1
|
Boueroy P, Brizuela J, Roodsant TJ, Wongsurawat T, Jenjaroenpun P, Chopjitt P, Hatrongjit R, Phetburom N, Chareonsudjai S, Boonmars T, Schultsz C, Kerdsin A. Genomic analysis and virulence of human Streptococcus suis serotype 14. Eur J Clin Microbiol Infect Dis 2025; 44:639-651. [PMID: 39731619 DOI: 10.1007/s10096-024-05029-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
PURPOSE Streptococcus suis serotype 14 is the second most prevalent serotype being highly prevalent in Southeast Asia. This study aimed to characterize genetic background, population structure, virulent genes, antimicrobial-resistant genes, and virulence of human S. suis serotype 14. METHODS Genomes of 11 S. suis serotype 14 were sequenced by short- and long-read sequencing platforms. The genomes were analyzed for genetic relationship, virulence-associated genes, and antimicrobial-resistant genes. Antimicrobial susceptibility was conducted and the virulence was tested based on cell assay. RESULTS All isolates belonged to clonal complex (CC) 1, with nine sequence type (ST) 105 isolates and each isolate of ST1 and ST237. They were susceptible to penicillin, whereas tetracycline and macrolide were resistance due to tetO and ermB. Genomic analysis revealed that the serotype 14-ST105 isolates were closely related to zoonotic serotype 14-ST105 isolates from Vietnam and the serotype 1-ST105 Thai strain. The serotype 14-ST1 isolate was closely related to pig-diseased serotype 1-ST1 isolates from UK and USA, whereas the serotype 14-ST237 isolate was related to serotype 1-ST237 strains recovered from healthy pig from Thailand. Of 150 virulence-associated genes, 13 were absent from the serotype 14 isolates, including atl1, atlAss, hhly3, nisK, nisR, pnuC, salK, salR, sp1, srtG, virB4, virD4, and zmp. The virulence of strain 32481, a representative S. suis serotype 14-ST105 isolate showed reduced adhesion and invasion of two epithelial cell lines (A549 and HeLa) when compared to the serotype 2-ST1 strain P1/7, whereas apoptosis was similar. CONCLUSION This study highlighted the pathogenic potential of virulent serotype 14-ST105 strains and the need for increased monitoring of S. suis serotypes other than for serotype 2.
Collapse
Affiliation(s)
- Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Jaime Brizuela
- Amsterdam UMC Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Thomas J Roodsant
- Amsterdam UMC Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Nattamol Phetburom
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Thidarut Boonmars
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Constance Schultsz
- Amsterdam UMC Location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand.
| |
Collapse
|
2
|
Kerdsin A, Hatrongjit R, Wongsurawat T, Jenjaroenpun P, Zheng H, Chopjitt P, Boueroy P, Fittipaldi N, Segura M, Gottschalk M. Comparative genome analysis of Streptococcus suis serotype 5 strains from humans and pigs revealed pathogenic potential of virulent, antimicrobial resistance, and genetic relationship. Microbes Infect 2025; 27:105273. [PMID: 38070594 DOI: 10.1016/j.micinf.2023.105273] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/28/2025]
Abstract
Streptococcus suis is a causative agent of swine and human infections. Genomic analysis indicated that eight S. suis serotype 5 strains recovered from human patients and pigs carried many virulence-associated genes and markers defining pathogenic pathotypes. The strains were sequence types diverse and clustered within either minimum core genome group 3 (MCG-3) or MCG-7-3. Almost all the serotype 5 strains were non-susceptible to penicillin, ceftriaxone, erythromycin, and levofloxacin. Resistance to tetracycline and clindamycin was observed in all strains. The antimicrobial resistance genes tet(O), tet(O/W/32/O), tet(W), tet(44), erm(B), ant(6)-Ia, lsaE, and lnuB were found in these strains. Moderate-to-large numbers of substitutions were observed in three penicillin-binding proteins (PBP)-PBP1A, PBP2B, and PBP2X-in the penicillin-non-susceptible serotype 5 isolates that were involved in β-lactam-non-susceptibility. Comparative genomics between the serotype 5 and 2 strains revealed that only 15 genes absent from the serotype 2 strains were shared by all the serotype 5 strains. However, some additional genes were present only in some of the serotype 5 strains. This study highlighted the pathogenic potential of virulent serotype 5 strains in humans and pigs and the need for increased monitoring of penicillin-non-susceptibility in S. suis serotypes other than for serotype 2.
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand.
| | - Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Han Zheng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| | - Nahuel Fittipaldi
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Quebec, Canada
| | - Mariela Segura
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Quebec, Canada
| | - Marcelo Gottschalk
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Quebec, Canada
| |
Collapse
|
3
|
Zhu J, Wang J, Kang W, Zhang X, Kerdsin A, Yao H, Zheng H, Wu Z. Streptococcus suis serotype 4: a population with the potential pathogenicity in humans and pigs. Emerg Microbes Infect 2024; 13:2352435. [PMID: 38703011 PMCID: PMC11097711 DOI: 10.1080/22221751.2024.2352435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Streptococcus suis is a major bacterial pathogen in pigs and an emerging zoonotic pathogen. Different S. suis serotypes exhibit diverse characteristics in population structure and pathogenicity. Surveillance data highlight the significance of S. suis serotype 4 (SS4) in swine streptococcusis, a pathotype causing human infections. However, except for a few epidemiologic studies, the information on SS4 remains limited. In this study, we investigated the population structure, pathogenicity, and antimicrobial characteristics of SS4 based on 126 isolates, including one from a patient with septicemia. We discovered significant diversities within this population, clustering into six minimum core genome (MCG) groups (1, 2, 3, 4, 7-2, and 7-3) and five lineages. Two main clonal complexes (CCs), CC17 and CC94, belong to MCG groups 1 and 3, respectively. Numerous important putative virulence-associated genes are present in these two MCG groups, and 35.00% (7/20) of pig isolates from CC17, CC94, and CC839 (also belonging to MCG group 3) were highly virulent (mortality rate ≥ 80%) in zebrafish and mice, similar to the human isolate ID36054. Cytotoxicity assays showed that the human and pig isolates of SS4 strains exhibit significant cytotoxicity to human cells. Antimicrobial susceptibility testing showed that 95.83% of strains isolated from our labs were classified as multidrug-resistant. Prophages were identified as the primary vehicle for antibiotic resistance genes. Our study demonstrates the public health threat posed by SS4, expanding the understanding of SS4 population structure and pathogenicity characteristics and providing valuable information for its surveillance and prevention.
Collapse
Affiliation(s)
- Jinlu Zhu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, People’s Republic of China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, People’s Republic of China
| | - Jianping Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Weiming Kang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xiyan Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, People’s Republic of China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, People’s Republic of China
| | - Han Zheng
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Zongfu Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, People’s Republic of China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, People’s Republic of China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, People’s Republic of China
- Guangdong Provincial Key Laboratory of Research on the Technology of Pig-breeding and Pig-disease Prevention, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Liu J, Zhang Z, Pu W, Pan X, Li P, Bai Q, Liang S, Li C, Yu Y, Yao H, Ma J. A multi-epitope subunit vaccine providing broad cross-protection against diverse serotypes of Streptococcus suis. NPJ Vaccines 2024; 9:216. [PMID: 39543108 PMCID: PMC11564553 DOI: 10.1038/s41541-024-01015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Streptococcus suis infection represents a major challenge in pig farming and public health due to its zoonotic potential and diverse serotypes, while existing vaccines lack effective cross-protection. This study employed reverse vaccinology and immunoinformatics to identify 8 conserved proteins across 11 prevalent serotypes of S. suis. 16 candidate epitopes were selected to design three multi-epitope antigens against S. suis (designated as MEASs), which fused with a dendritic cell-targeting peptide to improve antigen presentation in host. Purified MEASs displayed favorable cross-reactogenicity against 29 serotype-specific antiserums. Robust humoral and cellular immune responses can be induced by MEAS 1 and MEAS 3 in a mouse model, which provided substantial protection against virulent strains from two different serotypes. In particular, their immune serums exhibited positive opsonization effects within bloodstream and macrophage phagocytosis. Taken together, we identified two promising MEASs with excellent cross-protection, offering potential in preventing S. suis infections in a mouse model.
Collapse
Affiliation(s)
- Jianan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Zhen Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Wanxia Pu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Xinming Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Pei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Song Liang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Caiying Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Yong Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China.
- WOAH Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
5
|
Jiang S, Tan X, Shu F, Xu M, Cai J, Zhang H. Cochlear implantation for rare Streptococcus suis meningitis with hearing loss. Eur Arch Otorhinolaryngol 2024; 281:5145-5151. [PMID: 38758241 DOI: 10.1007/s00405-024-08730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES This study aimed to explore the diagnostic sensitivity of 3D heavily weighted T2-weighted MRI (T2MRI) and high-resolution computed tomography (HRCT) in patients with cochlear fibrosis associated with Streptococcus suis (S. suis) meningitis and the practicality of Cochlear implantation (CI) treatments. METHODS Between January 2020 and December 2022, we enrolled four patients with rare cochlear S. suis meningitis with associated hearing loss despite aggressive or non-aggressive follow-up antibiotic treatment. Clinical imaging data, surgical performances and post-surgical-electrode impedance were evaluated. RESULTS Combined with HRCT and T2MRI, the cochlea had varying degrees of fibrosis and ossification in different cases. However, the electrodes were successfully and wholly inserted after intraoperative removal of the ossified and fibrotic foci. Post-surgical electrode impedance values of MP1 + 2 mode were normal in all 4 cases at initial activation. CONCLUSION In patients with S. suis meningitis and associated cochlear fibrosis, T2MRI examination of the inner ear was more sensitive than HRCT. This research highlights the feasibility of CI treatment in S. suis meningitis patients with severe cochlear fibrosis.
Collapse
Affiliation(s)
- Shanshan Jiang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Middle Road, Guangzhou, 510282, China
- Ear Institude of Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xinyuan Tan
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Middle Road, Guangzhou, 510282, China
- Ear Institude of Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Fan Shu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Middle Road, Guangzhou, 510282, China
- Ear Institude of Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Muqing Xu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Middle Road, Guangzhou, 510282, China
- Ear Institude of Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jieqing Cai
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Middle Road, Guangzhou, 510282, China
- Ear Institude of Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue Middle Road, Guangzhou, 510282, China.
- Ear Institude of Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
6
|
Li S, Chen T, Gao K, Yang YB, Qi B, Wang C, An T, Cai X, Wang S. Streptococcus suis Induces Macrophage M1 Polarization and Pyroptosis. Microorganisms 2024; 12:1879. [PMID: 39338553 PMCID: PMC11433784 DOI: 10.3390/microorganisms12091879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Streptococcus suis is an important bacterial pathogen that affects the global pig industry. The immunosuppressive nature of S. suis infection is recognized, and our previous research has confirmed thymus atrophy with a large number of necrotic cells. In this current work, we aimed to uncover the role of pyroptosis in cellular necrosis in thymic cells of S. suis-infected mice. Confocal microscopy revealed that S. suis activated the M1 phenotype and primed pyroptosis in the macrophages of atrophied thymus. Live cell imaging further confirmed that S. suis could induce porcine alveolar macrophage (PAM) pyroptosis in vitro, displaying cell swelling and forming large bubbles on the plasma membrane. Meanwhile, the levels of p-p38, p-extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) were increased, which indicated the mitogen-activated protein kinase (MAPK) and AKT pathways were also involved in the inflammation of S. suis-infected PAMs. Furthermore, RT-PCR revealed significant mRNA expression of pro-inflammatory mediators, including interleukin (IL)-1β, IL-6, IL-18, tumor necrosis factor (TNF)-α and chemokine CXCL8. The data indicated that the inflammation induced by S. suis was in parallel with pro-inflammatory activities of M1 macrophages, pyroptosis and MAPK and AKT pathways. Pyroptosis contributes to necrotic cells and thymocyte reduction in the atrophied thymus of mice.
Collapse
Affiliation(s)
- Siqi Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Tianfeng Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Kexin Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Yong-Bo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
| | - Baojie Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Research Center for Veterinary Biopharmaceutical Technology, Harbin 150069, China
| | - Shujie Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China (T.A.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| |
Collapse
|
7
|
Hatrongjit R, Fittipaldi N, Gottschalk M, Kerdsin A. Genomic epidemiology in Streptococcus suis: Moving beyond traditional typing techniques. Heliyon 2024; 10:e27818. [PMID: 38509941 PMCID: PMC10951601 DOI: 10.1016/j.heliyon.2024.e27818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/12/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Streptococcus suis is a bacterial gram-positive pathogen that causes invasive infections in swine and is also a zoonotic disease agent. Traditional molecular typing techniques such as ribotyping, multilocus sequence typing, pulse-field gel electrophoresis, or randomly amplified polymorphic DNA have been used to investigate S. suis population structure, evolution, and genetic relationships and support epidemiological and virulence investigations. However, these traditional typing techniques do not fully reveal the genetically heterogeneous nature of S. suis strains. The high-resolution provided by whole-genome sequencing (WGS), which is now more affordable and more commonly available in research and clinical settings, has unlocked the exploration of S. suis genetics at full resolution, permitting the determination of population structure, genetic diversity, identification of virulent clades, genetic markers, and other bacterial features of interest. This approach will likely become the new gold standard for S. suis strain typing as WGS instruments become more widely available and traditional typing techniques are gradually replaced.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Nahuel Fittipaldi
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Marcelo Gottschalk
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| |
Collapse
|
8
|
Dong CL, Wu T, Dong Y, Qu QW, Chen XY, Li YH. Exogenous methionine contributes to reversing the resistance of Streptococcus suis to macrolides. Microbiol Spectr 2024; 12:e0280323. [PMID: 38230928 PMCID: PMC10923279 DOI: 10.1128/spectrum.02803-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Streptococcus suis (S. suis) has been increasingly recognized as a porcine zoonotic pathogen that threatens the health of both pigs and humans. Multidrug-resistant Streptococcus suis is becoming increasingly prevalent, and novel strategies to treat bacterial infections caused by these organisms are desperately needed. In the present study, an untargeted metabolomics analysis showed that the significant decrease in methionine content and the methionine biosynthetic pathway were significantly affected by the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis in drug-resistant S. suis. The addition of L-methionine restored the bactericidal activity of macrolides, doxycycline, and ciprofloxacin on S. suis in vivo and in vitro. Further studies showed that the exogenous addition of methionine affects methionine metabolism by reducing S-adenosylmethionine synthetase activity and the contents of S-adenosylmethionine, S-adenosyl homocysteine, and S-ribose homocysteine. Methionine can decrease the total methylation level and methylesterase activity in multidrug resistant S. suis. The drug transport proteins and efflux pump genes were significantly downregulated in S. suis by exogenous L-methionine. Moreover, the exogenous addition of methionine can reduce the survival of S. suis by affecting oxidative stress and metal starvation in bacteria. Thus, L-methionine may influence the development of resistance in S. suis through methyl metabolism and metal starvation. This study provides a new perspective on the mitigation of drug resistance in S. suis.IMPORTANCEBacterial antibiotic resistance has become a severe threat to human and animal health. Increasing the efficacy of existing antibiotics is a promising strategy against antibiotic resistance. Here, we report that L-methionine enhances the efficacy of macrolides, doxycycline, and ciprofloxacin antibiotics in killing Streptococcus suis, including multidrug-resistant pathogens. We investigated the mechanism of action of exogenous methionine supplementation in restoring macrolides in Streptococcus suis and the role of the methionine cycle pathway on methylation levels, efflux pump genes, oxidative stress, and metal starvation in Streptococcus suis. It provides a theoretical basis for the rational use of macrolides in clinical practice and also identifies a possible target for restoring drug resistance in Streptococcus suis.
Collapse
Affiliation(s)
- Chun-Liu Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Tong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yue Dong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qian-Wei Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xue-Ying Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| | - Yan-Hua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Hatrongjit R, Boueroy P, Jenjaroenpun P, Wongsurawat T, Meekhanon N, Chopjitt P, Zheng H, Fittipaldi N, Chareonsudjai S, Segura M, Gottschalk M, Kerdsin A. Genomic characterization and virulence of Streptococcus suis serotype 4 clonal complex 94 recovered from human and swine samples. PLoS One 2023; 18:e0288840. [PMID: 37498866 PMCID: PMC10374156 DOI: 10.1371/journal.pone.0288840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans and pigs. Herein, we performed genomic analysis of seven S. suis serotype 4 strains belonging to clonal complex (CC) 94 that were recovered from a human patient or from diseased and clinically healthy pigs. Genomic exploration and comparisons, as well as in vitro cytotoxicity tests, indicated that S. suis CC94 serotype 4 strains are potentially virulent. Genomic analysis revealed that all seven strains clustered within minimum core genome group 3 (MCG-3) and had a high number of virulence-associated genes similar to those of virulent serotype 2 strains. Cytotoxicity assays showed that both the human lung adenocarcinoma cell line and HeLa cells rapidly lost viability following incubation for 4 h with the strains at a concentration of 106 bacterial cells. The human serotype 4 strain (ID36054) decreased cell viability profoundly and similarly to the control serotype 2 strain P1/7. In addition, strain ST1689 (ID34572), isolated from a clinically healthy pig, presented similar behaviour in an adenocarcinoma cell line and HeLa cells. The antimicrobial resistance genes tet(O) and ermB that confer resistance to tetracyclines, macrolides, and lincosamides were commonly found in the strains. However, aminoglycoside and streptothricin resistance genes were found only in certain strains in this study. Our results indicate that S. suis CC94 serotype 4 strains are potentially pathogenic and virulent and should be monitored.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Faculty of Science and Engineering, Department of General Sciences, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Piroon Jenjaroenpun
- Faculty of Medicine Siriraj Hospital, Department of Research and Development, Division of Bioinformatics and Data Management for Research, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Faculty of Medicine Siriraj Hospital, Department of Research and Development, Division of Bioinformatics and Data Management for Research, Mahidol University, Bangkok, Thailand
| | - Nattakan Meekhanon
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Han Zheng
- National Institute for Communicable Disease Control and Prevention, State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Changping, Beijing, China
| | - Nahuel Fittipaldi
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP), University of Montreal, Quebec, Canada
| | - Sorujsiri Chareonsudjai
- Faculty of Medicine, Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand
- Research and Diagnostic Center for Emerging infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Mariela Segura
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP), University of Montreal, Quebec, Canada
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, Research Group on Infectious Diseases in Production Animals (GREMIP), University of Montreal, Quebec, Canada
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| |
Collapse
|
10
|
Kerdsin A, Bamphensin N, Sittichottumrong K, Ungcharoen R, Boueroy P, Chopjitt P, Hatrongjit R, Gottschalk M, Sunthamala N. Evaluation of pathotype marker genes in Streptococcus suis isolated from human and clinically healthy swine in Thailand. BMC Microbiol 2023; 23:133. [PMID: 37193946 DOI: 10.1186/s12866-023-02888-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Streptococcus suis is a zoonotic pathogen that causes substantial economic losses in the pig industry and contributes to human infections worldwide, especially in Southeast Asia. Recently, a multiplex polymerase chain reaction (PCR) process was developed to distinguish disease-associated and non-disease-associated pathotypes of S. suis European strains. Herein, we evaluated the ability of this multiplex PCR approach to distinguish pathotypes of S. suis in Thailand. RESULTS This study was conducted on 278 human S. suis isolates and 173 clinically healthy pig S. suis isolates. PCR identified 99.3% of disease-associated strains in the human isolates and 11.6% of non-disease-associated strains in the clinically healthy pig isolates. Of the clinically healthy pig S. suis isolates, 71.1% were classified as disease-associated. We also detected undetermined pathotype forms in humans (0.7%) and pigs (17.3%). The PCR assay classified the disease-associated isolates into four types. Statistical analysis revealed that human S. suis clonal complex (CC) 1 isolates were significantly associated with the disease-associated type I, whereas CC104 and CC25 were significantly associated with the disease-associated type IV. CONCLUSION Multiplex PCR cannot differentiate non-disease-associated from disease-associated isolates in Thai clinically healthy pig S. suis strains, although the method works well for human S. suis strains. This assay should be applied to pig S. suis strains with caution. It is highly important that multiplex PCR be validated using more diverse S. suis strains from different geographic areas and origins of isolation.
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Nichari Bamphensin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Kulsatri Sittichottumrong
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Ratchadaporn Ungcharoen
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon, Province Campus, Sakon Nakhon, 47000, Thailand
| | - Marcelo Gottschalk
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), The Swine and Poultry Infectious Diseases Research Centre (CRIPA), Faculty of Veterinary Medicine, University of Montreal, Québec, Canada
| | - Nuchsupha Sunthamala
- Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand.
| |
Collapse
|
11
|
Hatrongjit R, Fittipaldi N, Jenjaroenpun P, Wongsurawat T, Visetnan S, Zheng H, Gottschalk M, Kerdsin A. Genomic comparison of two Streptococcus suis serotype 1 strains recovered from porcine and human disease cases. Sci Rep 2023; 13:5380. [PMID: 37009816 PMCID: PMC10068604 DOI: 10.1038/s41598-023-32724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023] Open
Abstract
Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans and pigs. Although S. suis serotype 2 strains are most prevalent worldwide, other serotypes are also occasionally detected. Herein, we investigated the genomes of two S. suis serotype 1 strains belonging to the clonal complex 1, which were recovered from a human patient and an asymptomatic pig, respectively. The genomes differed in pathotype, virulence-associated gene (VAG) profile, minimum core genome (MCG) typing, and antimicrobial resistance gene content. The porcine serotype 1 strain was sequence type (ST) 237 and MCG1, whereas the human serotype 1 strain was ST105 and MCG ungroupable. Both strains were susceptible to several antibiotics consisting of β-lactams, fluoroquinolones, and chloramphenicol. Resistance to tetracycline, macrolides, and clindamycin was observed, which was attributed to the genes tet(O) and erm(B). Analysis of 99 VAG revealed Hhly3, NisK, NisR, salK/salR, srtG, virB4, and virD4 were absent in both serotype 1. However, the porcine strain lacked sadP (Streptococcal adhesin P), whereas the human strain harbored sadP1. Phylogenetic analysis revealed that human S. suis ST105 strains from Vietnam were genetically the closest to the human serotype 1 strain, whereas porcine S. suis ST11 strains from China and Thailand were genetically the closest to the porcine strain.
Collapse
Affiliation(s)
- Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand.
| | - Nahuel Fittipaldi
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suwattana Visetnan
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Marcelo Gottschalk
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, 47000, Thailand.
| |
Collapse
|
12
|
Ji L, Chen Z, Li F, Hu Q, Xu L, Duan X, Wu H, Xu S, Chen Q, Wu S, Qiu S, Lu H, Jiang M, Cai R, Qiu Y, Li Y, Shi X. Epidemiological and genomic analyses of human isolates of Streptococcus suis between 2005 and 2021 in Shenzhen, China. Front Microbiol 2023; 14:1118056. [PMID: 37113229 PMCID: PMC10126776 DOI: 10.3389/fmicb.2023.1118056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Streptococcus suis (S. suis) is an important food-borne zoonotic pathogen that causes swine streptococcosis, which threatens human health and brings economic loss to the swine industry. Three-quarters of human S. suis infections are caused by serotype 2. A retrospective analysis of human S. suis cases in Shenzhen, a megacity in China, with high pork consumption, between 2005 and 2021 was conducted to understand its genomic epidemiology, pathogen virulence, and drug resistance characteristics. The epidemiological investigation showed that human cases of S. suis in Shenzhen were mainly associated with people who had been in close contact with raw pork or other swine products. Whole-genome sequence analysis showed that 33 human isolates in Shenzhen were dominated by serotype 2 (75.76%), followed by serotype 14 (24.24%), and the most prevalent sequence types (STs) were ST7 (48.48%) and ST1 (39.40%). ST242 (9.09%) and ST25 (3.03%), which were rarely reported, were also found. Phylogenetic analysis showed that the Shenzhen human isolates had close genetic relatedness to isolates from Guangxi (China), Sichuan (China), and Vietnam. We found a new 82 KB pathogenicity island (PAI) in the serotype 2 isolate that may play a role in sepsis. Similarly, a serotype 14 isolate, containing 78 KB PAI, was isolated from a patient presenting with streptococcal toxic shock syndrome (STSLS) who subsequently died. Multi-drug resistance (MDR) was high in human isolates of S. suis from Shenzhen. Most human isolates were resistant to tetracycline, streptomycin, erythromycin, and clindamycin, and 13 isolates had intermediate resistance to penicillin. In conclusion, swine importation from Guangxi, Sichuan, and Vietnam should be more closely monitored, and the use of antibiotics limited to reduce the potential for antimicrobial resistance (AMR).
Collapse
Affiliation(s)
- Liyin Ji
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Zhigao Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Fan Li
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Liangcai Xu
- Futian District Center for Disease Control and Prevention, Shenzhen, China
| | - Xiangke Duan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Hanguang Wu
- Shenzhen Institute of Quality and Safety Inspection and Research, Shenzhen, China
| | - Shiqin Xu
- School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Qiongcheng Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuang Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuxiang Qiu
- School of Public Health, University of South China, Hengyang, China
| | - Huiqun Lu
- School of Public Health, University of South China, Hengyang, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Rui Cai
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yaqun Qiu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinghui Li
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolu Shi
- School of Public Health, Shanxi Medical University, Taiyuan, China
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
- *Correspondence: Xiaolu Shi,
| |
Collapse
|
13
|
Brizuela J, Kajeekul R, Roodsant TJ, Riwload A, Boueroy P, Pattanapongpaibool A, Thaipadungpanit J, Jenjaroenpun P, Wongsurawat T, Batty EM, van der Putten BCL, Schultsz C, Kerdsin A. Streptococcus suis outbreak caused by an emerging zoonotic strain with acquired multi-drug resistance in Thailand. Microb Genom 2023; 9:mgen000952. [PMID: 36790403 PMCID: PMC9997742 DOI: 10.1099/mgen.0.000952] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Streptococcus suis is an emerging zoonotic swine pathogen which can cause severe infections in humans. In March 2021, an outbreak of S. suis infections with 19 confirmed cases of septicemia and meningitis leading to two deaths, occurred in Nakhon Ratchasima province, Thailand. We characterized the outbreak through an epidemiological investigation combined with Illumina and Nanopore whole genome sequencing (WGS). The source of the outbreak was traced back to a raw pork dish prepared from a single pig during a Buddhist ceremony attended by 241 people. WGS analysis revealed that a single S. suis serotype 2 strain belonging to a novel sequence type (ST) of the emergent Thai zoonotic clade CC233/379, was responsible for the infections. The outbreak clone grouped together with other Thai zoonotic strains from CC233/379 and CC104 in a global S. suis phylogeny and capsule switching events between serotype 2 zoonotic strains and serotype 7 porcine strains were identified. The outbreak strain showed reduced susceptibility to penicillin corresponding with mutations in key residues in the penicillin binding proteins (PBPs). Furthermore, the outbreak strain was resistant to tetracycline, erythromycin, clindamycin, linezolid and chloramphenicol, having acquired an integrative and conjugative element (ICE) carrying resistance genes tetO and ermB, as well as a transposon from the IS1216 family carrying optrA and ermA. This investigation demonstrates that multi-drug resistant zoonotic lineages of S. suis which pose a threat to human health continue to emerge.
Collapse
Affiliation(s)
- Jaime Brizuela
- Amsterdam UMC location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands.,Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Rattagan Kajeekul
- Department of Medicine, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima, Thailand
| | - Thomas J Roodsant
- Amsterdam UMC location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands.,Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Athita Riwload
- Clinical Microbiology Laboratory, Department of Medical Technology, Maharat Nakhon Ratchasima Hospital, Nakhon Ratchasima, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | | | - Janjira Thaipadungpanit
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Elizabeth M Batty
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Boas C L van der Putten
- Amsterdam UMC location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands.,Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Constance Schultsz
- Amsterdam UMC location University of Amsterdam, Department of Global Health, Amsterdam Institute for Global Health and Development, Paasheuvelweg 25, Amsterdam, The Netherlands.,Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Meibergdreef 9, Amsterdam, The Netherlands
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| |
Collapse
|
14
|
Chen S, Li R, Wang X, Liu Y, Kou Z, Wang Q. Case report: One human Streptococcus suis occurred in Shandong Province, China. Medicine (Baltimore) 2022; 101:e32414. [PMID: 36595836 PMCID: PMC9794236 DOI: 10.1097/md.0000000000032414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Streptococcus suis (S suis) is a major pathogen of bacterial infectious diseases, which can be transmitted to human beings through close contact with sick pigs or carriers, and can cause toxic shock, meningitis, septicemia, pneumonia, and other complications, with an extremely high mortality and disability rate. S suis is also an emerging zoonotic agent, mainly occurring in China, Thailand, and the Netherlands. This seriously threatens the health and family economy of patients. CASE PRESENTATION A 75-year-old man presented with a 1-day history of fever, vomiting, coughing, chills, and unconsciousness. He was admitted with the diagnosis sepsis and intracranial infection. At admission, hematologic studies showed a leukocyte count of 23.45 × 109/L with 91% neutrophils. Chest computed tomography revealed double pneumonia. Blood cultures grew small colonies, which were identified as S suis. Antibiotic susceptibility testing revealed that the pathogen was susceptible to levofloxacin. And then, treatment with levofloxacin was implemented. Epidemiological investigations showed that the patient had eaten pork from a sick pig. When a patient with bacterial infection has a history of eating pork from sick pigs, human S suis infection should be taken seriously. CONCLUSION Although human S suis infection generally presents as a sporadic disease, its high burden highlights the importance of epidemiological surveillance and health education regarding human S suis infection.
Collapse
Affiliation(s)
- Shuyu Chen
- College of Public Health, Weifang Medical University, Shandong, China
| | - Renpeng Li
- Shandong Center for Disease Control and Prevention, China
| | - Xin Wang
- College of Public Health, Weifang Medical University, Shandong, China
| | - Yuwei Liu
- College of Public Health, Weifang Medical University, Shandong, China
| | - Zengqiang Kou
- Shandong Center for Disease Control and Prevention, China
| | - Qiang Wang
- Department of Epidemiology, Weifang Medical University, Shandong, China
- *Correspondence: Qiang Wang, Department of Epidemiology, Weifang Medical University, No. 7166 Baotong West street, Weifang 261053, Shandong, China (e-mail: ) and Zengqiang Kou, Shandong Center for Disease Control and Prevention, China (e-mail: )
| |
Collapse
|
15
|
Kerdsin A. Human Streptococcus suis Infections in Thailand: Epidemiology, Clinical Features, Genotypes, and Susceptibility. Trop Med Infect Dis 2022; 7:359. [PMID: 36355901 PMCID: PMC9695567 DOI: 10.3390/tropicalmed7110359] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/29/2023] Open
Abstract
Streptococcus suis is a zoonotic pathogen causing substantial economic losses to the pig industry, as well as being a human health burden due to infections worldwide, especially in Southeast Asia. In Thailand, there was high cumulative incidence in humans during 1987-2021, mostly in males. At least five large outbreaks have been documented after the largest outbreak in China in 2005, which was related to the consumption of raw pork or dishes containing pig's blood. The major clinical features are sepsis or meningitis, with hearing loss a major complication of S. suis disease. Thai human S. suis isolates have shown diversity in serotypes and sequence types (STs), with serotype 2 and STs 1 and 104 being major genotypes. β-Lactam antibiotics can be used in empirical treatment for human S. suis infections; however, intermediate resistance to penicillin has been reported. Reducing S. suis incidence in Thailand requires a multidimensional approach, with combined efforts from the government and public health sectors through policy, regulations, education, and active surveillance.
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
| |
Collapse
|
16
|
Kerdsin A, Takeuchi D, Akeda Y, Nakamura S, Gottschalk M, Oishi K. Genomic differences between sequence types 1 and 104 of Streptococcus suis Serotype 2. PeerJ 2022; 10:e14144. [PMID: 36221266 PMCID: PMC9548313 DOI: 10.7717/peerj.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
Background Streptococcus suis is a zoonotic pathogen that can cause invasive infections in humans who are in close contact with infected pigs or contaminated pork-derived products. S. suis serotype 2 sequence type (ST) 1 strains are mostly associated with meningitis, whereas ST104 strains are mostly recovered from sepsis cases in humans. No data are available for comparison of the ST1 and ST104 strains at the genomic level, particularly concerning virulence-associated genes. Thus, genomic comparison of both STs was performed in this study. Methods An ST1 isolate (ID26154) from the cerebrospinal fluid of a patient with meningitis and an ST104 isolate (ID24525) from the blood of a patient with sepsis were subjected to shotgun pyrosequencing using the 454 GS Junior System. Genomic comparison was conducted between the ST1 isolate and the ST104 isolate using the Artemis Comparison Tool (ACT) to identify the region of differences (RDs) between ST1 and ST104. Results Fifty-eight RDs were unique to the ST104 genome and were mainly involved in metabolism and cell functional activities, cell wall anchored proteins, bacteriophages and mobile genetic elements, ABC-type transporters, two-component signal transductions, and lantibiotic proteins. Some virulence genes mostly found in ST1 strains were also present in the ST104 genome. Whole-genome comparison is a powerful tool for identifying genomic region differences between different STs of S. suis serotype 2, leading to the identification of the molecular basis of virulence involved in the pathogenesis of the infection.
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Dan Takeuchi
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yukihiro Akeda
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan,Division of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | |
Collapse
|
17
|
Kerdsin A, Segura M, Fittipaldi N, Gottschalk M. Sociocultural Factors Influencing Human Streptococcus suis Disease in Southeast Asia. Foods 2022; 11:foods11091190. [PMID: 35563913 PMCID: PMC9102869 DOI: 10.3390/foods11091190] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 12/29/2022] Open
Abstract
The public health systems of Southeast Asian countries are financially challenged by a comparatively higher incidence of human S. suis infections than other geographical areas. Efforts to improve practices in production settings, including improved meat inspection regulations, prevention of the slaughtering of non-healthy pigs, and enhanced hygiene practices at processing facilities, along with improvements in the pork supply chain, all appear promising for reducing food cross-contamination with S. suis. However, opportunities for intervention at the societal level are also needed to effect changes, as population behaviors such as the consumption of raw pork, blood, and offal products are important contributors to the increased incidence of human S. suis disease in Southeast Asia. A plethora of factors are associated with the consumption of these high-risk dishes, including traditional culture and knowledge, shared beliefs, socio-economic level, and personal attitudes associated with gender and/or marital status. Education and intervention in behavioral attitudes that are sensible to cultural practices and traditions may provide additional means to reduce the burden of S. suis human disease in Southeast Asia.
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand
- Correspondence: ; Tel.: +66-42-725-023
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (N.F.); (M.G.)
| | - Nahuel Fittipaldi
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (N.F.); (M.G.)
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP) and Swine and Poultry Infectious Diseases Research Center (CRIPA), Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada; (M.S.); (N.F.); (M.G.)
| |
Collapse
|
18
|
Kerdsin A, Hatrongjit R, Wongsurawat T, Jenjaroenpun P, Chopjitt P, Boueroy P, Fittipaldi N, Zheng H, Gottschalk M. Genomic Characterization of Streptococcus suis Serotype 24 Clonal Complex 221/234 From Human Patients. Front Microbiol 2022; 12:812436. [PMID: 35003043 PMCID: PMC8733411 DOI: 10.3389/fmicb.2021.812436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 12/26/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen that causes invasive infections in humans and pigs. Although S. suis serotype 2 is prevalent among patient and swine infections, other serotypes are occasionally detected in humans. Of these, serotype 24 clonal complex (CC) 221/234 are recognized as emerging clones of human infection. Genomic exploration of three S. suis serotype 24 CC221/234 strains revealed antimicrobial resistance genes, pathotyping, virulence-associated gene (VAG) profiles, minimum core genome (MCG) typing, and comparison of the genomes. Based on these analyzes, all three serotype 24 strains were MCG7-3 and should be classified in the intermediate/weakly virulent (I/WV) group. All selected serotype 24 strains were susceptible to several antibiotics including β-lactam, fluoroquinolone, and chloramphenicol. Resistance to tetracycline, macrolide, and clindamycin was observed and attributed to the genes tet(O) and erm(B). Genomic comparison revealed the strains S12X, LSS66, LS0L, LS0E, 92–4,172, and IMT40201 that had phylogenetic affinity with serotype 24 CC221/234. Analysis of 80 virulence-associated genes (VAG) showed that all three serotype 24 strains lacked 24 genes consisting of adhesin P, epf, hyl, ihk, irr, mrp, nadR, neuB, NisK/R, ofs, permease (SSU0835), rgg, revS, salK/R, sao, sly, spyM3_0908, srtBCD, srtF, srtG, SSU05_0473, virA, virB4, and virD4. Eleven specific sequences were identified in the 3 serotype 24 genomes that differed from the genomes of the representative strains of epidemic (E; SC84), highly virulent (HV; P1/7), I/WV (89–1,591), and avirulent (T15 and 05HAS68).
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Thidathip Wongsurawat
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Nahuel Fittipaldi
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Quebec, QC, Canada
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals (GREMIP), Faculty of Veterinary Medicine, University of Montreal, Quebec, QC, Canada
| |
Collapse
|
19
|
Díez de Los Ríos J, Reynaga E, García-Gonzàlez M, Càmara J, Ardanuy C, Cuquet J, Quesada MD, Navarro M, Vilamala A, Párraga-Niño N, Quero S, Romero A, Benítez RM, Altimiras J, Pedro-Botet ML. Clinical and Epidemiological Characteristics of Streptococcus suis Infections in Catalonia, Spain. Front Med (Lausanne) 2021; 8:792233. [PMID: 34957160 PMCID: PMC8692758 DOI: 10.3389/fmed.2021.792233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/18/2021] [Indexed: 12/05/2022] Open
Abstract
Introduction:Streptococcus suis (S. suis) is a human zoonotic pathogen of occupational origin, with infection acquired through contact with live pigs or pig meat. Pig farming is one of Catalonia's biggest industries and as a result this region of Spain has one of the highest density pig populations per km2. The aim of our study was to describe the infections caused by S. suis occurring in that area over a 9-year period. Materials and Methods: A retrospective, multi-center study was carried out by searching records from 15 hospitals in Catalonia for the period between 2010 and 2019. Results: Over the study period altogether nine cases of S. suis infection were identified in five hospitals, with five of these cases occurring in the 2018–2019 period. The mean age of patients was 48 ± 8.9 years and all of them were males. Five patients (55.6%) worked in pig farms. The most frequent manifestation of infection was meningitis (5 cases; 55.6%) followed by septic arthritis (3 cases; 33.3%). None of the patients died at 30 days; nonetheless, 4 developed hearing loss as a long-term complication. Conclusion: The most commonly identified S. suis infection was meningitis. Over 50% of the episodes occurred in the last 2 years and have affected pig farm workers. Further surveillance is needed in order to know its prevalence.
Collapse
Affiliation(s)
| | - Esteban Reynaga
- Department of Infectious Diseases, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Jordi Càmara
- Department of Microbiology, Hospital Universitari Bellvitge-IDIBELL, Barcelona, Spain
| | - Carmen Ardanuy
- Department of Microbiology, Hospital Universitari Bellvitge-IDIBELL, Barcelona, Spain
| | - Jordi Cuquet
- Department of Internal Medicine, Hospital Universitari Granollers, Barcelona, Spain
| | - Maria D Quesada
- Department of Microbiology, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Marian Navarro
- Department of Microbiology, Hospital Universitari Vic, Barcelona, Spain
| | - Anna Vilamala
- Department of Microbiology, Hospital Universitari Vic, Barcelona, Spain
| | - Noemi Párraga-Niño
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
| | - Sara Quero
- Infectious Diseases Unit, Fundació Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain.,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain.,Institut d'Investigació i Innovació Parc Taulí, Sabadell, Spain
| | - Alba Romero
- Department of Infectious Diseases, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Rosa M Benítez
- Department of Infectious Diseases, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Jacint Altimiras
- Department of Epidemiology, Hospital Universitari Vic, Barcelona, Spain
| | - Maria Luisa Pedro-Botet
- Department of Infectious Diseases, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,CIBER de Enfermedades Respiratorias, CIBERES, Madrid, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Sulong P, Anudit N, Nuanualsuwan S, Mariela S, Khantasup K. Application of phage display technology for the production of antibodies against Streptococcus suis serotype 2. PLoS One 2021; 16:e0258931. [PMID: 34699547 PMCID: PMC8547629 DOI: 10.1371/journal.pone.0258931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis (S. suis) serotype 2 infection is a problem in the swine industry and responsible for most cases of human infection worldwide. Since current multiplex PCR cannot differentiate between serotypes 2 and 1/2, then serotype-specific antibodies (Abs) are required for serotype identification to confirm infection by serotype 2. This study aimed to generate Abs specific to S. suis serotype 2 by phage display from a human heavy chain variable domain (VH) antibody library. For biopanning, whole cells of S. suis serotype 2 were used as the target antigen. With increasing selection stringency, we could select the VH Abs that specifically bound to a S. suis serotype 2 surface antigen, which was identified as the capsular polysaccharide (CPS). From ELISA analysis, the specific phage clone 47B3 VH with the highest binding activity to S. suis serotype 2 was selected and shown to have no cross-reactivity with S. suis serotypes 1/2, 1, and 14 that shared a common epitope with serotype 2 and occasionally cause infections in human. Moreover, no cross-reactivity with other bacteria that can be found in septic blood specimens was also observed. Then, 47B3 VH was successfully expressed as soluble 47B3 VH in E. coli TG1. The soluble 47B3 VH crude extract was further tested for its binding ability in a dose-dependent ELISA assay. The results indicated that the activity of phage clone 47B3 was still retained even when the Ab occurred in the soluble form. A quellung reaction demonstrated that the soluble 47B3 VH Ab could show bioactivity by differentiation between S. suis serotypes 2 and 1/2. Thus, it will be beneficial to use this VH Ab in the diagnosis of disease or discrimination of S. suis serotypes Furthermore, the results described here could motivate the use of phage display VH platform to produce serotyping antibodies.
Collapse
Affiliation(s)
- Pattarawadee Sulong
- The Medical Microbiology Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Natsinee Anudit
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suphachai Nuanualsuwan
- Department of Veterinary Public Health, Faculty of Veterinary Sciences, Chulalongkorn University, Bangkok, Thailand
- Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok, Thailand
| | - Segura Mariela
- Laboratory of Immunology, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Kannika Khantasup
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Food Risk Hub, Research Unit of Chulalongkorn University, Bangkok, Thailand
- Vaccines and Therapeutic Proteins Research Group, the Special Task Force for Activating Research (STAR), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
21
|
Kerdsin A, Chopjitt P, Hatrongjit R, Boueroy P, Gottschalk M. Zoonotic infection and clonal dissemination of Streptococcus equi subspecies zooepidemicus sequence type 194 isolated from humans in Thailand. Transbound Emerg Dis 2021; 69:e554-e565. [PMID: 34558797 DOI: 10.1111/tbed.14331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/08/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022]
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) is a zoonotic pathogen associated with diseases in a wide range of animals as well as in humans. SEZ sequence type (ST) 194 strains have been associated with outbreaks in China, the USA, and Canada and have caused high mortality in pigs. Nevertheless, human infection by this ST has never been reported. This study conducted a retrospective analysis of 18 SEZ strains from human patients in Thailand during 2005-2020. The study revealed clonal dissemination of ST194 with the identical pulsotype in human patients throughout Thailand. Clinical manifestation was mainly septicemia (61.1%), while 72.2% had a history of eating raw pork products. There were six fatal cases (33.3%). Antimicrobial susceptibility testing revealed that all strains were susceptible to penicillin, ampicillin, cefotaxime, erythromycin, levofloxacin, clindamycin, chloramphenicol, tetracycline and vancomycin. Virulence-associated genes, including bifA, szM, szP, sdzD, spaZ, and fszF, were present in all tested strains. Some representative genes in four pathogenicity islands found in the swine outbreak SEZ-ATCC35246 (ST194) strain were detected in these SEZ strains. Whole-genome sequencing analysis of three representative SEZs in this study revealed no acquired antimicrobial-resistant genes and they contained the same virulence factors. The single-nucleotide polymorphism phylogenetic tree demonstrated that the current strains were clustered with swine ST194 strains. The results should be highlighted as a public health concern, especially to those who may directly or indirectly have contact with livestock or companion animals or have consumed raw meat products as risk factors for infections with SEZ.
Collapse
Affiliation(s)
- Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | | |
Collapse
|
22
|
Bamphensin N, Chopjitt P, Hatrongjit R, Boueroy P, Fittipaldi N, Gottschalk M, Kerdsin A. Non-Penicillin-Susceptible Streptococcus suis Isolated from Humans. Pathogens 2021; 10:pathogens10091178. [PMID: 34578210 PMCID: PMC8471365 DOI: 10.3390/pathogens10091178] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus suis is a pathogen that causes invasive infections in humans and pigs. In this study, 448 S. suis isolates recovered from human infections in Thailand were characterized with regard to their antimicrobial susceptibility and antimicrobial resistance genes, including, for non-penicillin-susceptible isolates, sequence analyses of five genes encoding penicillin-binding proteins (pbp1a, pbp1b, pbp2a, pbp2b, and pbp2x). All 448 isolates were susceptible to cefepime and ceftriaxone, whereas 99.6%, 91.7%, and 72.9% of the isolates were susceptible to levofloxacin, penicillin, and chloramphenicol, respectively. Almost all isolates were resistant to tetracycline (98.2%), clindamycin (94%), erythromycin (92.4%), and azithromycin (82.6%). Genes tet(O) and ermB were the predominant resistance genes detected among macrolide- and tetracycline-resistant isolates. A total of 37 out of 448 isolates (8.2%) showed intermediately resistance to penicillin. Most of these isolates (59.5%) belonged to serotype 2-ST233. Comparison of the predicted translated sequences of five PBP proteins of a penicillin-susceptible isolate (strain P1/7) to the respective PBP sequences of ten non-penicillin-susceptible isolates revealed multiple amino acid substitutions. Isolates of CC221/234 showed highly variable amino acid substitutions in all PBP proteins. An ST104 isolate had a higher number of amino acid substitutions in PBP2X. Isolates belonging to CC233/379 had numerous substitutions in PBP2B and PBP2X. ST25 isolates exhibited fewer amino acid substitutions than isolates of other STs in all five PBPs. The antimicrobial resistance of S. suis is increasing worldwide; therefore, restrictions on antimicrobial use, continuous control, and the surveillance of this bacterium throughout the pork supply chain are crucial for ensuring public health and must be a priority concern.
Collapse
Affiliation(s)
- Nichari Bamphensin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (N.B.); (P.C.); (P.B.)
| | - Peechanika Chopjitt
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (N.B.); (P.C.); (P.B.)
| | - Rujirat Hatrongjit
- Department of General Sciences, Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand;
| | - Parichart Boueroy
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (N.B.); (P.C.); (P.B.)
| | - Nahuel Fittipaldi
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (N.F.); (M.G.)
| | - Marcelo Gottschalk
- GREMIP, Faculty of Veterinary Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada; (N.F.); (M.G.)
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand; (N.B.); (P.C.); (P.B.)
- Correspondence: ; Tel.: +66-42-725-025
| |
Collapse
|
23
|
Direct Detection of Streptococcus suis from Cerebrospinal Fluid, Positive Hemoculture, and Simultaneous Differentiation of Serotypes 1, 1/2, 2, and 14 within Single Reaction. Pathogens 2021; 10:pathogens10080996. [PMID: 34451460 PMCID: PMC8401787 DOI: 10.3390/pathogens10080996] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/26/2022] Open
Abstract
Streptococcus suis is an emerging zoonotic bacterium causing septicemia and meningitis in humans. Due to rapid disease progression, high mortality rate, and many underdiagnosed cases by time-consuming routine identification methods, alternative diagnostic testing is essential. Among 29 broadly accepted S. suis serotypes, serotypes 2 and 14 are high prevalent; however, many PCR assays showed an inability to differentiate serotype 2 from 1/2, and 1 from 14. In this study, we developed and validated a new multiplex PCR assay that facilitates the identification of only the 29 true serotypes of S. suis and simultaneously differentiates serotypes 1, 1/2, 2, and 14 within a single reaction. Importantly, the multiplex PCR could detect S. suis directly from positive hemocultures and CSF. The results revealed high sensitivity, specificity, and 100% accuracy with almost perfect agreement (κ = 1.0) compared to culture and serotyping methods. Direct detection enables a decrease in overall diagnosis time, rapid and efficient treatment, reduced fatality rates, and proficient disease control. This multiplex PCR offers a rapid, easy, and cost-effective method that can be applied in a routine laboratory. Furthermore, it is promising for developing point-of-care testing (POCT) for S. suis detection in the future.
Collapse
|
24
|
Lu H, Li X, Wang G, Wang C, Feng J, Lu W, Wang X, Chen H, Liu M, Tan C. Baicalein Ameliorates Streptococcus suis-Induced Infection In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22115829. [PMID: 34072443 PMCID: PMC8199331 DOI: 10.3390/ijms22115829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
As an important zoonotic pathogen, Streptococcus suis (S. suis) infection has been reported to be a causative agent for variety of diseases in humans and animals, especially Streptococcal toxic shock-like syndrome (STSLS), which is commonly seen in cases of severe S. suis infection. STSLS is often accompanied by excessive production of inflammatory cytokines, which is the main cause of death. This calls for development of new strategies to avert the damage caused by STSLS. In this study, we found for the first time that Baicalein, combined with ampicillin, effectively improved severe S. suis infection. Further experiments demonstrated that baicalein significantly inhibited the hemolytic activity of SLY by directly binding to SLY and destroying its secondary structure. Cell-based assays revealed that Baicalein did not exert toxic effects and conferred protection in S. suis-infected cells. Interestingly, compared with ampicillin alone, Baicalein combined with ampicillin resulted in a higher survival rate in mice severely infected with S. suis. At the same time, we found that baicalein can be combined with meropenem against MRSA. In conclusion, these results indicate that baicalein has a good application prospect.
Collapse
Affiliation(s)
- Hao Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (H.L.); (X.L.); (G.W.); (C.W.); (J.F.); (W.L.); (X.W.); (H.C.)
| | - Xiaodan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (H.L.); (X.L.); (G.W.); (C.W.); (J.F.); (W.L.); (X.W.); (H.C.)
| | - Gaoyan Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (H.L.); (X.L.); (G.W.); (C.W.); (J.F.); (W.L.); (X.W.); (H.C.)
| | - Chenchen Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (H.L.); (X.L.); (G.W.); (C.W.); (J.F.); (W.L.); (X.W.); (H.C.)
| | - Jiajia Feng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (H.L.); (X.L.); (G.W.); (C.W.); (J.F.); (W.L.); (X.W.); (H.C.)
| | - Wenjia Lu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (H.L.); (X.L.); (G.W.); (C.W.); (J.F.); (W.L.); (X.W.); (H.C.)
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (H.L.); (X.L.); (G.W.); (C.W.); (J.F.); (W.L.); (X.W.); (H.C.)
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (H.L.); (X.L.); (G.W.); (C.W.); (J.F.); (W.L.); (X.W.); (H.C.)
| | - Manli Liu
- Hubei Biopesticide Engineering Research Centre, Wuhan 430000, China;
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430000, China; (H.L.); (X.L.); (G.W.); (C.W.); (J.F.); (W.L.); (X.W.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430000, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People’s Republic of China, Wuhan 430000, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People’s Republic of China, Wuhan 430000, China
- Correspondence: ; Tel.: +86-027-8728-7170
| |
Collapse
|
25
|
Apigenin and Ampicillin as Combined Strategy to Treat Severe Streptococcus suis Infection. Molecules 2021; 26:molecules26071980. [PMID: 33915741 PMCID: PMC8037323 DOI: 10.3390/molecules26071980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
As an important zoonotic pathogen, Streptococcus suis (S. suis) can cause a variety of diseases both in human and animals, especially Streptococcal toxic shock-like syndrome (STSLS), which commonly appears in severe S. suis infection. STSLS is often accompanied by excessive production of inflammatory cytokines, which is the main cause of host death. Therefore, it is urgent to find a new strategy to relieve the damage caused by STSLS. In this study, we found, for the first time, that apigenin, as a flavonoid compound, could combine with ampicillin to treat severe S. suis infection. Studies found that apigenin did not affect the growth of S. suis and the secretion of suilysin (SLY), but it could significantly inhibit the hemolytic activity of SLY by directly binding to SLY and destroying its secondary structure. In cell assays, apigenin was found to have no significant toxic effects on effective concentrations, and have a good protective effect on S. suis-infected cells. More importantly, compared with the survival rate of S. suis-infected mice treated with only ampicillin, the survival rate of apigenin combined with an ampicillin-treated group significantly increased to 80%. In conclusion, all results indicate that apigenin in combination with conventional antibiotics can be a potential strategy for treating severe S. suis infection.
Collapse
|
26
|
Estrada AA, Gottschalk M, Rendahl A, Rossow S, Marshall-Lund L, Marthaler DG, Gebhart CJ. Proposed virulence-associated genes of Streptococcus suis isolates from the United States serve as predictors of pathogenicity. Porcine Health Manag 2021; 7:22. [PMID: 33648592 PMCID: PMC7917538 DOI: 10.1186/s40813-021-00201-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND There is limited information on the distribution of virulence-associated genes (VAGs) in U.S. Streptococcus suis isolates, resulting in little understanding of the pathogenic potential of these isolates. This lack also reduces our understanding of the epidemiology associated with S. suis in the United States and thus affects the efficiency of control and prevention strategies. In this study we applied whole genome sequencing (WGS)-based approaches for the characterization of S. suis and identification of VAGs. RESULTS Of 208 S. suis isolates classified as pathogenic, possibly opportunistic, and commensal pathotypes, the genotype based on the classical VAGs (epf, mrp, and sly encoding the extracellular protein factor, muramidase-release protein, and suilysin, respectively) was identified in 9% (epf+/mrp+/sly+) of the pathogenic pathotype. Using the chi-square test and LASSO regression model, the VAGs ofs (encoding the serum opacity factor) and srtF (encoding sortase F) were selected out of 71 published VAGs as having a significant association with pathotype, and both genes were found in 95% of the pathogenic pathotype. The ofs+/srtF+ genotype was also present in 74% of 'pathogenic' isolates from a separate validation set of isolates. Pan-genome clustering resulted in the differentiation of a group of isolates from five swine production companies into clusters corresponding to clonal complex (CC) and virulence-associated (VA) genotypes. The same CC-VA genotype patterns were identified in multiple production companies, suggesting a lack of association between production company, CC, or VA genotype. CONCLUSIONS The proposed ofs and srtF genes were stronger predictors for differentiating pathogenic and commensal S. suis isolates compared to the classical VAGs in two sets of U.S. isolates. Pan-genome analysis in combination with metadata (serotype, ST/CC, VA genotype) was illustrated to be a valuable subtyping tool to describe the genetic diversity of S. suis.
Collapse
Affiliation(s)
- April A Estrada
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
| | - Marcelo Gottschalk
- Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Stephanie Rossow
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Lacey Marshall-Lund
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| | - Douglas G Marthaler
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Connie J Gebhart
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
27
|
Liu H, Lei S, Jia L, Xia X, Sun Y, Jiang H, Zhu R, Li S, Qu G, Gu J, Sun C, Feng X, Han W, Langford PR, Lei L. Streptococcus suis serotype 2 enolase interaction with host brain microvascular endothelial cells and RPSA-induced apoptosis lead to loss of BBB integrity. Vet Res 2021; 52:30. [PMID: 33618766 PMCID: PMC7898445 DOI: 10.1186/s13567-020-00887-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/23/2020] [Indexed: 11/10/2022] Open
Abstract
Host proteins interacting with pathogens are receiving more attention as potential therapeutic targets in molecular medicine. Streptococcus suis serotype 2 (SS2) is an important cause of meningitis in both humans and pigs worldwide. SS2 Enolase (Eno) has previously been identified as a virulence factor with a role in altering blood brain barrier (BBB) integrity, but the host cell membrane receptor of Eno and The mechanism(s) involved are unclear. This study identified that SS2 Eno binds to 40S ribosomal protein SA (RPSA) on the surface of porcine brain microvascular endothelial cells leading to activation of intracellular p38/ERK-eIF4E signalling, which promotes intracellular expression of HSPD1 (heat-shock protein family D member 1), and initiation of host-cell apoptosis, and increased BBB permeability facilitating bacterial invasion. This study reveals novel functions for the host-interactional molecules RPSA and HSPD1 in BBB integrity, and provides insight for new therapeutic strategies in meningitis.
Collapse
Affiliation(s)
- Hongtao Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Siyu Lei
- School of Basic Medicine, Jilin University, Changchun, 130021, China
| | - Li Jia
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Xiaojing Xia
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Yingying Sun
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Hexiang Jiang
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Rining Zhu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Shuguang Li
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, Shandong, 256600, People's Republic of China
| | - Guanggang Qu
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, Shandong, 256600, People's Republic of China
| | - Jingmin Gu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Changjiang Sun
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Xin Feng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Wenyu Han
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Paul R Langford
- Section of Paediatric Infectious Disease, Imperial College London, London, W2 1PG, UK
| | - Liancheng Lei
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis/College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China. .,College of Animal Science, Yangtze University, Jingzhou, Hubei, 434023, People's Republic of China.
| |
Collapse
|
28
|
Segura M, Aragon V, Brockmeier SL, Gebhart C, de Greeff A, Kerdsin A, O’Dea MA, Okura M, Saléry M, Schultsz C, Valentin-Weigand P, Weinert LA, Wells JM, Gottschalk M. Update on Streptococcus suis Research and Prevention in the Era of Antimicrobial Restriction: 4th International Workshop on S. suis. Pathogens 2020; 9:pathogens9050374. [PMID: 32422856 PMCID: PMC7281350 DOI: 10.3390/pathogens9050374] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/16/2022] Open
Abstract
Streptococcus suis is a swine pathogen and a zoonotic agent afflicting people in close contact with infected pigs or pork meat. Sporadic cases of human infections have been reported worldwide. In addition, S. suis outbreaks emerged in Asia, making this bacterium a primary health concern in this part of the globe. In pigs, S. suis disease results in decreased performance and increased mortality, which have a significant economic impact on swine production worldwide. Facing the new regulations in preventive use of antimicrobials in livestock and lack of effective vaccines, control of S. suis infections is worrisome. Increasing and sharing of knowledge on this pathogen is of utmost importance. As such, the pathogenesis and epidemiology of the infection, antimicrobial resistance, progress on diagnosis, prevention, and control were among the topics discussed during the 4th International Workshop on Streptococcus suis (held in Montreal, Canada, June 2019). This review gathers together recent findings on this important pathogen from lectures performed by lead researchers from several countries including Australia, Canada, France, Germany, Japan, Spain, Thailand, The Netherlands, UK, and USA. Finally, policies and recommendations for the manufacture, quality control, and use of inactivated autogenous vaccines are addressed to advance this important field in veterinary medicine.
Collapse
Affiliation(s)
- Mariela Segura
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
- Correspondence: (M.S.); (M.G.); Tel.: +1-450-773-8521 (ext. 0080) (M.S.); +1-450-773-8521 (ext. 8374) (M.G.)
| | - Virginia Aragon
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | | | - Connie Gebhart
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Astrid de Greeff
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands;
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon 47000, Thailand;
| | - Mark A O’Dea
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia 6150, Australia;
| | - Masatoshi Okura
- Division of Bacterial and Parasitic Diseases, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan;
| | - Mariette Saléry
- French Agency for Veterinary Medicinal Products-French Agency for food, Environmental and Occupational Health Safety (Anses-ANMV), 35302 Fougères, France;
| | - Constance Schultsz
- Department of Global Health-Amsterdam Institute for Global Health and Development and Department of Medical Microbiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 BP Amsterdam, The Netherlands;
| | | | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK;
| | - Jerry M. Wells
- Host-Microbe Interactomics Group, Department Animal Sciences, Wageningen University and Research, 6709 PG Wageningen, The Netherlands;
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Marcelo Gottschalk
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
- Correspondence: (M.S.); (M.G.); Tel.: +1-450-773-8521 (ext. 0080) (M.S.); +1-450-773-8521 (ext. 8374) (M.G.)
| |
Collapse
|
29
|
Paveenkittiporn W, Ungcharoen R, Kerdsin A. Streptococcus agalactiae infections and clinical relevance in adults, Thailand. Diagn Microbiol Infect Dis 2020; 97:115005. [DOI: 10.1016/j.diagmicrobio.2020.115005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/02/2020] [Accepted: 01/26/2020] [Indexed: 01/13/2023]
|
30
|
Recognition of Lipoproteins by Toll-like Receptor 2 and DNA by the AIM2 Inflammasome Is Responsible for Production of Interleukin-1β by Virulent Suilysin-negative Streptococcus suis Serotype 2. Pathogens 2020; 9:pathogens9020147. [PMID: 32098284 PMCID: PMC7168628 DOI: 10.3390/pathogens9020147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and zoonotic agent causing sudden death, septic shock and meningitis. These pathologies are the consequence of an exacerbated inflammatory response composed of various mediators including interleukin (IL)-1β. Elevated levels of the toxin suilysin (SLY) were demonstrated to play a key role in S. suis-induced IL-1β production. However, 95% of serotype 2 strains isolated from diseased pigs in North America, many of which are virulent, do not produce SLY. In this study, we demonstrated that SLY-negative S. suis induces elevated levels of IL-1β in systemic organs, with dendritic cells contributing to this production. SLY-negative S. suis-induced IL-1β production requires MyD88 and TLR2 following recognition of lipoproteins. However, the higher internalization rate of the SLY-negative strain results in intracellularly located DNA being recognized by the AIM2 inflammasome, which promotes IL-1β production. Finally, the role of IL-1 in host survival during the S. suis systemic infection is beneficial and conserved, regardless of SLY production, via modulation of the inflammation required to control bacterial burden. In conclusion, this study demonstrates that SLY is not required for S. suis-induced IL-1β production.
Collapse
|
31
|
Tools for Molecular Epidemiology of Streptococcus suis. Pathogens 2020; 9:pathogens9020081. [PMID: 32012668 PMCID: PMC7168656 DOI: 10.3390/pathogens9020081] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/04/2022] Open
Abstract
Diseases caused by Streptococcus suis are a significant economic and welfare concern in pigs as well as in humans. Several molecular methods have been applied to investigate S. suis strain diversity and identify phylogenetic groups. Multilocus sequence typing (MLST), commonly used to differentiate between S. suis strains, has been instrumental in identifying that the species is genetically highly diverse. Recent advances in whole-genome analysis have resulted in schemes permitting the classification of S. suis populations as pathogenic or non-pathogenic, or disease-associated or non-disease associated. Here, we review these and other molecular approaches that can be used for surveillance, outbreak tracking, preventative health management, effective treatment and control, as well as vaccine development, including PCR based-assays that are easy to apply in modest diagnostic settings and which allow for the rapid screening of a large number of isolates at relatively low cost, granting the identification of several major clonal complexes of the S. suis population.
Collapse
|
32
|
Genotypic Comparison between Streptococcus suis Isolated from Pigs and Humans in Thailand. Pathogens 2020; 9:pathogens9010050. [PMID: 31936553 PMCID: PMC7168618 DOI: 10.3390/pathogens9010050] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/26/2019] [Accepted: 01/05/2020] [Indexed: 11/17/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen of economic significance to the swine industry. The number of infected cases is increasing in humans worldwide. In this study, we determined the prevalence and diversity of S. suis carriage in slaughterhouse pigs in Phayao province, Thailand, where an outbreak occurred in 2007. The overall S. suis carriage rate was 35.2% among slaughterhouse pigs. The prevalence rates of serotypes 2 and 14 (the major serotypes infected in humans) were 6.7% and 2.6%, respectively. In both serotypes, 70.4% of isolates of serotypes 2 and 14 revealed sequence types and pulsotypes identical to human isolates in Thailand. It is suggested that pathogenic strains of S. suis are a risk factor for occupational exposure to pigs or the consumption of raw pork products. Food safety, hygiene, and health education should be encouraged to reduce the risk group.
Collapse
|
33
|
Rayanakorn A, Katip W, Goh BH, Oberdorfer P, Lee LH. Clinical Manifestations and Risk Factors of Streptococcus suis Mortality Among Northern Thai Population: Retrospective 13-Year Cohort Study. Infect Drug Resist 2019; 12:3955-3965. [PMID: 32021313 PMCID: PMC6941973 DOI: 10.2147/idr.s233326] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/29/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Streptococcus suis (S. suis) is an emerging zoonotic disease mainly in pigs, causing serious infections in humans with high prevalence in Southeast Asia. Despite a relatively high mortality rate, there are limited data regarding the risk factors of this life-threatening infection. Therefore, a 13-year retrospective cohort study in Chiang Mai, Thailand during 2005-2018 was conducted to explore risk factors associated with S. suis mortality and to update the outcomes of the disease. Patients and methods S. suis positive cases were derived from those with positive S. suis isolates from microbiological culture results and Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF). Potential risk factors of mortality were identified using univariate and multivariate logistic regression. Results Of 133 patients with culture-proven S. suis infection identified, there were 92 males and 41 females. The mean age was 56.47 years. Septicemia (55.64%) was the most common clinical manifestation followed by meningitis (37.59%) and infective endocarditis (25.56%). Alcohol drinking and raw pork consumption were documented in 66 (49.62%) and 49 (36.84%) cases respectively. The overall mortality rate was 12.03% (n=16). According to the multivariate analysis, the independent risk factors for mortality were prolonged bacteremia ≥ 6 days (OR = 43.57, 95% CI = 2.46-772.80, P =0.010), septic shock (OR = 13.34, 95% CI = 1.63-109.03, P =0.016), and direct bilirubin > 1.5 mg/dL (OR = 12.86, 95% CI = 1.91-86.59, P =0.009). Conclusion S. suis is not infrequent in Northern Thailand, where the cultural food habit of raw pork eating is still practiced. To the best of our knowledge, this is the largest series focusing on risk factors of S. suis mortality which has been conducted in Thailand. Prolonged bacteremia ≥ 6 days, septic shock, and direct bilirubin > 1.5 mg/dL were strong predictors associated with S. suis mortality. The mortality risk factors identified may be further utilized in clinical practice and future research to improve patient outcomes.
Collapse
Affiliation(s)
- Ajaree Rayanakorn
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Wasan Katip
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Bey Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), Biomedicine Research Advancement Centre (BRAC), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia.,Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Bandar Sunway, 47500, Malaysia
| | - Peninnah Oberdorfer
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Learn Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
34
|
Autoinducer-2 influences tetracycline resistance in Streptococcus suis by regulating the tet(M) gene via transposon Tn916. Res Vet Sci 2019; 128:269-274. [PMID: 31837515 DOI: 10.1016/j.rvsc.2019.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/31/2019] [Accepted: 12/03/2019] [Indexed: 01/08/2023]
Abstract
The concern over increasing resistance to tetracyclines (TCs), such as tetracycline and chlortetracycline, necessitates exploration of new approaches to combating infection in antimicrobial therapy. Given that bacteria use the chemical language of autoinducer 2 (AI-2) signaling molecules in order to communicate and regulate group behaviors, we asked whether the AI-2 signaling influence the tetracyclines antibiotics susceptibility in S. suis. Our present work demonstrated that MIC increased when exogenous AI-2 was added, when compared to the wild type strain. When grown in the presence of sub-MIC of antibiotics, it has been shown that exogenous AI-2 increases growth rate and biofilm formation. These results suggest that the TCs resistance in S. suis could involve a signaling mechanism. Base on the above observations, transcriptomic analyses showed significant differences in the expression of tet(M) of tetracyclines resistance genes, as well as differences in Tn916 transposon related genes transcription, as judged by RT-PCR. Our results provide strong evidence that AI-2 signaling molecules is may involve in TCs antibiotic resistance in S. suis by regulating tet(M) gene via Tn916 transposon. This study may suggest that targeting AI-2 signaling in bacteria could represent an alternative approach in antimicrobial therapy.
Collapse
|
35
|
Kidchana A, Meekhanon N, Hatrongjit R, Gottschalk M, Kerdsin A. Application of random amplified polymorphism DNA and 16S-23S rDNA intergenic spacer polymerase chain reaction-restriction fragment length polymorphism to predict major Streptococcus suis clonal complexes isolated from humans and pigs. Mol Cell Probes 2018; 43:34-39. [PMID: 30528897 DOI: 10.1016/j.mcp.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
Random amplification of polymorphic DNA (RAPD) and 16S-23S rDNA intergenic spacer polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) were applied and evaluated to determine clonal complexes (CCs) of 684 Streptococcus suis isolates from pigs and humans. RAPD better distinguished major S. suis CCs than the PCR-RFLP method. The assay was capable of simultaneously distinguishing CC1, CC16, CC25, CC28, CC104, CC221/234, and CC233/379. PCR-RFLP could not clearly differentiate among most CCs in this study except CC16. DNA sequencing using the 16S-23S rDNA intergenic spacer distinguished between four clusters: 1) consisting of CC25, CC28, CC104, and CC233/379; 2) consisting of CC221/234; 3) consisting of CC16 (ST16); and 4) consisting of CC1. This study revealed that RAPD had a greater discriminatory power than PCR-RFLP. This assay will be useful for screening or predicting major CCs relevant to human and pig S. suis clinical isolates and for low-cost screening of large numbers of isolates with rapid analytical capacity and could be utilized in most laboratories.
Collapse
Affiliation(s)
- Atcharaporn Kidchana
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Nattakan Meekhanon
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
| | - Rujirat Hatrongjit
- Faculty of Science and Engineering, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | | | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand.
| |
Collapse
|
36
|
Amentoflavone Ameliorates Streptococcus suis-Induced Infection In Vitro and In Vivo. Appl Environ Microbiol 2018; 84:AEM.01804-18. [PMID: 30315078 DOI: 10.1128/aem.01804-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/10/2018] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis, an important zoonotic pathogen, has caused considerable economic losses in the swine industry and severe public health issues worldwide. The development of a novel effective strategy for the prevention and therapy of S. suis is urgently needed. Here, amentoflavone, a natural biflavonoid compound isolated from Chinese herbs that has negligible anti-S. suis activity, was identified as a potent antagonist of suilysin (SLY)-mediated hemolysis without interfering with the expression of SLY. Amentoflavone effectively inhibited SLY oligomerization, which is critical for its pore-forming activity. The treatment with amentoflavone reduced S. suis-induced cytotoxicity in macrophages (J774 cells). Furthermore, S. suis-infected mice that received amentoflavone exhibited lower mortality and bacterial burden. Additionally, amentoflavone significantly decreased the production of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 in an S. suis-infected cell model. Analyses of signaling pathways demonstrated that amentoflavone reduced S. suis-induced inflammation in S. suis serotype 2 (SS2)-infected cells by regulating the p38, Jun N-terminal protein kinase 1 and 2 (JNK1/2), and NF-κB pathways. The antivirulence and anti-inflammatory properties of amentoflavone against S. suis infection provide the possibility for future pharmaceutical application of amentoflavone in the treatment of S. suis infection.IMPORTANCE The widespread use of antibiotics in therapy and in the prevention of Streptococcus suis infection in the swine industry raises concerns for the emergence of a resistant strain. The use of antivirulence agents has potential benefits, mainly because of the reduced selective pressure for the development of bacterial resistance. In this study, we found that amentoflavone is an effective agent against S. suis serotype 2 (SS2) infection both in vitro and in vivo Our results demonstrated that amentoflavone is a promising anti-infective therapeutic for S. suis infections, due to its antivirulence and anti-inflammatory effects without antibacterial activity, with fewer side effects than conventional antibacterial agents.
Collapse
|
37
|
Shen X, Liu H, Li G, Deng X, Wang J. Silibinin attenuates Streptococcus suis serotype 2 virulence by targeting suilysin. J Appl Microbiol 2018; 126:435-442. [PMID: 30408277 DOI: 10.1111/jam.14149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/15/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
AIMS To determine the antivirulence properties of silibinin against suilysin (SLY), a virulence factor of Streptococcus suis serotype 2 (SS2) that plays an important role in the pathogenesis of S. suis infection and its protective effect against SS2 infection in a mouse model. METHODS AND RESULTS Susceptibility testing, haemolysis assay and Western blot assays were employed to evaluate the performance of silibinin on SLY pore-forming activity. Cytotoxicity assays and mouse infection tests were also performed to determine the efficacy of silibinin against SS2 infection. The results showed that silibinin, a flavonoid with little anti-S. suis activity, was identified to be a potent antagonist of SLY-mediated haemolysis through the inhibition of its oligomerization. Treatment with silibinin reduced S. suis-induced cytotoxicity in macrophages (J774 cells). In addition, S. suis-infected mice that received silibinin showed a lower bacterial burden. CONCLUSIONS Our results demonstrated that silibinin is a promising candidate for the development of antivirulence therapeutic agents to treat S. suis infections. SIGNIFICANCE AND IMPACT OF THE STUDY The antivirulent property of silibinin against SS2 by targeting SLY provides the possibility for the future pharmaceutical application of silibinin to prevent and treat S. suis infection.
Collapse
Affiliation(s)
- X Shen
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - H Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - G Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - X Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - J Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
38
|
O'Dea MA, Laird T, Abraham R, Jordan D, Lugsomya K, Fitt L, Gottschalk M, Truswell A, Abraham S. Examination of Australian Streptococcus suis isolates from clinically affected pigs in a global context and the genomic characterisation of ST1 as a predictor of virulence. Vet Microbiol 2018; 226:31-40. [PMID: 30389041 DOI: 10.1016/j.vetmic.2018.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/18/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Streptococcus suis is a major zoonotic pathogen that causes severe disease in both humans and pigs. Australia's pig herd has been quarantined for over 30 years, however S. suis remains a significant cause of disease. In this study, we investigated S. suis from 148 cases of clinical disease in pigs from 46 pig herds over a period of seven years, to determine the level of genetic difference from international isolates that may have arisen over the 30 years of separation. Isolates underwent whole genome sequencing, genome analysis and antimicrobial susceptibility testing. Data was compared at the core genome level to clinical isolates from overseas. Results demonstrated five predominant multi-locus sequence types and two major cps gene types (cps2 and 3). At the core genome level Australian isolates clustered predominantly within one large clade consisting of isolates from the UK, Canada and North America. A small proportion of Australian swine isolates (5%) were phylogenetically associated with south-east Asian and UK isolates, many of which were classified as causing systemic disease, and derived from cases of human and swine disease. Based on this dataset we provide a comprehensive outline of the current S. suis clones associated with disease in Australian pigs and their global context, with the main finding being that, despite three decades of separation, Australian S. suis are genomically similar to overseas strains. In addition, we show that ST1 clones carry a constellation of putative virulence genes not present in other Australian STs.
Collapse
Affiliation(s)
- Mark A O'Dea
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - Tanya Laird
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Rebecca Abraham
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - David Jordan
- Wollongbar Primary Industries Institute, NSW Department of Primary Industries, NSW, Australia
| | - Kittitat Lugsomya
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Laura Fitt
- ACE Laboratory Services, Bendigo, Victoria, Australia
| | - Marcelo Gottschalk
- Laboratory of Research on Streptococcus suis, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, QC, Canada
| | - Alec Truswell
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Disease Laboratory, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|