1
|
AbdElneam AI, Mohammed GF. Non-coding RNAs (miRNAs - circRNAs - lncRNAs) and genes interact with the regulation of vitiligo. Arch Dermatol Res 2025; 317:679. [PMID: 40186750 DOI: 10.1007/s00403-025-04113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 04/07/2025]
Abstract
Vitiligo is a chronic skin disorder characterized by the loss of melanocytes, resulting in depigmented patches on the skin. The molecular mechanisms underlying vitiligo remain incompletely understood, with recent studies highlighting the role of non-coding RNAs in disease pathogenesis. To identify and analyze the roles of miRNAs, (circular RNAs) circRNAs, and (long non-coding RNAs) lncRNAs in the pathogenesis of vitiligo, focusing on their interactions with key coding genes and pathways. We utilized Microarray data from the GSE65127 and GSE75819 datasets in the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) related to Vitiligo. The analysis was conducted using GEO2R for identifying upregulated and downregulated genes. Protein-protein interaction (PPI) networks were constructed using STRING and further analyzed with Cytoscape and CytoHubba. Gene Ontology (GO), disease pathways, Disease gene associations, and phenotypes are determined by many online software. miRNAs and cirRNas, lncRNAs were predicted using bioinformatics tools. The constructed network identified AKT1 as a central hub, hsa-miR-140-3p assumes a critical role by interacting with both AKT1 and CTSD, while circRNAs such as hsa_circ_0020776, hsa_circ_0033552, and hsa_circ_0020773 significantly modulate these interactions. Also, hsa-miR-921 is highly effective in binding to AKT1, as well as to hsa_circ_0033546 and hsa_circ_0033547. lncRNAs, including AFAP1-AS1 and MALAT1, contribute to the network by establishing connections with the mRNA of target genes. we determined two genes, two miRNAs, and 5 circRNAs may serve as potential biomarkers or therapeutic targets for vitiligo.
Collapse
Affiliation(s)
- Ahmed Ibrahim AbdElneam
- Department of Clinical Biochemistry, Department of Basic Medical Sciences, College of Medicine, Shaqra University, Dawadmi, Saudi Arabia
- Molecular Genetics and Enzymology Department, Human Genetics and Genome Research Institute, National Research Center, 33 El Bohouth St. (former El Tahrir St.), Dokki, Cairo, 12622, Egypt
| | - Ghada Farouk Mohammed
- Department of Dermatology, Venereology, and Sexology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
2
|
Guo X, Li S. Bone metastases of prostate cancer: Molecular mechanisms, targeted diagnosis and targeted therapy (Review). Oncol Rep 2025; 53:46. [PMID: 39981932 DOI: 10.3892/or.2025.8879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/12/2024] [Indexed: 02/22/2025] Open
Abstract
Prostate cancer (PCa) is second only to lung cancer in terms of death among men worldwide. Advanced PCa frequently results in bone metastases, which occur in ~90% of patients and frequently result in severe skeleton‑related events. Currently, the treatment for this disease is limited to alleviating its clinical symptoms and cannot provide a complete cure. Therefore, the development of novel treatment strategies is particularly important. In recent years, numerous novel strategies for the diagnosis and treatment of PCa have emerged, resulting in good clinical efficacy. For example, strategies targeting prostate specific membrane antigen, poly ADP‑ribose polymerase and programmed cell death protein 1 have been applied to PCa‑induced bone metastasis, and have shown initial efficacy and great potential. Therefore, understanding the molecular mechanisms underlying the formation of bone metastases in patients with PCa is of importance for the effective management of this disease. The purpose of the present review is to comprehensively outline the roles of protein‑coding genes and non‑coding RNAs in the development of bone metastases of PCa to elucidate their significance in the management of PCa. The aim is to offer clinicians and researchers a comprehensive understanding of this topic.
Collapse
Affiliation(s)
- Xutang Guo
- Department of Urology, Gansu Province Maternity and Child Health Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Shaojun Li
- Department of Urology, Gansu Province Maternity and Child Health Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
3
|
Hashemi M, Fard AA, Pakshad B, Asheghabadi PS, Hosseinkhani A, Hosseini AS, Moradi P, Mohammadbeygi Niye M, Najafi G, Farahzadi M, Khoushab S, Taheriazam A, Farahani N, Mohammadi M, Daneshi S, Nabavi N, Entezari M. Non-coding RNAs and regulation of the PI3K signaling pathway in lung cancer: Recent insights and potential clinical applications. Noncoding RNA Res 2025; 11:1-21. [PMID: 39720352 PMCID: PMC11665378 DOI: 10.1016/j.ncrna.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/26/2024] Open
Abstract
Lung cancer (LC) is one of the most common causes of cancer-related death worldwide. It has been demonstrated that the prognosis of current drug treatments is affected by a variety of factors, including late stage, tumor recurrence, inaccessibility to appropriate treatments, and, most importantly, chemotherapy resistance. Non-coding RNAs (ncRNAs) contribute to tumor development, with some acting as tumor suppressors and others as oncogenes. The phosphoinositide 3-kinase (PI3Ks)/AKT serine/threonine kinase pathway is one of the most important common targets of ncRNAs in cancer, which is widely applied to modulate the cell cycle and a variety of biological processes, including cell growth, mobility survival, metabolic activity, and protein production. Discovering the biology of ncRNA-PI3K/AKT signaling may lead to advances in cancer diagnosis and treatment. As a result, we investigated the expression and role of PI3K/AKT-related ncRNAs in clinical characteristics of lung cancer, as well as their functions as potential biomarkers in lung cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Asal Abolghasemi Fard
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bita Pakshad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pezhman Shafiei Asheghabadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amineh Hosseinkhani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atena Sadat Hosseini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parham Moradi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammadreza Mohammadbeygi Niye
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazal Najafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Farahzadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Gu X, Xie T. LncRNA AC005165.1 Alleviates IL-1β-Induced Osteoarthritis via miR-199a-3p/TXNIP Axis. Biochem Genet 2025; 63:1551-1565. [PMID: 38587691 DOI: 10.1007/s10528-024-10720-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/27/2024] [Indexed: 04/09/2024]
Abstract
Osteoarthritis (OA) is a chronic musculoskeletal disease and often causes impaired joint mobility and disability. Long noncoding RNAs (lncRNAs) play pivotal roles in OA development. This study was done to explore the role and mechanism of the lncRNA AC005165.1 in the cell model of interleukin-1β (IL)-1β-treated chondrocytes. This study recruited 20 surgically treated OA patients and 12 age- and gender-matched controls. Real-time reverse transcription quantitative polymerase chain reaction was used to examine the expression levels of AC005165.1, miR-199a-3p, and thioredoxin-interacting protein (TXNIP) in articular cartilage of patients and IL-1β-treated human chondrocytes. Cell viability and apoptosis were evaluated by cell counting kit-8 and flow cytometry assays, respectively. The protein levels of inflammatory cytokines were assessed by western blotting. Enzyme-linked immunosorbent assay was conducted to detect the concentrations of the inflammatory cytokines in chondrocytes. Luciferase reporter assay and Pearson's correlation analysis were used for analyzing the interaction and the correlation among AC005165.1, miR-199a-3p, and TXNIP. AC005165.1 expression was downregulated in cartilage of OA patients and chondrocytes treated with IL-1β, compared to that in the control groups. AC005165.1 knockdown increased apoptosis and aggravated inflammatory response in IL-1β-treated chondrocytes. AC005165.1 interacted with miR-199a-3p, and TXNIP was targeted by miR-199a-3p. In rescue assay, miR-199a-3p knockdown and TXNIP overexpression significantly reduced apoptosis and mitigated inflammatory response in IL-1β-treated chondrocytes with AC005165.1 knockdown. AC005165.1 knockdown promoted apoptosis and inflammatory response in IL-1β-treated chondrocytes via the miR-199a-3p/TXNIP axis.
Collapse
Affiliation(s)
- Xi Gu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, No. 49 Lihuangpi Road, Jiang'an District, Wuhan, 430014, China
| | - Tian Xie
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, No. 49 Lihuangpi Road, Jiang'an District, Wuhan, 430014, China.
| |
Collapse
|
5
|
Liu Q, Sun Z, Liu Y, He X, Ren C, Wang X, Di R, Zhao Y, Zhang Z, Chu M. Whole transcriptome analysis in oviduct provides insight into microRNAs and ceRNA regulative networks that targeted reproduction of goat (Capra hircus). BMC Genomics 2025; 26:250. [PMID: 40087554 PMCID: PMC11907954 DOI: 10.1186/s12864-025-11438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Reproduction traits are crucial for livestock breeding and represent key economic indicators in the domestic goat (Capra hircus) industry. The oviduct, a critical organ in female mammals, plays a pivotal role in several reproductive processes; however, its molecular mechanisms remain largely unknown. Non-coding RNA and mRNAs are essential regulatory elements in reproductive processes; yet their specific roles and regulatory networks in goat oviducts remain unclear. RESULTS In this study, we conducted small RNA sequencing of the oviduct in high- and low-fecundity goats during the follicular (FH and FL groups, n = 10) and luteal (LH and LL groups, n = 10) phase, profiling 20 tissue samples. Combinatorial whole-transcriptome expression profiles were applied to the same samples to uncover the competitive endogenous RNA (ceRNA) regulation network associated with goat fecundity. RT-qPCR was employed to validate the miRNA profiling results, and ceRNA regulatory networks were analyzed through luciferase assay. Gene set enrichment analysis (GSEA) confirmed that the cytokine-cytokine receptor interaction and TGF-β signaling pathway, both related to embryonic development, were enriched in DEM target genes. Additionally, miR-328-3p, a core miRNA, targets SMAD3 and BOP1, which are involved in the negative regulation of cell growth and embryonic development. TOB1 and TOB2, targeted by miR-204-3p, regulate cell proliferation via the protein kinase C-activating G-protein coupled receptor signaling pathway. Analyses of ceRNA regulatory networks revealed that LNC_005981 - miR-328-3p - SMAD3 and circ_0021923 - miR-204-3p - DOT1L may affect goats' reproduction, findings that were validated using luciferase assay. CONCLUSION Analysis of whole-transcriptome profiling of goat oviducts identified several key miRNAs and ceRNAs that may regulate oocyte maturation, embryo development, and the interactions between the oviduct and gametes/early embryos, providing insights into the molecular mechanisms of reproductive regulatory networks.
Collapse
Affiliation(s)
- Qingqing Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Rd, Hefei, 230036, China
| | - Zhipeng Sun
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Rd, Hefei, 230036, China
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Chongqing, 400715, China
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Rd, Hefei, 230036, China
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Yongju Zhao
- College of Animal Science and Technology, Chongqing Key Laboratory of Herbivore Science, Southwest University, Chongqing, 400715, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Rd, Hefei, 230036, China.
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
6
|
Zhong J, Yang Q, Wang B, Wang G, Wang A, Lou Y, Su H, Zhang Y, Mao L. A Cathode-Anode Ratiometric Internal Standard Electrochemiluminescence Recognition Strategy Based on Hexagonal AgNCs and ZnCdSe QDs Dual-Labeled Exon Conservative Motif Aggregation for LncRNA Assay. Anal Chem 2025; 97:4881-4888. [PMID: 40013615 DOI: 10.1021/acs.analchem.4c04254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
A cathode-anode bipolar electrochemiluminescence (ECL) strategy on multisite recognition for highly conservative gene motifs is anticipated to anchor the >200 nt-long polynucleotide chain for precise quantification. Herein, lncRNA-HOTAIR sequences in the NCBI database, derived from four different species (Homo sapiens, Mus musculus, Pan troglodytes, Canis lupus familiaris), were blasted online to confirm three-segment conservative exon motif texts (abbreviated as motif 1, motif 2 and motif 3), whose complementary gene sequences were artfully designed as capture probe (P1, complementary with motif 1) and signal probes (P2, P3, complementary with motif 2 and motif 3 in a controllable two-base interval). By exploiting the anode potential dominant sulfate radical and reactive oxide radical reaction, a new couple of ECL signals at Epc of -1.8 V and Epa of 3.5 V (vs Ag/AgCl) was revealed in hexagonal silver nanocrystal (H-AgNC) coreaction-accelerated graphene oxide/persulfate (GO/S2O82-) system. While the rolling circle amplification for the adjacent sequences of motif 2/motif 3 followed by motif 1 capture on composite film, H-AgNCs and ZnCdSe QDs dual-labeled probe aggregation on the amplified motifs induced a couple of cathode-anode quenched ECL signals. In proportion to the fairly stronger internal standard signal formed by a single H-AgNC-labeled probe, the dual-label quenched ECL signal ratio (ΔIpc/ΔIpa) was linearly fitting as Y = 2.34X + 8.32 to reflect lncRNA HOTAIR level with a limit-of-detection (LOD) of 0.01 pg/L. The analysis performance on bipolar ECL behavior was compared upon different anode final potential to objectively assess the impact of anode polarization and the possibility in trace clinical lncRNA assay.
Collapse
Affiliation(s)
- Jia Zhong
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qinlan Yang
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Bin Wang
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
- JinJiang District of Chengdu Center for Disease Control and Prevention, Chengdu 610021, China
| | - Guangjie Wang
- Cancer Diagnosis and Treatment Center, The General Hospital of Western Theater Command PLA, Chengdu 610083, China
| | - Ao Wang
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Yuxin Lou
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Huilan Su
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Yajie Zhang
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Li Mao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
7
|
Nadukkandy AS, Blaize B, Kumar CD, Mori G, Cordani M, Kumar LD. Non-coding RNAs as mediators of epithelial to mesenchymal transition in metastatic colorectal cancers. Cell Signal 2025; 127:111605. [PMID: 39842529 DOI: 10.1016/j.cellsig.2025.111605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/24/2025]
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related mortality globally, necessitating the development of innovative treatment strategies. Recent research has underscored the significant role of non-coding RNAs (ncRNAs) in CRC pathogenesis, offering new avenues for diagnosis and therapy. In this review, we delve into the intricate roles of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in CRC progression, epithelial-mesenchymal transition (EMT), metastasis, and drug resistance. We highlight the interaction of these ncRNAs with and regulation of key signaling pathways, such as Wnt/β-catenin, Notch, JAK-STAT, EGFR, and TGF-β, and the functional relevance of these interactions in CRC progression. Additionally, the review highlights the emerging applications of nanotechnology in enhancing the delivery and efficacy of ncRNA-based therapeutics, which could address existing challenges related to specificity and side effects. Future research directions, including advanced diagnostic tools, targeted therapeutics, strategies to overcome drug resistance, and the integration of personalized medicine approaches are discussed. Integrating nanotechnology with a deeper understanding of CRC biology offers the potential for more effective, targeted, and personalized strategies, though further research is essential to validate these approaches.
Collapse
Affiliation(s)
- Aisha Shigna Nadukkandy
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Britny Blaize
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Chethana D Kumar
- Department of Surgical ICU, Christian Medical College, IDA Scudder Road, Vellore 632004, Tamil Nadu, India
| | - Giulia Mori
- Department Of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India.
| |
Collapse
|
8
|
Kaur R, Pandey S, Gupta S, Singh J. Harnessing the potential of long non-coding RNAs in the pathophysiology of Alzheimer's disease. Exp Neurol 2025; 385:115134. [PMID: 39740737 DOI: 10.1016/j.expneurol.2024.115134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/08/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Alzheimer's disease (AD), a diverse neurodegenerative disease, is the leading cause of dementia, accounting for 60-80 % of all cases. The pathophysiology of Alzheimer's disease is unknown, and there is no cure at this time. Recent developments in transcriptome-wide profiling have led to the identification of a number of non-coding RNAs (ncRNAs). Among these, long non-coding RNAs (lncRNAs)-long transcripts that don't seem to be able to code for proteins-have drawn attention because they function as regulatory agents in a variety of biological processes. Recent research suggests that lncRNAs play a role in the pathogenesis of Alzheimer's disease by modulating tau hyperphosphorylation, amyloid production, synaptic impairment, neuroinflammation, mitochondrial dysfunction, and oxidative stress, though their precise effects on the disorder are unknown. The biology and modes of action of the best-characterized lncRNAs in AD will be outlined here, with an emphasis on their possible involvement in the pathophysiology of the disease. As lncRNAs may offer prospective prognostic/diagnostic biomarkers and therapeutic targets for the treatment of AD, a greater comprehension of the molecular processes and the intricate network of interactions in which they are implicated could pave the way for future research.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, India
| | - Swadha Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Chaumuhan, Mathura 281406, Uttar Pradesh, India.
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences (AIIMS)Bhopal, Saket Nagar, Bhopal 462020, Madhya Pradesh, India
| |
Collapse
|
9
|
El-Ashmawy NE, Khedr EG, Darwish RT, Ibrahim AO. Competing endogenous RNAs network and therapeutic implications: New horizons in disease research. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195073. [PMID: 39631541 DOI: 10.1016/j.bbagrm.2024.195073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Different diseases may arise from the dysregulation of non-coding RNAs (ncRNAs), which regulation is necessary for maintaining cellular homeostasis. ncRNAs are regulated by transcriptional, post-transcriptional, translational and post-translational processes. Post-transcriptional regulation of gene expression is carried out by microRNAs (miRNAs), a class of small ncRNA molecules, which can identify their target sites by a brief nucleotide sequence, known as the miRNA response element (MRE), present on the miRNA seed sequence and the target transcript. This binding between miRNAs and targets can regulate the gene expression through inhibition of translation or degradation of target messenger RNA (mRNA). The transcripts that share MREs can be involved in competition for the central miRNA pool, which could have an indirect impact on each other's regulation. This competition network is called competing endogenous RNAs network (ceRNET). Many ncRNAs, including circular RNA, pseudogene, and long non-coding RNA, as well as mRNA, a coding RNA transcript, make up ceRNET. These components play a crucial role in post-transcriptional regulation and are involved in the diagnosis and treatment of many pathological disorders. The mechanism of ceRNET and its essential components, as well as their therapeutic implications in different diseases such as cancer, diabetes mellitus, neurological, cardiovascular, hepatic and respiratory disorders were covered in this review.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Cairo 11837, Egypt
| | - Eman G Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Renad T Darwish
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Amera O Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt.
| |
Collapse
|
10
|
Cyr Y, Gourvest M, Ciabattoni GO, Zhang T, Newman AA, Zahr T, Delbare S, Schlamp F, Dittmann M, Moore KJ, van Solingen C. lncRNA CARINH regulates expression and function of innate immune transcription factor IRF1 in macrophages. Life Sci Alliance 2025; 8:e202403021. [PMID: 39773901 PMCID: PMC11707381 DOI: 10.26508/lsa.202403021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/27/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
The discovery of long non-coding RNAs (lncRNAs) has provided a new perspective on the centrality of RNA in gene regulation and genome organization. Here, we screened for lncRNAs with putative functions in the host response to single-stranded RNA respiratory viruses. We identify CARINH as a conserved cis-acting lncRNA up-regulated in three respiratory diseases to control the expression of its antisense gene IRF1, a key transcriptional regulator of the antiviral response. CARINH and IRF1 are coordinately increased in the circulation of patients infected with human metapneumovirus, influenza A virus, or SARS-CoV-2, and in macrophages in response to viral infection or TLR3 agonist treatment. Targeted depletion of CARINH or its mouse ortholog Carinh in macrophages reduces the expression of IRF1/Irf1 and their associated target gene networks, increasing susceptibility to viral infection. Accordingly, CRISPR-mediated deletion of Carinh in mice reduces antiviral immunity, increasing viral burden upon sublethal challenge with influenza A virus. Together, these findings identify a conserved role of lncRNA CARINH in coordinating interferon-stimulated genes and antiviral immune responses.
Collapse
Affiliation(s)
- Yannick Cyr
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Morgane Gourvest
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Grace O Ciabattoni
- Department of Microbiology, New York University Langone Health, New York, NY, USA
| | - Tracy Zhang
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Alexandra Ac Newman
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Tarik Zahr
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Sofie Delbare
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Florencia Schlamp
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Langone Health, New York, NY, USA
| | - Kathryn J Moore
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Langone Health, New York, NY, USA
| | - Coen van Solingen
- Department of Medicine, Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
11
|
Solovjev AM, Pletjushkina OY, Sakharov IY. What DNA Polymerase Is Preferable in miRNA Assay Coupled with Isothermal Circular Strand Displacement Polymerization Reaction (ICSDPR)? Anal Chem 2025; 97:3371-3377. [PMID: 39909440 DOI: 10.1021/acs.analchem.4c05337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The products generated in the isothermal circular strand displacement polymerization reaction (ICSDPR) initiated with miRNA-141 were studied. The obtained results demonstrated that if ICSDPR was catalyzed with Large Klenow Fragment (lKF), the canonical duplex and some byproducts, which were not described previously, were observed. The HMW byproducts were shown to be produced as a result of lKF-insisted polymerization of capture hairpin (HP) used in ICSDPR. Contrary to original HP, HMW byproducts are not capture probes because upon polymerization they lack the ability to bind the target. Interestingly, the replacement of lKF with Klenow Fragment (3'-5' exo-) (KFexo-) prevented the generation of HMW byproducts but did not affect the synthesis of other ICSDPR products. In the presence of both DNA polymerases, the second byproduct, named target-dependent byproduct (TD byproduct), was formed when the capture HP and target sequence formed a perfect duplex. Using an imperfect complex with unpaired nucleotides at the 3'-end of the target sequence prevented the formation of TD byproduct in ICSDPR. The knowledge of mechanisms of the formation of the byproducts and use of KFexo- in catalysis of ICSDPR allowed to develop a highly sensitive plate-based assay of miRNA-141 with the detection limit and sensitivity coefficient of 1.7 fM and 1,400,000 RLU/M, respectively. The amplification index characteristic of KFexo- catalyzed ICSDPR was 22,000. The proposed assay of miRNA-141 showed high specificity toward the target.
Collapse
Affiliation(s)
- Anton M Solovjev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, Bldg. 1, Moscow 119991, Russia
| | - Olga Yu Pletjushkina
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ivan Yu Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, Bldg. 1, Moscow 119991, Russia
| |
Collapse
|
12
|
Khan S, Tao F. Mechanisms for Orofacial Pain: Roles of Immunomodulation, Metabolic Reprogramming, Oxidative Stress and Epigenetic Regulation. Biomedicines 2025; 13:434. [PMID: 40002847 PMCID: PMC11853523 DOI: 10.3390/biomedicines13020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background and Objectives: Orofacial pain corresponds to pain sensitization originating from the facial and oral regions, often accompanied by diagnostic complexity due to a multitude of contributory factors, leading to significant patient distress and impairment. Here, we have reviewed current mechanistic pathways and biochemical aspects of complex orofacial pain pathology, highlighting recent advancements in understanding its multifactorial regulation and signaling and thus providing a holistic approach to challenging it. Materials and Methods: Studies were identified from an online search of the PubMed database without any search time range. Results: We have discussed neuron-glia interactions and glial cell activation in terms of immunomodulatory effects, metabolism reprogramming effects and epigenetic modulatory effects, in response to orofacial pain sensitization comprising different originating factors. We have highlighted the fundamental role of oxidative stress affecting significant cellular pathways as well as cellular machinery, which renders pain pathology intricate and multidimensional. Emerging research on the epigenetic modulation of pain regulatory genes in response to molecular and cellular environmental factors is also discussed, alongside updates on novel diagnostic and treatment approaches. Conclusions: This review deliberates the integrative perspectives and implications of modulation in the immune system, glucose metabolism, lipid metabolism and redox homeostasis accompanied by mitochondrial dysfunction as well as epigenetic regulation accommodating the effect of dysregulated non-coding RNAs for an interdisciplinary understanding of pain pathology at the molecular level, aiming to improve patient outcomes with precise diagnosis offering improved pain management and treatment.
Collapse
Affiliation(s)
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave., Dallas, TX 75246, USA;
| |
Collapse
|
13
|
Márton É, Varga A, Domoszlai D, Buglyó G, Balázs A, Penyige A, Balogh I, Nagy B, Szilágyi M. Non-Coding RNAs in Cancer: Structure, Function, and Clinical Application. Cancers (Basel) 2025; 17:579. [PMID: 40002172 PMCID: PMC11853212 DOI: 10.3390/cancers17040579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
We are on the brink of a paradigm shift in both theoretical and clinical oncology. Genomic and transcriptomic profiling, alongside personalized approaches that account for individual patient variability, are increasingly shaping discourse. Discussions on the future of personalized cancer medicine are mainly dominated by the potential of non-coding RNAs (ncRNAs), which play a prominent role in cancer progression and metastasis formation by regulating the expression of oncogenic or tumor suppressor proteins at transcriptional and post-transcriptional levels; furthermore, their cell-free counterparts might be involved in intercellular communication. Non-coding RNAs are considered to be promising biomarker candidates for early diagnosis of cancer as well as potential therapeutic agents. This review aims to provide clarity amidst the vast body of literature by focusing on diverse species of ncRNAs, exploring the structure, origin, function, and potential clinical applications of miRNAs, siRNAs, lncRNAs, circRNAs, snRNAs, snoRNAs, eRNAs, paRNAs, YRNAs, vtRNAs, and piRNAs. We discuss molecular methods used for their detection or functional studies both in vitro and in vivo. We also address the challenges that must be overcome to enter a new era of cancer diagnosis and therapy that will reshape the future of oncology.
Collapse
Affiliation(s)
- Éva Márton
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Alexandra Varga
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Dóra Domoszlai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Anita Balázs
- Department of Integrative Health Sciences, Institute of Health Sciences, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary;
| | - András Penyige
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - István Balogh
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Bálint Nagy
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| | - Melinda Szilágyi
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (É.M.); (A.V.); (D.D.); (G.B.); (A.P.); (I.B.); (B.N.)
| |
Collapse
|
14
|
Li Z, Wang D, Zhu X. Unveiling the functions of five recently characterized lncRNAs in cancer progression. Clin Transl Oncol 2025; 27:458-465. [PMID: 39066874 DOI: 10.1007/s12094-024-03619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Numerous studies over the past few decades have shown that RNAs are multifaceted, multifunctional regulators of most cellular processes, contrary to the initial belief that they only act as mediators for translating DNA into proteins. LncRNAs, which refer to transcripts longer than 200nt and lack the ability to code for proteins, have recently been identified as central regulators of a variety of biochemical and cellular processes, particularly cancer. When they are abnormally expressed, they are closely associated with tumor occurrence, metastasis, and tumor staging. Therefore, through searches on Google Scholar, PubMed, and CNKI, we identified five five recently characterized lncRNAs-Lnc-SLC2A12-10:1, LncRNA BCRT1, lncRNA IGFBP4-1, LncRNA PCNAP1, and LncRNA CDC6-that have been linked to the promotion of cancer cell proliferation, invasion, and metastasis. Consequently, this review encapsulates the existing research and molecular underpinnings of these five newly identified lncRNAs across various types of cancer. It suggests that these novel lncRNAs hold potential as independent biomarkers for clinical diagnosis and prognosis, as well as candidates for therapeutic intervention. In parallel, we discuss the challenges inherent in the research on these five newly discovered lncRNAs and look forward to the avenues for future exploration in this field.
Collapse
Affiliation(s)
- Zhicheng Li
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Dan Wang
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China
| | - Xiaojun Zhu
- Department of Urology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, China.
| |
Collapse
|
15
|
Basu S, Nadhan R, Dhanasekaran DN. Long Non-Coding RNAs in Ovarian Cancer: Mechanistic Insights and Clinical Applications. Cancers (Basel) 2025; 17:472. [PMID: 39941838 PMCID: PMC11815776 DOI: 10.3390/cancers17030472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Ovarian cancer is a leading cause of gynecological cancer mortality worldwide, often diagnosed at advanced stages due to vague symptoms and the lack of effective early detection methods. Long non-coding RNAs (lncRNAs) have emerged as key regulators in cancer biology, influencing cellular processes such as proliferation, apoptosis, and chemoresistance. This review explores the multifaceted roles of lncRNAs in ovarian cancer pathogenesis and their potential as biomarkers and therapeutic targets. Methods: A comprehensive literature review was conducted to analyze the structural and functional characteristics of lncRNAs and their contributions to ovarian cancer biology. This includes their regulatory mechanisms, interactions with signaling pathways, and implications for therapeutic resistance. Advanced bioinformatics and omics approaches were also evaluated for their potential in lncRNA research. Results: The review highlights the dual role of lncRNAs as oncogenes and tumor suppressors, modulating processes such as cell proliferation, invasion, and angiogenesis. Specific lncRNAs, such as HOTAIR and GAS5, demonstrate significant potential as diagnostic biomarkers and therapeutic targets. Emerging technologies, such as single-cell sequencing, provide valuable insights into the tumor microenvironment and the heterogeneity of lncRNA expression. Conclusions: LncRNAs hold transformative potential in advancing ovarian cancer diagnosis, prognosis, and treatment. Targeting lncRNAs or their associated pathways offers promising strategies to overcome therapy resistance and enhance personalized medicine. Continued research integrating omics and bioinformatics will be essential to unlock the full clinical potential of lncRNAs in ovarian cancer management.
Collapse
Affiliation(s)
- Sneha Basu
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.B.); (R.N.)
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
16
|
Kacemi R, Campos MG. Bee Pollen Phytochemicals and Nutrients as Unequaled Pool of Epigenetic Regulators: Implications for Age-Related Diseases. Foods 2025; 14:347. [PMID: 39941940 PMCID: PMC11816923 DOI: 10.3390/foods14030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Bee pollen is characterized by an exceptional diversity and abundance of micronutrients and bioactive phytochemicals. This richness remains very sparsely investigated, but accumulating evidence strongly supports a promising future for bee pollen in human nutrition and medicine. Epigenetic regulation is among the most compelling biomedical topics that remain completely untapped in bee pollen and bee derivative research. In our current research, we identified numerous ubiquitous compounds that are consistently present in this matrix, regardless of its botanical and geographical origins, and that have been well studied and documented as epigenetic regulators in recent years. Given the relative newness of both bee pollen biomedical research and epigenetic studies within nutritional, pharmaceutical, and medical sciences, this review aims to bridge these valuable fields and advance related experimental investigations. To the best of our knowledge, this is the first work that has aimed to comprehensively investigate the epigenetic modulatory potential of bee pollen compounds. Our findings have also unveiled several intriguing phenomena, such as a dual effect of the same compound depending on the cellular context or the effect of some compounds on the cross-generational heritability of epigenetic traits. Although experimental studies of epigenetic regulation by bee pollen as a whole or by its extract are still lacking, our current study clearly indicates that this research avenue is very promising and worth further investigations. We hope that our current work constitutes a foundational cornerstone of future investigations for this avenue of research.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
17
|
Kyrgiafini MA, Katsigianni M, Giannoulis T, Sarafidou T, Chatziparasidou A, Mamuris Z. Integrative Analysis of Whole-Genome and Transcriptomic Data Reveals Novel Variants in Differentially Expressed Long Noncoding RNAs Associated with Asthenozoospermia. Noncoding RNA 2025; 11:4. [PMID: 39846682 PMCID: PMC11755663 DOI: 10.3390/ncrna11010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Background/Objectives: Asthenozoospermia, characterized by reduced sperm motility, is a common cause of male infertility. Emerging evidence suggests that noncoding RNAs, particularly long noncoding RNAs (lncRNAs), play a critical role in the regulation of spermatogenesis and sperm function. Coding regions have a well-characterized role and established predictive value in asthenozoospermia. However, this study was designed to complement previous findings and provide a more holistic understanding of asthenozoospermia, this time focusing on noncoding regions. This study aimed to identify and prioritize variants in differentially expressed (DE) lncRNAs found exclusively in asthenozoospermic men, focusing on their impact on lncRNA structure and lncRNA-miRNA-mRNA interactions. Methods: Whole-genome sequencing (WGS) was performed on samples from asthenozoospermic and normozoospermic men. Additionally, an RNA-seq dataset from normozoospermic and asthenozoospermic individuals was analyzed to identify DE lncRNAs. Bioinformatics analyses were conducted to map unique variants on DE lncRNAs, followed by prioritization based on predicted functional impact. The structural impact of the variants and their effects on lncRNA-miRNA interactions were assessed using computational tools. Gene ontology (GO) and KEGG pathway analyses were employed to investigate the affected biological processes and pathways. Results: We identified 4173 unique variants mapped to 258 DE lncRNAs. After prioritization, 5 unique variants in 5 lncRNAs were found to affect lncRNA structure, while 20 variants in 17 lncRNAs were predicted to disrupt miRNA-lncRNA interactions. Enriched pathways included Wnt signaling, phosphatase binding, and cell proliferation, all previously implicated in reproductive health. Conclusions: This study identifies specific variants in DE lncRNAs that may play a role in asthenozoospermia. Given the limited research utilizing WGS to explore the role of noncoding RNAs in male infertility, our findings provide valuable insights and a foundation for future studies.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Maria Katsigianni
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Theologia Sarafidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Alexia Chatziparasidou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
- Embryolab IVF Unit, St. 173-175 Ethnikis Antistaseos, Kalamaria, 55134 Thessaloniki, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
18
|
Sun SL, Jiang YY, Yang JP, Xiu YH, Bilal A, Long HX. Predicting noncoding RNA and disease associations using multigraph contrastive learning. Sci Rep 2025; 15:230. [PMID: 39747154 PMCID: PMC11695719 DOI: 10.1038/s41598-024-81862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
MiRNAs and lncRNAs are two essential noncoding RNAs. Predicting associations between noncoding RNAs and diseases can significantly improve the accuracy of early diagnosis.With the continuous breakthroughs in artificial intelligence, researchers increasingly use deep learning methods to predict associations. Nevertheless, most existing methods face two major issues: low prediction accuracy and the limitation of only being able to predict a single type of noncoding RNA-disease association. To address these challenges, this paper proposes a method called K-Means and multigraph Contrastive Learning for predicting associations among miRNAs, lncRNAs, and diseases (K-MGCMLD). The K-MGCMLD model is divided into four main steps. The first step is the construction of a heterogeneous graph. The second step involves down sampling using the K-means clustering algorithm to balance the positive and negative samples. The third step is to use an encoder with a Graph Convolutional Network (GCN) architecture to extract embedding vectors. Multigraph contrastive learning, including both local and global graph contrastive learning, is used to help the embedding vectors better capture the latent topological features of the graph. The fourth step involves feature reconstruction using the balanced positive and negative samples and the embedding vectors fed into an XGBoost classifier for multi-association classification prediction. Experimental results have shown that AUC value for miRNA-disease association is 0.9542, lncRNA-disease association is 0.9603, and lncRNA-miRNA association is 0.9687. Additionally, this study has conducted case analyses using K-MGCMLD, which has validated the associations of all the top 30 miRNAs predicted to be associated with lung cancer and Alzheimer's diseases.
Collapse
Affiliation(s)
- Si-Lin Sun
- College of Information Science Technology, Hainan Normal University, Haikou, 571158, China
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China
| | - Yue-Yi Jiang
- College of Information Science Technology, Hainan Normal University, Haikou, 571158, China
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China
| | - Jun-Ping Yang
- College of Information Science Technology, Hainan Normal University, Haikou, 571158, China
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China
| | - Yu-Han Xiu
- College of Information Science Technology, Hainan Normal University, Haikou, 571158, China
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China
| | - Anas Bilal
- College of Information Science Technology, Hainan Normal University, Haikou, 571158, China
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China
| | - Hai-Xia Long
- College of Information Science Technology, Hainan Normal University, Haikou, 571158, China.
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
19
|
Rozek W, Kwasnik M, Socha W, Czech B, Rola J. Profiling of snoRNAs in Exosomes Secreted from Cells Infected with Influenza A Virus. Int J Mol Sci 2024; 26:12. [PMID: 39795871 PMCID: PMC11720657 DOI: 10.3390/ijms26010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Small nucleolar RNAs (snoRNAs) are non-coding RNAs (ncRNAs) that regulate many cellular processes. Changes in the profiles of cellular ncRNAs and those secreted in exosomes are observed during viral infection. In our study, we analysed differences in expression profiles of snoRNAs isolated from exosomes of influenza (IAV)-infected and non-infected MDCK cells using high-throughput sequencing. The analysis revealed 133 significantly differentially regulated snoRNAs (131 upregulated and 2 downregulated), including 93 SNORD, 38 SNORA, and 2 SCARNA. The most upregulated was SNORD58 (log2FoldChange = 9.61), while the only downregulated snoRNAs were SNORD3 (log2FC = -2.98) and SNORA74 (log2FC = -2.67). Several snoRNAs previously described as involved in viral infections were upregulated, including SNORD27, SNORD28, SNORD29, SNORD58, and SNORD44. In total, 533 interactors of dysregulated snoRNAs were identified using the RNAinter database with an assigned confidence score ≥ 0.25. The main groups of predicted interactors were transcription factors (TFs, 169 interactors) and RNA-binding proteins (RBPs, 130 interactors). Among the most important were pioneer TFs such as POU5F1, SOX2, CEBPB, and MYC, while in the RBP category, notable interactors included Polr2a, TNRC6A, IGF2BP3, and FMRP. Our results suggest that snoRNAs are involved in pro-viral activity, although follow-up studies including experimental validation would be beneficial.
Collapse
Affiliation(s)
- Wojciech Rozek
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| | - Malgorzata Kwasnik
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| | - Wojciech Socha
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| | | | - Jerzy Rola
- Department of Virology, National Veterinary Research Institute, 24-100 Pulawy, Poland; (M.K.); (W.S.); (J.R.)
| |
Collapse
|
20
|
Kumar NM, Navaneeth N, Shettar A, Chelimeswamy A. Elements of liquid biopsies: isolation, analysis, and clinical application in cancer diagnosis to prognosis. Expert Rev Mol Diagn 2024:1-12. [PMID: 39695357 DOI: 10.1080/14737159.2024.2445111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 12/20/2024]
Abstract
INTRODUCTION The liquid biopsy is a breakthrough in the field of medical diagnostics. It serves as a sentinel that can quietly detect even the subtlest aberrations that indicate the presence of disease. They make it possible to uncover relevant genetic factors of tumors with minimal to no risk to cancer patients. Liquid biopsies allow detailed diagnosis, dynamic treatment monitoring, and accurate prognosis. They are also invaluable in diagnosing other diseases such as infectious diseases and aberrant gene mutations. AREAS COVERED The present review undertakes an in-depth analysis of the existing status of liquid biopsy diagnostic tools, focusing on their principal components. Furthermore, the review highlights pertinent and recent research in this field to provide a comprehensive understanding of the current state of this technology and its prospects. EXPERT OPINION Despite new and upcoming research in liquid biopsies, multiple areas need to be further explored before the viable transition into the clinical arena. With the advancements in tools such as artificial intelligence and machine learning and the integration of these technologies with liquid biopsies, these challenges are being addressed and will eventually lead to the development of a highly evolved liquid biopsy diagnostic tools.
Collapse
Affiliation(s)
| | - Niyati Navaneeth
- Department of Biotechnology, M.S Ramaiah Institute of Technology, Bengaluru, India
| | - Abhijith Shettar
- Department of Biotechnology, M.S Ramaiah Institute of Technology, Bengaluru, India
| | - Anupama Chelimeswamy
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| |
Collapse
|
21
|
Anvari S, Nikbakht M, Vaezi M, Amini-Kafiabad S, Ahmadvand M. Immune checkpoints and ncRNAs: pioneering immunotherapy approaches for hematological malignancies. Cancer Cell Int 2024; 24:410. [PMID: 39702293 DOI: 10.1186/s12935-024-03596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Hematological malignancies are typically treated with chemotherapy and radiotherapy as the first-line conventional therapies. However, non-coding RNAs (ncRNAs) are a rapidly expanding field of study in cancer biology that influences the growth, differentiation, and proliferation of tumors by targeting immunological checkpoints. This study reviews the results of studies (from 2012 to 2024) that consider the immune checkpoints and ncRNAs in relation to hematological malignancies receiving immunotherapy. This article provides a summary of the latest advancements in immunotherapy for treating hematological malignancies, focusing on the role of immune checkpoints and ncRNAs in the immune response and their capacity for innovative strategies. The paper also discusses the function of immune checkpoints in maintaining immune homeostasis and how their dysregulation can contribute to developing leukemia and lymphoma. Finally, this research concludes with a discussion on the obstacles and future directions in this rapidly evolving field, emphasizing the need for continued research to fully harness the capacity of immune checkpoints and ncRNAs in immunotherapy for hematological malignancies.
Collapse
Affiliation(s)
- Samira Anvari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohsen Nikbakht
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology, and Stem Cell Transplantation Research Center Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Hussain S, Gupta G, Shahwan M, Bansal P, Kaur H, Deorari M, Pant K, Ali H, Singh SK, Rama Raju Allam VS, Paudel KR, Dua K, Kumarasamy V, Subramaniyan V. Non-coding RNA: A key regulator in the Glutathione-GPX4 pathway of ferroptosis. Noncoding RNA Res 2024; 9:1222-1234. [PMID: 39036600 PMCID: PMC11259992 DOI: 10.1016/j.ncrna.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/23/2024] Open
Abstract
Ferroptosis, a form of regulated cell death, has emerged as a crucial process in diverse pathophysiological states, encompassing cancer, neurodegenerative ailments, and ischemia-reperfusion injury. The glutathione (GSH)-dependent lipid peroxidation pathway, chiefly governed by glutathione peroxidase 4 (GPX4), assumes an essential part in driving ferroptosis. GPX4, as the principal orchestrator of ferroptosis, has garnered significant attention across cancer, cardiovascular, and neuroscience domains over the past decade. Noteworthy investigations have elucidated the indispensable functions of ferroptosis in numerous diseases, including tumorigenesis, wherein robust ferroptosis within cells can impede tumor advancement. Recent research has underscored the complex regulatory role of non-coding RNAs (ncRNAs) in regulating the GSH-GPX4 network, thus influencing cellular susceptibility to ferroptosis. This exhaustive review endeavors to probe into the multifaceted processes by which ncRNAs control the GSH-GPX4 network in ferroptosis. Specifically, we delve into the functions of miRNAs, lncRNAs, and circRNAs in regulating GPX4 expression and impacting cellular susceptibility to ferroptosis. Moreover, we discuss the clinical implications of dysregulated interactions between ncRNAs and GPX4 in several conditions, underscoring their capacity as viable targets for therapeutic intervention. Additionally, the review explores emerging strategies aimed at targeting ncRNAs to modulate the GSH-GPX4 pathway and manipulate ferroptosis for therapeutic advantage. A comprehensive understanding of these intricate regulatory networks furnishes insights into innovative therapeutic avenues for diseases associated with perturbed ferroptosis, thereby laying the groundwork for therapeutic interventions targeting ncRNAs in ferroptosis-related pathological conditions.
Collapse
Affiliation(s)
- Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun, 248002, India
- Graphic Era Hill University, Clement Town, Dehradun, 248002, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- School of Medical and Life Sciences, Sunway University, 47500 Sunway City, Malaysia
| | | | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123 Broadway, Ultimo, NSW, 2007, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
23
|
Behl T, Kyada A, Roopashree R, Nathiya D, Arya R, Kumar MR, Khalid M, Gulati M, Sachdeva M, Fareed M, Patra PK, Agrawal A, Wal P, Gasmi A. Epigenetic biomarkers in Alzheimer's disease: Diagnostic and prognostic relevance. Ageing Res Rev 2024; 102:102556. [PMID: 39490904 DOI: 10.1016/j.arr.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) is a leading cause of cognitive decline in the aging population, presenting a critical need for early diagnosis and effective prognostic tools. Epigenetic modifications, including DNA methylation, histone modifications, and non-coding RNAs, have emerged as promising biomarkers for AD due to their roles in regulating gene expression and potential for reversibility. This review examines the current landscape of epigenetic biomarkers in AD, emphasizing their diagnostic and prognostic relevance. DNA methylation patterns in genes such as APP, PSEN1, and PSEN2 are highlighted for their strong associations with AD pathology. Alterations in DNA methylation at specific CpG sites have been consistently observed in AD patients, suggesting their utility in early detection. Histone modifications, such as acetylation and methylation, also play a crucial role in chromatin remodelling and gene expression regulation in AD. Dysregulated histone acetylation and methylation have been linked to AD progression, making these modifications valuable biomarkers. Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), further contribute to the epigenetic regulation in AD. miRNAs can modulate gene expression post-transcriptionally and have been found in altered levels in AD, while lncRNAs can influence chromatin structure and gene expression. The presence of these non-coding RNAs in biofluids like blood and cerebrospinal fluid positions them as accessible and minimally invasive biomarkers. Technological advancements in detecting and quantifying epigenetic modifications have propelled the field forward. Techniques such as next-generation sequencing, bisulfite sequencing, and chromatin immunoprecipitation assays offer high sensitivity and specificity, enabling the detailed analysis of epigenetic changes in clinical samples. These tools are instrumental in translating epigenetic research into clinical practice. This review underscores the potential of epigenetic biomarkers to enhance the early diagnosis and prognosis of AD, paving the way for personalized therapeutic strategies and improved patient outcomes. The integration of these biomarkers into clinical workflows promises to revolutionize AD management, offering hope for better disease monitoring and intervention.
Collapse
Affiliation(s)
- Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab 140306, India.
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, Gujarat 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mohammad Khalid
- Department of pharmacognosy, College of pharmacy, Prince Sattam Bin Abdulaziz University Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box No. 71666, Riyadh 11597, Saudi Arabia
| | - Pratap Kumar Patra
- School of Pharmacy & Life Sciences, Centurion University of Technology & Managemnet, Bhubaneswar, Odisha 752050, India
| | - Ankur Agrawal
- Jai Institute of Pharmaceutical Sciences and Research, Gwalior, Madhya Pradesh 474001, India
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology, Pharmacy, NH-19, Bhauti Road, Kanpur, UP 209305, India
| | - Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France; International Institute of Nutrition and Micronutrition Sciences, Saint-Étienne, France
| |
Collapse
|
24
|
Kaur P, Sharma P, Bhatia P, Singh M. Recent advances on biogenesis, functions and therapeutic potential of long noncoding RNAs in T cell acute lymphoblastic leukemia. Discov Oncol 2024; 15:729. [PMID: 39612075 DOI: 10.1007/s12672-024-01618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
T-cell Acute Lymphoblastic Leukemia (T-ALL) is a highly aggressive form of ALL with at least 25% relapse rates. The high relapse rates are often linked to poor prognoses. More detailed studies for novel therapeutic targets for the treatment of T-ALL are required as the genetic and transcriptomic data currently available on T-ALL pathophysiology is insufficient. Long non-coding RNAs are emerging as important players in the regulation of tumour proliferation and metastasis. Studies on various cancers have revealed their potential as biomarkers and therapeutic targets in treatment. This review describes the characterization, biosynthesis, and role of long non-coding RNA in T-ALL and highlights their potential as next generation molecule in development of promising diagnostic, prognostic and/or therapeutic markers.
Collapse
Affiliation(s)
- Parminder Kaur
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Sharma
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Minu Singh
- Haematology-Oncology Unit, Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
25
|
Feng X, Guang S. Functions and applications of RNA interference and small regulatory RNAs. Acta Biochim Biophys Sin (Shanghai) 2024; 57:119-130. [PMID: 39578714 PMCID: PMC11802346 DOI: 10.3724/abbs.2024196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/03/2024] [Indexed: 11/24/2024] Open
Abstract
Small regulatory RNAs play a variety of crucial roles in eukaryotes, influencing gene regulation, developmental timing, antiviral defense, and genome integrity via a process termed RNA interference (RNAi). This process involves Argonaute/small RNA (AGO/sRNA) complexes that target transcripts via sequence complementarity and modulate gene expression and epigenetic modifications. RNAi is a highly conserved gene regulatory phenomenon that recognizes self- and non-self nucleic acids, thereby defending against invasive sequences. Since its discovery, RNAi has been widely applied in functional genomic studies and a range of practical applications. In this review, we focus on the current understanding of the biological roles of the RNAi pathway in transposon silencing, fertility, developmental regulation, immunity, stress responses, and acquired transgenerational inheritance. Additionally, we provide an overview of the applications of RNAi technology in biomedical research, agriculture, and therapeutics.
Collapse
Affiliation(s)
- Xuezhu Feng
- School of Basic Medical SciencesAnhui Medical UniversityHefei230032China
| | - Shouhong Guang
- Department of Obstetrics and Gynecologythe First Affiliated Hospital of USTCThe USTC RNA InstituteMinistry of Education Key Laboratory for Membraneless Organelles & Cellular DynamicsHefei National Research Center for Physical Sciences at the MicroscaleCenter for Advanced Interdisciplinary Science and Biomedicine of IHMSchool of Life SciencesDivision of Life Sciences and MedicineBiomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefei230027China
| |
Collapse
|
26
|
Luo X, Wen W. MicroRNA in prostate cancer: from biogenesis to applicative potential. BMC Urol 2024; 24:244. [PMID: 39506720 PMCID: PMC11539483 DOI: 10.1186/s12894-024-01634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Prostate cancer is the most common solid malignant tumor in men, characterized by high morbidity and mortality. While current screening tools, such as prostate-specific antigen (PSA) testing and digital rectal examination, are available for early detection of prostate cancer, their sensitivity and specificity are limited. Tissue puncture biopsy, although capable of offering a definitive diagnosis, has poor positive predictive rates and burdens the patient more. Therefore, more reliable molecular diagnostic tools for prostate cancer urgently need to be developed. In recent years, microRNAs (miRNAs) have attracted much attention in prostate cancer research. miRNAs are extensively engaged in biological processes such as cell proliferation, differentiation, apoptosis, migration, and invasion by modulating gene expression post-transcriptionally. Dysregulation of miRNA expression in cancer is considered a critical factor in tumorigenesis and progression. This review first briefly introduces the biogenesis of miRNAs and their functions in cancer, then focuses on tumor-promoting miRNAs and tumor-suppressor miRNAs in prostate cancer. Finally, the potential application of miRNAs as multifunctional tools for cancer diagnosis, prognostic assessment, and therapy is discussed in detail. The concluding section summarizes the major points of the review and the challenges ahead.
Collapse
Affiliation(s)
- Xu Luo
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Wen
- Department of Urology, West China Tianfu Hospital, Sichuan University, Chengdu, 610213, P.R. China.
| |
Collapse
|
27
|
Wang W, Liu Y, Wu J. The roles of lncRNAs in the development of drug resistance of oral cancers. Biomed Pharmacother 2024; 180:117458. [PMID: 39413618 DOI: 10.1016/j.biopha.2024.117458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024] Open
Abstract
Oral cancers are a significant global health concern, with a high incidence of treatment failure primarily due to the development of drug resistance. Long non-coding RNAs (lncRNAs) have emerged as critical regulators of gene expression, playing pivotal roles in various cellular processes, including tumor progression and response to therapy. This review explores the multifaceted roles of lncRNAs in the development of drug resistance in oral cancers. We highlight the mechanisms by which lncRNAs modulate drug efflux, apoptosis, epithelial-mesenchymal transition (EMT), and other pathways associated with chemoresistance. Key lncRNAs implicated in resistance to commonly used chemotherapeutic agents in oral cancers are discussed, along with their potential as therapeutic targets. Understanding the involvement of lncRNAs in drug resistance mechanisms offers promising avenues for overcoming treatment barriers and improving patient outcomes. This review underscores the need for further research to elucidate the precise roles of lncRNAs in oral cancer resistance and their translation into clinical interventions.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Yi Liu
- Department of Stomatology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei 43400, China
| | - Jianan Wu
- Experimental and Practical Teaching Center, Hubei College of Chinese Medicine, Jingzhou, Hubei 434000, China.
| |
Collapse
|
28
|
Joghataie P, Ardakani MB, Sabernia N, Salary A, Khorram S, Sohbatzadeh T, Goodarzi V, Amiri BS. The Role of Circular RNA in the Pathogenesis of Chemotherapy-Induced Cardiotoxicity in Cancer Patients: Focus on the Pathogenesis and Future Perspective. Cardiovasc Toxicol 2024; 24:1151-1167. [PMID: 39158829 DOI: 10.1007/s12012-024-09914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Cardiotoxicity is a serious challenge cancer patients face today. Various factors are involved in cardiotoxicity. Circular RNAs (circRNAs) are one of the effective factors in the occurrence and prevention of cardiotoxicity. circRNAs can lead to increased proliferation, apoptosis, and regeneration of cardiomyocytes by regulating the molecular pathways, as well as increasing or decreasing gene expression; some circRNAs have a dual role in cardiomyocyte regeneration or death. Identifying each of the pathways related to these processes can be effective on managing patients and preventing cardiotoxicity. In this study, an overview of the molecular pathways involved in cardiotoxicity by circRNAs and their effects on the downstream factors have been discussed.
Collapse
Affiliation(s)
- Pegah Joghataie
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Neda Sabernia
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Bahareh Shateri Amiri
- Assistant Professor of Internal Medicine, Department of Internal Medicine, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Li W, Zheng L, Luo P, Chen T, Zou J, Chen Q, Cheng L, Gan L, Zhang F, Qian B. Critical role of non-coding RNA-mediated ferroptosis in urologic malignancies. Front Immunol 2024; 15:1486229. [PMID: 39544949 PMCID: PMC11560455 DOI: 10.3389/fimmu.2024.1486229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Urologic malignancies, characterized by their high aggressiveness and metastatic potential, pose a significant public health challenge globally. Ferroptosis, a novel mode of cell death, typically arises from intracellular iron ion overload and the accumulation of lipid peroxides. This process has been shown to play a crucial regulatory role in various pathological conditions, particularly in cancer, including urologic cancers. However, the comprehensive regulatory mechanisms underlying ferroptosis remain poorly understood, which somewhat limits its broader application in cancer therapy. Non-coding RNAs (ncRNAs), which encompass microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are non-coding transcripts that play pivotal roles in various physiological processes, such as proliferation, differentiation, apoptosis, and cell cycle regulation, by modulating the expression of target genes. The biological functions and potential regulatory mechanisms of ncRNAs in the context of cancer-related ferroptosis have been partially elucidated. Research indicates that ncRNAs can influence the progression of urologic cancers by affecting cell proliferation, migration, and drug resistance through the regulation of ferroptosis. Consequently, this review aims to clarify the functions and mechanisms of the ncRNA-ferroptosis axis in urologic cancers and to evaluate the clinical significance of ferroptosis-related ncRNAs, thereby providing new insights into cancer biology and therapeutic strategies that may ultimately benefit a diverse range of cancer patients.
Collapse
Affiliation(s)
- Wei Li
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Liying Zheng
- Department of Graduate, The First Affiliated Hospital of Gannan Medical University, Jiangxi, Jiangxi, China
| | - Peiyue Luo
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Tao Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Jun Zou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Qi Chen
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Le Cheng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Lifeng Gan
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Fangtao Zhang
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| | - Biao Qian
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Urology and Andrology of Ganzhou, Ganzhou, Jiangxi, China
| |
Collapse
|
30
|
Flick KM, Demirci H, Demirci FY. Epigenetics of Conjunctival Melanoma: Current Knowledge and Future Directions. Cancers (Basel) 2024; 16:3687. [PMID: 39518125 PMCID: PMC11544918 DOI: 10.3390/cancers16213687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The purpose of this article is to provide a literature review of the epigenetic understanding of conjunctival melanoma (CM), with a primary focus on current gaps in knowledge and future directions in research. CM is a rare aggressive cancer that predominantly affects older adults. Local recurrences and distant metastases commonly occur in CM patients; however, their prediction and management remain challenging. Hence, there is currently an unmet need for useful biomarkers and more effective treatments to improve the clinical outcomes of these patients. Like other cancers, CM occurrence and prognosis are believed to be influenced by multiple genetic and epigenetic factors that contribute to tumor development/progression/recurrence/spread, immune evasion, and primary/acquired resistance to therapies. Epigenetic alterations may involve changes in chromatin conformation/accessibility, post-translational histone modifications or the use of histone variants, changes in DNA methylation, alterations in levels/functions of short (small) or long non-coding RNAs (ncRNAs), or RNA modifications. While recent years have witnessed a rapid increase in available epigenetic technologies and epigenetic modulation-based treatment options, which has enabled the development/implementation of various epi-drugs in the cancer field, the epigenetic understanding of CM remains limited due to a relatively small number of epigenetic studies published to date. These studies primarily investigated DNA methylation, ncRNA (e.g., miRNA or circRNA) expression, or RNA methylation. While these initial epigenetic investigations have revealed some potential biomarkers and/or therapeutic targets, they had various limitations, and their findings warrant replication in independent and larger studies/samples. In summary, an in-depth understanding of CM epigenetics remains largely incomplete but essential for advancing our molecular knowledge and improving clinical management/outcomes of this aggressive disease.
Collapse
Affiliation(s)
- Kaylea M. Flick
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hakan Demirci
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - F. Yesim Demirci
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
31
|
Wang X, Wang ZY, Chen HT, Luo YY, Li SY, Luo XM, Yang JH, Ma YX, Jin XB, Liu J, Wang ZM. SZ-685C inhibits the growth of non-functioning pituitary adenoma by down-regulating miR-340-3p and inducing autophagy. Heliyon 2024; 10:e37230. [PMID: 39286117 PMCID: PMC11402753 DOI: 10.1016/j.heliyon.2024.e37230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Background SZ-685C, an anthracycline compound derived from the mangrove endophytic fungus Halorosellinia sp. (No. 1403) collected from the South China Sea, has shown strong anticancer activities. Non-functioning pituitary adenomas (NFPAs) are a type of tumor that can be challenging to manage clinically and have a significant unmet medical need. Our research has found that SZ-685C showed an inhibitory effect on the viability, migration ability, and proliferation ability of a human non-functioning pituitary tumor-derived folliculostellate (PDFS) cell line. Methods SZ-685C was prepared and purified from the mangrove endophytic fungus No. 1403. PDFS cells were exposed to SZ-685C, and the effect of SZ-685C on PDFS cells was evaluated. RNA sequencing was used to analyze the miRNA expression profile in PDFS cells of the control group and SZ-685C-treated group. Quantitative polymerase chain reaction (qPCR) was performed to verify the expression of selected miR-340-3p. The effects of SZ-685C on PDFS cells after overexpression of miR-340-3p were evaluated. Dual-luciferase reporter assays showed PPP1CB is a direct target of miR-340-3p. Finally, the action pathway of the selected miR-340-3p was predicted and evaluated through bioinformatics analysis. Results SZ-685C reduced cell viability in PDFS cells, accompanied by inhibition of migration ability and proliferation ability. The IC50 value for 24 h is 9.144 ± 0.991 μM, and for 48 h is 4.635 ± 0.551 μM. SZ-685C increased the protein levels of Beclin 1, the ratio of LC3-II to LC3-I, and LAMP-1, and down-regulated p62. MiRNA sequencing and further validation showed that miR-340-3p significantly decreased in PDFS cells treated with SZ-685C. After overexpression of miR-340-3p, the inhibition of viability, migration ability, proliferation ability, and autophagy-promoting effect of SZ-685C on PDFS cells were weakened. SZ-685C caused a decrease in PPP1CB expression and activation of the ERK pathway in PDFS cells, and this trend was reversed after overexpression of miR-340-3p. Conclusions SZ-685C downregulates the expression of miR-340-3p in PDFS cells, thereby reducing the expression of PPP1CB and activating the ERK pathway to promote autophagic cell death, leading to inhibition of PDFS cell growth.
Collapse
Affiliation(s)
- Xin Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhong-Yu Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hui-Tong Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu-You Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Si-Yuan Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiong-Ming Luo
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jun-Hua Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu-Xin Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao-Bao Jin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jing Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zong-Ming Wang
- Pituitary Tumor Center, Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
32
|
Kolipaka R, Magesh I, Bharathy MA, Karthik S, Saranya I, Selvamurugan N. A potential function for MicroRNA-124 in normal and pathological bone conditions. Noncoding RNA Res 2024; 9:687-694. [PMID: 38577015 PMCID: PMC10990750 DOI: 10.1016/j.ncrna.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 04/06/2024] Open
Abstract
Cells produce short single-stranded non-coding RNAs (ncRNAs) called microRNAs (miRNAs), which actively regulate gene expression at the posttranscriptional level. Several miRNAs have been observed to exert significant impacts on bone health and bone-related disorders. One of these, miR-124, is observed in bone microenvironments and is conserved across species. It affects bone cell growth and differentiation by activating different transcription factors and signaling pathways. In-depth functional analyses of miR-124 have revealed several physiological and pathological roles exerted through interactions with other ncRNAs. Deciphering these RNA-mediated signaling networks and pathways is essential for understanding the potential impacts of dysregulated miRNA functions on bone biology. In this review, we aim to provide a comprehensive analysis of miR-124's involvement in bone physiology and pathology. We highlight the importance of miR-124 in controlling transcription factors and signaling pathways that promote bone growth. This review reveals therapeutic implications for the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Rushil Kolipaka
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Induja Magesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - M.R. Ashok Bharathy
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - S. Karthik
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - I. Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - N. Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
33
|
Wu X, Xia P, Yang L, Lu C, Lu Z. The roles of long non-coding RNAs in Alzheimer's disease diagnosis, treatment, and their involvement in Alzheimer's disease immune responses. Noncoding RNA Res 2024; 9:659-666. [PMID: 38577023 PMCID: PMC10987299 DOI: 10.1016/j.ncrna.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most frequent type of dementia, presenting a substantial danger to the health and well-being of the aged population. It has arisen as a significant public health problem with considerable socioeconomic repercussions. Unfortunately, no effective treatments or diagnostic tools are available for Alzheimer's disease. Despite substantial studies on the pathophysiology of Alzheimer's, the molecular pathways underpinning its development remain poorly understood. Long non-coding RNAs (lncRNAs) vary in size from 200 nucleotides to over 100 kilobytes and have been found to play critical roles in various vital biological processes that play critical in developing Alzheimer's disease. This review intends to examine the functions of long non-coding RNAs in diagnosing and treating Alzheimer's disease and their participation in immunological responses associated with AD.
Collapse
Affiliation(s)
- Xiaoben Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Pengcheng Xia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Yang
- Department of Medical Engineering, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chao Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
34
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
35
|
Jafarzadeh A, Naseri B, Khorramdelazad H, Jafarzadeh S, Ghorbaninezhad F, Asgari Z, Masoumi J, Nemati M. Reciprocal Interactions Between Apelin and Noncoding RNAs in Cancer Progression. Cell Biochem Funct 2024; 42:e4116. [PMID: 39233464 DOI: 10.1002/cbf.4116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Apelin, a bioactive peptide that serves as an endogenous ligand for the apelin receptor (APJ), is overexpressed in various types of cancers and contributes to cancer cell proliferation, viability, migration, angiogenesis, and metastasis, as well as immune deviation. Noncoding RNAs (ncRNAs) regulate gene expression, and there is growing evidence suggesting a bidirectional crosstalk between ncRNAs (including long noncoding RNAs [lncRNAs], circular RNAs [circRNAs], and microRNAs [miRNAs]) and apelin in cancers. Certain miRNAs can directly target the apelin and inhibit its expression, thereby suppressing tumor growth. It has been indicated that miR-224, miR-195/miR-195-5p, miR-204-5p, miR-631, miR-4286, miR-637, miR-4493, and miR-214-3p target apelin mRNA and influence its expression in prostate cancer, lung cancer, esophageal cancer, chondrosarcoma, melanoma, gastric cancer, glioma, and hepatocellular carcinoma (HCC), respectively. Moreover, circ-NOTCH1, circ-ZNF264, and lncRNA BACE1-AS upregulate apelin expression in gastric cancer, glioma, and HCC, respectively. On the other hand, apelin has been shown to regulate the expression of certain ncRNAs to affect tumorigenesis. It was revealed that apelin affects the expression of circ_0000004/miR-1303, miR-15a-5p, and miR-106a-5p in osteosarcoma, lung cancer, and prostate cancer, respectively. This review explains a bidirectional interplay between ncRNAs and apelin in cancers to provide insights concerning the molecular mechanisms underlying this crosstalk and potential implications for cancer therapy.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Jafarzadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farid Ghorbaninezhad
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Asgari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Javad Masoumi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
36
|
Black CM, Braden AA, Nasim S, Tripathi M, Xiao J, Khan MM. The Association between Long Non-Coding RNAs and Alzheimer's Disease. Brain Sci 2024; 14:818. [PMID: 39199508 PMCID: PMC11353078 DOI: 10.3390/brainsci14080818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Neurodegeneration occurs naturally as humans age, but the presence of additional pathogenic mechanisms yields harmful and consequential effects on the brain. Alzheimer's disease (AD), the most common form of dementia, is a composite of such factors. Despite extensive research to identify the exact causes of AD, therapeutic approaches for treating the disease continue to be ineffective, indicating important gaps in our understanding of disease mechanisms. Long non-coding RNAs (lncRNAs) are an endogenous class of regulatory RNA transcripts longer than 200 nucleotides, involved in various regulatory networks, whose dysregulation is evident in several neural and extraneural diseases. LncRNAs are ubiquitously expressed across all tissues with a wide range of functions, including controlling cell differentiation and development, responding to environmental stimuli, and other physiological processes. Several lncRNAs have been identified as potential contributors in worsening neurodegeneration due to altered regulation during abnormal pathological conditions. Within neurological disease, lncRNAs are prime candidates for use as biomarkers and pharmacological targets. Gender-associated lncRNA expression is altered in a gender-dependent manner for AD, suggesting more research needs to be focused on this relationship. Overall, research on lncRNAs and their connection to neurodegenerative disease is growing exponentially, as commercial enterprises are already designing and employing RNA therapeutics. In this review we offer a comprehensive overview of the current state of knowledge on the role of lncRNAs in AD and discuss the potential implications of lncRNA as potential therapeutic targets and diagnostic biomarkers in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Carson M. Black
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
| | - Anneliesse A. Braden
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Samia Nasim
- Departments of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Manish Tripathi
- Medicine and Oncology, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
| | - Jianfeng Xiao
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
| | - Mohammad Moshahid Khan
- Departments of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (C.M.B.); (J.X.)
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Division of Regenerative and Rehabilitation Sciences, Department of Physical Therapy, Center for Muscle, Metabolism and Neuropathology, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
37
|
Ji A, Li H, Fu X, Zhang Y, Liu Y. Long non-coding RNA NEAT1 induced by BHLHE40 activates Wnt/β-catenin signaling and potentiates colorectal cancer progression. Cell Div 2024; 19:25. [PMID: 39098910 PMCID: PMC11299305 DOI: 10.1186/s13008-024-00129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Nuclear-enriched abundant transcript 1 (NEAT1), a long noncoding RNA (lncRNA), has been implicated in the colorectal cancer (CRC) progression. However, its upstream mechanism has not been well studied. In the present study, the functions and mechanisms of NEAT1 in CRC were investigated. METHODS The NEAT1 expression in CRC tissues and CRC cells was analyzed by RT-qPCR. The genes co-expressed with NEAT1 in CRC were obtained from UALCAN, which were intersected with the transcription factors targeting NEAT1 from hTFtarget. Dual-luciferase assay, RT-qPCR, and ChIP were conducted to analyze the transcriptional regulatory relationship between BHLHE40 and NEAT1. LoVo and HCT-15 cells knocking down BHLHE40 and overexpressing NEAT1 were subjected to MTT, Transwell, Western blot, and flow cytometry to examine the malignant aggressiveness of CRC cells. The effects of knocking down BHLHE40 and overexpressing NEAT1 on tumor and lung metastasis were investigated in mice using HE and immunohistochemical analyses. RESULTS NEAT1 and BHLHE40 were significantly overexpressed in CRC tissues and cells. BHLHE40 has a binding relationship with the NEAT1 promoter. Knockdown of BHLHE40 resulted in a reverted malignant phenotype in vitro and slowed tumor growth and metastasis dissemination in vivo, which were reversed by NEAT1 overexpression. Overexpression of BHLHE40 increased Wnt/β-catenin pathway activity, but knockdown of NEAT1 decreased Wnt/β-catenin pathway activity. CONCLUSIONS BHLHE40 mediates the transcriptional activation of NEAT1, which activates the Wnt/β-catenin pathway and promotes the CRC progression.
Collapse
Affiliation(s)
- Anlong Ji
- Department of General Surgery, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Haikou, 570216, Hainan, People's Republic of China
| | - Hui Li
- Department of Geriatrics, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Haikou, 570216, Hainan, People's Republic of China
| | - Xiangwei Fu
- Department of General Surgery, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Haikou, 570216, Hainan, People's Republic of China
| | - Yourong Zhang
- Department of General Surgery, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Haikou, 570216, Hainan, People's Republic of China
| | - Yanhe Liu
- Department of General Surgery, The Second Affiliated Hospital of Hainan Medical University, No. 368, Yehai Avenue, Haikou, 570216, Hainan, People's Republic of China.
| |
Collapse
|
38
|
Naidu S, Karnati S, Radhakrishnan H, Gupta A. Editorial: Role of non-coding RNAs (emphasis on the emerging role of circular RNAs) in cancer. Application potential for molecular diagnostics and therapeutics of cancer. Front Genet 2024; 15:1450309. [PMID: 39119580 PMCID: PMC11306118 DOI: 10.3389/fgene.2024.1450309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | | | - Anand Gupta
- Department of Dentistry, Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
39
|
Vaiasicca S, Melone G, James DW, Quintela M, Xiao J, Yao S, Finnell RH, Conlan RS, Francis LW, Corradetti B. Transcriptomic analysis reveals the anti-cancer effect of gestational mesenchymal stem cell secretome. Stem Cells Transl Med 2024; 13:693-710. [PMID: 38584493 PMCID: PMC11227973 DOI: 10.1093/stcltm/szae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
The environment created during embryogenesis contributes to reducing aberrations that drive structural malformations and tumorigenesis. In this study, we investigate the anti-cancer effect of mesenchymal stem cells (MSCs) derived from 2 different gestational tissues, the amniotic fluid (AF) and the chorionic villi (CV), with emphasis on their secretome. Transcriptomic analysis was performed on patient-derived AF- and CV-MSCs collected during prenatal diagnosis and identified both mRNAs and lncRNAs, involved in tissue homeostasis and inhibiting biological processes associated with the etiology of aggressive cancers while regulating immune pathways shown to be important in chronic disorders. Secretome enrichment analysis also identified soluble moieties involved in target cell regulation, tissue homeostasis, and cancer cell inhibition through the highlighted Wnt, TNF, and TGF-β signaling pathways. Transcriptomic data were experimentally confirmed through in vitro assays, by evaluating the anti-cancer effect of the media conditioned by AF- and CV-MSCs and the exosomes derived from them on ovarian cancer cells, revealing inhibitory effects in 2D (by reducing cell viability and inducing apoptosis) and in 3D conditions (by negatively interfering with spheroid formation). These data provide molecular insights into the potential role of gestational tissues-derived MSCs as source of anti-cancer factors, paving the way for the development of therapeutics to create a pro-regenerative environment for tissue restoration following injury, disease, or against degenerative disorders.
Collapse
Affiliation(s)
- Salvatore Vaiasicca
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60124, Ancona, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131, Ancona, Italy
| | - Gianmarco Melone
- Centre for NanoHealth, Swansea University Medical School, Singleton Park, SA2 8QA, Swansea, Wales, United Kingdom
| | - David W James
- Centre for NanoHealth, Swansea University Medical School, Singleton Park, SA2 8QA, Swansea, Wales, United Kingdom
| | - Marcos Quintela
- Centre for NanoHealth, Swansea University Medical School, Singleton Park, SA2 8QA, Swansea, Wales, United Kingdom
| | - Jing Xiao
- Center for Precision Environmental Health, Baylor College of Medicine, 77030, Houston, TX, United States
| | - Seydou Yao
- Centre for NanoHealth, Swansea University Medical School, Singleton Park, SA2 8QA, Swansea, Wales, United Kingdom
| | - Richard H Finnell
- Center for Precision Environmental Health, Baylor College of Medicine, 77030, Houston, TX, United States
- Departments of Molecular and Human Genetics Molecular & Cellular Biology and Medicine, Baylor College of Medicine, 77030, Houston, TX, United States
| | - Robert S Conlan
- Centre for NanoHealth, Swansea University Medical School, Singleton Park, SA2 8QA, Swansea, Wales, United Kingdom
- Department of Nanomedicine, Houston Methodist Research Institute, 77030, Houston, TX, United States
| | - Lewis W Francis
- Centre for NanoHealth, Swansea University Medical School, Singleton Park, SA2 8QA, Swansea, Wales, United Kingdom
| | - Bruna Corradetti
- Centre for NanoHealth, Swansea University Medical School, Singleton Park, SA2 8QA, Swansea, Wales, United Kingdom
- Center for Precision Environmental Health, Baylor College of Medicine, 77030, Houston, TX, United States
- Departments of Medicine, Section Oncology, Hematology, Baylor College of Medicine, 77030, Houston, TX, United States
| |
Collapse
|
40
|
Roso-Mares A, Andújar I, Díaz Corpas T, Sun BK. Non-coding RNAs as skin disease biomarkers, molecular signatures, and therapeutic targets. Hum Genet 2024; 143:801-812. [PMID: 37580609 DOI: 10.1007/s00439-023-02588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/23/2023] [Indexed: 08/16/2023]
Abstract
Non-coding RNAs (ncRNAs) are emerging as biomarkers, molecular signatures, and therapeutic tools and targets for diseases. In this review, we focus specifically on skin diseases to highlight how two classes of ncRNAs-microRNAs and long noncoding RNAs-are being used to diagnose medical conditions of unclear etiology, improve our ability to guide treatment response, and predict disease prognosis. Furthermore, we explore how ncRNAs are being used as both as drug targets and associated therapies have unique benefits, risks, and challenges to development, but offer a distinctive promise for improving patient care and outcomes.
Collapse
Affiliation(s)
- Andrea Roso-Mares
- Department of Dermatology, University of California San Diego, San Diego, CA, USA
- Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Isabel Andújar
- Department of Pharmacology, University of Valencia, Valencia, Spain
| | - Tania Díaz Corpas
- Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Department of Dermatology, Hospital Dr Peset, Valencia, Spain
| | - Bryan K Sun
- Department of Dermatology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
41
|
Canoy RJ, Sy JC, Deguit CD, Castro CB, Dimaapi LJ, Panlaqui BG, Perian W, Yu J, Velasco JM, Sevilleja JE, Gibson A. Non-coding RNAs involved in the molecular pathology of Alzheimer's disease: a systematic review. Front Neurosci 2024; 18:1421675. [PMID: 39005845 PMCID: PMC11243705 DOI: 10.3389/fnins.2024.1421675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia globally, having a pathophysiology that is complex and multifactorial. Recent findings highlight the significant role of non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and piwi-interacting RNAs (piRNAs) in the molecular mechanisms underlying AD. These ncRNAs are involved in critical biological processes such as cell proliferation, apoptosis, oxidative stress, amyloid-beta aggregation, tau phosphorylation, neuroinflammation, and autophagy, which are pivotal in AD development and progression. This systematic review aims to consolidate current scientific knowledge on the role of ncRNAs in AD, making it the first to encompass the four types of ncRNAs associated with the disease. Our comprehensive search and analysis reveal that ncRNAs not only play crucial roles in the pathogenesis of AD but also hold potential as biomarkers for its early detection and as novel therapeutic targets. Specifically, the findings underscore the significance of miRNAs in regulating genes involved in key AD pathways such as activin receptor signaling pathway, actomyosin contractile ring organization, and advanced glycation endproducts-receptor advanced glycation endproducts (AGE-RAGE) signaling pathway. This review also highlights the potential of ncRNAs in unveiling novel diagnostic and therapeutic strategies, emphasizing the need for further research to validate their clinical utility. Our systematic exploration provides a foundation for future bioinformatic analyses and the development of ncRNA-based precision medicine approaches for AD, offering new insights into the disease's molecular pathology and paving the way for innovative treatment strategies. Systematic review registration PROSPERO, https://www.crd.york.ac.uk/prospero/, CRD42022355307.
Collapse
Affiliation(s)
- Reynand Jay Canoy
- SciLore LLC, Kingsbury, TX, United States
- Instiute of Biology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Jenica Clarisse Sy
- SciLore LLC, Kingsbury, TX, United States
- Center for Research and Innovation, Ateneo de Manila University School of Medicine and Public Health, Pasig City, Philippines
| | - Christian Deo Deguit
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Caitlin Bridgette Castro
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Lyoneil James Dimaapi
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Beatrice Gabrielle Panlaqui
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Wenzel Perian
- National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Justine Yu
- Institute for Dementia Care Asia, Quezon City, Philippines
| | - John Mark Velasco
- Institute of Molecular Biology and Biotechnology, National Institutes of Health, University of the Philippines Manila, Manila, Philippines
| | | | - Anna Gibson
- SciLore LLC, Kingsbury, TX, United States
- Center for Research and Innovation, Ateneo de Manila University School of Medicine and Public Health, Pasig City, Philippines
| |
Collapse
|
42
|
Zhou Y, Qi T, Yang Y, Li Z, Hou Z, Zhao X, Ge Q, Lu Z. Effect of Different Staining Methods on Brain Cryosections. ACS Chem Neurosci 2024; 15:2243-2252. [PMID: 38779816 DOI: 10.1021/acschemneuro.4c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Staining frozen sections is often required to distinguish cell types for spatial transcriptomic studies of the brain. The impact of the staining methods on the RNA integrity of the cells becomes one of the limitations of spatial transcriptome technology with microdissection. However, there is a lack of systematic comparisons of different staining modalities for the pretreatment of frozen sections of brain tissue as well as their effects on transcriptome sequencing results. In this study, four different staining methods were analyzed for their effect on RNA integrity in frozen sections of brain tissue. Subsequently, differences in RNA quality in frozen sections under different staining conditions and their impact on transcriptome sequencing results were assessed by RNA-seq. As one of the most commonly used methods for staining pathological sections, HE staining seriously affects the RNA quality of frozen sections of brain tissue. In contrast, the homemade cresyl violet staining method developed in this study has the advantages of short staining time, low cost, and less RNA degradation. The homemade cresyl violet staining proposed in this study can be applied instead of HE staining as an advance staining step for transcriptome studies in frozen sections of brain tissue. In the future, this staining method may be suitable for wide application in brain-related studies of frozen tissue sections. Moreover, it is expected to become a routine step for staining cells before sampling in brain science.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ting Qi
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuwei Yang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhihui Li
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhuoran Hou
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
43
|
Hashem M, Mohandesi Khosroshahi E, Aliahmady M, Ghanei M, Soofi Rezaie Y, alsadat Jafari Y, rezaei F, Khodaparast eskadehi R, Kia Kojoori K, jamshidian F, Nabavi N, Rashidi M, Hasani Sadi F, Taheriazam A, Entezari M. Non-coding RNA transcripts, incredible modulators of cisplatin chemo-resistance in bladder cancer through operating a broad spectrum of cellular processes and signaling mechanism. Noncoding RNA Res 2024; 9:560-582. [PMID: 38515791 PMCID: PMC10955558 DOI: 10.1016/j.ncrna.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 03/23/2024] Open
Abstract
Bladder cancer (BC) is a highly frequent neoplasm in correlation with significant rate of morbidity, mortality, and cost. The onset of BC is predominantly triggered by environmental and/or occupational exposures to carcinogens, such as tobacco. There are two distinct pathways by which BC can be developed, including non-muscle-invasive papillary tumors (NMIBC) and non-papillary (or solid) muscle-invasive tumors (MIBC). The Cancer Genome Atlas project has further recognized key genetic drivers of MIBC along with its subtypes with particular properties and therapeutic responses; nonetheless, NMIBC is the predominant BC presentation among the suffering individuals. Radical cystoprostatectomy, radiotherapy, and chemotherapy have been verified to be the common therapeutic interventions in metastatic tumors, among which chemotherapeutics are more conventionally utilized. Although multiple chemo drugs have been broadly administered for BC treatment, cisplatin is reportedly the most effective chemo drug against the corresponding malignancy. Notwithstanding, tumor recurrence is usually occurred following the consumption of cisplatin regimens, particularly due to the progression of chemo-resistant trait. In this framework, non-coding RNAs (ncRNAs), as abundant RNA transcripts arise from the human genome, are introduced to serve as crucial contributors to tumor expansion and cisplatin chemo-resistance in bladder neoplasm. In the current review, we first investigated the best-known ncRNAs, i.e. microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), correlated with cisplatin chemo-resistance in BC cells and tissues. We noticed that these ncRNAs could mediate the BC-related cisplatin-resistant phenotype through diverse cellular processes and signaling mechanisms, reviewed here. Eventually, diagnostic and prognostic potential of ncRNAs, as well as their therapeutic capabilities were highlighted in regard to BC management.
Collapse
Affiliation(s)
- Mehrdad Hashem
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Aliahmady
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morvarid Ghanei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Soofi Rezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin alsadat Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Khodaparast eskadehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Kia Kojoori
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - faranak jamshidian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
44
|
Chodur GM, Steinberg FM. Human MicroRNAs Modulated by Diet: A Scoping Review. Adv Nutr 2024; 15:100241. [PMID: 38734078 PMCID: PMC11150912 DOI: 10.1016/j.advnut.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
Because of their role in regulating and fine-tuning gene expression in the posttranscriptional period, microRNA (miRNA) may represent a mediating factor that connects diet and metabolic regulation. Given the vast number of miRNAs and that modulations in miRNA happen in response to a variety of stimuli, a comprehensive registry of miRNAs impacted by diet and the food items that modulate them, would have utility in the identification of miRNA complements for analysis of diet interventions and in helping to establish linkages between the specific impacts of diet components. A scoping literature search of online databases (PubMed, SCOPUS, EMBASE, and Web of Science) was performed. Only studies in human populations, those that used a diet intervention or meal challenge, and those that measured miRNA profiles in the same subject at multiple time points were included. Of the 6167 studies screened, only 25 met the study criteria and were included in the review. Seven studies examined miRNA following a meal challenge, whereas 18 investigated miRNA following a sustained diet intervention. The results demonstrated that miRNA are modulated following a variety of diet interventions and that intensity of miRNA response is greater in metabolically healthy subjects. Heterogeneity in the intensity and length of the diet intervention, the study populations being observed, and the methodology through which target miRNA are identified contribute to a lack of comparability across studies. The findings of this review highlight the need for more study of miRNA responsiveness to intake and provide recommendations for future research.
Collapse
Affiliation(s)
- Gwen M Chodur
- Department of Nutrition, University of California-Davis, Davis, CA, United States
| | - Francene M Steinberg
- Department of Nutrition, University of California-Davis, Davis, CA, United States.
| |
Collapse
|
45
|
Gao S, Fan C, Wang Y, Yang W, Jiang H. LncRNA ENST00000440246.1 Promotes Alzheimer's Disease Progression by Targeting PP2A. Biochem Genet 2024; 62:2100-2116. [PMID: 37856039 DOI: 10.1007/s10528-023-10552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Alzheimer's disease (AD) is an extremely prevalent neurodegenerative disease. Long noncoding RNAs (lncRNAs) play pivotal roles in the regulation of AD. However, the function of most lncRNAs in AD remains to be elucidated. In this study, the effects of lncRNA ENST00000440246.1 on the biological characteristics of AD were explored. Differentially expressed lncRNAs in AD were identified through bioinformatics analysis and peripheral blood from thirty AD patients was collected to verify the expression of these lncRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). The correlations between lncRNAs and the Mini-Mental State Examination (MMSE) or the Montreal Cognitive Assessment (MoCA) were assessed by Pearson's correlation analysis. Immunofluorescence (IF), Cell Counting Kit-8 (CCK-8) and flow cytometry assays were conducted to evaluate the biological effect of ENST00000440246.1 and protein phosphatase 2 A (PP2A) in SK-N-SH cells. Gene expression at the protein and mRNA levels was analyzed by Western blotting and RT-qPCR. The interaction between PP2A and ENST00000440246.1 was confirmed by IntaRNA and RNA pulldown assays. ENST00000440246.1 was upregulated and significantly negatively correlated with the MMSE and MoCA scores and the overexpression of ENST00000440246.1 inhibited cell proliferation and facilitated apoptosis and Aβ expression in SK-N-SH cells. Mechanistically, ENST00000440246.1 targeted PP2A and regulated AD-related gene expression. The silencing of ENST00000440246.1 had the opposite effect. Furthermore, PP2A overexpression reversed the influence of ENST00000440246.1 overexpression in SK-N-SH cells. In conclusion, ENST00000440246.1 could promote AD progression by targeting PP2A, which indicates that ENST00000440246.1 has the potential to be a diagnostic target in AD.
Collapse
Affiliation(s)
- Shang Gao
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Yongzhong Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
- Department of pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Wenming Yang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| |
Collapse
|
46
|
Song M, Wang H, Liu C, Jin S, Liu B, Sun W. Non-coding RNAs as regulators of the Hippo pathway in cardiac development and cardiovascular disease. Front Pharmacol 2024; 15:1348280. [PMID: 38698813 PMCID: PMC11063341 DOI: 10.3389/fphar.2024.1348280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Cardiovascular diseases pose a serious threat to human health. The onset of cardiovascular diseases involves the comprehensive effects of multiple genes and environmental factors, and multiple signaling pathways are involved in regulating the occurrence and development of cardiovascular diseases. The Hippo pathway is a highly conserved signaling pathway involved in the regulation of cell proliferation, apoptosis, and differentiation. Recently, it has been widely studied in the fields of cardiovascular disease, cancer, and cell regeneration. Non-coding RNA (ncRNAs), which are important small molecules for the regulation of gene expression in cells, can directly target genes and have diverse regulatory functions. Recent studies have found that ncRNAs interact with Hippo pathway components to regulate myocardial fibrosis, cardiomyocyte proliferation, apoptosis, and hypertrophy and play an important role in cardiovascular disease. In this review, we describe the mode of action of ncRNAs in regulating the Hippo pathway, provide new ideas for further research, and identify molecules involved in the mechanism of action of ncRNAs and the Hippo pathway as potential therapeutic targets, with the aim of finding new modes of action for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Mengyang Song
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Caixia Liu
- Department of Neurology, The Liaoning Province People’s Hospital, Shenyang, China
| | - Sijie Jin
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
47
|
Tierno D, Grassi G, Zanconati F, Dapas B, Scaggiante B. Plasma Circular RNAs as Biomarkers for Breast Cancer. Biomedicines 2024; 12:875. [PMID: 38672229 PMCID: PMC11048241 DOI: 10.3390/biomedicines12040875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer (BC) is currently the most common neoplasm, the second leading cause of cancer death in women worldwide, and is a major health problem. The discovery of new biomarkers is crucial to improve our knowledge of breast cancer and strengthen our clinical approaches to diagnosis, prognosis, and follow-up. In recent decades, there has been increasing interest in circulating RNA (circRNA) as modulators of gene expression involved in tumor development and progression. The study of circulating circRNAs (ccircRNAs) in plasma may provide new non-invasive diagnostic, prognostic, and predictive biomarkers for BC. This review describes the latest findings on BC-associated ccircRNAs in plasma and their clinical utility. Several ccircRNAs in plasma have shown great potential as BC biomarkers, especially from a diagnostic point of view. Mechanistically, most of the reported BC-associated ccircRNAs are involved in the regulation of cell survival, proliferation, and invasion, mainly via MAPK/AKT signaling pathways. However, the study of circRNAs is a relatively new area of research, and a larger number of studies will be crucial to confirm their potential as plasma biomarkers and to understand their involvement in BC.
Collapse
Affiliation(s)
- Domenico Tierno
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Gabriele Grassi
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Fabrizio Zanconati
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume 447, I-34149 Trieste, Italy; (D.T.); (G.G.); (F.Z.)
| | - Barbara Dapas
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy;
| | - Bruna Scaggiante
- Department of Life Sciences, University of Trieste, Via Valerio 28, I-34127 Trieste, Italy
| |
Collapse
|
48
|
Zhang P, Wang Q, Lu W, Zhang F, Wu D, Sun J. NNT-AS1 in CAFs-derived exosomes promotes progression and glucose metabolism through miR-889-3p/HIF-1α in pancreatic adenocarcinoma. Sci Rep 2024; 14:6979. [PMID: 38521881 PMCID: PMC10960871 DOI: 10.1038/s41598-024-57769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/21/2024] [Indexed: 03/25/2024] Open
Abstract
It is metabolic and signaling crosstalk between stromal cells and tumors in the tumor microenvironment, which influences several aspects of tumor formation and drug resistance, including metabolic reprogramming. Despite considerable findings linking lncRNAs in HIF-1-related regulatory networks to cancer cell, little emphasis has been given to the role in communication between cancer-associated fibroblasts (CAFs) and tumor cells. Previously, we observed that NNT-AS1 was substantially expressed in CAFs cells and CAFs exosomes, and subsequently investigated the influence of CAFs exosomal NNT-AS1 on glucose metabolism, proliferation, and metastasis of pancreatic ductal adenocarcinoma (PDAC) cells. Transmission electron microscopy was used to examine exosomes secreted by PDAC patient-derived CAFs. qRT-PCR was used to evaluate the expression of NNT-AS1, miR-889-3p, and HIF-1. The role of CAFs-derived exosomal NNT-AS1 in PDAC cell progression and metabolism have been identified. Dual luciferase reporter assays examined the binding between NNT-AS1, miR-889-3p, and HIF-1. After PDAC cells co-culture exosomes secreted by CAFs, we found that they alter glucose metabolism, proliferation, and metastasis. In PDAC cells, CAF-derived exosomal lncRNA NNT-AS1 acted as a molecular sponge for miR-889-3p. Furthermore, HIF-1 could be targeted by miR-889-3p and was controlled by NNT-AS1. This study explores the mechanism by which NNT-AS1 influences the interaction of CAFs on glycolytic remodeling, proliferation, and metastasis of tumor cells through regulating miR-889-3p/HIF-1α, which also helps discover new clinical treatment targets for PDAC.
Collapse
Affiliation(s)
- Pingping Zhang
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Hepatic & Biliary & Pancreatic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijun Lu
- Department of Hepatic & Biliary & Pancreatic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhang
- Department of Hepatic & Biliary & Pancreatic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongde Wu
- Department of Hepatic & Biliary & Pancreatic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junwei Sun
- Department of Hepatic & Biliary & Pancreatic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
49
|
Deng B, Zhao Y, Liu J. Downregulation of lncRNA CDKN2B-AS1 attenuates inflammatory response in mice with allergic rhinitis by regulating miR-98-5p/SOCS1 axis. Funct Integr Genomics 2024; 24:48. [PMID: 38436805 PMCID: PMC10912270 DOI: 10.1007/s10142-024-01318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/24/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Abstract
Long non-coding RNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) in various diseases has been verified. However, the underlying mechanism of CDKN2B-AS1 contributes to the development of allergic rhinitis (AR) remains unknown. To evaluate the impact of CDKN2B-AS1 on AR, BALB/c mice were sensitized by intraperitoneal injection of normal saline containing ovalbumin (OVA) and calmogastrin to establish an AR model. Nasal rubbing and sneezing were documented after the final OVA treatment. The concentrations of IgE, IgG1, and inflammatory elements were quantified using ELISA. Hematoxylin and eosin (H&E) staining and immunofluorescence were used to assess histopathological variations and tryptase expression, respectively. StarBase, TargetScan and luciferase reporter assays were applied to predict and confirm the interactions among CDKN2B-AS1, miR-98-5p, and SOCS1. CDKN2B-AS1, miR-98-5p, and SOCS1 levels were assessed by quantitative real-time PCR (qRT-PCR) or western blotting. Our results revealed that CDKN2B-AS1 was obviously over-expressed in the nasal mucosa of AR patients and AR mice. Down-regulation of CDKN2B-AS1 significantly decreased nasal rubbing and sneezing frequencies, IgE and IgG1 concentrations, and cytokine levels. Furthermore, down-regulation of CDKN2B-AS1 also relieved the pathological changes in the nasal mucosa, and the infiltration of eosinophils and mast cells. Importantly, these results were reversed by the miR-98-5p inhibitor, whereas miR-98-5p directly targeted CDKN2B-AS1, and miR-98-5p negatively regulated SOCS1 level. Our findings demonstrate that down-regulation of CDKN2B-AS1 improves allergic inflammation and symptoms in a murine model of AR through the miR-98-5p/SOCS1 axis, which provides new insights into the latent functions of CDKN2B-AS1 in AR treatment.
Collapse
Affiliation(s)
- Bangyu Deng
- Department of Otolaryngology, First Affiliated Hospital of Soochow University, No.899, Pinghai Road, Suzhou, 215006, Jiangsu, China
- Department of Otolaryngology-Head and Neck Surgery, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yunxia Zhao
- Department of Maternal and Child Health, Suzhou Jinji Lake Health Service Center, Suzhou, Jiangsu, China
| | - Jisheng Liu
- Department of Otolaryngology, First Affiliated Hospital of Soochow University, No.899, Pinghai Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
50
|
Štefánik P, Morová M, Herichová I. Impact of Long-Lasting Environmental Factors on Regulation Mediated by the miR-34 Family. Biomedicines 2024; 12:424. [PMID: 38398026 PMCID: PMC10887245 DOI: 10.3390/biomedicines12020424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The present review focuses on the interactions of newly emerging environmental factors with miRNA-mediated regulation. In particular, we draw attention to the effects of phthalates, electromagnetic fields (EMFs) and a disrupted light/dark cycle. miRNAs are small non-coding RNA molecules with a tremendous regulatory impact, which is usually executed via gene expression inhibition. To address the capacity of environmental factors to influence miRNA-mediated regulation, the miR-34 family was selected for its well-described oncostatic and neuro-modulatory properties. The expression of miR-34 is in a tissue-dependent manner to some extent under the control of the circadian system. There is experimental evidence implicating that phthalates, EMFs and the circadian system interact with the miR-34 family, in both lines of its physiological functioning. The inhibition of miR-34 expression in response to phthalates, EMFs and light contamination has been described in cancer tissue and cell lines and was associated with a decline in oncostatic miR-34a signalling (decrease in p21 expression) and a promotion of tumorigenesis (increases in Noth1, cyclin D1 and cry1 expressions). The effects of miR-34 on neural functions have also been influenced by phthalates, EMFs and a disrupted light/dark cycle. Environmental factors shifted the effects of miR-34 from beneficial to the promotion of neurodegeneration and decreased cognition. Moreover, the apoptogenic capacity of miR-34 induced via phthalate administration in the testes has been shown to negatively influence germ cell proliferation. To conclude, as the oncostatic and positive neuromodulatory functions of the miR-34 family can be strongly influenced by environmental factors, their interactions should be taken into consideration in translational medicine.
Collapse
Affiliation(s)
- Peter Štefánik
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Martina Morová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Iveta Herichová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|