1
|
Navabpour S, Patrick MB, Omar NA, Kincaid SE, Bae Y, Abraham J, McGrew J, Musaus M, Ray WK, Helm RF, Jarome TJ. Indirectly acquired fear memories have distinct, sex-specific molecular signatures from directly acquired fear memories. PLoS One 2024; 19:e0315564. [PMID: 39715176 DOI: 10.1371/journal.pone.0315564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a severe anxiety disorder that affects women more than men. About 30% of patients suffering from PTSD develop the disorder by witnessing a traumatic event happen to someone else. However, as the focus has remained on those directly experiencing the traumatic event, whether indirectly acquired fear memories that underlie PTSD have the same molecular signature as those that are directly acquired remains unknown. Here, using a rodent indirect fear learning paradigm where one rat (observer) watches another rat (demonstrator) associate an auditory cue with foot shock, we found that fear can be indirectly acquired by both males and females regardless of the sex or novelty (familiarity) of the demonstrator animal. However, behaviorally, indirectly acquired fear responses resemble those of pseudoconditioning, a behavioral response that is thought to not represent learning. Despite this, using unbiased proteomics, we found that indirectly acquired fear memories have distinct protein degradation profiles in the amygdala and anterior cingulate cortex (ACC) relative to directly acquired fear memories and pseudoconditioning, which further differed significantly by sex. Additionally, Egr2 and c-fos expression in the retrosplenial cortex of observer animals resembled that of demonstrator rats but was significantly different than that of pseudoconditioned rats. Together, these findings reveal that indirectly acquired fear memories have sex-specific molecular signatures that differ from those of directly acquired fear memories or pseudoconditioning. These data have important implications for understanding the neurobiology of indirectly acquired fear memories that may underlie bystander PTSD.
Collapse
Affiliation(s)
- Shaghayegh Navabpour
- Translational Biology, Medicine and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Department of Pathology, Stanford University, Stanford, California, United States of America
| | - Morgan B Patrick
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Nour A Omar
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Shannon E Kincaid
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Yeeun Bae
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Jennifer Abraham
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Jacobi McGrew
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - W Keith Ray
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Richard F Helm
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Timothy J Jarome
- Translational Biology, Medicine and Health Graduate Program, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
2
|
Rosenkranz JA. Shaping behaviors through social experience and their proposed sensitivity to stress. Learn Mem 2024; 31:a053926. [PMID: 39681461 DOI: 10.1101/lm.053926.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/09/2024] [Indexed: 12/18/2024]
Abstract
Mammals have evolved with a range of innate drives, such as thirst and hunger, that promote motivated behaviors to ensure survival. A drive for social engagement promotes social interaction and bond formation. While a stable social environment maintains the opportunity for resource sharing and protection, an additional benefit is provided by the social transmission of information. Social experiences, and information obtained from conspecifics, can be used to learn about threats and opportunities in the environment. This review examines the primary forms of social learning and how they can shape behavior. Additionally, while there is much known about the effects of stress on learning and memory, there is much less known about its effects on social learning and memory. This review will therefore dissect the major factors that contribute to social learning and propose how stress may impact these factors. This may serve as a way to formulate new hypotheses about how stress might impact social learning and the effects of social experiences on behavior.
Collapse
Affiliation(s)
- J Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| |
Collapse
|
3
|
Du R, Yu Y, Wang XL, Lu G, Chen J. Social contagion of pain and fear results in opposite social behaviors in rodents: meta- analysis of experimental studies. Front Behav Neurosci 2024; 18:1478456. [PMID: 39534728 PMCID: PMC11555602 DOI: 10.3389/fnbeh.2024.1478456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction The study aimed to explore the key factors influencing emotional valence in rodents, focusing on the critical elements that distinguish the contagion processes of fear and pain. Methods Through a systematic review and meta-analysis, we examined behavioral outcomes of rodents exposed to painful or fearful catastrophes to see whether they are prosocial or antisocial through three-chamber test and dyadic social interaction paradigm. Results Fear contagion, particularly when witnessed, leads to social avoidance behavior, unaffected by sex difference but more pronounced with age. In contrast, pain contagion promotes social approach and caring/helping behaviors. Discussion The present study demonstrates that the emotional valence induced by pain contagion is quite different from fear contagion and this difference may result in different motivations and social behaviors, namely, social contagion of pain is likely to be more associated with prosocial behaviors, however, social contagion of fear is likely to be more associated with antisocial behaviors. Systematic Review Registration PROSPERO (CRD42024566326).
Collapse
Affiliation(s)
- Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Yu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Guofang Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Sanhang Institute for Brain Science and Technology, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
4
|
Ito W, Morozov A. Sex and stress interactions in fear synchrony of mouse dyads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598132. [PMID: 38915653 PMCID: PMC11195068 DOI: 10.1101/2024.06.09.598132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Socially coordinated threat responses support the survival of animal groups. Given their distinct social roles, males and females must differ in such coordination. Here, we report such differences during the synchronization of auditory-conditioned freezing in mouse dyads. To study the interaction of emotional states with social cues underlying synchronization, we modulated emotional states with prior stress or modified the social cues by pairing unfamiliar or opposite-sex mice. In same-sex dyads, males exhibited more robust synchrony than females. Stress disrupted male synchrony in a prefrontal cortex-dependent manner but enhanced it in females. Unfamiliarity moderately reduced synchrony in males but not in females. In dyads with opposite-sex partners, fear synchrony was resilient to both stress and unfamiliarity. Decomposing the synchronization process in the same-sex dyads revealed sex-specific behavioral strategies correlated with synchrony magnitude: following partners' state transitions in males and retroacting synchrony-breaking actions in females. Those were altered by stress and unfamiliarity. The opposite-sex dyads exhibited no synchrony-correlated strategy. These findings reveal sex-specific adaptations of socio-emotional integration defining coordinated behavior and suggest that sex-recognition circuits confer resilience to stress and unfamiliarity in opposite-sex dyads.
Collapse
Affiliation(s)
- Wataru Ito
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Alexei Morozov
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| |
Collapse
|
5
|
Nakashima SF, Ukezono M, Takano Y. Painful Experiences in Social Contexts Facilitate Sensitivity to Emotional Signals of Pain from Conspecifics in Laboratory Rats. Animals (Basel) 2024; 14:1280. [PMID: 38731284 PMCID: PMC11083382 DOI: 10.3390/ani14091280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Previous studies demonstrated that laboratory rats could visually receive emotional pain signals from conspecifics through pictorial stimuli. The present study examined whether a prior painful emotional experience of the receiver influenced the sensitivity of emotional expression recognition in laboratory rats. The experiment comprised four phases: the baseline preference test, pain manipulation test, post-manipulation preference test, and state anxiety test. In the baseline phase, the rats explored an apparatus comprising two boxes to which pictures of pain or neutral expressions of other conspecifics were attached. In the pain manipulation phase, each rat was allocated to one of three conditions: foot shock alone (pained-alone; PA), foot shock with other unfamiliar conspecifics (pained-with-other; PWO), or no foot shock (control). In the post-manipulation phase, the animals explored the apparatus in the same manner as they did in the baseline phase. Finally, an open-field test was used to measure state anxiety. These findings indicate that rats in the PWO group stayed longer per entry in a box with photographs depicting a neutral disposition than in a box with photographs depicting pain after manipulation. The results of the open-field test showed no significant differences between the groups, suggesting that the increased sensitivity to pain expression in other individuals due to pain experiences in social settings was not due to increased primary state anxiety. Furthermore, the results indicate that rats may use a combination of self-painful experiences and the states of other conspecifics to process the emotional signal of pain from other conspecifics. In addition, changes in the responses of rats to facial expressions in accordance with social experience suggest that the expression function of rats is not only used for emotional expressions but also for communication.
Collapse
Affiliation(s)
- Satoshi F. Nakashima
- School of Psychological Sciences, University of Human Environments, Matsuyama 790-0825, Japan;
| | - Masatoshi Ukezono
- Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan;
| | - Yuji Takano
- School of Psychological Sciences, University of Human Environments, Matsuyama 790-0825, Japan;
| |
Collapse
|
6
|
Seese S, Tinsley CE, Wulffraat G, Hixon JG, Monfils MH. Conspecific interactions predict social transmission of fear in female rats. Sci Rep 2024; 14:7804. [PMID: 38565873 PMCID: PMC10987648 DOI: 10.1038/s41598-024-58258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Social transmission of fear occurs in a subset of individuals, where an Observer displays a fear response to a previously neutral stimulus after witnessing or interacting with a conspecific Demonstrator during memory retrieval. The conditions under which fear can be acquired socially in rats have received attention in recent years, and suggest that social factors modulate social transmission of information. We previously found that one such factor, social rank, impacts fear conditioning by proxy in male rats. Here, we aimed to investigate whether social roles as determined by nape contacts in females, might also have an influence on social transmission of fear. In-line with previous findings in males, we found that social interactions in the home cage can provide insight into the social relationship between female rats and that these relationships predict the degree of fear acquired by-proxy. These results suggest that play behavior affects the social transfer/transmission of information in female rats.
Collapse
Affiliation(s)
- Sydney Seese
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA
| | - Carolyn E Tinsley
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Grace Wulffraat
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA
| | - J Gregory Hixon
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA
| | - Marie-H Monfils
- Department of Psychology, University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX, 78712-1043, USA.
| |
Collapse
|
7
|
Chalkea ZS, Papavranoussi-Daponte D, Polissidis A, Kampisioulis M, Pagaki-Skaliora M, Konsolaki E, Skaliora I. Fear Conditioning by Proxy: The Role of High Affinity Nicotinic Acetylcholine Receptors. Int J Mol Sci 2023; 24:15143. [PMID: 37894831 PMCID: PMC10606983 DOI: 10.3390/ijms242015143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Observational fear-learning studies in genetically modified animals enable the investigation of the mechanisms underlying the social transmission of fear-related information. Here, we used a three-day protocol to examine fear conditioning by proxy (FCbP) in wild-type mice (C57BL/6J) and mice lacking the β2-subunit of the nicotinic acetylcholine receptor (nAChR). Male animals of both genotypes were exposed to a previously fear-conditioned (FC) cage mate during the presentation of the conditioned stimulus (CS, tone). On the following day, observer (FCbP) mice were tested for fear reactions to the tone: none of the β2-KO mice froze to the stimulus, while 30% of the wild-type mice expressed significant freezing. An investigation of the possible factors that predicted the fear response revealed that only wild-type mice that exhibited enhanced and more flexible social interaction with the FC cage mate during tone presentations (Day 2) expressed fear toward the CS (Day-3). Our results indicate that (i) FCbP is possible in mice; (ii) the social transmission of fear depends on the interaction pattern between animals during the FCbP session and (iii) β2-KO mice display a more rigid interaction pattern compared to wild-type mice and are unable to acquire such information. These data suggest that β2-nAChRs influence observational fear learning indirectly through their effect on social behaviour.
Collapse
Affiliation(s)
- Zinovia Stavroula Chalkea
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (D.P.-D.); (M.K.)
- Master’s Program in Cognitive Science, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Danai Papavranoussi-Daponte
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (D.P.-D.); (M.K.)
- Athens International Master’s Program in Neurosciences, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Alexia Polissidis
- American College of Greece Research Center (ACG-RC), 15342 Athens, Greece;
- Center for Experimental, Clinical, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Marinos Kampisioulis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (D.P.-D.); (M.K.)
| | | | - Eleni Konsolaki
- Psychology Department, Deree-The American College of Greece, 15342 Athens, Greece
| | - Irini Skaliora
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (D.P.-D.); (M.K.)
- Master’s Program in Cognitive Science, National and Kapodistrian University of Athens, 15771 Athens, Greece
- Athens International Master’s Program in Neurosciences, National and Kapodistrian University of Athens, 15772 Athens, Greece
- Department of History and Philosophy of Science, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
8
|
Panksepp JB, Lahvis GP. Sociability versus empathy in adolescent mice: Different or distinctive? LEARNING AND MOTIVATION 2023; 83:101892. [PMID: 37614811 PMCID: PMC10443922 DOI: 10.1016/j.lmot.2023.101892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
In recent years, a growing number of pre-clinical studies have made use of the social abilities of mice, asking how gene variants (e.g., null, transgenic or mutant alleles) give rise to abnormalities in neurodevelopment. Two distinct courses of research provide the foundation for these studies. One course has mostly focused on how we can assess "sociability" using metrics, often automated, to quantitate mouse approach and withdrawal responses to a variety of social stimuli. The other course has focused on psychobiological constructs that underlie the socio-emotional capacities of mice, including motivation, reward and empathy. Critically, we know little about how measures of mouse sociability align with their underlying socio-emotional capacities. In the present work, we compared the expression of sociability in adolescent mice from several strains versus a precisely defined behavioral model of empathy that makes use of a vicarious fear learning paradigm. Despite substantial strain-dependent variation within each behavioral domain, we found little evidence of a relationship between these social phenotypes (i.e., the rank order of strain differences was unique for each test). By contrast, emission of ultrasonic vocalizations was highly associated with sociability, suggesting that these two measures reflect the same underlying construct. Taken together, our results indicate that sociability and vicarious fear learning are not manifestations of a single, overarching social trait. These findings thus underscore the necessity for a robust and diverse set of measures when using laboratory mice to model the social dimensions of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jules B. Panksepp
- University of Wisconsin, Waisman Center, 1500 Highland Ave. Madison, WI, 53705, USA
| | | |
Collapse
|
9
|
Mohapatra AN, Wagner S. The role of the prefrontal cortex in social interactions of animal models and the implications for autism spectrum disorder. Front Psychiatry 2023; 14:1205199. [PMID: 37409155 PMCID: PMC10318347 DOI: 10.3389/fpsyt.2023.1205199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 07/07/2023] Open
Abstract
Social interaction is a complex behavior which requires the individual to integrate various internal processes, such as social motivation, social recognition, salience, reward, and emotional state, as well as external cues informing the individual of others' behavior, emotional state and social rank. This complex phenotype is susceptible to disruption in humans affected by neurodevelopmental and psychiatric disorders, including autism spectrum disorder (ASD). Multiple pieces of convergent evidence collected from studies of humans and rodents suggest that the prefrontal cortex (PFC) plays a pivotal role in social interactions, serving as a hub for motivation, affiliation, empathy, and social hierarchy. Indeed, disruption of the PFC circuitry results in social behavior deficits symptomatic of ASD. Here, we review this evidence and describe various ethologically relevant social behavior tasks which could be employed with rodent models to study the role of the PFC in social interactions. We also discuss the evidence linking the PFC to pathologies associated with ASD. Finally, we address specific questions regarding mechanisms employed by the PFC circuitry that may result in atypical social interactions in rodent models, which future studies should address.
Collapse
Affiliation(s)
- Alok Nath Mohapatra
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | | |
Collapse
|
10
|
Akinrinade ID, Varela SAM, Oliveira RF. Sex differences in social buffering and social contagion of alarm responses in zebrafish. Anim Cogn 2023:10.1007/s10071-023-01779-w. [PMID: 37184741 DOI: 10.1007/s10071-023-01779-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/16/2023]
Abstract
The alarm substance in fish is a pheromone released by injured individuals after a predator attack. When detected by other fish, it triggers fear/defensive responses, such as freezing and erratic movement behaviours. Such responses can also help other fish in the shoal to modulate their own behaviours: decreasing a fear response if conspecifics have not detected the alarm substance (social buffering) or triggering a fear response if conspecifics detected the alarm substance (social contagion). Response variation to these social phenomena is likely to depend on sex. Because males have higher-risk life-history strategies than females, they may respond more to social buffering where they risk not responding to a real predator attack, while females should respond more to social contagion because they only risk responding to a false alarm. Using zebrafish, we explored how the response of males and females to the presence/absence of the alarm substance is modified by the alarmed/unalarmed behaviour of an adjacent shoal of conspecifics. We found that, in social buffering, males decreased freezing more than females as expected, but in social contagion males also responded more than females by freezing at a higher intensity. Males were, therefore, more sensitive to visual information, while females responded more to the alarm substance itself. Because visual information updates faster than chemical information, males took more risks but potentially more benefits as well, because a quicker adjustment of a fear response allows to save energy to other activities. These sex differences provide insight into the modifying effect of life-history strategies on the use of social information.
Collapse
Affiliation(s)
- Ibukun D Akinrinade
- IGC-Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras, Portugal
- HBI-Hotchkiss Brain Institute, Cummings School of Medicine, University of Calgary, Alberta, Canada
| | - Susana A M Varela
- IGC-Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras, Portugal
- WJCR-William James Center for Research, ISPA-Instituto Universitário, Lisbon, Portugal
| | - Rui F Oliveira
- IGC-Instituto Gulbenkian de Ciência, Rua Quinta Grande 6, Oeiras, Portugal.
- ISPA-Instituto Universitário, Lisbon, Portugal.
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
11
|
Misiołek K, Klimczak M, Chrószcz M, Szumiec Ł, Bryksa A, Przyborowicz K, Rodriguez Parkitna J, Harda Z. Prosocial behavior, social reward and affective state discrimination in adult male and female mice. Sci Rep 2023; 13:5583. [PMID: 37019941 PMCID: PMC10076499 DOI: 10.1038/s41598-023-32682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Prosocial behavior, defined as voluntary behavior intended to benefit another, has long been regarded as a primarily human characteristic. In recent years, it was reported that laboratory animals also favor prosocial choices in various experimental paradigms, thus demonstrating that prosocial behaviors are evolutionarily conserved. Here, we investigated prosocial choices in adult male and female C57BL/6 laboratory mice in a task where a subject mouse was equally rewarded for entering any of the two compartments of the experimental cage, but only entering of the compartment designated as "prosocial" rewarded an interaction partner. In parallel we have also assessed two traits that are regarded as closely related to prosociality: sensitivity to social reward and the ability to recognize the affective state of another individual. We found that female, but not male, mice increased frequency of prosocial choices from pretest to test. However, both sexes showed similar rewarding effects of social contact in the conditioned place preference test, and similarly, there was no effect of sex on affective state discrimination measured as the preference for interaction with a hungry or relieved mouse over a neutral animal. These observations bring interesting parallels to differences between sexes observed in humans, and are in line with reported higher propensity for prosocial behavior in human females, but differ with regard to sensitivity to social stimuli in males.
Collapse
Affiliation(s)
- Klaudia Misiołek
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Marta Klimczak
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Magdalena Chrószcz
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Łukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Anna Bryksa
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Karolina Przyborowicz
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland.
| | - Zofia Harda
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland.
| |
Collapse
|
12
|
Agee LA, Ortega ME, Lee HJ, Monfils MH. Observing a trained demonstrator influences associative appetitive learning in rats. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221224. [PMID: 37063993 PMCID: PMC10090881 DOI: 10.1098/rsos.221224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The ability to acquire information about the environment through social observation or instruction is an essential form of learning in humans and other animals. Here, we assessed the ability of rats to acquire an association between a light stimulus and the presentation of a reward that is either hidden (sucrose solution) or visible (food pellet) via observation of a trained demonstrator. Subsequent training of observers on the light-reward association indicated that while observation alone was not sufficient for observers to acquire the association, contact with the reward location was higher in observers that were paired with a demonstrator. However, this was only true when the light cue predicted a sucrose reward. Additionally, we found that in the visible reward condition, levels of demonstrator orienting and food cup contact during the observation period tended to be positively correlated with the corresponding behaviour of their observer. This relationship was only seen during later sessions of observer training. Together, these results suggest that while our models were not sufficient to induce associative learning through observation alone, demonstrator behaviour during observation did influence how their paired observer's behavioural response to the cue evolved over the course of direct individual training.
Collapse
Affiliation(s)
- Laura A. Agee
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX 78712-1043, USA
| | - Miriam E. Ortega
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX 78712-1043, USA
| | - Hongjoo J. Lee
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX 78712-1043, USA
| | - Marie-H. Monfils
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX 78712-1043, USA
| |
Collapse
|
13
|
Agee LA, Hilz EN, Jun D, Nemchek V, Lee HJ, Monfils MH. Patterns of Arc mRNA expression in the rat brain following dual recall of fear- and reward-based socially acquired information. Sci Rep 2023; 13:2429. [PMID: 36765118 PMCID: PMC9918527 DOI: 10.1038/s41598-023-29609-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Learning can occur via direct experience or through observation of another individual (i.e., social learning). While research focused on understanding the neural mechanisms of direct learning is prevalent, less work has examined the brain circuitry mediating the acquisition and recall of socially acquired information. Here, we aimed to further elucidate the mechanisms underlying recall of socially acquired information by having male and female rats sequentially recall a socially transmitted food preference (STFP) and a fear association via fear conditioning by-proxy (FCbP). Brain tissue was processed for mRNA expression of the immediate early gene (IEG) Arc, which expresses in the nucleus following transcription before migrating to the cytoplasm over the next 25 min. Given this timeframe, we could identify whether Arc transcription was triggered by STFP recall, FCbP recall, or both. Contrary to past research, we found no differences in any Arc expression measures across a number of prefrontal regions and the ventral CA3 of the hippocampus between controls, demonstrators, and observers. We theorize that these results may indicate that relatively little Arc-dependent neural restructuring is taking place in the prefrontal cortices and ventral CA3 following recall of recently socially acquired information or directly acquired fear associations in these areas.
Collapse
Affiliation(s)
- Laura A Agee
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Emily N Hilz
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Dohyun Jun
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Victoria Nemchek
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Hongjoo J Lee
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Marie-H Monfils
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA.
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
14
|
From whom do animals learn? A meta-analysis on model-based social learning. Psychon Bull Rev 2023:10.3758/s13423-022-02236-4. [PMID: 36609963 DOI: 10.3758/s13423-022-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 01/09/2023]
Abstract
Social learning via the observation of or interaction with other individuals can allow animals to obtain information about the local environment. Once social information is obtained, animals may or may not act on and use this information. Animals may learn from others selectively based on particular characteristics (e.g., familiarity, age, dominance) of the information provider, which is thought to maximize the benefits of social learning. Biases to copy certain individuals over others plays an important role in how information is transmitted and used among individuals, and can influence the emergence of group-level behaviors (i.e., traditions). Two underlying factors can affect from whom animals learn: the population social dynamics - with whom you associate (e.g., familiar), and status of the demonstrator (e.g., dominant). We systematically surveyed the literature and conducted a meta-analysis to test whether demonstrator characteristics consistently influence social learning, and if social dynamics strategies differ from status strategies in their influence on social learning. We extracted effect sizes from papers that used an observer-demonstrator paradigm to test if the characteristics of the individual providing social information (i.e., the demonstrator) influence social information use by observers. We obtained 139 effect sizes on 33 species from 54 experiments. First, we found an effect of experimental design on the influence of demonstrator characteristics on social learning: between-subject designs had stronger effects compared to within-subject designs. Second, we found that demonstrator characteristics do indeed influence social learning. Characteristics based on social dynamics and characteristics based on status had a significant effect on social learning, especially when copying familiar and kin demonstrators. These results highlight the role that demonstrator characteristics play on social learning, which can have implications for the formation and establishment of behavioural traditions in animals.
Collapse
|
15
|
Rubio Arzola P, Shansky RM. Considering Organismal Physiology in Laboratory Studies of Rodent Behavior. Annu Rev Neurosci 2022; 45:387-402. [PMID: 35395164 DOI: 10.1146/annurev-neuro-111020-085500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Any experiment conducted in a rodent laboratory is done so against the backdrop of each animal's physiological state at the time of the experiment. This physiological state can be the product of multiple factors, both internal (e.g., animal sex, strain, hormone cycles, or circadian rhythms) and external (e.g., housing conditions, social status, and light/dark phases). Each of these factors has the potential to influence experimental outcomes, either independently or via interactions with others, and yet there is little consistency across laboratories in terms of the weight with which they are considered in experimental design. Such discrepancies-both in practice and in reporting-likely contribute to the perception of a reproducibility crisis in the field of behavioral neuroscience. In this review, we discuss how several of these sources of variability can impact outcomes within the realm of common learning and memory paradigms. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Rebecca M Shansky
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA;
| |
Collapse
|
16
|
Puścian A, Bryksa A, Kondrakiewicz L, Kostecki M, Winiarski M, Knapska E. Ability to share emotions of others as a foundation of social learning. Neurosci Biobehav Rev 2021; 132:23-36. [PMID: 34838526 DOI: 10.1016/j.neubiorev.2021.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/25/2023]
Abstract
The natural habitats of most species are far from static, forcing animals to adapt to continuously changing conditions. Perhaps the most efficient strategy addressing this challenge consists of obtaining and acting upon pertinent information from others through social learning. We discuss how animals transfer information via social channels and what are the benefits of such exchanges, playing out on different levels, from theperception of socially delivered information to emotional sharing, manifesting themselves across different taxa of increasing biological complexity. We also discuss how social learning is influenced by different factors including pertinence of information for survival, the complexity of the environment, sex, genetic relatedness, and most notably, the relationship between interacting partners. The results appear to form a consistent picture once we shift our focus from emotional contagion as a prerequisite for empathy onto the role of shared emotions in providing vital information about the environment. From this point of view, we can propose approaches that are the most promising for further investigation of complex social phenomena, including learning from others.
Collapse
Affiliation(s)
- A Puścian
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - A Bryksa
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - L Kondrakiewicz
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Kostecki
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - M Winiarski
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - E Knapska
- Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders - BRAINCITY, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
17
|
Kreiker M, Perez K, Brown KL. The effects of early weaning on Pavlovian fear conditioning in young rats. Dev Psychobiol 2021; 63:e22133. [PMID: 34423435 DOI: 10.1002/dev.22133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 11/09/2022]
Abstract
Early life stress enhances memory for Pavlovian fear conditioning. Stress enhancements on fear conditioning following early weaning, however, have yet to be studied in periweaning rats. Early weaning is a relevant animal model for human early life trauma, and Pavlovian fear conditioning is useful for identifying links between stress-induced developmental changes and behavior. We hypothesized that early weaning-on postnatal day (P)15-would lead to higher levels of conditional freezing relative to rats weaned later in life. Periweaning rats were trained with a discrete conditional stimulus (CS) and a shock unconditional stimulus (US), and tested 1 or 15 days later. Enhanced retention was observed in early weaned rats receiving forward paired CS-US training in Experiment 1, though this did not replicate in the second experiment. Despite overall enhancements in early weaned rats in Experiment 1, infantile amnesia effects were not overcome in young rats tested 15 days after training. Enhanced freezing levels in early weaned rats were not observed in subjects receiving unpaired CS, US training, and sensitivity to the US was not different due to age at weaning. Potential mechanisms underlying weaning-related enhancements and considerations for future studies including the role of social transmission of fear information are discussed.
Collapse
Affiliation(s)
- Malaz Kreiker
- Department of Psychology and Neuroscience, Drake University, Des Moines, Iowa, USA
| | - Katelyn Perez
- Department of Psychology and Neuroscience, Drake University, Des Moines, Iowa, USA
| | - Kevin L Brown
- Department of Psychology and Neuroscience, Drake University, Des Moines, Iowa, USA
| |
Collapse
|
18
|
Kavaliers M, Bishnoi IR, Ossenkopp KP, Choleris E. Odor-based mate choice copying in deer mice is not affected by familiarity or kinship. Anim Cogn 2021; 25:241-248. [PMID: 34398314 DOI: 10.1007/s10071-021-01550-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
Individuals pay attention to the social and mate decisions of others and use these to determine their own choices, displaying mate choice copying. The present study with deer mice, Peromyscus maniculatus, showed that females copied the odor preferences and appetitive components of the mate choice of other females. It was found that an association between male and female odors, which is indicative of the apparent interest expressed by a female in a male, enhanced the preference of another female for the odors of that male. This socially learned odor preference lasted for at least 24 h and extended to a preference for the actual male that was the odor source. Neither kinship nor prior familiarity with the female whose odor was presented had a significant influence on the degree of odor-based mate choice copying displayed. These findings show that female deer mice can engage in mate choice copying using the odor-based social interest and mate choice of other females.
Collapse
Affiliation(s)
- Martin Kavaliers
- Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada. .,Graduate Program in Neuroscience, University of Western Ontario, London, Canada. .,Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada.
| | - Indra R Bishnoi
- Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Klaus-Peter Ossenkopp
- Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, Canada
| |
Collapse
|
19
|
Non-random associations in group housed rats (Rattus norvegicus). Sci Rep 2021; 11:15349. [PMID: 34321512 PMCID: PMC8319288 DOI: 10.1038/s41598-021-94608-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/14/2021] [Indexed: 11/25/2022] Open
Abstract
Ecological factors, such as predation, have traditionally been used to explain sociability. However, it is increasingly recognised that individuals within a group do not associate randomly, and that these non-random associations can generate fitness advantages. The majority of the empirical evidence on differentiated associations in group-living mammals, however, comes from a limited number of taxa and we still know very little about their occurrence and characteristics in some highly social species, such as rats (Rattus spp.). Here, using network analysis, we quantified association patterns in four groups of male fancy rats. We found that the associations between rats were not randomly distributed and that most individuals had significantly more preferred/avoided associates than expected by random. We also found that these preferences can be stable over time, and that they were not influenced by individuals’ rank position in the dominance hierarchy. Our findings are consistent with work in other mammals, but contrast with the limited evidence available for other rat strains. While further studies in groups with different demographic composition are warranted to confirm our findings, the occurrence of differentiated associations in all male groups of rats have important implications for the management and welfare of captive rat populations.
Collapse
|
20
|
Pérez-Manrique A, Gomila A. Emotional contagion in nonhuman animals: A review. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2021; 13:e1560. [PMID: 33951303 PMCID: PMC9285817 DOI: 10.1002/wcs.1560] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 03/09/2021] [Accepted: 03/25/2021] [Indexed: 12/29/2022]
Abstract
Emotional contagion, the emotional state‐matching of an individual with another, seems to be crucial for many social species. In recent years evidence on emotional contagion in different animal species has accumulated. However, despite its adaptative advantages and its presumed simplicity, the study and direct demonstration of this phenomenon present more complexities than previously thought. For these reasons, a review of the literature on emotional contagion in nonhuman species is timely to integrate current findings. In this paper thus, we carry out a comprehensive review of the most relevant studies on emotional contagion in animals and discuss the main problems and challenges of the field. We conclude that more research is needed to broaden our understanding of the mechanisms and functions of emotional contagion and the extent to which this process is present in a wide variety of species. Furthermore, the comparative study of emotional contagion would benefit from the use of systematized paradigms including both behavioral and physiological measures and the simultaneous recording of the responses of the interacting individuals to reliably assess an emotional state‐matching between them and reliable controls. This article is categorized under:Cognitive Biology > Evolutionary Roots of Cognition Psychology > Comparative Psychology Psychology > Emotion and Motivation
Collapse
Affiliation(s)
- Ana Pérez-Manrique
- Department of Psychology, Human Evolution and Cognition Group (EvoCog), UIB, IFISC, Associated Unit to CSIC, Palma, Spain
| | - Antoni Gomila
- Department of Psychology, Human Evolution and Cognition Group (EvoCog), UIB, IFISC, Associated Unit to CSIC, Palma, Spain
| |
Collapse
|
21
|
Abstract
Empathy is a complex phenomenon critical for group survival and societal bonds. In addition, there is mounting evidence demonstrating empathic behaviors are dysregulated in a multitude of psychiatric disorders ranging from autism spectrum disorder, substance use disorders, and personality disorders. Therefore, understanding the underlying drive and neurobiology of empathy is paramount for improving the treatment outcomes and quality of life for individuals suffering from these psychiatric disorders. While there is a growing list of human studies, there is still much about empathy to understand, likely due to both its complexity and the inherent limitations of imaging modalities. It is therefore imperative to develop, validate, and utilize rodent models of empathic behaviors as translational tools to explore this complex topic in ways human research cannot. This review outlines some of the more prevailing theories of empathy, lists some of the psychiatric disorders with disrupted empathic processes, describes rat and mouse models of empathic behaviors currently used, and discusses ways in which these models have elucidated social, environmental, and neurobiological factors that may modulate empathy. The research tools afforded to rodent models will provide an increasingly clear translational understanding of empathic processes and consequently result in improvements in care for those diagnosed with any one of the many psychiatric disorders.
Collapse
Affiliation(s)
- Stewart S. Cox
- Medical University of South Carolina, Charleston SC, USA
| | | |
Collapse
|
22
|
Fendt M, Gonzalez-Guerrero CP, Kahl E. Observational Fear Learning in Rats: Role of Trait Anxiety and Ultrasonic Vocalization. Brain Sci 2021; 11:brainsci11040423. [PMID: 33810488 PMCID: PMC8066558 DOI: 10.3390/brainsci11040423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/09/2023] Open
Abstract
Rats can acquire fear by observing conspecifics that express fear in the presence of conditioned fear stimuli. This process is called observational fear learning and is based on the social transmission of the demonstrator rat’s emotion and the induction of an empathy-like or anxiety state in the observer. The aim of the present study was to investigate the role of trait anxiety and ultrasonic vocalization in observational fear learning. Two experiments with male Wistar rats were performed. In the first experiment, trait anxiety was assessed in a light–dark box test before the rats were submitted to the observational fear learning procedure. In the second experiment, ultrasonic vocalization was recorded throughout the whole observational fear learning procedure, and 22 kHz and 50 kHz calls were analyzed. The results of our study show that trait anxiety differently affects direct fear learning and observational fear learning. Direct fear learning was more pronounced with higher trait anxiety, while observational fear learning was the best with a medium-level of trait anxiety. There were no indications in the present study that ultrasonic vocalization, especially emission of 22 kHz calls, but also 50 kHz calls, are critical for observational fear learning.
Collapse
Affiliation(s)
- Markus Fendt
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.P.G.-G.); (E.K.)
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| | - Claudia Paulina Gonzalez-Guerrero
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.P.G.-G.); (E.K.)
- Integrative Neuroscience Program, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Evelyn Kahl
- Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany; (C.P.G.-G.); (E.K.)
| |
Collapse
|
23
|
Leblanc H, Ramirez S. Linking Social Cognition to Learning and Memory. J Neurosci 2020; 40:8782-8798. [PMID: 33177112 PMCID: PMC7659449 DOI: 10.1523/jneurosci.1280-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
Many mammals have evolved to be social creatures. In humans, the ability to learn from others' experiences is essential to survival; and from an early age, individuals are surrounded by a social environment that helps them develop a variety of skills, such as walking, talking, and avoiding danger. Similarly, in rodents, behaviors, such as food preference, exploration of novel contexts, and social approach, can be learned through social interaction. Social encounters facilitate new learning and help modify preexisting memories throughout the lifespan of an organism. Moreover, social encounters can help buffer stress or the effects of negative memories, as well as extinguish maladaptive behaviors. Given the importance of such interactions, there has been increasing work studying social learning and applying its concepts in a wide range of fields, including psychotherapy and medical sociology. The process of social learning, including its neural and behavioral mechanisms, has also been a rapidly growing field of interest in neuroscience. However, the term "social learning" has been loosely applied to a variety of psychological phenomena, often without clear definition or delineations. Therefore, this review gives a definition for specific aspects of social learning, provides an overview of previous work at the circuit, systems, and behavioral levels, and finally, introduces new findings on the social modulation of learning. We contextualize such social processes in the brain both through the role of the hippocampus and its capacity to process "social engrams" as well as through the brainwide realization of social experiences. With the integration of new technologies, such as optogenetics, chemogenetics, and calcium imaging, manipulating social engrams will likely offer a novel therapeutic target to enhance the positive buffering effects of social experiences or to inhibit fear-inducing social stimuli in models of anxiety and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Heloise Leblanc
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, 02119
- Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, 02119
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, 02119
- Neurophotonics Center at Boston University, Boston, Massachusetts, 02119
- Center for Systems Neuroscience at Boston University, Boston, Massachusetts, 02119
| |
Collapse
|
24
|
Sex-dimorphic role of prefrontal oxytocin receptors in social-induced facilitation of extinction in juvenile rats. Transl Psychiatry 2020; 10:356. [PMID: 33077706 PMCID: PMC7572379 DOI: 10.1038/s41398-020-01040-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 11/26/2022] Open
Abstract
We previously reported that in the adult animal extinction in pairs resulted in enhanced extinction, showing that social presence can reduce previously acquired fear responses. Based on our findings that juvenile and adult animals differ in the mechanisms of extinction, here we address whether the social presence of a conspecific affects extinction in juvenile animals similarly to adults. We further address whether such presence has a different impact on juvenile males and females. To that end, we examined in our established experimental setting whether conditioned male and female animals extinguish contextual fear memory better while in pairs. Taking advantage of the role of oxytocin (OT) in the mediation of extinction memory and social interaction, we also study the effect of antagonizing the OT receptors (OTR) either systemically or in the prefrontal cortex on social interaction-induced effects of fear extinction. The results show that social presence accelerates extinction in males and females as compared to the single condition. Yet, we show differential and opposing effects of an OTR antagonist in both sexes. Whereas in females, the systemic application of an OTR antagonist is associated with impaired extinction, it is associated with enhanced extinction in males. In contrast, prefrontal OT is not engaged in extinction in juvenile males, while is it is critical in females. Previously reported differences in the levels of prefrontal OT between males and females might explain the differences in OT action. These results suggest that even during the juvenile period, critical mechanisms are differently involved in the regulation of fear in males and females.
Collapse
|
25
|
Towards a unified theory of emotional contagion in rodents—A meta-analysis. Neurosci Biobehav Rev 2020; 132:1229-1248. [DOI: 10.1016/j.neubiorev.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/30/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
|
26
|
Hernandez-Lallement J, Attah AT, Soyman E, Pinhal CM, Gazzola V, Keysers C. Harm to Others Acts as a Negative Reinforcer in Rats. Curr Biol 2020; 30:949-961.e7. [DOI: 10.1016/j.cub.2020.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/11/2019] [Accepted: 01/07/2020] [Indexed: 12/21/2022]
|
27
|
Qi Y, Herrmann MJ, Bell L, Fackler A, Han S, Deckert J, Hein G. The mere physical presence of another person reduces human autonomic responses to aversive sounds. Proc Biol Sci 2020; 287:20192241. [PMID: 31964306 PMCID: PMC7015327 DOI: 10.1098/rspb.2019.2241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
Social animals show reduced physiological responses to aversive events if a conspecific is physically present. Although humans are innately social, it is unclear whether the mere physical presence of another person is sufficient to reduce human autonomic responses to aversive events. In our study, participants experienced aversive and neutral sounds alone (alone treatment) or with an unknown person that was physically present without providing active support. The present person was a member of the participants' ethnical group (ingroup treatment) or a different ethnical group (outgroup treatment), inspired by studies that have found an impact of similarity on social modulation effects. We measured skin conductance responses (SCRs) and collected subjective similarity and affect ratings. The mere presence of an ingroup or outgroup person significantly reduced SCRs to the aversive sounds compared with the alone condition, in particular in participants with high situational anxiety. Moreover, the effect was stronger if participants perceived the ingroup or outgroup person as dissimilar to themselves. Our results indicate that the mere presence of another person was sufficient to diminish autonomic responses to aversive events in humans, and thus verify the translational validity of basic social modulation effects across different species.
Collapse
Affiliation(s)
- Yanyan Qi
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, Wurzburg 97080, Germany
- Department of Psychology, School of Education, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, People's Republic of China
| | - Martin J. Herrmann
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, Wurzburg 97080, Germany
| | - Luisa Bell
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, Wurzburg 97080, Germany
| | - Anna Fackler
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, Wurzburg 97080, Germany
| | - Shihui Han
- School of Psychological and Cognitive Sciences, PKU-IDG/ McGovern Institute for Brain Research, Peking University, Beijing 10008, People's Republic of China
| | - Jürgen Deckert
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, Wurzburg 97080, Germany
| | - Grit Hein
- Center of Mental Health, Department of Psychiatry, Psychosomatic and Psychotherapy, Translational Social Neuroscience Unit, University of Wurzburg, Wurzburg 97080, Germany
| |
Collapse
|
28
|
Madaro A, Kristiansen TS, Pavlidis MA. How Fish Cope with Stress? Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Han Y, Bruls R, Soyman E, Thomas RM, Pentaraki V, Jelinek N, Heinemans M, Bassez I, Verschooren S, Pruis I, Van Lierde T, Carrillo N, Gazzola V, Carrillo M, Keysers C. Bidirectional cingulate-dependent danger information transfer across rats. PLoS Biol 2019; 17:e3000524. [PMID: 31805039 PMCID: PMC6894752 DOI: 10.1371/journal.pbio.3000524] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
Social transmission of freezing behavior has been conceived of as a one-way phenomenon in which an observer "catches" the fear of another. Here, we use a paradigm in which an observer rat witnesses another rat receiving electroshocks. Bayesian model comparison and Granger causality show that rats exchange information about danger in both directions: how the observer reacts to the demonstrator's distress also influences how the demonstrator responds to the danger. This was true to a similar extent across highly familiar and entirely unfamiliar rats but is stronger in animals preexposed to shocks. Injecting muscimol in the anterior cingulate of observers reduced freezing in the observers and in the demonstrators receiving the shocks. Using simulations, we support the notion that the coupling of freezing across rats could be selected for to more efficiently detect dangers in a group, in a way similar to cross-species eavesdropping.
Collapse
Affiliation(s)
- Yingying Han
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Rune Bruls
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Efe Soyman
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Rajat Mani Thomas
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Vasiliki Pentaraki
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Naomi Jelinek
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of the Department of Applied Life Sciences, FH Campus Wien, Wien, Austria
| | - Mirjam Heinemans
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Iege Bassez
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of the Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Sam Verschooren
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of the Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Illanah Pruis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thijs Van Lierde
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- A student of the Faculty of Psychology and Educational Sciences, Ghent University, Ghent, Belgium
| | - Nathaly Carrillo
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, the Netherlands
| | - Maria Carrillo
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Christian Keysers
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
- Department of Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), Amsterdam, the Netherlands
| |
Collapse
|
30
|
Burgos-Robles A, Gothard KM, Monfils MH, Morozov A, Vicentic A. Conserved features of anterior cingulate networks support observational learning across species. Neurosci Biobehav Rev 2019; 107:215-228. [PMID: 31509768 PMCID: PMC6875610 DOI: 10.1016/j.neubiorev.2019.09.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
Abstract
The ability to observe, interpret, and learn behaviors and emotions from conspecifics is crucial for survival, as it bypasses direct experience to avoid potential dangers and maximize rewards and benefits. The anterior cingulate cortex (ACC) and its extended neural connections are emerging as important networks for the detection, encoding, and interpretation of social signals during observational learning. Evidence from rodents and primates (including humans) suggests that the social interactions that occur while individuals are exposed to important information in their environment lead to transfer of information across individuals that promotes adaptive behaviors in the form of either social affiliation, alertness, or avoidance. In this review, we first showcase anatomical and functional connections of the ACC in primates and rodents that contribute to the perception of social signals. We then discuss species-specific cognitive and social functions of the ACC and differentiate between neural activity related to 'self' and 'other', extending into the difference between social signals received and processed by the self, versus observing social interactions among others. We next describe behavioral and neural events that contribute to social learning via observation. Finally, we discuss some of the neural mechanisms underlying observational learning within the ACC and its extended network.
Collapse
Affiliation(s)
- Anthony Burgos-Robles
- Department of Biology, Neuroscience Institute, University of Texas at San Antonio, San Antonio, TX 78249, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Katalin M Gothard
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA
| | - Marie H Monfils
- Department of Psychology, Institute for Mental Health Research, University of Texas at Austin, Austin, TX 78712, USA
| | - Alexei Morozov
- Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Aleksandra Vicentic
- Division of Neuroscience and Basic Behavioral Science, National Institute of Mental Health, Rockville, MD 20852, USA.
| |
Collapse
|
31
|
Ferreira FF, Rodrigues FS, Schmidt SD, Cavalcante LE, Zinn CG, Farias CP, Furini CR, Myskiw JC, Izquierdo I. Social support favors extinction and impairs acquisition of both short- and long-term contextual fear conditioning memory. Neurosci Lett 2019; 712:134505. [DOI: 10.1016/j.neulet.2019.134505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 08/28/2019] [Accepted: 09/17/2019] [Indexed: 11/25/2022]
|
32
|
Rogers-Carter MM, Christianson JP. An insular view of the social decision-making network. Neurosci Biobehav Rev 2019; 103:119-132. [PMID: 31194999 PMCID: PMC6699879 DOI: 10.1016/j.neubiorev.2019.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/24/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
Abstract
Social animals must detect, evaluate and respond to the emotional states of other individuals in their group. A constellation of gestures, vocalizations, and chemosignals enable animals to convey affect and arousal to others in nuanced, multisensory ways. Observers integrate social information with environmental and internal factors to select behavioral responses to others via a process call social decision-making. The Social Decision Making Network (SDMN) is a system of brain structures and neurochemicals that are conserved across species (mammals, reptiles, amphibians, birds) that are the proximal mediators of most social behaviors. However, how sensory information reaches the SDMN to shape behavioral responses during a social encounter is not well known. Here we review the empirical data that demonstrate the necessity of sensory systems in detecting social stimuli, as well as the anatomical connectivity of sensory systems with each node of the SDMN. We conclude that the insular cortex is positioned to link integrated social sensory cues to this network to produce flexible and appropriate behavioral responses to socioemotional cues.
Collapse
Affiliation(s)
- Morgan M Rogers-Carter
- Department of Psychology, McGuinn Rm 300, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| | - John P Christianson
- Department of Psychology, McGuinn Rm 300, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
33
|
Agee LA, Jones CE, Monfils MH. Differing effects of familiarity/kinship in the social transmission of fear associations and food preferences in rats. Anim Cogn 2019; 22:1013-1026. [DOI: 10.1007/s10071-019-01292-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022]
|
34
|
Jones CE, Agee L, Monfils MH. Fear Conditioning by Proxy: Social Transmission of Fear Between Interacting Conspecifics. ACTA ACUST UNITED AC 2019; 83:e43. [PMID: 30040206 DOI: 10.1002/cpns.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe a method of social fear transmission to a discrete auditory cue in freely behaving rats. Extending beyond traditional observer/demonstrator paradigms, rats are allowed to physically interact and integrate cues from all sensory modalities. In the protocol described in this article, "observer" rats experience social fear conditioning through a proxy cage mate that serves as a "demonstrator" during retrieval of a cued fear memory. We find that a specific auditory cue can come to elicit fear expression in an animal with no foot shock experience simply by interacting with a conspecific expressing a conditioned response in the presence of an otherwise benign stimulus. In this "fear conditioning by proxy" paradigm, we have demonstrated that some, but not all, rats display conditioned responding (e.g., freezing) to a cue after interacting with a cage mate during fear memory retrieval. The amount of freezing exhibited by this fear conditioned "by proxy" rat 24 hr after learning critically depends on social influences, including social relationships and social interactions during learning. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Carolyn E Jones
- Department of Psychology, The University of Texas at Austin, Austin, Texas.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon
| | - Laura Agee
- Department of Psychology, The University of Texas at Austin, Austin, Texas
| | - Marie-H Monfils
- Department of Psychology, The University of Texas at Austin, Austin, Texas.,Institute for Mental Health Research, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
35
|
Kiyokawa Y, Li Y, Takeuchi Y. A dyad shows mutual changes during social buffering of conditioned fear responses in male rats. Behav Brain Res 2019; 366:45-55. [PMID: 30880219 DOI: 10.1016/j.bbr.2019.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/30/2022]
Abstract
The presence of an affiliative conspecific reduces stress responses to a wide variety of stimuli. This phenomenon is termed "social buffering". We previously found that the presence of another naïve rat (associate) reduced conditioned fear responses to an auditory conditioned stimulus in a conditioned subject rat. Although we subsequently conducted a series of studies to examine behavioral, physiological, and neural changes during social buffering in the conditioned subject, the changes in the associate remained unclear. Therefore, in the present study, we investigated the behavioral and neural changes in the associate. Fear-conditioned and non-conditioned rats were re-exposed to the conditioned stimulus with an associate placed in the same enclosure (Experiment 1) or separated by a wire-mesh partition (Experiment 2). In Experiment 1, the associate exhibited increased anogenital contact and allo-grooming, which were accompanied by increased c-Fos expression in the paraventricular nucleus of the hypothalamus and central amygdala. These results suggest that the subject and associate mutually affected each other during social buffering. In contrast, in Experiment 2, we found only a difference in the time course of investigation between associates tested with the conditioned and non-conditioned subjects. These results suggest that the associate was unable to acquire a sufficient amount of signal from the conditioned subject behind the wire-mesh partition necessary to show clear changes in behavior and c-Fos expression. Taken together, the current findings suggest that a dyad shows mutual changes during social buffering of conditioned fear responses in male rats.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yasong Li
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
36
|
Lee H, Jung T, Kim W, Noh J. The link between social context-dependent anxious behavior and habenular mast cells in fear-conditioned rats. Behav Brain Res 2019; 359:239-246. [PMID: 30423389 DOI: 10.1016/j.bbr.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 11/15/2022]
Abstract
Affiliative social behavior relieves the physiological reactivity to stressors, while social inequity, represented by unfairness in the social environment, causes emotional distress in animals. Mast cells are immune cells found in the brain that affect both the nervous system and emotional behavior. To determine the role of neuro-immunity in the programming of emotional behaviors, we observed brain mast cells and anxiety-like behaviors in female rats exposed to electrical foot shocks in different social environments. The following groups of rats were used in this study: control (unshocked) rats, solitarily shock-exposed rats, and shock-exposed rats in the presence of unshocked (unequal) or shocked (equal) conspecifics. An absence of significant difference in body weight or sucrose preference was seen among the different groups. Additionally, fear memory was augmented in rats shocked in the presence of either unshocked or shocked conspecifics than rats in the solitarily shocked group. Furthermore, rats shocked in the presence of unshocked conspecifics showed intensified anxiety-like behaviors after fear conditioning. Finally, we found an increase in the number of habenular mast cells in the intensified anxiogenic group, which had a significant correlation with the decreasing rate of anxiety-like behaviors. This provides evidence that habenular mast cells might be of importance in relieving the amplified biopsychological responses caused by social stress.
Collapse
Affiliation(s)
- Hyunchan Lee
- Department of Science Education, College of Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea
| | - Taesub Jung
- Department of Science Education, College of Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea
| | - Woonhee Kim
- Department of Science Education, College of Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea
| | - Jihyun Noh
- Department of Science Education, College of Education, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea.
| |
Collapse
|
37
|
Shumake J, Jones C, Auchter A, Monfils MH. Data-driven criteria to assess fear remission and phenotypic variability of extinction in rats. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0035. [PMID: 29352033 DOI: 10.1098/rstb.2017.0035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2017] [Indexed: 12/30/2022] Open
Abstract
Fear conditioning is widely employed to examine the mechanisms that underlie dysregulations of the fear system. Various manipulations are often used following fear acquisition to attenuate fear memories. In rodent studies, freezing is often the main output measure to quantify 'fear'. Here, we developed data-driven criteria for defining a standard benchmark that indicates remission from conditioned fear and for identifying subgroups with differential treatment responses. These analyses will enable a better understanding of individual differences in treatment responding.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Jason Shumake
- Institute for Mental Health Research, The University of Texas at Austin, Austin, TX, USA.,Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Carolyn Jones
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Allison Auchter
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Marie-Hélène Monfils
- Institute for Mental Health Research, The University of Texas at Austin, Austin, TX, USA .,Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
38
|
Monfils MH, Agee LA. Insights from social transmission of information in rodents. GENES BRAIN AND BEHAVIOR 2018; 18:e12534. [DOI: 10.1111/gbb.12534] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/25/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Marie H. Monfils
- Department of Psychology University of Texas at Austin Austin Texas
| | - Laura A. Agee
- Department of Psychology University of Texas at Austin Austin Texas
| |
Collapse
|
39
|
Rørvang MV, Christensen JW. Attenuation of fear through social transmission in groups of same and differently aged horses. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Lichtenberg NT, Lee B, Kashtelyan V, Chappa BS, Girma HT, Green EA, Kantor S, Lagowala DA, Myers MA, Potemri D, Pecukonis MG, Tesfay RT, Walters MS, Zhao AC, Blair RJR, Cheer JF, Roesch MR. Rat behavior and dopamine release are modulated by conspecific distress. eLife 2018; 7:e38090. [PMID: 30484770 PMCID: PMC6261252 DOI: 10.7554/elife.38090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/12/2018] [Indexed: 11/13/2022] Open
Abstract
Rats exhibit 'empathy' making them a model to understand the neural underpinnings of such behavior. We show data consistent with these findings, but also that behavior and dopamine (DA) release reflects subjective rather than objective evaluation of appetitive and aversive events that occur to another. We recorded DA release in two paradigms: one that involved cues predictive of unavoidable shock to the conspecific and another that allowed the rat to refrain from reward when there were harmful consequences to the conspecific. Behavior and DA reflected pro-social interactions in that DA suppression was reduced during cues that predicted shock in the presence of the conspecific and that DA release observed on self-avoidance trials was present when the conspecific was spared. However, DA also increased when the conspecific was shocked instead of the recording rat and DA release during conspecific avoidance trials was lower than when the rat avoided shock for itself.
Collapse
Affiliation(s)
| | - Brian Lee
- Department of PsychologyUniversity of MarylandCollege ParkUnited States
| | - Vadim Kashtelyan
- Department of PsychologyUniversity of MarylandCollege ParkUnited States
| | | | - Henok T Girma
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | - Elizabeth A Green
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | - Shir Kantor
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | - Dave A Lagowala
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | - Matthew A Myers
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | - Danielle Potemri
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | | | - Robel T Tesfay
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | - Michael S Walters
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
| | - Adam C Zhao
- Department of PsychologyUniversity of MarylandCollege ParkUnited States
| | - R James R Blair
- Center for Neurobehavioral ResearchBoys Town National Research HospitalBoys TownUnited States
| | - Joseph F Cheer
- Department of Anatomy and NeurobiologyUniversity of Maryland School of MedicineBaltimoreUnited States
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreUnited States
- Program in NeuroscienceUniversity of Maryland School of MedicineBaltimoreUnited States
| | - Matthew R Roesch
- Department of PsychologyUniversity of MarylandCollege ParkUnited States
- Gemstone Honors ProgramUniversity of MarylandCollege ParkUnited States
- Program in Neuroscience and Cognitive ScienceUniversity of MarylandCollege ParkUnited States
| |
Collapse
|
41
|
Kim A, Keum S, Shin HS. Observational fear behavior in rodents as a model for empathy. GENES BRAIN AND BEHAVIOR 2018; 18:e12521. [DOI: 10.1111/gbb.12521] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/06/2018] [Accepted: 09/22/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Arie Kim
- Center for Cognition and Sociality; Institute for Basic Science (IBS); Daejeon Republic of Korea
| | - Sehoon Keum
- Center for Cognition and Sociality; Institute for Basic Science (IBS); Daejeon Republic of Korea
| | - Hee-Sup Shin
- Center for Cognition and Sociality; Institute for Basic Science (IBS); Daejeon Republic of Korea
| |
Collapse
|
42
|
Kiyokawa Y, Kawai K, Takeuchi Y. The benefits of social buffering are maintained regardless of the stress level of the subject rat and enhanced by more conspecifics. Physiol Behav 2018; 194:177-183. [DOI: 10.1016/j.physbeh.2018.05.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/30/2022]
|
43
|
Lee YA, Goto Y. The Roles of Serotonin in Decision-making under Social Group Conditions. Sci Rep 2018; 8:10704. [PMID: 30013093 PMCID: PMC6048118 DOI: 10.1038/s41598-018-29055-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
People in a social group often have to make decisions under conflict, for instance, to conform to the group or obey authority (subjects at higher social rank in the group). The neural mechanisms underlying how social group setting affects decision-making have largely remained unclear. In this study, we designed novel behavioral tests using food access priority and fear conditioning paradigms that captured decision-making under conflict associated with social group environments in mice and examined the roles of serotonin (5-HT) on these processes. Using these behavioral tests, administration of the selective 5-HT reuptake inhibitor, which increased 5-HT transmission, was found to attenuate conflicts in decision-making that may be associated with human cases of social obedience and conformity in mice under group housing. The results suggest that 5-HT plays important roles in the regulation of individual behaviors that organize social group dynamics.
Collapse
Affiliation(s)
- Young-A Lee
- Department of Food Science and Nutrition, Daegu Catholic University, Gyeongsan, Gyeong-buk, 38430, South Korea
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, Inuyama, Aichi, 484-8506, Japan.
| |
Collapse
|
44
|
Morozov A, Ito W. Social modulation of fear: Facilitation vs buffering. GENES BRAIN AND BEHAVIOR 2018; 18:e12491. [PMID: 29896766 DOI: 10.1111/gbb.12491] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 12/23/2022]
Abstract
Social behaviors largely constitute mutual exchanges of social cues and the responses to them. The adaptive response also requires proper interpretation of the current context. In fear behaviors, social signals have bidirectional effects-some cues elicit or enhance fear whereas other suppress or buffer it. Studies on the social facilitation and social buffering of fear provide evidence of competition between social cues of opposing meanings. Co-expression of opposing cues by the same animal may explain the contradicting outcomes from the interaction between naive and frightened conspecifics, which reflect the fine balance between fear facilitation and buffering. The neuronal mechanisms that determine that balance provide an exciting target for future studies to probe the brain circuits underlying social modulation of emotional behaviors.
Collapse
Affiliation(s)
- Alexei Morozov
- Virginia Tech Carilion Research Institute, Roanoke, Virginia.,School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia.,Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Wataru Ito
- Virginia Tech Carilion Research Institute, Roanoke, Virginia
| |
Collapse
|
45
|
Agee LA, Monfils MH. Effect of demonstrator reliability and recency of last demonstration on acquisition of a socially transmitted food preference. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172391. [PMID: 30110433 PMCID: PMC6030298 DOI: 10.1098/rsos.172391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
In the social transmission of food preference paradigm, naive observer rats acquire safety information about novel food sources in the environment through social interaction with a demonstrator rat that has recently eaten said food. Research into the behavioural mechanisms governing this form of learning has found that observers show increased reliance on socially acquired information when the state of the environment makes personal examination of their surroundings risky. We aimed to (1) determine whether reliance on social information would decrease if previous reliance on social learning was unsuccessful, and (2) whether reliance on the specific demonstrator that had transmitted poor information would similarly decrease. By inducing illness in observers following consumption of a socially demonstrated food, we created an environmental situation in which reliance on socially acquired information was maladaptive. We found that under these conditions, observers showed no change in their reliance on a specific demonstrator or socially learned information in general. Our experiment also unexpectedly produced results showing that recent demonstrators were more influential in later transmissions than demonstrators that had been learned from less recently. Notably, this effect only emerged when the observer simultaneously interacted with both demonstrators, indicating that demonstrators must be in direct competition for this effect to manifest.
Collapse
|
46
|
Abstract
The lasting behavioral changes elicited by social signals provide important adaptations for survival of organisms that thrive as a group. Unlike the rapid innate responses to social cues, such adaptations have been understudied. Here, the rodent models of the lasting socially induced behavioral changes are presented as either modulations or reinforcements of the distinct forms of learning and memory or non-associative changes of affective state. The purpose of this categorization is to draw attention to the potential mechanistic links between the neuronal pathways that process social cues and the neuronal systems that mediate the well-studied forms of learning and memory. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Alexei Morozov
- Virginia Tech Carilion Research Institute, Roanoke, Virginia.,School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia.,Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
47
|
The interplay of social group biases in social threat learning. Sci Rep 2017; 7:7685. [PMID: 28794414 PMCID: PMC5550414 DOI: 10.1038/s41598-017-07522-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/29/2017] [Indexed: 12/01/2022] Open
Abstract
Learning from other individuals (e.g. social learning) is subjected to biases affecting whom to learn from. Consistent with research in animals, showing similarity-based learning biases and a general tendency to display pro-social responses to in-group individuals, we recently demonstrated that social learning of both fear and safety was enhanced when information was transmitted between same-race individuals. Here, we addressed how two different social group categories jointly affect the transmission of fears by investigating the interplay between racial and supporter group membership. We demonstrate that supporter group membership differentially influenced learning from a racial in-group vs. racial out-group individual. Thus, conditioned skin conductance responses in the same-race condition were significantly higher when fear was transmitted by an in-group (same team) vs. an out-group (rival team) individual, and were related to supporter team identification. However, supporter group membership did not influence learning from a racial out-group demonstrator, suggesting that the presence of an alternative alliance does not necessary reduce the influence of racial biases on social fear learning.
Collapse
|
48
|
Haaker J, Golkar A, Selbing I, Olsson A. Assessment of social transmission of threats in humans using observational fear conditioning. Nat Protoc 2017; 12:1378-1386. [PMID: 28617449 DOI: 10.1038/nprot.2017.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Across the human life span, fear is often acquired indirectly by observation of the emotional expressions of others. The observational fear conditioning protocol was previously developed as a laboratory model for investigating socially acquired threat responses. This protocol serves as a suitable alternative to the widely used Pavlovian fear conditioning, in which threat responses are acquired through direct experiences. In the observational fear conditioning protocol, the participant (observer) watches a demonstrator being presented with a conditioned stimulus (CS) paired with an aversive unconditioned stimulus (US). The expression of threat learning is measured as the conditioned response (CR) expressed by the observer in the absence of the demonstrator. CRs are commonly measured as skin conductance responses, but behavioral and neural measures have also been implemented. The experimental procedure is suitable for divergent populations, can be administered by a graduate student and takes ∼40 min. Similar protocols are used in animals, emphasizing its value as a translational tool for studying socioemotional learning.
Collapse
Affiliation(s)
- Jan Haaker
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Armita Golkar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ida Selbing
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
49
|
Haaker J, Yi J, Petrovic P, Olsson A. Endogenous opioids regulate social threat learning in humans. Nat Commun 2017; 8:15495. [PMID: 28541285 PMCID: PMC5458514 DOI: 10.1038/ncomms15495] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/30/2017] [Indexed: 01/09/2023] Open
Abstract
Many fearful expectations are shaped by observation of aversive outcomes to others. Yet, the neurochemistry regulating social learning is unknown. Previous research has shown that during direct (Pavlovian) threat learning, information about personally experienced outcomes is regulated by the release of endogenous opioids, and activity within the amygdala and periaqueductal gray (PAG). Here we report that blockade of this opioidergic circuit enhances social threat learning through observation in humans involving activity within the amygdala, midline thalamus and the PAG. In particular, anticipatory responses to learned threat cues (CS) were associated with temporal dynamics in the PAG, coding the observed aversive outcomes to other (observational US). In addition, pharmacological challenge of the opioid receptor function is classified by distinct brain activity patterns during the expression of conditioned threats. Our results reveal an opioidergic circuit that codes the observed aversive outcomes to others into threat responses and long-term memory in the observer. Though humans often learn about negative outcomes from observing the response of others, the neurochemistry underlying this learning is unknown. Here, authors show that blocking opioid receptors enhances social threat learning and describe the brain regions underlying this effect.
Collapse
Affiliation(s)
- Jan Haaker
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm 171 76, Sweden.,Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistreet 52, 20246 Hamburg, Germany
| | - Jonathan Yi
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm 171 76, Sweden
| | - Predrag Petrovic
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm 171 76, Sweden
| | - Andreas Olsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm 171 76, Sweden
| |
Collapse
|
50
|
Debiec J, Olsson A. Social Fear Learning: from Animal Models to Human Function. Trends Cogn Sci 2017; 21:546-555. [PMID: 28545935 DOI: 10.1016/j.tics.2017.04.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023]
Abstract
Learning about potential threats is critical for survival. Learned fear responses are acquired either through direct experiences or indirectly through social transmission. Social fear learning (SFL), also known as vicarious fear learning, is a paradigm successfully used for studying the transmission of threat information between individuals. Animal and human studies have begun to elucidate the behavioral, neural and molecular mechanisms of SFL. Recent research suggests that social learning mechanisms underlie a wide range of adaptive and maladaptive phenomena, from supporting flexible avoidance in dynamic environments to intergenerational transmission of trauma and anxiety disorders. This review discusses recent advances in SFL studies and their implications for basic, social and clinical sciences.
Collapse
Affiliation(s)
- Jacek Debiec
- Molecular & Behavioral Neuroscience Institute and Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Andreas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|