - J Harder
- Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany
| | - M Leucht
- Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany
| | - T Kreuzahler
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Bavaria, 97070, Germany; Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany
| | - B Schlierf
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Bavaria, 97070, Germany; Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany
| | - B M Holzapfel
- Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany; Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Wuerzburg, Wuerzburg, Bavaria, 97070, Germany; Department of Orthopaedic Surgery, University Clinics, Ludwig-Maximilians University Munich, Munich, 81377, Germany
| | - M Rudert
- Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany; Department of Orthopaedic Surgery, König-Ludwig-Haus, University of Wuerzburg, Wuerzburg, Bavaria, 97070, Germany
| | - F Jakob
- Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany
| | - M Herrmann
- IZKF Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, Wuerzburg, Bavaria, 97070, Germany; Bernhard-Heine-Center for Locomotion Research, University Wuerzburg, Wuerzburg, Bavaria, 97070, Germany.
| |
Collapse
|
17
|
Sebastian A, Hum NR, McCool JL, Wilson SP, Murugesh DK, Martin KA, Rios-Arce ND, Amiri B, Christiansen BA, Loots GG. Single-cell RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis. Front Immunol 2022; 13:938075. [PMID: 35967299 PMCID: PMC9373730 DOI: 10.3389/fimmu.2022.938075] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/06/2022] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease, affecting over 300 million people world-wide. Accumulating evidence attests to the important roles of the immune system in OA pathogenesis. Understanding the role of various immune cells in joint degeneration or joint repair after injury is vital for improving therapeutic strategies for treating OA. Post-traumatic osteoarthritis (PTOA) develops in ~50% of individuals who have experienced an articular trauma like an anterior cruciate ligament (ACL) rupture. Here, using the high resolution of single-cell RNA sequencing, we delineated the temporal dynamics of immune cell accumulation in the mouse knee joint after ACL rupture. Our study identified multiple immune cell types in the joint including neutrophils, monocytes, macrophages, B cells, T cells, NK cells and dendritic cells. Monocytes and macrophage populations showed the most dramatic changes after injury. Further characterization of monocytes and macrophages reveled 9 major subtypes with unique transcriptomics signatures, including a tissue resident Lyve1hiFolr2hi macrophage population and Trem2hiFcrls+ recruited macrophages, both showing enrichment for phagocytic genes and growth factors such as Igf1, Pdgfa and Pdgfc. We also identified several genes induced or repressed after ACL injury in a cell type-specific manner. This study provides new insight into PTOA-associated changes in the immune microenvironment and highlights macrophage subtypes that may play a role in joint repair after injury.
Collapse
Affiliation(s)
- Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- *Correspondence: Aimy Sebastian, ; Gabriela G. Loots,
| | - Nicholas R. Hum
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jillian L. McCool
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- School of Natural Sciences, University of California Merced, Merced, CA, United States
| | - Stephen P. Wilson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Deepa K. Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Kelly A. Martin
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Naiomy Deliz Rios-Arce
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Beheshta Amiri
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Blaine A. Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Gabriela G. Loots
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
- School of Natural Sciences, University of California Merced, Merced, CA, United States
- *Correspondence: Aimy Sebastian, ; Gabriela G. Loots,
| |
Collapse
|
18
|
Platzer H, Trauth R, Nees TA, Tripel E, Gantz S, Schiltenwolf M, Moradi B, Rosshirt N. CD8 + T Cells in OA Knee Joints Are Differentiated into Subsets Depending on OA Stage and Compartment. J Clin Med 2022; 11:jcm11102814. [PMID: 35628940 PMCID: PMC9145354 DOI: 10.3390/jcm11102814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 01/21/2023] Open
Abstract
Osteoarthritis (OA) is no longer considered a purely degenerative disease. OA is defined as a disease of the entire joint, in which inflammation occurs in various joint tissues. The overall aim of this study was to analyze the presence and polarization of CD8+ T cell subsets in OA knee joints, in relation to the OA stage and compartment (synovial fluid (SF), synovial membrane (SM,) peripheral blood (PB)). A quantitative flow analysis of CD8+ T cell subsets to compare the SF, SM, PB, was performed in patients with different stages of OA (early, unicondylar and bicondylar OA). Samples of the SF, SM and PB were harvested from a total of 55 patients at the time of surgery. Early OA was confirmed by independent surgeons intraoperatively. Uni- and bicondylar OA was confirmed and graded by two plane radiographs. Samples were analyzed by flow cytometry for surface markers, and cytokines by intracellular staining (ICS). CD8+ T cells were shown to be differentiated into pro-inflammatory IFN-γ producing Tc1 and IL-17A producing Tc17, as well as anti-inflammatory IL-4 producing Tc2. All CD8+ T cell subsets (Tc1, Tc17, and Tc2) were detected in both the SM and SF. The percentage of CD8+ T cell subsets of the total CD8+ T cell population was dependent on the OA stage and compartment. Compared with the peripheral blood (PB), the proportion of CD8+IFN-γ+ Tc1 and CD8+IL-17A+ Tc17 was significantly increased in OA SF. This was confirmed in our data for both early OA and end-stage OA. In the SM samples of end-stage OA patients, the proportion of CD8+IL-17A+ Tc17 was significantly increased compared to the PB. Comparing SF and SM samples of end-stage OA patients, the proportion of CD8+IFN-γ+ Tc1 was significantly increased in SF, whereas there were no differences concerning CD8+IL-4+ Tc2 and CD8+IL-17A+ Tc17. End-stage OA samples showed a significant increase of CD8+IL-4+ Tc2 in the SM for both unicondylar and bicondylar OA compared to early OA. CD8+ T cells infiltrating the SM and SF in OA knees are differentiated into IFN-γ-, IL-17A-, and IL-4-producing CD8+ T cell subsets (Tc1, Tc17, Tc2). This differentiation depends on the OA stage and OA compartment. Further investigation of CD8+ T cell subsets and their interaction with other inflammatory cells such as CD4+ T cells and macrophages may help to identify novel therapeutic anti-inflammatory strategies for containing OA progression.
Collapse
Affiliation(s)
- Hadrian Platzer
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, 69118 Heidelberg, Germany; (H.P.); (R.T.); (T.A.N.); (E.T.); (S.G.); (M.S.)
| | - Richard Trauth
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, 69118 Heidelberg, Germany; (H.P.); (R.T.); (T.A.N.); (E.T.); (S.G.); (M.S.)
| | - Timo A. Nees
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, 69118 Heidelberg, Germany; (H.P.); (R.T.); (T.A.N.); (E.T.); (S.G.); (M.S.)
| | - Elena Tripel
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, 69118 Heidelberg, Germany; (H.P.); (R.T.); (T.A.N.); (E.T.); (S.G.); (M.S.)
| | - Simone Gantz
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, 69118 Heidelberg, Germany; (H.P.); (R.T.); (T.A.N.); (E.T.); (S.G.); (M.S.)
| | - Marcus Schiltenwolf
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, 69118 Heidelberg, Germany; (H.P.); (R.T.); (T.A.N.); (E.T.); (S.G.); (M.S.)
| | - Babak Moradi
- Clinic for Orthopedics and Trauma Surgery, University Hospital Kiel, 24105 Kiel, Germany
- Correspondence: (B.M.); (N.R.)
| | - Nils Rosshirt
- Clinic for Orthopedic and Trauma Surgery, University Hospital Heidelberg, 69118 Heidelberg, Germany; (H.P.); (R.T.); (T.A.N.); (E.T.); (S.G.); (M.S.)
- Correspondence: (B.M.); (N.R.)
| |
Collapse
|
19
|
Wood MJ, Miller RE, Malfait AM. The Genesis of Pain in Osteoarthritis: Inflammation as a Mediator of Osteoarthritis Pain. Clin Geriatr Med 2022; 38:221-238. [PMID: 35410677 PMCID: PMC9053380 DOI: 10.1016/j.cger.2021.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chronic pain is a substantial personal and societal burden worldwide. Osteoarthritis (OA) is one of the leading causes of chronic pain and is increasing in prevalence in accordance with a global aging population. In addition to affecting patients' physical lives, chronic pain also adversely affects patients' mental wellbeing. However, there remain no pharmacologic interventions to slow down the progression of OA and pain-alleviating therapies are largely unsuccessful. The presence of low-level inflammation in OA has been recognized for many years as a major pathogenic driver of joint damage. Inflammatory mechanisms can occur locally in joint tissues, such as the synovium, within the sensory nervous system, as well as systemically, caused by modifiable and unmodifiable factors. Understanding how inflammation may contribute to, and modify pain in OA will be instrumental in identifying new druggable targets for analgesic therapies. In this narrative review, we discuss recent insights into inflammatory mechanisms in OA pain. We discuss how local inflammation in the joint can contribute to mechanical sensitization and to the structural neuroplasticity of joint nociceptors, through pro-inflammatory factors such as nerve growth factor, cytokines, and chemokines. We consider the role of synovitis, and the amplifying mechanisms of neuroimmune interactions. We then explore emerging evidence around the role of neuroinflammation in the dorsal root ganglia and dorsal horn. Finally, we discuss how systemic inflammation associated with obesity may modify OA pain and suggest future research directions.
Collapse
Affiliation(s)
- Matthew J Wood
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Room 340, 1735 W Harrison Street, Chicago, IL 60612, USA
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Room 714, 1735 W Harrison Street, Chicago, IL 60612, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, 1611 W Harrison Street, Suite 510, Chicago, IL 60612, USA.
| |
Collapse
|
20
|
Qin Y, Li J, Zhou Y, Yin C, Li Y, Chen M, Du Y, Li T, Yan J. Apolipoprotein D as a Potential Biomarker and Construction of a Transcriptional Regulatory-Immune Network Associated with Osteoarthritis by Weighted Gene Coexpression Network Analysis. Cartilage 2021; 13:1702S-1717S. [PMID: 34719950 PMCID: PMC8808834 DOI: 10.1177/19476035211053824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Synovial inflammation influences the progression of osteoarthritis (OA). Herein, we aimed to identify potential biomarkers and analyze transcriptional regulatory-immune mechanism of synovitis in OA using weighted gene coexpression network analysis (WGCNA). DESIGN A data set of OA synovium samples (GSE55235) was analyzed based on WGCNA. The most significant module with OA was identified and function annotation of the module was performed, following which the hub genes of the module were identified using Pearson correlation and a protein-protein interaction network was constructed. A transcriptional regulatory network of hub genes was constructed using the TRRUST database. The immune cell infiltration of OA samples was evaluated using the single-sample Gene Set Enrichment Analysis (ssGSEA) method. The hub genes coexpressed in multiple tissues were then screened out using data sets of synovium, cartilage, chondrocyte, subchondral bone, and synovial fluid samples. Finally, transcriptional factors and coexpressed hub genes were validated via experiments. RESULTS The turquoise module of GSE55235 was identified via WGCNA. Functional annotation analysis showed that "mineral absorption" and "FoxO signaling pathway" were mostly enriched in the module. JUN, EGR1, FOSB, and KLF4 acted as central nodes in protein-protein interaction network and transcription factors to connect several target genes. "Activated B cell," "activated CD4T cell," "eosinophil," "neutrophil," and "type 17 T helper cell" showed high immune infiltration, while FOSB, KLF6, and MYBL2 showed significant negative correlation with type 17 T helper cell. CONCLUSIONS Our results suggest that the expression level of apolipoprotein D (APOD) was correlated with OA. Furthermore, transcriptional regulatory-immune network was constructed, which may contribute to OA therapy.
Collapse
Affiliation(s)
- Yong Qin
- Department of Orthopedics Surgery, The
Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Li
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yonggang Zhou
- Department of Orthopedics Surgery, The
Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chengliang Yin
- Medical Big Data Research Center,
Medical Innovation Research Division of Chinese PLA General Hospital, Beijing,
China,National Engineering Laboratory for
Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing,
China,Faculty of Medicine, Macau University
of Science and Technology, Macau, China
| | - Yi Li
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ming Chen
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yinqiao Du
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tiejian Li
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jinglong Yan
- Department of Orthopedics Surgery, The
Second Affiliated Hospital of Harbin Medical University, Harbin, China,Jinglong Yan, Department of Orthopedics
Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246
Xuefu Road, Harbin 150086, China.
| |
Collapse
|
21
|
Jiang Y, Yang M, Zhang Y, Huang Y, Wu J, Xie Y, Wei Q, Liao Z, Gu J. Dynamics of Adaptive Immune Cell and NK Cell Subsets in Patients With Ankylosing Spondylitis After IL-17A Inhibition by Secukinumab. Front Pharmacol 2021; 12:738316. [PMID: 34721027 PMCID: PMC8551761 DOI: 10.3389/fphar.2021.738316] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Anti-IL-17A therapy is generally effectively applied in patients with Ankylosing Spondylitis (AS) to achieve and maintain remission. However, the influence of anti-IL-17A on the composition of the immune system is not apparent. Our prospective study was to explore the changes in immune imbalance regarding T cell, B cell and natural killer (NK) cell subsets after secukinumab treatment in AS patients. Methods: Immune cell distribution of 43 AS patients treated with secukinumab for 12 weeks and 47 healthy controls (HC) were evaluated. Flow cytometry using monoclonal antibodies against 25 surface markers was accomplished to explore the frequencies of lineage subsets. The differences between HC, AS pre-treatment, and post-treatment were compared using the paired Wilcoxon test, Mann-Whitney U test, and ANOVA. Results: AS patients had altered immune cell distribution regarding T cell and B cell subsets. Apart from activated differentiation of CD4+ T cell, CD8+ T cell and B cell, higher levels of cytotoxic T (Tc) two cells and Tc17 cells were noted in AS patients. We confirmed that helper T (Th) one cell became decreased; however, Th17 cells and T follicular helper (Tfh) 17 cells went increased in AS. After 12 weeks of secukinumab therapy, CRP and ASDAS became significantly decreased, and meanwhile, the proportions of Th1 cells, Tfh17 cells and classic switched B cells were changed towards those of HC. A decreased CRP was positively correlated with a decrease in the frequency of naïve CD8+ T cells (p = 0.039) and B cells (p = 0.007) after secukinumab treatment. An elevated level of T cells at baseline was detected in patients who had a good response to secukinumab (p = 0.005). Conclusion: Our study confirmed that AS patients had significant multiple immune cell dysregulation. Anti-IL-17A therapy (Secukinumab) could reverse partial immune cell imbalance.
Collapse
Affiliation(s)
- Yutong Jiang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingcan Yang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanli Zhang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yefei Huang
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jialing Wu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ya Xie
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiujing Wei
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zetao Liao
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieruo Gu
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Deng Z, Zhang Q, Zhao Z, Li Y, Chen X, Lin Z, Deng Z, Liu J, Duan L, Wang D, Li W. Crosstalk between immune cells and bone cells or chondrocytes. Int Immunopharmacol 2021; 101:108179. [PMID: 34601329 DOI: 10.1016/j.intimp.2021.108179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 01/12/2023]
Abstract
The term "osteoimmunology" was coined to denote the bridge between the immune system and the skeletal system. Osteoimmunology is interdisciplinary, and a full understanding and development of this "bridge" will provide an in-depth understanding of the switch between body health and disease development. B lymphocytes can promote the maturation and differentiation of osteoclasts, and osteoclasts have a negative feedback effect on B lymphocytes. Different subtypes of T lymphocytes regulate osteoclasts in different directions. T lymphocytes have a two-way regulatory effect on osteoblasts, while B lymphocytes have minimal regulatory effects on osteoblasts. In contrast, osteoblasts can promote the differentiation and maturation of T lymphocytes and B lymphocytes. Different immune cells have different effects on chondrocytes; some cooperate with each other, while some antagonize each other. In a healthy adult body, bone resorption and bone formation are in a dynamic balance under the action of multiple mechanisms. In this review, we summarize the interactions and key signaling molecular mechanisms between each type of cell in the immune system and the skeletal system.
Collapse
Affiliation(s)
- Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Qian Zhang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Yongshen Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Xiaoqiang Chen
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Zicong Lin
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Zhenhan Deng
- Department of Sports Medicine, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518000, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Li Duan
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China
| | - Daping Wang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China.
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital/ the First Hospital Affiliated to Shenzhen University, Shenzhen 518000, China.
| |
Collapse
|
23
|
Harris KM, Clements MA, Kwilasz AJ, Watkins LR. T cell transgressions: Tales of T cell form and function in diverse disease states. Int Rev Immunol 2021; 41:475-516. [PMID: 34152881 PMCID: PMC8752099 DOI: 10.1080/08830185.2021.1921764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/17/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Insights into T cell form, function, and dysfunction are rapidly evolving. T cells have remarkably varied effector functions including protecting the host from infection, activating cells of the innate immune system, releasing cytokines and chemokines, and heavily contributing to immunological memory. Under healthy conditions, T cells orchestrate a finely tuned attack on invading pathogens while minimizing damage to the host. The dark side of T cells is that they also exhibit autoreactivity and inflict harm to host cells, creating autoimmunity. The mechanisms of T cell autoreactivity are complex and dynamic. Emerging research is elucidating the mechanisms leading T cells to become autoreactive and how such responses cause or contribute to diverse disease states, both peripherally and within the central nervous system. This review provides foundational information on T cell development, differentiation, and functions. Key T cell subtypes, cytokines that create their effector roles, and sex differences are highlighted. Pathological T cell contributions to diverse peripheral and central disease states, arising from errors in reactivity, are highlighted, with a focus on multiple sclerosis, rheumatoid arthritis, osteoarthritis, neuropathic pain, and type 1 diabetes.
Collapse
Affiliation(s)
- Kevin M. Harris
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Madison A. Clements
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Andrew J. Kwilasz
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| | - Linda R. Watkins
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO U.S.A
| |
Collapse
|
24
|
Subburaman M, Edderkaoui B. Evaluation of CCL21 role in post-knee injury inflammation and early cartilage degeneration. PLoS One 2021; 16:e0247913. [PMID: 33651836 PMCID: PMC7924772 DOI: 10.1371/journal.pone.0247913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 02/16/2021] [Indexed: 12/31/2022] Open
Abstract
The expression of some chemokines and chemokine receptors is induced during the development of post-traumatic osteoarthritis (PTOA), but their involvement in the pathogenesis of the disease is unclear. The goal of this study was to test whether CCL21 and CXCL13 play a role in PTOA development. For this purpose, we evaluated the expression profiles of the chemokines Ccl21 and Cxcl13, matrix metalloproteinase enzymes Mmp3 and Mmp13, and inflammatory cell markers in response to partial medial meniscectomy and destabilization (MMD). We then assessed the effect of local administration of CCL21 neutralizing antibody on PTOA development and post-knee injury inflammation. The mRNA expression of both Ccl21 and Cxcl13 was induced early post-surgery, but only Ccl21 mRNA levels remained elevated 4 weeks post-surgery in rat MMD-operated knees compared to controls. This suggests that while both CXCL13 and CCL21 are involved in post-surgery inflammation, CCL21 is necessary for development of PTOA. A significant increase in the mRNA levels of Cd4, Cd8 and Cd20 was observed during the first 3 days post-surgery. Significantly, treatment with CCL21 antibody reduced post-surgical inflammation that was accompanied by a reduction in the expression of Mmp3 and Mmp13 and post-MMD cartilage degradation. Our findings are consistent with a role for CCL21 in mediating changes in early inflammation and subsequent cartilage degeneration in response to knee injury. Our results suggest that targeting CCL21 signaling pathways may yield new therapeutic approaches effective in delaying or preventing PTOA development following injury.
Collapse
Affiliation(s)
- Mohan Subburaman
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare System, Loma Linda, California, United States of America
- Departments of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Departments of Biochemistry, Loma Linda University, Loma Linda, California, United States of America
- Departments of Orthopedics, Loma Linda University, Loma Linda, California, United States of America
| | - Bouchra Edderkaoui
- Musculoskeletal Disease Center, Research Service, VA Loma Linda Healthcare System, Loma Linda, California, United States of America
- Departments of Medicine, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020; 12:583884. [PMID: 33364931 PMCID: PMC7750365 DOI: 10.3389/fnagi.2020.583884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia-the principle immune cells of the brain-characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.
Collapse
Affiliation(s)
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
26
|
Moustafa H, Madkour M, Hamed F, Abouelnazar S, Abo Elwafa R, Moaaz M. Modulation of Memory B Cell Phenotypes and Toll-Like Receptor-7 in Chronic Hepatitis C Virus Infection During Direct-Acting Antiviral Interferon-Free Therapy: Correlation with Interleukin-7. Viral Immunol 2020; 34:227-240. [PMID: 33180667 DOI: 10.1089/vim.2020.0110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem with the highest incidence rates in Egypt. It affects B cells that serve as reservoirs for persistent HCV, resulting in phenotypic B cell alterations. Interleukin-7 (IL-7) is a cytokine with antiviral activity, important for B cell physiology. In addition, B cell-intrinsic toll-like receptor-7 (TLR7) signaling is required for optimal B cell responses during chronic viral infection, and the deficiency of TLR7 in B cells is sufficient to significantly impact antibody responses. Based on their known immunomodulatory effects, we hypothesized that direct-acting antiviral interferon-free therapy may affect TLR7 expression and the exhausted peripheral B cell compartment with the possibility of their restoration in patients who achieved a sustained virological response and their correlation to IL-7 level. This prospective study was accomplished on 80 Egyptian HCV patients and 75 controls. Frequencies of peripheral B cell subsets, TLR7 gene expression, TLR7 protein, and serum IL-7 levels were investigated by flow cytometry, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay, respectively. B cell subpopulations were exhausted and partially restored among HCV patients after receiving treatment, but not recovered with regard to activated mature or resting memory B cells. Almost all responders to direct antiviral drugs showed upregulation of TLR7 gene expression and correlated with the frequency of memory B cell, but not with IL-7. Moreover, IL-7 was not significantly different between groups although correlated with immature transitional B cells. Results may indicate the interplay between TLR7 and B cells during remission or progression of HCV. Thus, TLR7 could be used as a promising biomarker for assessment of antiviral treatment efficacy among chronically infected HCV patients, and that targeting TLR7 may be used as a potential prophylactic and/or therapeutic agent during chronic HCV as well as immune-potentiation of memory B cells.
Collapse
Affiliation(s)
- Hanan Moustafa
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Marwa Madkour
- Department of Internal Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Fathi Hamed
- Faculty of Medical Technology-Mussrata, Mussrata, Libya
| | - Salma Abouelnazar
- Department of Immunology and Allergy, Medical Research Institute, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Reham Abo Elwafa
- Department of Clinical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mai Moaaz
- Department of Immunology and Allergy, Medical Research Institute, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
27
|
Zhao X, Zhao Y, Sun X, Xing Y, Wang X, Yang Q. Immunomodulation of MSCs and MSC-Derived Extracellular Vesicles in Osteoarthritis. Front Bioeng Biotechnol 2020; 8:575057. [PMID: 33251195 PMCID: PMC7673418 DOI: 10.3389/fbioe.2020.575057] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) has become recognized as a low-grade inflammatory state. Inflammatory infiltration of the synovium by macrophages, T cells, B cells, and other immune cells is often observed in OA patients and plays a key role in the pathogenesis of OA. Hence, orchestrating the local inflammatory microenvironment and tissue regeneration microenvironment is important for the treatment of OA. Mesenchymal stem cells (MSCs) offer the potential for cartilage regeneration owing to their effective immunomodulatory properties and anti-inflammatory abilities. The paracrine effect, mediated by MSC-derived extracellular vehicles (EVs), has recently been suggested as a mechanism for their therapeutic properties. In this review, we summarize the interactions between MSCs or MSC-derived EVs and OA-related immune cells and discuss their therapeutic effects in OA. Additionally, we discuss the potential of MSC-derived EVs as a novel cell-free therapy approach for the clinical treatment of OA.
Collapse
Affiliation(s)
- Xige Zhao
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
| | - Yanhong Zhao
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yi Xing
- Stomatological Hospital of Tianjin Medical University, Tianjin, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| |
Collapse
|
28
|
Li C, Zheng Z. Identification of Novel Targets of Knee Osteoarthritis Shared by Cartilage and Synovial Tissue. Int J Mol Sci 2020; 21:ijms21176033. [PMID: 32842604 PMCID: PMC7504179 DOI: 10.3390/ijms21176033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Arthritis is the leading cause of disability among adults, while osteoarthritis (OA) is the most common form of arthritis that results in cartilage loss. However, accumulating evidence suggests that the protective hyaline cartilage should not be the sole focus of OA treatment. Particularly, synovium also plays essential roles in OA’s initiation and progression and warrants serious consideration when battling against OA. Thus, biomarkers with similar OA-responsive expressions in cartilage and synovium should be the potential targets for OA treatment. On the other hand, molecules with a distinguished response during OA in cartilage and synovium should be ruled out as OA therapeutic(s) to avoid controversial effects in different tissues. Here, to pave the path for developing a new generation of OA therapeutics, two published transcriptome datasets of knee articular cartilage and synovium were analyzed in-depth. Genes with statistically significantly different expression in OA and healthy cartilage were compared with those in the synovium. Thirty-five genes with similar OA-responsive expression in both tissues were identified while recognizing three genes with opposite OA-responsive alteration trends in cartilage and synovium. These genes were clustered based on the currently available knowledge, and the potential impacts of these clusters in OA were explored.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Zhong Zheng
- Section of Orthodontics, Dental and Craniofacial Research Institute and Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-(310)-206-5646
| |
Collapse
|
29
|
Inflammatory Cytokine-Producing Cells and Inflammation Markers in the Synovium of Osteoarthritis Patients Evidenced in Human Herpesvirus 7 Infection. Int J Mol Sci 2020; 21:ijms21176004. [PMID: 32825448 PMCID: PMC7504613 DOI: 10.3390/ijms21176004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
A direct association between joint inflammation and the progression of osteoarthritis (OA) has been proposed, and synovitis is considered a powerful driver of the disease. Among infections implicated in the development of joint disease, human herpesvirus 7 (HHV-7) infection remains poorly characterized. Therefore, we assessed synovitis in OA patients; determined the occurrence and distribution of the HHV-7 antigen within the synovial membrane of OA-affected subjects; and correlated plasma levels of the pro-inflammatory cytokines tumor necrosis factor (TNF), interleukin-6 (IL-6), and TNF expressed locally within lesioned synovial tissues with HHV-7 observations, suggesting differences in persistent latent and active infection. Synovial HHV-7, CD4, CD68, and TNF antigens were detected immunohistochemically. The plasma levels of TNF and IL-6 were measured by an enzyme-linked immunosorbent assay. Our findings confirm the presence of persistent HHV-7 infection in 81.5% and reactivation in 20.5% of patients. In 35.2% of patients, virus-specific DNA was extracted from synovial membrane tissue samples. We evidenced the absence of histopathologically detectable synovitis and low-grade changes in the majority of OA patients enrolled in the study, in both HHV-7 PCR+ and HHV-7 PCR‒ groups. The number of synovial CD4-positive cells in the HHV-7 polymerase chain reaction (PCR)+ group was significantly higher than that in the HHV-7 PCR‒ group. CD4- and CD68-positive cells were differently distributed in both HHV-7 PCR+ and HHV-7 PCR‒ groups, as well as in latent and active HHV-7 infection. The number of TNF+ and HHV-7+ lymphocytes, as well as HHV-7+ vascular endothelial cells, was strongly correlated. Vascular endothelial cells, especially in the case of infection reactivation, appeared vulnerable. The balance between virus latency and reactivation is a long-term relationship between the host and infectious agent, and the immune system appears to be involved in displaying overreaction when a shift in the established equilibrium develops.
Collapse
|
30
|
Atabaki M, Shariati-Sarabi Z, Tavakkol-Afshari J, Mohammadi M. Significant immunomodulatory properties of curcumin in patients with osteoarthritis; a successful clinical trial in Iran. Int Immunopharmacol 2020; 85:106607. [DOI: 10.1016/j.intimp.2020.106607] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023]
|
31
|
Abstract
Osteoarthritis (OA) is one of the most debilitating diseases and is associated with a high personal and socioeconomic burden. So far, there is no therapy available that effectively arrests structural deterioration of cartilage and bone or is able to successfully reverse any of the existing structural defects. Efforts to identify more tailored treatment options led to the development of strategies that enabled the classification of patient subgroups from the pool of heterogeneous phenotypes that display distinct common characteristics. To this end, the classification differentiates the structural endotypes into cartilage and bone subtypes, which are predominantly driven by structure-related degenerative events. In addition, further classifications have highlighted individuals with an increased inflammatory contribution (inflammatory phenotype) and pain-driven phenotypes as well as senescence and metabolic syndrome phenotypes. Most probably, it will not be possible to classify individuals by a single definite subtype, but it might help to identify groups of patients with a predominant pathology that would more likely benefit from a specific drug or cell-based therapy. Current clinical trials addressed mainly regeneration/repair of cartilage and bone defects or targeted pro-inflammatory mediators by intra-articular injections of drugs and antibodies. Pain was treated mostly by antagonizing nerve growth factor (NGF) activity and its receptor tropomyosin-related kinase A (TrkA). Therapies targeting metabolic disorders such as diabetes mellitus and senescence/aging-related pathologies are not specifically addressing OA. However, none of these therapies has been proven to modify disease progression significantly or successfully prevent final joint replacement in the advanced disease stage. Within this review, we discuss the recent advances in phenotype-specific treatment options and evaluate their applicability for use in personalized OA therapy.
Collapse
Affiliation(s)
- Susanne Grässel
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, Am Biopark 9, University of Regensburg, Regensburg, 93053, Germany
| | - Dominique Muschter
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, Am Biopark 9, University of Regensburg, Regensburg, 93053, Germany
| |
Collapse
|