1
|
Qi Y, Song L, Liu X, Xu B, Yang W, Li M, Li M, Zhu Z, Liu W, Yang Z, Wang Z, Wang H. Cerebral white matter injury in haemodialysis patients: a cross-sectional tract-based spatial statistics and fixel-based analysis. Clin Kidney J 2024; 17:sfae286. [PMID: 39398351 PMCID: PMC11467692 DOI: 10.1093/ckj/sfae286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 10/15/2024] Open
Abstract
Background End-stage renal disease (ESRD) patients on maintenance haemodialysis (HD) often have damage to brain white matter (WM) and cognitive impairment. However, whether this damage is caused by maintenance HD or renal dysfunction is unclear. Herein we investigate the natural progression of WM damage in patients with ESRD and the effects of HD on WM using tract-based spatial statistics (TBSS) and fixel-based analysis (FBA). Methods Eighty-one ESRD patients, including 41 with no dialysis (ND) and 40 on HD, and 46 healthy controls (HCs) were enrolled in this study. The differences in WM among the three groups [ESRD patients with HD (ESRD-HD), ESRD patients without HD (ESRD-ND) and HCs] were analysed using TBSS and FBA. Pairwise comparison was then used to compare the differences in WM between two groups. The relationships between WM and neurocognitive assessments/clinical data were analysed in ESRD patients with and without HD. Results The damage to WM in ESRD-ND and ESRD-HD appeared around the lateral ventricles in TBSS, while FBA reflected that the changes had extended to adjacent WM in the anterior hemisphere, with a larger region in ESRD-HD compared with ESRD-ND and the brainstem was also widely affected in ESRD-HD. The Montreal Cognitive Assessment (MoCA) scores were lower in the ESRD-HD group. RD in the body of the corpus callosum were negatively correlated with MoCA scores in both groups. Fiber density and cross-section (FDC) in the left thalamo-prefrontal projection (T_PREFL) and left and right cingulum (CGL and CGR) were positively correlated with MoCA scores in both groups. Creatinine (Cr) was positively correlated with FDC in some frontal projection fibres in the striatum and thalamus, CG and fronto-pontine tract and was positively correlated with FD mainly in premotor projection fibres in the striatum and thalamus in the ESRD-HD group. Cr was negatively correlated with mean and radial diffusivity in regions of the corona radiata in the ESRD-ND group. Conclusions FBA is more sensitive in detecting differences between ESRD patients and HCs. When ESRD patients receive maintenance HD, the degree of WM damage may not be aggravated, but the range of damaged WM may be expanded, especially in the anterior hemisphere and brainstem. Some of these changes in the anterior hemisphere may contribute to cognitive decline.
Collapse
Affiliation(s)
- Yu Qi
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Lijun Song
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Xu Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Boyan Xu
- MR Research, GE Healthcare, Beijing, China
| | - Wenbo Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Mingan Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Min Li
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhengyang Zhu
- Department of Radiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
| | - Wenhu Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Hao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing China
| |
Collapse
|
2
|
Jiang L, Sun XY, Wang SQ, Liu YL, Lu LJ, Wu WH, Zhi H, Wang ZY, Liu XD, Liu L. Indoxyl sulphate-TNFα axis mediates uremic encephalopathy in rodent acute kidney injury. Acta Pharmacol Sin 2024; 45:1406-1424. [PMID: 38589687 PMCID: PMC11192958 DOI: 10.1038/s41401-024-01251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024] Open
Abstract
Acute kidney injury (AKI) is often accompanied by uremic encephalopathy resulting from accumulation of uremic toxins in brain possibly due to impaired blood-brain barrier (BBB) function. Anionic uremic toxins are substrates or inhibitors of organic anionic transporters (OATs). In this study we investigated the CNS behaviors and expression/function of BBB OAT3 in AKI rats and mice, which received intraperitoneal injection of cisplatin 8 and 20 mg/kg, respectively. We showed that cisplatin treatment significantly inhibited the expressions of OAT3, synaptophysin and microtubule-associated protein 2 (MAP2), impaired locomotor and exploration activities, and increased accumulation of uremic toxins in the brain of AKI rats and mice. In vitro studies showed that uremic toxins neither alter OAT3 expression in human cerebral microvascular endothelial cells, nor synaptophysin and MAP2 expressions in human neuroblastoma (SH-SY5Y) cells. In contrast, tumour necrosis factor alpha (TNFα) and the conditioned medium (CM) from RAW264.7 cells treated with indoxyl sulfate (IS) significantly impaired OAT3 expression. TNFα and CM from IS-treated BV-2 cells also inhibited synaptophysin and MAP2 expressions in SH-SY5Y cells. The alterations caused by TNFα and CMs in vitro, and by AKI and TNFα in vivo were abolished by infliximab, a monoclonal antibody designed to intercept and neutralize TNFα, suggesting that AKI impaired the expressions of OAT3, synaptophysin and MAP2 in the brain via IS-induced TNFα release from macrophages or microglia (termed as IS-TNFα axis). Treatment of mice with TNFα (0.5 mg·kg-1·d-1, i.p. for 3 days) significantly increased p-p65 expression and reduced the expressions of Nrf2 and HO-1. Inhibiting NF-κB pathway, silencing p65, or activating Nrf2 and HO-1 obviously attenuated TNFα-induced downregulation of OAT3, synaptophysin and MAP2 expressions. Significantly increased p-p65 and decreased Nrf2 and HO-1 protein levels were also detected in brain of AKI mice and rats. We conclude that AKI inhibits the expressions of OAT3, synaptophysin and MAP2 due to IS-induced TNFα release from macrophages or microglia. TNFα impairs the expressions of OAT3, synaptophysin and MAP2 partly via activating NF-κB pathway and inhibiting Nrf2-HO-1 pathway.
Collapse
Affiliation(s)
- Ling Jiang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xue-Ying Sun
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Si-Qian Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan-Lin Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ling-Jue Lu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Wen-Han Wu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Zhi
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhong-Yan Wang
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Dong Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Hatami-Fard G, Anastasova-Ivanova S. Advancements in Cerebrospinal Fluid Biosensors: Bridging the Gap from Early Diagnosis to the Detection of Rare Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:3294. [PMID: 38894085 PMCID: PMC11174891 DOI: 10.3390/s24113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Cerebrospinal fluid (CSF) is a body fluid that can be used for the diagnosis of various diseases. However, CSF collection requires an invasive and painful procedure called a lumbar puncture (LP). This procedure is applied to any patient with a known risk of central nervous system (CNS) damage or neurodegenerative disease, regardless of their age range. Hence, this can be a very painful procedure, especially in infants and elderly patients. On the other hand, the detection of disease biomarkers in CSF makes diagnoses as accurate as possible. This review aims to explore novel electrochemical biosensing platforms that have impacted biomedical science. Biosensors have emerged as techniques to accelerate the detection of known biomarkers in body fluids such as CSF. Biosensors can be designed and modified in various ways and shapes according to their ultimate applications to detect and quantify biomarkers of interest. This process can also significantly influence the detection and diagnosis of CSF. Hence, it is important to understand the role of this technology in the rapidly progressing field of biomedical science.
Collapse
Affiliation(s)
- Ghazal Hatami-Fard
- The Hamlyn Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
4
|
Liu Y, Qin Y, Zhang Y. circRNA-PTPN4 mediated regulation of FOXO3 and ZO-1 expression: implications for blood-brain barrier integrity and cognitive function in uremic encephalopathy. Cell Biol Toxicol 2024; 40:22. [PMID: 38630149 PMCID: PMC11024022 DOI: 10.1007/s10565-024-09865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Uremic encephalopathy (UE) poses a significant challenge in neurology, leading to the need to investigate the involvement of non-coding RNA (ncRNA) in its development. This study employed ncRNA-seq and RNA-seq approaches to identify fundamental ncRNAs, specifically circRNA and miRNA, in the pathogenesis of UE using a mouse model. In vitro and in vivo experiments were conducted to explore the circRNA-PTPN4/miR-301a-3p/FOXO3 axis and its effects on blood-brain barrier (BBB) function and cognitive abilities. The research revealed that circRNA-PTPN4 binds to and inhibits miR-301a-3p, leading to an increase in FOXO3 expression. This upregulation results in alterations in the transcriptional regulation of ZO-1, affecting the permeability of human brain microvascular endothelial cells (HBMECs). The axis also influences the growth, proliferation, and migration of HBMECs. Mice with UE exhibited cognitive deficits, which were reversed by overexpression of circRNA-PTPN4, whereas silencing FOXO3 exacerbated these deficits. Furthermore, the uremic mice showed neuronal loss, inflammation, and dysfunction in the BBB, with the expression of circRNA-PTPN4 demonstrating therapeutic effects. In conclusion, circRNA-PTPN4 plays a role in promoting FOXO3 expression by sequestering miR-301a-3p, ultimately leading to the upregulation of ZO-1 expression and restoration of BBB function in mice with UE. This process contributes to the restoration of cognitive abilities.
Collapse
Affiliation(s)
- Yuhan Liu
- Department of Nephrology, General Hospital of the Northern Theatre, No. 83, Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Yanling Qin
- Department of Nephrology, General Hospital of the Northern Theatre, No. 83, Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Yanning Zhang
- Department of Nephrology, General Hospital of the Northern Theatre, No. 83, Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China.
| |
Collapse
|
5
|
Zhang W, Oh JH, Zhang W, Rathi S, Le J, Talele S, Sarkaria JN, Elmquist WF. How Much is Enough? Impact of Efflux Transporters on Drug delivery Leading to Efficacy in the Treatment of Brain Tumors. Pharm Res 2023; 40:2731-2746. [PMID: 37589827 PMCID: PMC10841221 DOI: 10.1007/s11095-023-03574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
The lack of effective chemotherapeutic agents for the treatment of brain tumors is a serious unmet medical need. This can be attributed, in part, to inadequate delivery through the blood-brain barrier (BBB) and the tumor-cell barrier, both of which have active efflux transporters that can restrict the transport of many potentially effective agents for both primary and metastatic brain tumors. This review briefly summarizes the components and function of the normal BBB with respect to drug penetration into the brain and the alterations in the BBB due to brain tumor that could influence drug delivery. Depending on what is rate-limiting a compound's distribution, the limited permeability across the BBB and the subsequent delivery into the tumor cell can be greatly influenced by efflux transporters and these are discussed in some detail. Given these complexities, it is necessary to quantify the extent of brain distribution of the active (unbound) drug to compare across compounds and to inform potential for use against brain tumors. In this regard, the metric, Kp,uu, a brain-to-plasma unbound partition coefficient, is examined and its current use is discussed. However, the extent of active drug delivery is not the only determinant of effective therapy. In addition to Kp,uu, drug potency is an important parameter that should be considered alongside drug delivery in drug discovery and development processes. In other words, to answer the question - How much is enough? - one must consider how much can be delivered with how much needs to be delivered.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ju-Hee Oh
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Wenqiu Zhang
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Sneha Rathi
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jiayan Le
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Surabhi Talele
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - William F Elmquist
- Brain Barriers Research Center, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
6
|
Day F, O’Sullivan J, Pook C. 4-Ethylphenol-fluxes, metabolism and excretion of a gut microbiome derived neuromodulator implicated in autism. Front Mol Biosci 2023; 10:1267754. [PMID: 37900921 PMCID: PMC10602680 DOI: 10.3389/fmolb.2023.1267754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Gut-microbiome-derived metabolites, such as 4-Ethylphenol [4EP], have been shown to modulate neurological health and function. Although the source of such metabolites is becoming better understood, knowledge gaps remain as to the mechanisms by which they enter host circulation, how they are transported in the body, how they are metabolised and excreted, and the way they exert their effects. High blood concentrations of host-modified 4EP, 4-ethylphenol sulfate [4EPS], are associated with an anxiety phenotype in autistic individuals. We have reviewed the existing literature and discuss mechanisms that are proposed to contribute influx from the gut microbiome, metabolism, and excretion of 4EP. We note that increased intestinal permeability is common in autistic individuals, potentially explaining increased flux of 4EP and/or 4EPS across the gut epithelium and the Blood Brain Barrier [BBB]. Similarly, kidney dysfunction, another complication observed in autistic individuals, impacts clearance of 4EP and its derivatives from circulation. Evidence indicates that accumulation of 4EPS in the brain of mice affects connectivity between subregions, particularly those linked to anxiety. However, we found no data on the presence or quantity of 4EP and/or 4EPS in human brains, irrespective of neurological status, likely due to challenges sampling this organ. We argue that the penetrative ability of 4EP is dependent on its form at the BBB and its physicochemical similarity to endogenous metabolites with dedicated active transport mechanisms across the BBB. We conclude that future research should focus on physical (e.g., ingestion of sorbents) or metabolic mechanisms (e.g., conversion to 4EP-glucuronide) that are capable of being used as interventions to reduce the flux of 4EP from the gut into the body, increase the efflux of 4EP and/or 4EPS from the brain, or increase excretion from the kidneys as a means of addressing the neurological impacts of 4EP.
Collapse
Affiliation(s)
- Francesca Day
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, Auckland, New Zealand
| | - Justin O’Sullivan
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, United Kingdom
- Australian Parkinson’s Mission, Garvan Institute of Medical Research, Sydney, NSW, Australia
- A*STAR Singapore Institute for Clinical Sciences, Singapore, Singapore
| | - Chris Pook
- Liggins Institute, Waipapa Taumata Rau—The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Chen Y, Li H, Wang K, Wang Y. Recent Advances in Synthetic Drugs and Natural Actives Interacting with OAT3. Molecules 2023; 28:4740. [PMID: 37375294 DOI: 10.3390/molecules28124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/03/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Organic anion transporter 3 (OAT3) is predominantly expressed in the kidney and plays a vital role in drug clearance. Consequently, co-ingestion of two OAT3 substrates may alter the pharmacokinetics of the substrate. This review summarizes drug-drug interactions (DDIs) and herbal-drug interactions (HDIs) mediated by OAT3, and inhibitors of OAT3 in natural active compounds in the past decade. This provides a valuable reference for the combined use of substrate drugs/herbs for OAT3 in clinical practice in the future and for the screening of OAT3 inhibitors to avoid harmful interactions.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Hongyan Li
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Yousheng Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| |
Collapse
|
8
|
Salminen A. Activation of aryl hydrocarbon receptor (AhR) in Alzheimer's disease: role of tryptophan metabolites generated by gut host-microbiota. J Mol Med (Berl) 2023; 101:201-222. [PMID: 36757399 PMCID: PMC10036442 DOI: 10.1007/s00109-023-02289-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Gut microbiota in interaction with intestinal host tissues influences many brain functions and microbial dysbiosis has been linked with brain disorders, such as neuropsychiatric conditions and Alzheimer's disease (AD). L-tryptophan metabolites and short-chained fatty acids (SCFA) are major messengers in the microbiota-brain axis. Aryl hydrocarbon receptors (AhR) are main targets of tryptophan metabolites in brain microvessels which possess an enriched expression of AhR protein. The Ah receptor is an evolutionarily conserved, ligand-activated transcription factor which is not only a sensor of xenobiotic toxins but also a pleiotropic regulator of both developmental processes and age-related tissue degeneration. Major microbiota-produced tryptophan metabolites involve indole derivatives, e.g., indole 3-pyruvic acid, indole 3-acetaldehyde, and indoxyl sulfate, whereas indoleamine and tryptophan 2,3-dioxygenases (IDO/TDO) of intestine host cells activate the kynurenine (KYN) pathway generating KYN metabolites, many of which are activators of AhR signaling. Chronic kidney disease (CKD) increases the serum level of indoxyl sulfate which promotes AD pathogenesis, e.g., it disrupts integrity of blood-brain barrier (BBB) and impairs cognitive functions. Activation of AhR signaling disturbs vascular homeostasis in brain; (i) it controls blood flow via the renin-angiotensin system, (ii) it inactivates endothelial nitric oxide synthase (eNOS), thus impairing NO production and vasodilatation, and (iii) it induces oxidative stress, stimulates inflammation, promotes cellular senescence, and enhances calcification of vascular walls. All these alterations are evident in cerebral amyloid angiopathy (CAA) in AD pathology. Moreover, AhR signaling can disturb circadian regulation and probably affect glymphatic flow. It seems plausible that dysbiosis of gut microbiota impairs the integrity of BBB via the activation of AhR signaling and thus aggravates AD pathology. KEY MESSAGES: Dysbiosis of gut microbiota is associated with dementia and Alzheimer's disease. Tryptophan metabolites are major messengers from the gut host-microbiota to brain. Tryptophan metabolites activate aryl hydrocarbon receptor (AhR) signaling in brain. The expression of AhR protein is enriched in brain microvessels and blood-brain barrier. Tryptophan metabolites disturb brain vascular integrity via AhR signaling. Dysbiosis of gut microbiota promotes inflammation and AD pathology via AhR signaling.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio, 70211, Finland.
| |
Collapse
|
9
|
Pawar B, Vasdev N, Gupta T, Mhatre M, More A, Anup N, Tekade RK. Current Update on Transcellular Brain Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122719. [PMID: 36559214 PMCID: PMC9786068 DOI: 10.3390/pharmaceutics14122719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
It is well known that the presence of a blood-brain barrier (BBB) makes drug delivery to the brain more challenging. There are various mechanistic routes through which therapeutic molecules travel and deliver the drug across the BBB. Among all the routes, the transcellular route is widely explored to deliver therapeutics. Advances in nanotechnology have encouraged scientists to develop novel formulations for brain drug delivery. In this article, we have broadly discussed the BBB as a limitation for brain drug delivery and ways to solve it using novel techniques such as nanomedicine, nose-to-brain drug delivery, and peptide as a drug delivery carrier. In addition, the article will help to understand the different factors governing the permeability of the BBB, as well as various formulation-related factors and the body clearance of the drug delivered into the brain.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rakesh Kumar Tekade
- Correspondence: ; Tel.: +91-796674550 or +91-7966745555; Fax: +91-7966745560
| |
Collapse
|
10
|
Zhu L, Tong G, Yang F, Zhao Y, Chen G. The role of neuroimmune and inflammation in pediatric uremia-induced neuropathy. Front Immunol 2022; 13:1013562. [PMID: 36189322 PMCID: PMC9520989 DOI: 10.3389/fimmu.2022.1013562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Uremic neuropathy in children encompasses a wide range of central nervous system (CNS), peripheral nervous system (PNS), autonomic nervous system (ANS), and psychological abnormalities, which is associated with progressive renal dysfunction. Clinically, the diagnosis of uremic neuropathy in children is often made retrospectively when symptoms improve after dialysis or transplantation, due to there is no defining signs or laboratory and imaging findings. These neurological disorders consequently result in increased morbidity and mortality among children population, making uremia an urgent public health problem worldwide. In this review, we discuss the epidemiology, potential mechanisms, possible treatments, and the shortcomings of current research of uremic neuropathy in children. Mechanistically, the uremic neuropathy may be caused by retention of uremic solutes, increased oxidative stress, neurotransmitter imbalance, and disturbance of the blood-brain barrier (BBB). Neuroimmune, including the change of inflammatory factors and immune cells, may also play a crucial role in the progression of uremic neuropathy. Different from the invasive treatment of dialysis and kidney transplantation, intervention in neuroimmune and targeted anti-inflammatory therapy may provide a new insight for the treatment of uremia.
Collapse
Affiliation(s)
- Linfeng Zhu
- Department of Urology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guoqin Tong
- Department of Neurology, The First People’s Hospital of XiaoShan District, Hangzhou, China
| | - Fan Yang
- Department of Urology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yijun Zhao
- Department of Urology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guangjie Chen
- Department of Urology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Guangjie Chen,
| |
Collapse
|
11
|
Lidgard B, Bansal N, Zelnick LR, Hoofnagle A, Chen J, Colaizzo D, Dobre M, Mills KT, Porter AC, Rosas SE, Sarnak MJ, Seliger S, Sondheimer J, Tamura MK, Yaffe K, Kestenbaum B. Association of Proximal Tubular Secretory Clearance with Long-Term Decline in Cognitive Function. J Am Soc Nephrol 2022; 33:1391-1401. [PMID: 35444055 PMCID: PMC9257801 DOI: 10.1681/asn.2021111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/05/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND People with chronic kidney disease (CKD) are at high risk for cognitive impairment and progressive cognitive decline. Retention of protein-bound organic solutes that are normally removed by tubular secretion is hypothesized to contribute to cognitive impairment in CKD. METHODS We followed 2362 participants who were initially free of cognitive impairment and stroke in the prospective Chronic Renal Insufficiency Cohort (CRIC) Study. We estimated tubular secretory clearance by the 24-hour kidney clearances of eight endogenous solutes that are primarily eliminated by tubular secretion. CRIC study investigators assessed participants' cognitive function annually using the Modified Mini-Mental State (3MS) Examination. Cognitive decline was defined as a sustained decrease of more than five points in the 3MS score from baseline. Using Cox regression models adjusted for potential confounders, we analyzed associations between secretory solute clearances, serum solute concentrations, and cognitive decline. RESULTS The median number of follow-up 3MS examinations was six per participant. There were 247 incident cognitive decline events over a median of 9.1 years of follow-up. Lower kidney clearances of five of the eight secretory solutes (cinnamoylglycine, isovalerylglycine, kynurenic acid, pyridoxic acid, and tiglylglycine) were associated with cognitive decline after adjustment for baseline eGFR, proteinuria, and other confounding variables. Effect sizes ranged from a 17% to a 34% higher risk of cognitive decline per 50% lower clearance. In contrast, serum concentrations of the solutes were not associated with cognitive decline. CONCLUSIONS Lower kidney clearances of secreted solutes are associated with incident global cognitive decline in a prospective study of CKD, independent of eGFR. Further work is needed to determine the domains of cognition most affected by decreased secretory clearance and the mechanisms of these associations.
Collapse
Affiliation(s)
- Benjamin Lidgard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Nisha Bansal
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Leila R. Zelnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Andrew Hoofnagle
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Jing Chen
- Department of Medicine, Tulane University, New Orleans, Louisiana
| | | | - Mirela Dobre
- Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | | | - Anna C. Porter
- Department of Medicine, Section of Nephrology, University of Illinois at Chicago, Chicago, Illinois
| | - Sylvia E. Rosas
- Kidney and Hypertension Unit, Joslin Diabetes Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Mark J. Sarnak
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts
| | - Stephen Seliger
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - James Sondheimer
- Department of Medicine, Division of Nephrology, Wayne State University, Detroit, Michigan
| | - Manjula Kurella Tamura
- Department of Medicine, Stanford University and VA Palo Alto Health Care System, Palo Alto, California
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, California
| | - Bryan Kestenbaum
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | | |
Collapse
|
12
|
Research progress on the relationship between IS and kidney disease and its complications. Int Urol Nephrol 2022; 54:2881-2890. [PMID: 35488145 DOI: 10.1007/s11255-022-03209-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
Indoxyl sulphate (IS) a representative uraemic toxin in the blood of patients with chronic kidney disease (CKD). Its accumulation may be closely related to CKD and the increasing morbidity and mortality of the disease's related complications. Timely and effective detection of the IS level and efficient clearance of IS may effectively prevent the progression of CKD and its related complications. Therefore, this article summarizes the research progress of IS related, including IS in CKD and its associated complications including chronic kidney disease, chronic kidney disease with cardiovascular disease, renal anemia, bone mineral metabolic disease and neuropsychiatric disorders, looking for IS accurate rapid detection methods, and explore the efficient treatment to reduce blood levels of indole phenol sulphate.
Collapse
|
13
|
Jomura R, Akanuma SI, Tachikawa M, Hosoya KI. SLC6A and SLC16A family of transporters: Contribution to transport of creatine and creatine precursors in creatine biosynthesis and distribution. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183840. [PMID: 34921896 DOI: 10.1016/j.bbamem.2021.183840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Creatine (Cr) is needed to maintain high energy levels in cells. Since Cr plays reportedly a critical role in neurodevelopment and the immune system, Cr dynamics should be strictly regulated to control these physiological events. This review focuses on the role of transporters that recognize Cr and/or Cr precursors. Our previous studies revealed physiological roles of SLC6A and SLC16A family transporters in Cr dynamics. Creatine transporter (CRT/SLC6A8) contributes to the influx transport of Cr in Cr distribution. γ-Aminobutyric acid transporter 2 (GAT2/SLC6A13) mediates incorporation of guanidinoacetate (GAA), a Cr precursor, in the process of Cr biosynthesis. Monocarboxylate transporter 12 (MCT12/SLC16A12) functions as an efflux transporter for Cr and GAA, and contributes to the process of Cr biosynthesis. Accordingly, the SLC6A and SLC16A family of transporters play important roles in the process of Cr biosynthesis and distribution via permeation of Cr and Cr precursors across the plasma membrane.
Collapse
Affiliation(s)
- Ryuta Jomura
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Masanori Tachikawa
- Graduate School of Biomedical Sciences, Tokushima University, 1-78-1 Shomachi, Tokushima 770-8505, Japan.
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
14
|
Zheng Y, Bek MK, Prince NZ, Peralta Marzal LN, Garssen J, Perez Pardo P, Kraneveld AD. The Role of Bacterial-Derived Aromatic Amino Acids Metabolites Relevant in Autism Spectrum Disorders: A Comprehensive Review. Front Neurosci 2021; 15:738220. [PMID: 34744609 PMCID: PMC8568365 DOI: 10.3389/fnins.2021.738220] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022] Open
Abstract
In recent years, the idea of the gut microbiota being involved in the pathogenesis of autism spectrum disorders (ASD) has attracted attention through numerous studies. Many of these studies report microbial dysregulation in the gut and feces of autistic patients and in ASD animal models. The host microbiota plays a large role in metabolism of ingested foods, and through the production of a range of metabolites it may be involved in neurodevelopmental disorders such as ASD. Two specific microbiota-derived host metabolites, p-cresol sulfate and 4-ethylphenyl sulfate, have been associated with ASD in both patients and animal models. These metabolites originate from bacterially produced p-cresol and 4-ethylphenol, respectively. p-Cresol and 4-ethylphenol are produced through aromatic amino acid fermentation by a range of commensal bacteria, most notably bacteria from the Clostridioides genus, which are among the dysregulated bacteria frequently detected in ASD patients. Once produced, these metabolites are suggested to enter the bloodstream, pass the blood–brain-barrier and affect microglial cells in the central nervous system, possibly affecting processes like neuroinflammation and microglial phagocytosis. This review describes the current knowledge of microbial dysbiosis in ASD and elaborates on the relevance and synthesis pathways of two specific ASD-associated metabolites that may form a link between the microbiota and the brain in autism. While the two discussed metabolites are promising candidates for biomarkers and (nutritional) intervention targets, more research into the role of these metabolites in ASD is required to causally connect these metabolites to ASD pathophysiology.
Collapse
Affiliation(s)
- Yuanpeng Zheng
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Marie K Bek
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Naika Z Prince
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Lucia N Peralta Marzal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Global Centre of Excellence Immunology, Danone Nutricia Research, Utrecht, Netherlands
| | - Paula Perez Pardo
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
15
|
Strawn M, Moraes JGN, Safranski TJ, Behura SK. Sexually Dimorphic Transcriptomic Changes of Developing Fetal Brain Reveal Signaling Pathways and Marker Genes of Brain Cells in Domestic Pigs. Cells 2021; 10:2439. [PMID: 34572090 PMCID: PMC8466205 DOI: 10.3390/cells10092439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, transcriptomic changes of the developing brain of pig fetuses of both sexes were investigated on gestation days (GD) 45, 60 and 90. Pig fetal brain grows rapidly around GD60. Consequently, gene expression of the fetal brain was distinctly different on GD90 compared to that of GD45 and GD60. In addition, varying numbers of differentially expressed genes (DEGs) were identified in the male brain compared to the female brain during development. The sex of adjacent fetuses also influenced gene expression of the fetal brain. Extensive changes in gene expression at the exon-level were observed during brain development. Pathway enrichment analysis showed that the ionotropic glutamate receptor pathway and p53 pathway were enriched in the female brain, whereas specific receptor-mediated signaling pathways were enriched in the male brain. Marker genes of neurons and astrocytes were significantly differentially expressed between male and female brains during development. Furthermore, comparative analysis of gene expression patterns between fetal brain and placenta suggested that genes related to ion transportation may play a key role in the regulation of the brain-placental axis in pig. Collectively, the study suggests potential application of pig models to better understand influence of fetal sex on brain development.
Collapse
Affiliation(s)
- Monica Strawn
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
| | - Joao G. N. Moraes
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74075, USA
| | - Timothy J. Safranski
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
| | - Susanta K. Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; (M.S.); (T.J.S.); (J.G.N.M.)
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
16
|
Torres AM, Dnyanmote AV, Granados JC, Nigam SK. Renal and non-renal response of ABC and SLC transporters in chronic kidney disease. Expert Opin Drug Metab Toxicol 2021; 17:515-542. [PMID: 33749483 DOI: 10.1080/17425255.2021.1899159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The solute carrier (SLC) and the ATP-binding cassette (ABC) transporter superfamilies play essential roles in the disposition of small molecules (endogenous metabolites, uremic toxins, drugs) in the blood, kidney, liver, intestine, and other organs. In chronic kidney disease (CKD), the loss of renal function is associated with altered function of remote organs. As renal function declines, many molecules accumulate in the plasma. Many studies now support the view that ABC and SLC transporters as well as drug metabolizing enzymes (DMEs) in renal and non-renal tissues are directly or indirectly affected by the presence of various types of uremic toxins, including those derived from the gut microbiome; this can lead to aberrant inter-organ communication. AREAS COVERED Here, the expression, localization and/or function of various SLC and ABC transporters as well as DMEs in the kidney and other organs are discussed in the context of CKD and systemic pathophysiology. EXPERT OPINION According to the Remote Sensing and Signaling Theory (RSST), a transporter and DME-centric network that optimizes local and systemic metabolism maintains homeostasis in the steady state and resets homeostasis following perturbations due to renal dysfunction. The implications of this view for pharmacotherapy of CKD are also discussed.
Collapse
Affiliation(s)
- Adriana M Torres
- Pharmacology Area, Faculty of Biochemistry and Pharmaceutical Sciences, National University of Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Ankur V Dnyanmote
- Department of Pediatrics, IWK Health Centre - Dalhousie University, 5850 University Ave, Halifax, NS, B3K 6R8, Canada
| | - Jeffry C Granados
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| | - Sanjay K Nigam
- Departments of Pediatrics and Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093-0693, USA
| |
Collapse
|
17
|
Effect of uremic toxins on hippocampal cell damage: analysis in vitro and in rat model of chronic kidney disease. Heliyon 2021; 7:e06221. [PMID: 33659745 PMCID: PMC7892929 DOI: 10.1016/j.heliyon.2021.e06221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/16/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
One third of the patients with chronic kidney disease (CKD) develop cognitive impairment, which is also an independent risk factor for mortality. However, the concise mechanism of cerebro-renal interaction has not been clarified. The present study examines the effects of uremic toxins on neuronal cells and analyzes the pathological condition of the brain using mouse hippocampal neuronal HT-22 cells and adenine-induced CKD model rats. Among the uremic toxins analyzed, indoxyl sulfate, indole, 3-indoleacetate, and methylglyoxal significantly decreased viability and glutathione level in HT-22 cells. The mixture of these uremic toxins also decreased viability and glutathione level at a lower dose. Adenine-induced CKD rat showed marked renal damage, increased urinary oxidative stress markers, and increased numbers of pyknotic neuronal cells in hippocampus. CKD rats with damaged hippocampus demonstrated poor learning process when tested using the Morris water maze test. Our results suggest that uremic toxins have a toxic effect on hippocampal neuronal cells and uremic CKD rats shows pyknosis in hippocampus.
Collapse
|
18
|
Betterton RD, Davis TP, Ronaldson PT. Organic Cation Transporter (OCT/OCTN) Expression at Brain Barrier Sites: Focus on CNS Drug Delivery. Handb Exp Pharmacol 2021; 266:301-328. [PMID: 33674914 PMCID: PMC8603467 DOI: 10.1007/164_2021_448] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Therapeutic delivery to the central nervous system (CNS) continues to be a considerable challenge in the pharmacological treatment and management of neurological disorders. This is primarily due to the physiological and biochemical characteristics of brain barrier sites (i.e., blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB)). Drug uptake into brain tissue is highly restricted by expression of tight junction protein complexes and adherens junctions between brain microvascular endothelial cells and choroid plexus epithelial cells. Additionally, efflux transport proteins expressed at the plasma membrane of these same endothelial and epithelial cells act to limit CNS concentrations of centrally acting drugs. In contrast, facilitated diffusion via transporter proteins allows for substrate-specific flux of molecules across the plasma membrane, directing drug uptake into the CNS. Organic Cation Transporters (OCTs) and Novel Organic Cation Transporters (OCTNs) are two subfamilies of the solute carrier 22 (SLC22) family of proteins that have significant potential to mediate delivery of positively charged, zwitterionic, and uncharged therapeutics. While expression of these transporters has been well characterized in peripheral tissues, the functional expression of OCT and OCTN transporters at CNS barrier sites and their role in delivery of therapeutic drugs to molecular targets in the brain require more detailed analysis. In this chapter, we will review current knowledge on localization, function, and regulation of OCT and OCTN isoforms at the BBB and BCSFB with a particular emphasis on how these transporters can be utilized for CNS delivery of therapeutic agents.
Collapse
Affiliation(s)
- Robert D Betterton
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
19
|
Maier J, Niello M, Rudin D, Daws LC, Sitte HH. The Interaction of Organic Cation Transporters 1-3 and PMAT with Psychoactive Substances. Handb Exp Pharmacol 2021; 266:199-214. [PMID: 33993413 DOI: 10.1007/164_2021_469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Organic cation transporters 1-3 (OCT1-3, SLC22A1-3) and the plasma membrane monoamine transporter (PMAT, SLC29A4) play a major role in maintaining monoaminergic equilibrium in the central nervous system. With many psychoactive substances interacting with OCT1-3 and PMAT, a growing literature focuses on characterizing their properties via in vitro and in vivo studies. In vitro studies mainly aim at characterizing compounds as inhibitors or substrates of murine, rat, and human isoforms. The preponderance of studies has put emphasis on phenylalkylamine derivatives, but ketamine and opioids have also been investigated. Studies employing in vivo (knockout) models mostly concentrate on the interaction of psychoactive substances and OCT3, with an emphasis on stress and addiction, pharmacokinetics, and sensitization to psychoactive drugs. The results highlight the importance of OCT3 in the mechanism of action of psychoactive compounds. Concerning in vivo studies, a veritable research gap concerning OCT1, 2, and PMAT exists. This review provides an overview and summary of research conducted in this field of research.
Collapse
Affiliation(s)
- Julian Maier
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marco Niello
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Deborah Rudin
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lynette C Daws
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health, San Antonio, TX, USA
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Michna M, Kovarova L, Valerianova A, Malikova H, Weichet J, Malik J. Review of the structural and functional brain changes associated with chronic kidney disease. Physiol Res 2020; 69:1013-1028. [PMID: 33129242 PMCID: PMC8549872 DOI: 10.33549/physiolres.934420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) leads to profound metabolic and hemodynamic changes, which damage other organs, such as heart and brain. The brain abnormalities and cognitive deficit progress with the severity of the CKD and are mostly expressed among hemodialysis patients. They have great socio-economic impact. In this review, we present the current knowledge of involved mechanisms.
Collapse
Affiliation(s)
- M Michna
- Department of Radiology, University Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Mair RD, Nguyen H, Huang TT, Plummer NS, Sirich TL, Meyer TW. Accumulation of uremic solutes in the cerebrospinal fluid in experimental acute renal failure. Am J Physiol Renal Physiol 2019; 317:F296-F302. [PMID: 31141401 PMCID: PMC6732458 DOI: 10.1152/ajprenal.00100.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/02/2019] [Accepted: 05/20/2019] [Indexed: 01/30/2023] Open
Abstract
The accumulation of uremic solutes in kidney failure may impair mental function. The present study profiled the accumulation of uremic solutes in the cerebrospinal fluid (CSF) in acute renal failure. CSF and plasma ultrafiltrate were obtained from rats at 48 h after sham operation (control; n = 10) or bilateral nephrectomy (n = 10) and analyzed using an established metabolomic platform. Two hundred forty-eight solutes were identified as uremic based on their accumulation in the plasma ultrafiltrate of nephrectomized compared with control rats. CSF levels of 124 of these solutes were sufficient to allow calculation of CSF-to-plasma ultrafiltrate concentration ratios. Levels of many of the uremic solutes were normally lower in the CSF than in the plasma ultrafiltrate, indicating exclusion of these solutes from the brain. CSF levels of the great majority of the uremic solutes increased in renal failure. The increase in the CSF was, however, relatively less than in the plasma ultrafiltrate for most solutes. In particular, for the 31 uremic solutes with CSF-to-plasma ultrafiltrate ratios of <0.25 in control rats, the average CSF-to-plasma ultrafiltrate ratio decreased from 0.13 ± 0.07 in control rats to 0.09 ± 0.06 in nephrectomized rats, revealing sustained ability to exclude these solutes from the brain. In summary, levels of many uremic solutes are normally kept lower in the CSF than in the plasma ultrafiltrate by the action of the blood-brain and blood-CSF barriers. These barriers remain functional but cannot prevent accumulation of uremic solutes in the CSF when the kidneys fail.
Collapse
Affiliation(s)
- Robert DeWolfe Mair
- Division of Nephrology, Stanford University , Stanford, California
- Department of Medicine, Veterans Affair Palo Alto Health Care System, Palo Alto, California
| | - Huy Nguyen
- Department of Neurology and Neurological Sciences, Stanford University , Stanford, California
| | - Ting-Ting Huang
- Department of Neurology and Neurological Sciences, Stanford University , Stanford, California
- Geriatric Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Natalie S Plummer
- Department of Medicine, Veterans Affair Palo Alto Health Care System, Palo Alto, California
| | - Tammy L Sirich
- Division of Nephrology, Stanford University , Stanford, California
- Department of Medicine, Veterans Affair Palo Alto Health Care System, Palo Alto, California
| | - Timothy W Meyer
- Division of Nephrology, Stanford University , Stanford, California
- Department of Medicine, Veterans Affair Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
23
|
Lin YT, Wu PH, Tsai YC, Hsu YL, Wang HY, Kuo MC, Kuo PL, Hwang SJ. Indoxyl Sulfate Induces Apoptosis Through Oxidative Stress and Mitogen-Activated Protein Kinase Signaling Pathway Inhibition in Human Astrocytes. J Clin Med 2019; 8:jcm8020191. [PMID: 30764571 PMCID: PMC6406290 DOI: 10.3390/jcm8020191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/27/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Uremic toxins accumulated in chronic kidney disease (CKD) increases the risk of cognitive impairment. Indoxyl sulfate (IS) is a well-known protein-bound uremic toxin that is correlated with several systemic diseases, but no studies on human brain cells are available. We investigated the effect of IS on primary human astrocytes through next-generation sequencing and cell experiment confirmation to explore the mechanism of IS-associated brain damage. Total RNAs extracted from IS-treated and control astrocytes were evaluated by performing functional and pathway enrichment analysis. The toxicities of IS in the astrocytes were investigated in terms of cell viability through flow cytometry; the signal pathway was then investigated through immunoblotting. IS stimulated the release of reactive oxygen species, increased nuclear factor (erythroid-derived 2)-like 2 levels, and reduced mitochondrial membrane potential. IS triggered astrocyte apoptosis by inhibiting the mitogen-activated protein kinase (MAPK) pathway, including extracellular-signal-regulated kinase (ERK), MAPK/ERK kinase, c-Jun N-terminal kinase, and p38. The decreased ERK phosphorylation was mediated by the upregulated dual-specificity phosphatase 1, 5, 8, and 16. In conclusion, IS can induce neurotoxicity in patients with CKD and the pathogenesis involves cell apoptosis through oxidative stress induction and MAPK pathway inhibition in human astrocytes.
Collapse
Affiliation(s)
- Yi-Ting Lin
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-T.L.); (P.-H.W.); (Y.-C.T.); (P.-L.K.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Ping-Hsun Wu
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-T.L.); (P.-H.W.); (Y.-C.T.); (P.-L.K.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Yi-Chun Tsai
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-T.L.); (P.-H.W.); (Y.-C.T.); (P.-L.K.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Han Ying Wang
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Mei-Chuan Kuo
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Faculty of Renal Care, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Po-Lin Kuo
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-T.L.); (P.-H.W.); (Y.-C.T.); (P.-L.K.)
| | - Shang-Jyh Hwang
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Correspondence: ; Tel.: +886-7-3121101 (ext. 7900); Fax: +886-7-3228721
| |
Collapse
|
24
|
Abstract
The measurement of select circulating metabolites such as creatinine, glucose, and cholesterol are integral to clinical medicine, with implications for diagnosis, prognosis, and treatment. Metabolomics studies in nephrology research seek to build on this paradigm, with the goal to identify novel markers and causal participants in the pathogenesis of kidney disease and its complications. This article reviews three themes pertinent to this goal. Each is rooted in long-established principles of human physiology, with recent updates enabled by metabolomics and other tools. First, the kidney has a broad and heterogeneous impact on circulating metabolites, with progressive loss of kidney function resulting in a multitude of small molecule alterations. Second, an increasing number of circulating metabolites have been shown to possess functional roles, in some cases acting as ligands for specific G-protein-coupled receptors. Third, circulating metabolites traffic through varied, and sometimes complex, interorgan circuits. Taken together, these themes emphasize the importance of viewing renal metabolomics at the systems level, recognizing the diverse origins and physiologic effects of blood metabolites. However, how to synthesize these themes and how to establish clinical relevance remain uncertain and will require further investigation.
Collapse
Affiliation(s)
- Eugene P Rhee
- Nephrology and Endocrinology Divisions, Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
25
|
Overview: Role of Drug Transporters in Drug Disposition and Its Clinical Significance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:1-12. [PMID: 31571163 DOI: 10.1007/978-981-13-7647-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Absorption, distribution, and excretion of drugs are involved in drug transport across plasma membrane, most of which are mediated by drug transporters. These drug transporters are generally divided into solute carrier (SLC) family and ATP-binding cassette (ABC) family. These transporters not only mediate transport of therapeutic drugs across membrane but also transport various kinds of endogenous compounds. Thus besides being participated in disposal of drug and its clinical efficacy/toxicity, these transporters also play vital roles in maintaining cell homeostasis via regulating transport of endogenous compounds. This chapter will outline classification of drug transporters, their roles in drug disposal/drug response, and remote communication between tissues/organs.
Collapse
|
26
|
Torres-Vergara P, Escudero C, Penny J. Drug Transport at the Brain and Endothelial Dysfunction in Preeclampsia: Implications and Perspectives. Front Physiol 2018; 9:1502. [PMID: 30459636 PMCID: PMC6232255 DOI: 10.3389/fphys.2018.01502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022] Open
Abstract
Transport of drugs across biological barriers has been a subject of study for decades. The discovery and characterization of proteins that confer the barrier properties of endothelia and epithelia, including tight junction proteins and membrane transporters belonging to the ATP-binding cassette (ABC) and Solute Carrier (SLC) families, represented a significant step forward into understanding the mechanisms that govern drug disposition. Subsequently, numerous studies, including both pre-clinical approaches and clinical investigations, have been carried out to determine the influence of physiological and pathological states on drug disposition. Importantly, there has been increasing interest in gaining a better understanding of drug disposition during pregnancy, since epidemiological and clinical studies have demonstrated that the use of medications by pregnant women is significant and this condition embodies a series of significant anatomical and physiological modifications, particularly at excretory organs and barrier sites (e.g., placenta, breast) expressing transporter proteins which influence pharmacokinetics. Currently, most of the research in this field has focused on the expression profiling of transporter proteins in trophoblasts and endothelial cells of the placenta, regulation of drug-resistance mechanisms in disease states and pharmacokinetic studies. However, little attention has been placed on the influence that the cerebrovascular dysfunction present in pregnancy-related disorders, such as preeclampsia, might exert on drug disposition in the mother’s brain. This issue is particularly important since recent findings have demonstrated that preeclamptic women suffer from long-term alterations in the integrity of the blood-brain barrier (BBB). In this review we aim to analyze the available evidence regarding the influence of pregnancy on the expression of transporters and TJ proteins in brain endothelial cells, as well the mechanisms that govern the pathophysiological alterations in the BBB of women who experience preeclampsia. Future research efforts should be focused not only on achieving a better understanding of the influence of preeclampsia-associated endothelial dysfunction on drug disposition, but also in optimizing the pharmacological treatments of women suffering pregnancy-related disorders, its comorbidities and to develop new therapies aiming to restore the integrity of the BBB.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Department of Pharmacy, Faculty of Pharmacy, University of Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.,Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.,Red Iberoamericana de Alteraciones Vasculares Asociadas a Trastornos del Embarazo (RIVA-TREM), Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
27
|
AST-120 Reduces Neuroinflammation Induced by Indoxyl Sulfate in Glial Cells. J Clin Med 2018; 7:jcm7100365. [PMID: 30336612 PMCID: PMC6210605 DOI: 10.3390/jcm7100365] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic kidney disease (CKD) involves multiple organ dysfunction, and the neurological complications that are often present in CKD patients support the idea of a crosstalk between the kidneys and the brain. Evidence suggests a possible role for products accumulating in these patients as uremic toxins in various CKD complications, including neurodegeneration. Indoxyl sulfate (IS), derived from tryptophan metabolism, is well-known as a uremic nephron-vascular toxin, and recent evidence suggests it also has a role in the immune response and in neurodegeneration. Inflammation has been associated with neurodegenerative diseases, as well as with CKD. In this study, we demonstrated that sera of CKD patients induced a significant inflammation in astrocyte cells which was proportional to IS sera concentrations, and that the IS adsorbent, AST-120, reduced this inflammatory response. These results indicated that, among the uremic toxins accumulating in serum of CKD patients, IS significantly contributed to astrocyte inflammation. Moreover, being also chronic inflammation associated with CKD, here we reported that IS further increased inflammation and oxidative stress in primary central nervous system (CNS) cells, via Nuclear Factor-κB (NF-κB) and Aryl hydrocarbon Receptor (AhR) activation, and induced neuron death. This study is a step towards elucidating IS as a potential pharmacological target in CKD patients.
Collapse
|
28
|
Wang Q, Zuo Z. Impact of transporters and enzymes from blood–cerebrospinal fluid barrier and brain parenchyma on CNS drug uptake. Expert Opin Drug Metab Toxicol 2018; 14:961-972. [DOI: 10.1080/17425255.2018.1513493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qianwen Wang
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
29
|
Probiotic Lactobacillus paracasei HII01 protects rats against obese-insulin resistance-induced kidney injury and impaired renal organic anion transporter 3 function. Clin Sci (Lond) 2018; 132:1545-1563. [DOI: 10.1042/cs20180148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/24/2023]
Abstract
The relationship between gut dysbiosis and obesity is currently acknowledged to be a health topic which causes low-grade systemic inflammation and insulin resistance and may damage the kidney. Organic anion transporter 3 (Oat3) has been shown as a transporter responsible for renal handling of gut microbiota products which are involved in the progression of metabolic disorder. The present study investigated the effect of probiotic supplementation on kidney function, renal Oat3 function, inflammation, endoplasmic reticulum (ER) stress, and apoptosis in obese, insulin-resistant rats. After 12 weeks of being provided with either a normal or a high-fat diet (HF), rats were divided into normal diet (ND); ND treated with probiotics (NDL); HF; and HF treated with probiotic (HFL). Lactobacillus paracasei HII01 1 × 108 colony forming unit (CFU)/ml was administered to the rats daily by oral gavage for 12 weeks. Obese rats showed significant increases in serum lipopolysaccharide (LPS), plasma lipid profiles, and insulin resistance. Renal Oat 3 function was decreased along with kidney dysfunction in HF-fed rats. Obese rats also demonstrated the increases in inflammation, ER stress, apoptosis, and gluconeogenesis in the kidneys. These alterations were improved by Lactobacillus paracasei HII01 treatment. In conclusion, probiotic supplementation alleviated kidney inflammation, ER stress, and apoptosis, leading to improved kidney function and renal Oat3 function in obese rats. These benefits involve the attenuation of hyperlipidemia, systemic inflammation, and insulin resistance. The present study also suggested the idea of remote sensing and signaling system between gut and kidney by which probiotic might facilitate renal handling of gut microbiota products through the improvement of Oat3 function.
Collapse
|
30
|
The Impact of Uremic Toxins on Cerebrovascular and Cognitive Disorders. Toxins (Basel) 2018; 10:toxins10070303. [PMID: 30037144 PMCID: PMC6071092 DOI: 10.3390/toxins10070303] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing cognitive disorders and dementia. Stroke is also highly prevalent in this population and is associated with a higher risk of neurological deterioration, in-hospital mortality, and poor functional outcomes. Evidence from in vitro studies and in vivo animal experiments suggests that accumulation of uremic toxins may contribute to the pathogenesis of stroke and amplify vascular damage, leading to cognitive disorders and dementia. This review summarizes current evidence on the mechanisms by which uremic toxins may favour the occurrence of cerebrovascular diseases and neurological complications in CKD.
Collapse
|
31
|
Impairment of the carnitine/organic cation transporter 1-ergothioneine axis is mediated by intestinal transporter dysfunction in chronic kidney disease. Kidney Int 2017; 92:1356-1369. [PMID: 28754554 DOI: 10.1016/j.kint.2017.04.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 04/03/2017] [Accepted: 04/18/2017] [Indexed: 01/01/2023]
Abstract
Carnitine/organic cation transporter 1 (OCTN1) is a specific transporter of the food-derived antioxidant ergothioneine. Ergothioneine is absorbed by intestinal OCTN1, distributed through the bloodstream, and incorporated into each organ by OCTN1. OCTN1 expression is upregulated in injured tissues, and promotes ergothioneine uptake to reduce further damage caused by oxidative stress. However, the role of the OCTN1-ergothioneine axis in kidney-intestine cross-talk and chronic kidney disease (CKD) progression remains unclear. Here we assessed ergothioneine uptake via intestinal OCTN1 and confirmed the expression of OCTN1. The ability of OCTN1 to absorb ergothioneine was diminished in mice with CKD. In combination with OCTN1 dysfunction, OCTN1 localization on the intestinal apical cellular membrane was disturbed in mice with CKD. Proteomic analysis, RT-PCR, Western blotting, and immunohistochemistry revealed that PDZ (PSD95, Dlg, and ZO1), a PDZK1 domain-containing protein that regulates the localization of transporters, was decreased in mice with CKD. Decreased intestinal ergothioneine uptake from food decreased ergothioneine levels in the blood of mice with CKD. Despite increased OCTN1 expression and ergothioneine uptake into the kidneys of mice with CKD, ergothioneine levels did not increase. To identify the role of the OCTN1-ergothioneine axis in CKD, we evaluated kidney damage and oxidative stress in OCTN1-knockout mice with CKD and found that kidney fibrosis worsened. Oxidative stress indicators were increased in OCTN1-knockout mice. Moreover, ergothioneine levels in the blood of patients with CKD decreased, which were restored after kidney transplantation. Thus, a novel inter-organ interaction mediated by transporters is associated with CKD progression.
Collapse
|
32
|
Adesso S, Magnus T, Cuzzocrea S, Campolo M, Rissiek B, Paciello O, Autore G, Pinto A, Marzocco S. Indoxyl Sulfate Affects Glial Function Increasing Oxidative Stress and Neuroinflammation in Chronic Kidney Disease: Interaction between Astrocytes and Microglia. Front Pharmacol 2017; 8:370. [PMID: 28659803 PMCID: PMC5466960 DOI: 10.3389/fphar.2017.00370] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 05/29/2017] [Indexed: 01/09/2023] Open
Abstract
Indoxyl sulfate (IS) is a protein-bound uremic toxin resulting from the metabolism of dietary tryptophan which accumulates in patients with impaired renal function, such as chronic kidney disease (CKD). IS is a well-known nephrovascular toxin but little is known about its effects on central nervous system (CNS) cells. Considering the growing interest in the field of CNS comorbidities in CKD, we studied the effect of IS on CNS cells. IS (15–60 μM) treatment in C6 astrocyte cells increased reactive oxygen species release and decreased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activation, and heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase quinone 1 expression. Moreover, IS increased Aryl hydrocarbon Receptor (AhR) and Nuclear Factor-kB (NF-kB) activation in these cells. Similiar observations were made in primary mouse astrocytes and mixed glial cells. Inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) expression, tumor necrosis factor-α and interleukin-6 release and nitrotyrosine formation were increased by IS (15–60 μM) in primary mouse astrocytes and mixed glial cells. IS increased AhR and NF-kB nuclear translocation and reduced Nrf2 translocation and HO-1 expression in primary glial cells. In addition, IS induced cell death in neurons in a dose dependent fashion. Injection of IS (800 mg/kg, i.p.) into mice induced histological changes and increased COX-2 expression and nitrotyrosine formation in thebrain tissue. Taken together, our results show a significant contribution of IS in generating a neurotoxic enviroment and it could also have a potential role in neurodegeneration. IS could be considered also a potential therapeutical target for CKD-associated neurodegenerative complications.
Collapse
Affiliation(s)
- Simona Adesso
- Department of Pharmacy, University of SalernoFisciano, Italy.,Ph.D. Program in Drug Discovery and Development, University of SalernoFisciano, Italy
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of MessinaMessina, Italy
| | - Michela Campolo
- Department of Biological and Environmental Sciences, University of MessinaMessina, Italy
| | - Björn Rissiek
- Department of Neurology, University Medical Center Hamburg-EppendorfHamburg, Germany
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples "Federico II"Naples, Italy
| | | | - Aldo Pinto
- Department of Pharmacy, University of SalernoFisciano, Italy
| | | |
Collapse
|
33
|
Rasschaert M, Idée JM, Robert P, Fretellier N, Vives V, Violas X, Ballet S, Corot C. Moderate Renal Failure Accentuates T1 Signal Enhancement in the Deep Cerebellar Nuclei of Gadodiamide-Treated Rats. Invest Radiol 2017; 52:255-264. [PMID: 28067754 PMCID: PMC5383202 DOI: 10.1097/rli.0000000000000339] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/06/2016] [Indexed: 12/02/2022]
Abstract
OBJECTIVES The purpose of this preclinical study was to investigate whether moderate chronic kidney disease is a factor in potentiating gadolinium (Gd) uptake in the brain. MATERIALS AND METHODS A comparative study was performed on renally impaired (subtotal nephrectomy) rats versus rats with normal renal function. The animals received 4 daily injections of 0.6 mmol Gd/kg a week for 5 weeks (cumulative dose of 12 mmol Gd/kg) of gadodiamide or saline solution. The MR signal enhancement in the deep cerebellar nuclei was monitored by weekly magnetic resonance imaging examinations. One week after the final injection, the total Gd concentration was determined by inductively coupled plasma mass spectrometry in different regions of the brain including the cerebellum, plasma, cerebrospinal fluid, parietal bone, and femur. RESULTS After the administration of gadodiamide, the subtotal nephrectomy group presented a significantly higher T1 signal enhancement in the deep cerebellar nuclei and a major increase in the total Gd concentration in all the studied structures, compared with the normal renal function group receiving the same linear Gd-based contrast agent. Those potentiated animals also showed a pronounced hypersignal in the choroid plexus, still persistent 6 days after the last injection, whereas low concentration of Gd was found in the cerebrospinal fluid (<0.05 μmol/L) at this time point. Plasma Gd concentration was then around 1 μmol/L. Interestingly, plasma Gd was predominantly in a dissociated and soluble form (around 90% of total Gd). Total Gd concentrations in the brain, cerebellum, plasma, and bones correlated with creatinine clearance in both the gadodiamide-treated groups. CONCLUSIONS Renal insufficiency in rats potentiates Gd uptake in the cerebellum, brain, and bones.
Collapse
Affiliation(s)
- Marlène Rasschaert
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| | - Jean-Marc Idée
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| | - Philippe Robert
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| | - Nathalie Fretellier
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| | - Véronique Vives
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| | - Xavier Violas
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| | - Sébastien Ballet
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| | - Claire Corot
- From the *Guerbet Research and Innovation Department, Aulnay-sous-Bois; †Institut Curie, Centre de Recherche, PSL Research University; and ‡Université Paris-Sud, Université Paris-Saclay, CNRS, UMR-9187, INSERM, U1196, F-91405, Orsay, France
| |
Collapse
|
34
|
Sekhar GN, Georgian AR, Sanderson L, Vizcay-Barrena G, Brown RC, Muresan P, Fleck RA, Thomas SA. Organic cation transporter 1 (OCT1) is involved in pentamidine transport at the human and mouse blood-brain barrier (BBB). PLoS One 2017; 12:e0173474. [PMID: 28362799 PMCID: PMC5376088 DOI: 10.1371/journal.pone.0173474] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 02/21/2017] [Indexed: 02/02/2023] Open
Abstract
Pentamidine is an effective trypanocidal drug used against stage 1 Human African Trypanosomiasis (HAT). At the blood-brain barrier (BBB), it accumulates inside the endothelial cells but has limited entry into the brain. This study examined transporters involved in pentamidine transport at the human and mouse BBB using hCMEC/D3 and bEnd.3 cell lines, respectively. Results revealed that both cell lines expressed the organic cation transporters (OCT1, OCT2 and OCT3), however, P-gp was only expressed in hCMEC/D3 cells. Polarised expression of OCT1 was also observed. Functional assays found that ATP depletion significantly increased [3H]pentamidine accumulation in hCMEC/D3 cells (***p<0.001) but not in bEnd.3 cells. Incubation with unlabelled pentamidine significantly decreased accumulation in hCMEC/D3 and bEnd.3 cells after 120 minutes (***p<0.001). Treating both cell lines with haloperidol and amantadine also decreased [3H]pentamidine accumulation significantly (***p<0.001 and **p<0.01 respectively). However, prazosin treatment decreased [3H]pentamidine accumulation only in hCMEC/D3 cells (*p<0.05), and not bEnd.3 cells. Furthermore, the presence of OCTN, MATE, PMAT, ENT or CNT inhibitors/substrates had no significant effect on the accumulation of [3H]pentamidine in both cell lines. From the data, we conclude that pentamidine interacts with multiple transporters, is taken into brain endothelial cells by OCT1 transporter and is extruded into the blood by ATP-dependent mechanisms. These interactions along with the predominant presence of OCT1 in the luminal membrane of the BBB contribute to the limited entry of pentamidine into the brain. This information is of key importance to the development of pentamidine based combination therapies which could be used to treat CNS stage HAT by improving CNS delivery, efficacy against trypanosomes and safety profile of pentamidine.
Collapse
Affiliation(s)
- Gayathri N. Sekhar
- King’s College London, Institute of Pharmaceutical Science, Waterloo, London United Kingdom
| | - Ana R. Georgian
- King’s College London, Institute of Pharmaceutical Science, Waterloo, London United Kingdom
| | - Lisa Sanderson
- King’s College London, Institute of Pharmaceutical Science, Waterloo, London United Kingdom
| | - Gema Vizcay-Barrena
- King’s College London, Centre for Ultrastructural Imaging, King’s College London, London Bridge United Kingdom
| | - Rachel C. Brown
- King’s College London, Institute of Pharmaceutical Science, Waterloo, London United Kingdom
| | - Paula Muresan
- King’s College London, Institute of Pharmaceutical Science, Waterloo, London United Kingdom
| | - Roland A. Fleck
- King’s College London, Centre for Ultrastructural Imaging, King’s College London, London Bridge United Kingdom
| | - Sarah A. Thomas
- King’s College London, Institute of Pharmaceutical Science, Waterloo, London United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Praetorius J, Damkier HH. Transport across the choroid plexus epithelium. Am J Physiol Cell Physiol 2017; 312:C673-C686. [PMID: 28330845 DOI: 10.1152/ajpcell.00041.2017] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 11/22/2022]
Abstract
The choroid plexus epithelium is a secretory epithelium par excellence. However, this is perhaps not the most prominent reason for the massive interest in this modest-sized tissue residing inside the brain ventricles. Most likely, the dominant reason for extensive studies of the choroid plexus is the identification of this epithelium as the source of the majority of intraventricular cerebrospinal fluid. This finding has direct relevance for studies of diseases and conditions with deranged central fluid volume or ionic balance. While the concept is supported by the vast majority of the literature, the implication of the choroid plexus in secretion of the cerebrospinal fluid was recently challenged once again. Three newer and promising areas of current choroid plexus-related investigations are as follows: 1) the choroid plexus epithelium as the source of mediators necessary for central nervous system development, 2) the choroid plexus as a route for microorganisms and immune cells into the central nervous system, and 3) the choroid plexus as a potential route for drug delivery into the central nervous system, bypassing the blood-brain barrier. Thus, the purpose of this review is to highlight current active areas of research in the choroid plexus physiology and a few matters of continuous controversy.
Collapse
Affiliation(s)
- Jeppe Praetorius
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and
| | - Helle Hasager Damkier
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark; and.,Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Underwood CF, Hildreth CM, Wyse BF, Boyd R, Goodchild AK, Phillips JK. Uraemia: an unrecognized driver of central neurohumoral dysfunction in chronic kidney disease? Acta Physiol (Oxf) 2017; 219:305-323. [PMID: 27247097 DOI: 10.1111/apha.12727] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/21/2016] [Accepted: 05/31/2016] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) carries a large cardiovascular burden in part due to hypertension and neurohumoral dysfunction - manifesting as sympathetic overactivity, baroreflex dysfunction and chronically elevated circulating vasopressin. Alterations within the central nervous system (CNS) are necessary for the expression of neurohumoral dysfunction in CKD; however, the underlying mechanisms are poorly defined. Uraemic toxins are a diverse group of compounds that accumulate as a direct result of renal disease and drive dysfunction in multiple organs, including the brain. Intensive haemodialysis improves both sympathetic overactivity and cardiac baroreflex sensitivity in renal failure patients, indicating that uraemic toxins participate in the maintenance of autonomic dysfunction in CKD. In rodents exposed to uraemia, immediate early gene expression analysis suggests upregulated activity of not only pre-sympathetic but also vasopressin-secretory nuclei. We outline several potential mechanisms by which uraemia might drive neurohumoral dysfunction in CKD. These include superoxide-dependent effects on neural activity, depletion of nitric oxide and induction of low-grade systemic inflammation. Recent evidence has highlighted superoxide production as an intermediate for the depolarizing effect of some uraemic toxins on neuronal cells. We provide preliminary data indicating augmented superoxide production within the hypothalamic paraventricular nucleus in the Lewis polycystic kidney rat, which might be important for mediating the neurohumoral dysfunction exhibited in this CKD model. We speculate that the uraemic state might serve to sensitize the central actions of other sympathoexcitatory factors, including renal afferent nerve inputs to the CNS and angiotensin II, by way of recruiting convergent superoxide-dependent and pro-inflammatory pathways.
Collapse
Affiliation(s)
- C. F. Underwood
- Department of Biomedical Sciences; Macquarie University; Sydney NSW Australia
| | - C. M. Hildreth
- Department of Biomedical Sciences; Macquarie University; Sydney NSW Australia
| | - B. F. Wyse
- Department of Biomedical Sciences; Macquarie University; Sydney NSW Australia
| | - R. Boyd
- Department of Biomedical Sciences; Macquarie University; Sydney NSW Australia
| | - A. K. Goodchild
- Department of Biomedical Sciences; Macquarie University; Sydney NSW Australia
| | - J. K. Phillips
- Department of Biomedical Sciences; Macquarie University; Sydney NSW Australia
| |
Collapse
|
37
|
Nałęcz KA. Solute Carriers in the Blood–Brain Barier: Safety in Abundance. Neurochem Res 2016; 42:795-809. [DOI: 10.1007/s11064-016-2030-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022]
|
38
|
Cacabelos R, Torrellas C, Teijido O, Carril JC. Pharmacogenetic considerations in the treatment of Alzheimer's disease. Pharmacogenomics 2016; 17:1041-74. [PMID: 27291247 DOI: 10.2217/pgs-2016-0031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The practical pharmacogenetics of Alzheimer's disease (AD) is circumscribed to acetylcholinesterase inhibitors (AChEIs) and memantine. However, pharmacogenetic procedures should be applied to novel strategies in AD therapeutics including: novel AChEIs and neurotransmitter regulators, anti-Aβ treatments, anti-tau treatments, pleiotropic products, epigenetic drugs and combination therapies. Genes involved in the pharmacogenetic network are under the influence of the epigenetic machinery which regulates gene expression transcriptionally and post-transcriptionally, configuring the fundamentals of pharmacoepigenomics. Over 60% of AD patients present concomitant pathologies demanding additional treatments which increase the likelihood of drug-drug interactions. Lipid metabolism dysfunction is a pathogenic mechanism inherent to AD neurodegeneration. The therapeutic response to hypolipidemic compounds is influenced by the APOE and CYP genotypes. The development of novel compounds and the use of combination/multifactorial treatments require the implantation of pharmacogenomic procedures for the avoidance of ADRs and the optimization of therapeutics.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Department of Genomic Medicine, Camilo José Cela University, Madrid, Spain.,EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Clara Torrellas
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Oscar Teijido
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| | - Juan Carlos Carril
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Corunna, Spain
| |
Collapse
|
39
|
Spector R, Robert Snodgrass S, Johanson CE. A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans. Exp Neurol 2015; 273:57-68. [DOI: 10.1016/j.expneurol.2015.07.027] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/26/2015] [Accepted: 07/29/2015] [Indexed: 12/25/2022]
|
40
|
Li DC, Nichols CG, Sala-Rabanal M. Role of a Hydrophobic Pocket in Polyamine Interactions with the Polyspecific Organic Cation Transporter OCT3. J Biol Chem 2015; 290:27633-43. [PMID: 26405039 DOI: 10.1074/jbc.m115.668913] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Indexed: 01/11/2023] Open
Abstract
Organic cation transporter 3 (OCT3, SLC22A3) is a polyspecific, facilitative transporter expressed in astrocytes and in placental, intestinal, and blood-brain barrier epithelia, and thus elucidating the molecular mechanisms underlying OCT3 substrate recognition is critical for the rational design of drugs targeting these tissues. The pharmacology of OCT3 is distinct from that of other OCTs, and here we investigated the role of a hydrophobic cavity tucked within the translocation pathway in OCT3 transport properties. Replacement of an absolutely conserved Asp by charge reversal (D478E), neutralization (D478N), or even exchange (D478E) abolished MPP(+) uptake, demonstrating this residue to be obligatory for OCT3-mediated transport. Mutations at non-conserved residues lining the putative binding pocket of OCT3 to the corresponding residue in OCT1 (L166F, F450L, and E451Q) reduced the rate of MPP(+) transport, but recapitulated the higher sensitivity pharmacological profile of OCT1. Thus, interactions of natural polyamines (putrescine, spermidine, spermine) and polyamine-like potent OCT1 blockers (1,10-diaminodecane, decamethonium, bistriethylaminodecane, and 1,10-bisquinuclidinedecane) with wild-type OCT3 were weak, but were significantly potentiated in the mutant OCT3s. Conversely, a reciprocal mutation in OCT1 (F161L) shifted the polyamine-sensitivity phenotype toward that of OCT3. Further analysis indicated that OCT1 and OCT3 can recognize essentially the same substrates, but the strength of substrate-transporter interactions is weaker in OCT3, as informed by the distinct makeup of the hydrophobic cleft. The residues identified here are key contributors to both the observed differences between OCT3 and OCT1 and to the mechanisms of substrate recognition by OCTs in general.
Collapse
Affiliation(s)
- Dan C Li
- From the Department of Cell Biology and Physiology, and the Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, Missouri 63110
| | - Colin G Nichols
- From the Department of Cell Biology and Physiology, and the Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, Missouri 63110
| | - Monica Sala-Rabanal
- From the Department of Cell Biology and Physiology, and the Center for the Investigation of Membrane Excitability Diseases (CIMED), Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
41
|
Cacabelos R, Torrellas C, Carrera I. Opportunities in pharmacogenomics for the treatment of Alzheimer's disease. FUTURE NEUROLOGY 2015. [DOI: 10.2217/fnl.15.12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT In Alzheimer's disease (AD), approximately 10–20% of direct costs are associated with pharmacological treatment. Pharmacogenomics account for 30–90% variability in pharmacokinetics and pharmacodynamics. Genes potentially involved in the pharmacogenomics outcome include pathogenic, mechanistic, metabolic, transporter and pleiotropic genes. Over 75% of the Caucasian population is defective for the CYP2D6+2C9+2C19 cluster. Polymorphic variants in the APOE-TOMM40 region influence AD pharmacogenomics. APOE-4 carriers are the worst responders and APOE-3 carriers are the best responders to conventional treatments. TOMM40 poly T-S/S carriers are the best responders, VL/VL and S/VL carriers are intermediate responders and L/L carriers are the worst responders. The haplotype 4/4-L/L is probably responsible for early onset of the disease, a faster cognitive decline and a poor response to different treatments.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain
- EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain
| | - Clara Torrellas
- Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain
- EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain
| | - Iván Carrera
- Camilo José Cela University, Villanueva de la Cañada, 28692-Madrid, Spain
- EuroEspes Biomedical Research Center, Institute of Medical Science & Genomic Medicine, Corunna, Spain
| |
Collapse
|
42
|
Pharmacogenetics of Neurodegenerative Disorders. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2015. [DOI: 10.1007/978-3-319-15344-5_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Campos-Bedolla P, Walter FR, Veszelka S, Deli MA. Role of the Blood–Brain Barrier in the Nutrition of the Central Nervous System. Arch Med Res 2014; 45:610-38. [DOI: 10.1016/j.arcmed.2014.11.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
|
44
|
Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol 2014; 5:231. [PMID: 25400580 PMCID: PMC4215795 DOI: 10.3389/fphar.2014.00231] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022] Open
Abstract
One approach to experimental science involves creating hypotheses, then testing them by varying one or more independent variables, and assessing the effects of this variation on the processes of interest. We use this strategy to compare the intellectual status and available evidence for two models or views of mechanisms of transmembrane drug transport into intact biological cells. One (BDII) asserts that lipoidal phospholipid Bilayer Diffusion Is Important, while a second (PBIN) proposes that in normal intact cells Phospholipid Bilayer diffusion Is Negligible (i.e., may be neglected quantitatively), because evolution selected against it, and with transmembrane drug transport being effected by genetically encoded proteinaceous carriers or pores, whose “natural” biological roles, and substrates are based in intermediary metabolism. Despite a recent review elsewhere, we can find no evidence able to support BDII as we can find no experiments in intact cells in which phospholipid bilayer diffusion was either varied independently or measured directly (although there are many papers where it was inferred by seeing a covariation of other dependent variables). By contrast, we find an abundance of evidence showing cases in which changes in the activities of named and genetically identified transporters led to measurable changes in the rate or extent of drug uptake. PBIN also has considerable predictive power, and accounts readily for the large differences in drug uptake between tissues, cells and species, in accounting for the metabolite-likeness of marketed drugs, in pharmacogenomics, and in providing a straightforward explanation for the late-stage appearance of toxicity and of lack of efficacy during drug discovery programmes despite macroscopically adequate pharmacokinetics. Consequently, the view that Phospholipid Bilayer diffusion Is Negligible (PBIN) provides a starting hypothesis for assessing cellular drug uptake that is much better supported by the available evidence, and is both more productive and more predictive.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester Manchester, UK ; Manchester Institute of Biotechnology, The University of Manchester Manchester, UK
| | - Stephen G Oliver
- Department of Biochemistry, University of Cambridge Cambridge, UK ; Cambridge Systems Biology Centre, University of Cambridge Cambridge, UK
| |
Collapse
|
45
|
Nongnuch A, Panorchan K, Davenport A. Brain-kidney crosstalk. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:225. [PMID: 25043644 PMCID: PMC4075125 DOI: 10.1186/cc13907] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Encephalopathy and altered higher mental functions are common clinical complications of acute kidney injury. Although sepsis is a major triggering factor, acute kidney injury predisposes to confusion by causing generalised inflammation, leading to increased permeability of the blood–brain barrier, exacerbated by hyperosmolarity and metabolic acidosis due to the retention of products of nitrogen metabolism potentially resulting in increased brain water content. Downregulation of cell membrane transporters predisposes to alterations in neurotransmitter secretion and uptake, coupled with drug accumulation increasing the risk of encephalopathy. On the other hand, acute brain injury can induce a variety of changes in renal function ranging from altered function and electrolyte imbalances to inflammatory changes in brain death kidney donors.
Collapse
|
46
|
Stinghen AEM, Chillon JM, Massy ZA, Boullier A. Differential effects of indoxyl sulfate and inorganic phosphate in a murine cerebral endothelial cell line (bEnd.3). Toxins (Basel) 2014; 6:1742-60. [PMID: 24902077 PMCID: PMC4073127 DOI: 10.3390/toxins6061742] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/17/2014] [Accepted: 05/26/2014] [Indexed: 12/29/2022] Open
Abstract
Endothelial dysfunction plays a key role in stroke in chronic kidney disease patients. To explore the underlying mechanisms, we evaluated the effects of two uremic toxins on cerebral endothelium function. bEnd.3 cells were exposed to indoxyl sulfate (IS) and inorganic phosphate (Pi). Nitric oxide (NO), reactive oxygen species (ROS) and O2•⁻ were measured using specific fluorophores. Peroxynitrite and eNOS uncoupling were evaluated using ebselen, a peroxide scavenger, and tetrahydrobiopterin (BH₄), respectively. Cell viability decreased after IS or Pi treatment (p < 0.01). Both toxins reduced NO production (IS, p < 0.05; Pi, p < 0.001) and induced ROS production (p < 0.001). IS and 2 mM Pi reduced O2•⁻ production (p < 0.001). Antioxidant pretreatment reduced ROS levels in both IS- and Pi-treated cells, but a more marked reduction of O2•⁻ production was observed in Pi-treated cells (p < 0.001). Ebselen reduced the ROS production induced by the two toxins (p < 0.001); suggesting a role of peroxynitrite in this process. BH₄ addition significantly reduced O2•⁻ and increased NO production in Pi-treated cells (p < 0.001), suggesting eNOS uncoupling, but had no effect in IS-treated cells. This study shows, for the first time, that IS and Pi induce cerebral endothelial dysfunction by decreasing NO levels due to enhanced oxidative stress. However, Pi appears to be more deleterious, as it also induces eNOS uncoupling.
Collapse
Affiliation(s)
- Andréa E M Stinghen
- Inserm U1088, Department of Pharmacy, 1 rue des Louvels, Amiens F-80037 Cédex 1, France.
| | - Jean-Marc Chillon
- Inserm U1088, Department of Pharmacy, 1 rue des Louvels, Amiens F-80037 Cédex 1, France.
| | - Ziad A Massy
- Inserm U1088, Department of Pharmacy, 1 rue des Louvels, Amiens F-80037 Cédex 1, France.
| | - Agnès Boullier
- Inserm U1088, Department of Pharmacy, 1 rue des Louvels, Amiens F-80037 Cédex 1, France.
| |
Collapse
|
47
|
Abstract
The development of dialysis was a dramatic step forward in medicine, allowing people who would soon have died because of lack of kidney function to remain alive for years. We have since found, however, that the "artificial kidney" does not live up fully to its name. Dialysis keeps patients alive but not well. Part of the residual illness that dialysis patients experience is caused by retained waste solutes that dialysis does not remove as well as native kidney function does. New means are available to identify these toxic solutes, about which we currently know remarkably little, and knowledge of these solutes would help us to improve therapy. This review summarizes our current knowledge of toxic solutes and highlights methods being explored to identify additional toxic solutes and to enhance the clearance of these solutes to improve patient outcomes.
Collapse
Affiliation(s)
- Timothy W Meyer
- Department of Medicine, Veterans Affairs Palo Alto Healthcare System, Palo Alto, California; Department of Medicine, Stanford University, Palo Alto, California; and
| | - Thomas H Hostetter
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
48
|
Sirich TL, Meyer TW, Gondouin B, Brunet P, Niwa T. Protein-bound molecules: a large family with a bad character. Semin Nephrol 2014; 34:106-17. [PMID: 24780467 DOI: 10.1016/j.semnephrol.2014.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many small solutes excreted by the kidney are bound to plasma proteins, chiefly albumin, in the circulation. The combination of protein binding and tubular secretion allows the kidney to reduce the free, unbound concentrations of such solutes to lower levels than could be obtained by tubular secretion alone. Protein-bound solutes accumulate in the plasma when the kidneys fail, and the free, unbound levels of these solutes increase more than their total plasma levels owing to competition for binding sites on plasma proteins. Given the efficiency by which the kidney can clear protein-bound solutes, it is tempting to speculate that some compounds in this class are important uremic toxins. Studies to date have focused largely on two specific protein-bound solutes: indoxyl sulfate and p-cresyl sulfate. The largest body of evidence suggests that both of these compounds contribute to cardiovascular disease, and that indoxyl sulfate contributes to the progression of chronic kidney disease. Other protein-bound solutes have been investigated to a much lesser extent, and could in the future prove to be even more important uremic toxins.
Collapse
Affiliation(s)
- Tammy L Sirich
- Department of Medicine, VA Palo Alto Healthcare System and Stanford University, Palo Alto, CA
| | - Timothy W Meyer
- Department of Medicine, VA Palo Alto Healthcare System and Stanford University, Palo Alto, CA.
| | - Bertrand Gondouin
- Aix-Marseille University, INSERM UMR_S 1076, Marseille, France; Centre de Nephrologie et Transplantation Renale, Assistance-Publique Hopitaux de Marseille, Marseille, France
| | - Philippe Brunet
- Aix-Marseille University, INSERM UMR_S 1076, Marseille, France; Centre de Nephrologie et Transplantation Renale, Assistance-Publique Hopitaux de Marseille, Marseille, France
| | - Toshimitsu Niwa
- Department of Advanced Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
49
|
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175:323-556. [PMID: 25150875 DOI: 10.1007/978-1-4939-0956-8_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Chair of Genomic Medicine, Camilo José Cela University, 28692, Villanueva de la Cañada, Madrid, Spain,
| | | | | | | | | |
Collapse
|
50
|
Cacabelos R, Cacabelos P, Torrellas C. Personalized Medicine of Alzheimer’s Disease. HANDBOOK OF PHARMACOGENOMICS AND STRATIFIED MEDICINE 2014. [PMCID: PMC7149555 DOI: 10.1016/b978-0-12-386882-4.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) is a major problem of health and disability, with a relevant economic impact on society (e.g., €177 billion in Europe). Despite important advances in pathogenesis, diagnosis, and treatment, The primary causes of AD remain elusive, accurate biomarkers are not well characterized, and available pharmacological treatments are not cost-effective. As a complex disorder, AD is polygenic and multifactorial: hundreds of defective genes distributed across the human genome may contribute to its pathogenesis (with the participation of diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena) and lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death. Future perspectives for the global management of AD predict that structural and functional genomics and proteomics may help in the search for reliable biomarkers, and that pharmacogenomics may be an option in optimizing drug development and therapeutics.
Collapse
|