1
|
Rosner MH, Rondon-Berrios H, Sterns RH. Syndrome of Inappropriate Antidiuresis. J Am Soc Nephrol 2024:00001751-990000000-00496. [PMID: 39621420 DOI: 10.1681/asn.0000000588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Syndrome of inappropriate antidiuresis (SIAD)-the most frequent cause of hypotonic hyponatremia-is mediated by nonosmotic release of arginine vasopressin, which promotes water retention by activating renal vasopressin type 2 (V2) receptors. There are numerous causes of SIAD, including malignancy, pulmonary and central nervous system diseases, and medications. Rare activating mutations of the V2 receptor can also cause SIAD. Determination of the etiology of SIAD is important because removal of the stimulus for inappropriate arginine vasopressin secretion offers the most effective therapy. Treatment of SIAD is guided by symptoms and their severity, as well as the level of plasma sodium. In the absence of severe symptoms, which require urgent intervention, many clinicians focus on fluid restriction as a first-line treatment. Second-line therapeutic options include loop diuretics and salt tablets, urea, and V2 receptor antagonists.
Collapse
Affiliation(s)
- Mitchell H Rosner
- Department of Medicine, University of Virginia Health, Charlottesville, Virginia
| | - Helbert Rondon-Berrios
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richard H Sterns
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
2
|
Kanai A, Everaert K, Apostolidis A, Fry C, Tyagi P, Van Huele A, Vahabi B, Bower W, Wein A, Abrams P. A better understanding of basic science may help our management of LUTS/LUTD in older persons with nocturnal polyuria and nocturia: ICI-RS 2024. Neurourol Urodyn 2024; 43:2300-2307. [PMID: 39051350 DOI: 10.1002/nau.25565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
AIMS To discuss the role of autocrine/paracrine signaling of urothelial arginine vasopressin (AVP) on mammalian bladder capacities and micturition thresholds, impact of distension on water/urea reabsorption from the bladder, review of the literature to better characterize the central/peripheral effects of AVP, desmopressin (dAVP) toxicity, and urine biomarkers of nocturia. METHODS This review summarizes discussions during an International Consultation on Incontinence-Research Society 2024 think tank with respect to the role of urothelial AVP in aged individuals with nocturnal polyuria, impact of solute and water reabsorption by the bladder on uninterrupted sleep, central effects of AVP, pharmacological basis of dAVP toxicity, and biomarkers in nocturia/lower urinary tract dysfunction (LUTD) with neurological diseases. RESULTS Consensus recognized AVP function and pathways in the central nervous system (CNS), pre-proAVP localized using immunohistochemistry in bladder sections from adult/aged noncancerous human punch biopsies and rodent bladder sections is likely to accelerate the systemic uptake of water and urea from the bladder of anesthetized mice instilled with 3H-water and 14C-urea. Mechanisms for charged and uncharged solutes and water transport across the bladder, mechanism of dAVP toxicity, and utility of urine biomarkers in those with neurological diseases/nocturia were determined from literature reviews. CONCLUSION Pre-proAVP is present in human/rodent bladders and may be involved in water reabsorption from bladder that prevents the sensation of fullness for uninterrupted sleep in healthy adults. The mechanism of action of AVP in the CNS was discussed, as was electrolyte/water transport across the bladder, the basis for dAVP toxicity, and feasibility of urine biomarkers to identify nocturia/LUTD with neurological diseases.
Collapse
Affiliation(s)
- Anthony Kanai
- Department of Medicine, Renal Electrolyte Division, University of Pittsburgh, Philadelphia, Pennsylvania, USA
| | | | | | - Christopher Fry
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Pradeep Tyagi
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Bahareh Vahabi
- School of Applied Sciences, University of the West of England, Bristol, UK
| | - Wendy Bower
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
- Department of Physiotherapy, Royal Melbourne Hospital, Melbourne, Australia
| | - Alan Wein
- Desai Sethi Institute of Urology, University of Miami Miller School of Medicine, Florida, USA
| | | |
Collapse
|
3
|
Evans LC, Dailey-Krempel B, Lauar MR, Dayton A, Vulchanova L, Osborn JW. Renal interoception in health and disease. Auton Neurosci 2024; 255:103208. [PMID: 39128142 DOI: 10.1016/j.autneu.2024.103208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
Catheter based renal denervation has recently been FDA approved for the treatment of hypertension. Traditionally, the anti-hypertensive effects of renal denervation have been attributed to the ablation of the efferent sympathetic renal nerves. In recent years the role of the afferent sensory renal nerves in the regulation of blood pressure has received increased attention. In addition, afferent renal denervation is associated with reductions in sympathetic nervous system activity. This suggests that reductions in sympathetic drive to organs other than the kidney may contribute to the non-renal beneficial effects observed in clinical trials of catheter based renal denervation. In this review we will provide an overview of the role of the afferent renal nerves in the regulation of renal function and the development of pathophysiologies, both renal and non-renal. We will also describe the central projections of the afferent renal nerves, to give context to the responses seen following their ablation and activation. Finally, we will discuss the emerging role of the kidney as an interoceptive organ. We will describe the potential role of the kidney in the regulation of interoceptive sensitivity and in this context, speculate on the possible pathological consequences of altered renal function.
Collapse
Affiliation(s)
- Louise C Evans
- Department of Surgery, University of Minnesota Medical School, Minneapolis 55455, United States of America
| | - Brianna Dailey-Krempel
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, United States of America
| | - Mariana R Lauar
- Department of Surgery, University of Minnesota Medical School, Minneapolis 55455, United States of America
| | - Alex Dayton
- Division of Nephrology and Hypertension, University of Minnesota Medical School, Minneapolis 55455, United States of America
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis 55455, United States of America
| | - John W Osborn
- Department of Surgery, University of Minnesota Medical School, Minneapolis 55455, United States of America.
| |
Collapse
|
4
|
Raz M, Milo T, Glass DS, Mayo A, Alon U. Endocrine gland size is proportional to its target tissue size. iScience 2024; 27:110625. [PMID: 39224518 PMCID: PMC11367476 DOI: 10.1016/j.isci.2024.110625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/26/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Endocrine glands secrete hormones into the circulation to target distant tissues and regulate their functions. The qualitative relationship between hormone-secreting organs and their target tissues is well established, but a quantitative approach is currently limited. Quantification is important, as it could allow us to study the endocrine system using engineering concepts of optimality and tradeoffs. In this study, we collected literature data on 24 human hormones secreted from dedicated endocrine cells. We find that the number of endocrine cells secreting a hormone is proportional to the number of its target cells. A single endocrine cell serves approximately 2,000 target cells, a relationship that spans 6 orders of magnitude of cell numbers. This suggests an economic principle of cells working near their maximal capacity, and glands that are no bigger than they need to be.
Collapse
Affiliation(s)
- Moriya Raz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tomer Milo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David S. Glass
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avi Mayo
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
5
|
Czyżewski W, Korulczyk J, Szymoniuk M, Sakwa L, Litak J, Ziemianek D, Czyżewska E, Mazurek M, Kowalczyk M, Turek G, Pawłowski A, Rola R, Torres K. Aquaporin 2 in Cerebral Edema: Potential Prognostic Marker in Craniocerebral Injuries. Int J Mol Sci 2024; 25:6617. [PMID: 38928322 PMCID: PMC11203564 DOI: 10.3390/ijms25126617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Despite continuous medical advancements, traumatic brain injury (TBI) remains a leading cause of death and disability worldwide. Consequently, there is a pursuit for biomarkers that allow non-invasive monitoring of patients after cranial trauma, potentially improving clinical management and reducing complications and mortality. Aquaporins (AQPs), which are crucial for transmembrane water transport, may be significant in this context. This study included 48 patients, with 27 having acute (aSDH) and 21 having chronic subdural hematoma (cSDH). Blood plasma samples were collected from the participants at three intervals: the first sample before surgery, the second at 15 h, and the third at 30 h post-surgery. Plasma concentrations of AQP1, AQP2, AQP4, and AQP9 were determined using the sandwich ELISA technique. CT scans were performed on all patients pre- and post-surgery. Correlations between variables were examined using Spearman's nonparametric rank correlation coefficient. A strong correlation was found between aquaporin 2 levels and the volume of chronic subdural hematoma and midline shift. However, no significant link was found between aquaporin levels (AQP1, AQP2, AQP4, and AQP9) before and after surgery for acute subdural hematoma, nor for AQP1, AQP4, and AQP9 after surgery for chronic subdural hematoma. In the chronic SDH group, AQP2 plasma concentration negatively correlated with the midline shift measured before surgery (Spearman's ρ -0.54; p = 0.017) and positively with hematoma volume change between baseline and 30 h post-surgery (Spearman's ρ 0.627; p = 0.007). No statistically significant correlation was found between aquaporin plasma levels and hematoma volume for AQP1, AQP2, AQP4, and AQP9 in patients with acute SDH. There is a correlation between chronic subdural hematoma volume, measured radiologically, and serum AQP2 concentration, highlighting aquaporins' potential as clinical biomarkers.
Collapse
Affiliation(s)
- Wojciech Czyżewski
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, ul. W.K. 7 Roentgena 5, 02-781 Warsaw, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, 20-954 Lublin, Poland
| | - Jan Korulczyk
- Department of Plastic, Reconstructive Surgery with Microsurgery, Medical University of Lublin, 20-954 Lublin, Poland; (J.K.); (K.T.)
| | - Michał Szymoniuk
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.S.); (M.M.); (R.R.)
| | - Leon Sakwa
- Faculty of Medical Sciences and Health Sciences, Kazimierz Pulaski University of Radom, 26-600 Radom, Poland;
| | - Jakub Litak
- Department of Clinical Immunology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Dominik Ziemianek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.S.); (M.M.); (R.R.)
| | - Ewa Czyżewska
- Department of Otolaryngology, Mazovian Specialist Hospital, 26-617 Radom, Poland;
| | - Marek Mazurek
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.S.); (M.M.); (R.R.)
| | - Michał Kowalczyk
- 1st Department of Anesthesiology and Intensive Care, Medical University of Lublin, ul. Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Grzegorz Turek
- Department of Neurosurgery, Postgraduate Medical Centre, Brodnowski Masovian Hospital, 8 Kondratowicza Str., 03-242 Warsaw, Poland;
| | - Adrian Pawłowski
- Department of Human, Clinical and Radiological Anatomy, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (M.S.); (M.M.); (R.R.)
| | - Kamil Torres
- Department of Plastic, Reconstructive Surgery with Microsurgery, Medical University of Lublin, 20-954 Lublin, Poland; (J.K.); (K.T.)
| |
Collapse
|
6
|
Murali SK, McCormick JA, Fenton RA. Regulation of the water channel aquaporin-2 by cullin E3 ubiquitin ligases. Am J Physiol Renal Physiol 2024; 326:F814-F826. [PMID: 38545647 PMCID: PMC11381000 DOI: 10.1152/ajprenal.00049.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 05/04/2024] Open
Abstract
Aquaporin 2 (AQP2) is a vasopressin (VP)-regulated water channel in the renal collecting duct. Phosphorylation and ubiquitylation of AQP2 play an essential role in controlling the cellular abundance of AQP2 and its accumulation on the plasma membrane in response to VP. Cullin-RING ubiquitin ligases (CRLs) are multisubunit E3 ligases involved in ubiquitylation and degradation of their target proteins, eight of which are expressed in the collecting duct. Here, we used an established cell model of the collecting duct (mpkCCD14 cells) to study the role of cullins in modulating AQP2. Western blotting identified Cul-1 to Cul-5 in mpkCCD14 cells. Treatment of cells for 4 h with a pan-cullin inhibitor (MLN4924) decreased AQP2 abundance, prevented a VP-induced reduction in AQP2 Ser261 phosphorylation, and attenuated VP-induced plasma membrane accumulation of AQP2 relative to the vehicle. AQP2 ubiquitylation levels were significantly higher after MLN4924 treatment compared with controls, and they remained higher despite VP treatment. Cullin inhibition increased ERK1/2 activity, a kinase that regulates AQP2 Ser261 phosphorylation, and VP-induced reductions in ERK1/2 phosphorylation were absent during MLN4924 treatment. Furthermore, the greater Ser261 phosphorylation and reduction in AQP2 abundance during MLN4924 treatment were attenuated during ERK1/2 inhibition. MLN4924 increased intracellular calcium levels via calcium release-activated calcium channels, inhibition of which abolished MLN4924 effects on Ser261 phosphorylation and AQP2 abundance. In conclusion, CRLs play a vital role in mediating some of the effects of VP to increase AQP2 plasma membrane accumulation and AQP2 abundance. Whether modulation of cullin activity can contribute to body water homeostasis requires further studies.NEW & NOTEWORTHY Aquaporin 2 (AQP2) is essential for body water homeostasis and is regulated by the antidiuretic hormone vasopressin. The posttranslational modification ubiquitylation is a key regulator of AQP2 abundance and plasma membrane localization. Here we demonstrate that cullin-RING E3 ligases play a vital role in mediating some of the effects of vasopressin to increase AQP2 abundance and plasma membrane accumulation. The results suggest that manipulating cullin activity could be a novel strategy to alter kidney water handling.
Collapse
Affiliation(s)
- Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - James A McCormick
- Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Hwang KY, Phoon PHY, Hwang NC. Adverse Clinical Effects Associated With Non-catecholamine Pharmacologic Agents for Treatment of Vasoplegic Syndrome in Adult Cardiac Surgery. J Cardiothorac Vasc Anesth 2024; 38:802-819. [PMID: 38218651 DOI: 10.1053/j.jvca.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/23/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
Vasoplegic syndrome is a relatively common complication that can happen during and after major adult cardiac surgery. It is associated with a higher rate of complications, including postoperative renal failure, longer duration of mechanical ventilation, and intensive care unit stay, as well as increased mortality. The underlying pathophysiology of vasoplegic syndrome is that of profound vascular hyporesponsiveness, and involves a complex interplay among inflammatory cytokines, cellular surface receptors, and nitric oxide (NO) production. The pharmacotherapy approaches for the treatment of vasoplegia include medications that increase vascular smooth muscle contraction via increasing cytosolic calcium in myocytes, reduce the vascular effects of NO and inflammation, and increase the biosynthesis of and vascular response to norepinephrine. Clinical trials have demonstrated the clinical efficacy of non-catecholamine pharmacologic agents in the treatment of vasoplegic syndrome. With an increase in their use today, it is important for clinicians to understand the adverse clinical outcomes and patient risk profiles associated with these agents, which will allow better-tailored medical therapy.
Collapse
Affiliation(s)
- Kai Yin Hwang
- Department of Anaesthesiology, National University Hospital, Singapore
| | - Priscilla Hui Yi Phoon
- Department of Anaesthesiology, Singapore General Hospital, Singapore; Department of Cardiothoracic Anaesthesia, National Heart Centre, Singapore
| | - Nian Chih Hwang
- Department of Anaesthesiology, Singapore General Hospital, Singapore; Department of Cardiothoracic Anaesthesia, National Heart Centre, Singapore.
| |
Collapse
|
8
|
Orlandi L, Rodriguez Y, Leostic A, Giraud C, Lang ML, Vialard F, Mauffré V, Motte-Signoret E. Preterm birth affects both surfactant synthesis and lung liquid resorption actors in fetal sheep. Dev Biol 2024; 506:64-71. [PMID: 38081502 DOI: 10.1016/j.ydbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
INTRODUCTION After birth, the lungs must resorb the fluid they contain. This process involves multiple actors such as surfactant, aquaporins and ENaC channels. Preterm newborns often exhibit respiratory distress syndrome due to surfactant deficiency, and transitory tachypnea caused by a delay in lung liquid resorption. Our hypothesis is that surfactant, ENaC and aquaporins are involved in respiratory transition to extrauterine life and altered by preterm birth. We compared these candidates in preterm and term fetal sheeps. MATERIALS AND METHODS We performed cesarean sections in 8 time-dated pregnant ewes (4 at 100 days and 4 at 140 days of gestation, corresponding to 24 and 36 weeks of gestation in humans), and obtained 13 fetal sheeps in each group. We studied surfactant synthesis (SP-A, SP-B, SP-C), lung liquid resorption (ENaC, aquaporins) and corticosteroid regulation (glucocorticoid receptor, mineralocorticoid receptor and 11-betaHSD2) at mRNA and protein levels. RESULTS The mRNA expression level of SFTPA, SFTPB and SFTPC was higher in the term group. These results were confirmed at the protein level for SP-B on Western Blot analysis and for SP-A, SP-B and SP-C on immunohistochemical analysis. Regarding aquaporins, ENaC and receptors, mRNA expression levels for AQP1, AQP3, AQP5, ENaCα, ENaCβ, ENaCγ and 11βHSD2 mRNA were also higher in the term group. DISCUSSION Expression of surfactant proteins, aquaporins and ENaC increases between 100 and 140 days of gestation in an ovine model. Further exploring these pathways and their hormonal regulation could highlight some new explanations in the pathophysiology of neonatal respiratory diseases.
Collapse
Affiliation(s)
- Leona Orlandi
- Paris-Saclay University, UVSQ, UFR-SVS, UMR1198-BREED-RHuMA, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
| | - Yoann Rodriguez
- Paris-Saclay University, UVSQ, UFR-SVS, UMR1198-BREED-RHuMA, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
| | - Anne Leostic
- Paris-Saclay University, UVSQ, UFR-SVS, UMR1198-BREED-RHuMA, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France; Poissy St Germain Hospital, Obstetrics and Gynaecology, Poissy, France
| | - Corinne Giraud
- Paris-Saclay University, UVSQ, UFR-SVS, UMR1198-BREED-RHuMA, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France
| | - Maya-Laure Lang
- Poissy St Germain Hospital, Neonatal Intensive Care Unit, Poissy, France
| | - François Vialard
- Paris-Saclay University, UVSQ, UFR-SVS, UMR1198-BREED-RHuMA, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France; Poissy St Germain Hospital, Genetics, Poissy, France
| | - Vincent Mauffré
- Paris-Saclay University, UVSQ, UFR-SVS, UMR1198-BREED-RHuMA, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Emmanuelle Motte-Signoret
- Paris-Saclay University, UVSQ, UFR-SVS, UMR1198-BREED-RHuMA, 2 avenue de la source de la Bièvre, 78180, Montigny le Bretonneux, France; Poissy St Germain Hospital, Neonatal Intensive Care Unit, Poissy, France.
| |
Collapse
|
9
|
Park E, Yang CR, Raghuram V, Chen L, Chou CL, Knepper MA. Using CRISPR-Cas9/phosphoproteomics to identify substrates of calcium/calmodulin-dependent kinase 2δ. J Biol Chem 2023; 299:105371. [PMID: 37865316 PMCID: PMC10783575 DOI: 10.1016/j.jbc.2023.105371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Ca2+/Calmodulin-dependent protein kinase 2 (CAMK2) family proteins are involved in the regulation of cellular processes in a variety of tissues including brain, heart, liver, and kidney. One member, CAMK2δ (CAMK2D), has been proposed to be involved in vasopressin signaling in the renal collecting duct, which controls water excretion through regulation of the water channel aquaporin-2 (AQP2). To identify CAMK2D target proteins in renal collecting duct cells (mpkCCD), we deleted Camk2d and carried out LC-MS/MS-based quantitative phosphoproteomics. Specifically, we used CRISPR/Cas9 with two different guide RNAs targeting the CAMK2D catalytic domain to create multiple CAMK2D KO cell lines. AQP2 protein abundance was lower in the CAMK2D KO cells than in CAMK2D-intact controls. AQP2 phosphorylation at Ser256 and Ser269 (normalized for total AQP2) was decreased. However, trafficking of AQP2 to and from the apical plasma membrane was sustained. Large-scale quantitative phosphoproteomic analysis (TMT-labeling) in the presence of the vasopressin analog dDAVP (0.1 nM, 30 min) allowed quantification of 11,570 phosphosites of which 169 were significantly decreased, while 206 were increased in abundance in CAMK2D KO clones. These data are available for browsing or download at https://esbl.nhlbi.nih.gov/Databases/CAMK2D-proteome/. Motif analysis of the decreased phosphorylation sites revealed a target preference of -(R/K)-X-X-p(S/T)-X-(D/E), matching the motif identified in previous in vitro phosphorylation studies using recombinant CAMK2D. Thirty five of the significantly downregulated phosphorylation sites in CAMK2D KO cells had exactly this motif and are judged to be likely direct CAMK2D targets. This adds to the list of known CAMK2D target proteins found in prior reductionist studies.
Collapse
Affiliation(s)
- Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
10
|
Gillard BT, Amor N, Iraizoz FA, Pauža AG, Campbell C, Greenwood MP, Alagaili AN, Murphy D. Mobilisation of jerboa kidney gene networks during dehydration and opportunistic rehydration. iScience 2023; 26:107574. [PMID: 37664605 PMCID: PMC10470305 DOI: 10.1016/j.isci.2023.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Desert animals have evolved systems that enable them to thrive under dry conditions. Focusing on the kidney, we have investigated the transcriptomic adaptations that enable a desert rodent, the Lesser Egyptian Jerboa (Jaculus jaculus), to withstand water deprivation and opportunistic rehydration. Analysis of the whole kidney transcriptome showed many differentially expressed genes in the Jerboa kidney, 6.4% of genes following dehydration and an even greater number (36.2%) following rehydration compared to control. Genes correlated with the rehydration condition included many ribosomal protein coding genes suggesting a concerted effort to accelerate protein synthesis when water is made available. We identify an increase in TGF-beta signaling antagonists in dehydration (e.g., GREM2). We also describe expression of multiple aquaporin and solute carrier transporters mapped to specific nephron segments. The desert adapted renal transcriptome presented here is a valuable resource to expand our understanding of osmoregulation beyond that derived from model organisms.
Collapse
Affiliation(s)
- Benjamin T. Gillard
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - Nabil Amor
- LR18ES05, Laboratory of Biodiversity, Parasitology and Ecology of Aquatic Ecosystems, Department of Biology - Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
| | - Fernando Alvira Iraizoz
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - Audrys G. Pauža
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | - Colin Campbell
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, Bristol, England
| | - Michael P. Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| | | | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, Dorothy Hodgkin Building, University of Bristol, Bristol, England
| |
Collapse
|
11
|
Barile B, Mola MG, Formaggio F, Saracino E, Cibelli A, Gargano CD, Mogni G, Frigeri A, Caprini M, Benfenati V, Nicchia GP. AQP4-independent TRPV4 modulation of plasma membrane water permeability. Front Cell Neurosci 2023; 17:1247761. [PMID: 37720545 PMCID: PMC10500071 DOI: 10.3389/fncel.2023.1247761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Despite of the major role of aquaporin (AQP) water channels in controlling transmembrane water fluxes, alternative ways for modulating water permeation have been proposed. In the Central Nervous System (CNS), Aquaporin-4 (AQP4) is reported to be functionally coupled with the calcium-channel Transient-Receptor Potential Vanilloid member-4 (TRPV4), which is controversially involved in cell volume regulation mechanisms and water transport dynamics. The present work aims to investigate the selective role of TRPV4 in regulating plasma membrane water permeability in an AQP4-independent way. Fluorescence-quenching water transport experiments in Aqp4-/- astrocytes revealed that cell swelling rate is significantly increased upon TRPV4 activation and in the absence of AQP4. The biophysical properties of TRPV4-dependent water transport were therefore assessed using the HEK-293 cell model. Calcein quenching experiments showed that chemical and thermal activation of TRPV4 overexpressed in HEK-293 cells leads to faster swelling kinetics. Stopped-flow light scattering water transport assay was used to measure the osmotic permeability coefficient (Pf, cm/s) and activation energy (Ea, kcal/mol) conferred by TRPV4. Results provided evidence that although the Pf measured upon TRPV4 activation is lower than the one obtained in AQP4-overexpressing cells (Pf of AQP4 = 0.01667 ± 0.0007; Pf of TRPV4 = 0.002261 ± 0.0004; Pf of TRPV4 + 4αPDD = 0.007985 ± 0.0006; Pf of WT = 0.002249 ± 0.0002), along with activation energy values (Ea of AQP4 = 0.86 ± 0.0006; Ea of TRPV4 + 4αPDD = 2.73 ± 1.9; Ea of WT = 8.532 ± 0.4), these parameters were compatible with a facilitated pathway for water movement rather than simple diffusion. The possibility to tune plasma membrane water permeability more finely through TRPV4 might represent a protective mechanism in cells constantly facing severe osmotic challenges to avoid the potential deleterious effects of the rapid cell swelling occurring via AQP channels.
Collapse
Affiliation(s)
- Barbara Barile
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Formaggio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Emanuela Saracino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Antonio Cibelli
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Concetta Domenica Gargano
- Department of Translational Biomedicine and Neuroscience (DiBraiN), School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Guido Mogni
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- Department of Translational Biomedicine and Neuroscience (DiBraiN), School of Medicine, University of Bari Aldo Moro, Bari, Italy
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 840 Kennedy Center, Bronx, NY, United States
| | - Marco Caprini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Valentina Benfenati
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), Bologna, Italy
| | - Grazia Paola Nicchia
- Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 840 Kennedy Center, Bronx, NY, United States
| |
Collapse
|
12
|
Maranduca MA, Vamesu CG, Tanase DM, Clim A, Drochioi IC, Pinzariu AC, Filip N, Dima N, Tudorancea I, Serban DN, Serban IL. The RAAS Axis and SARS-CoV-2: From Oral to Systemic Manifestations. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1717. [PMID: 36556919 PMCID: PMC9784172 DOI: 10.3390/medicina58121717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
One of the essential regulators of arterial blood pressure, the renin-angiotensin-aldosterone system (RAAS) seems to be one of the most complex mechanisms in the human body. Since the discovery of its key components and their actions, new substances and functions are still being unraveled. The main pathway begins with the secretion of renin in the kidney and culminates with the synthesis of angiotensin II (Ang II)-a strong vasoconstrictor-thanks to the angiotensin-converting enzyme (ACE). Research conducted in 2000 identified another enzyme, named ACE2, that converts Ang II into Ang-(1-7), a heptapeptide with opposing effects to those of Ang II: vasodilation and anti-inflammatory properties. This particular enzyme became of paramount importance during the last two decades, as a result of the confrontation of the human race with life-threatening epidemics. Multiple studies have been performed in order to uncover the link between ACE2 and human coronaviruses, the results of which we systemized in order to create an overview of the pathogenic mechanism. Human coronaviruses, such as SARS-CoV and SARS-CoV-2, attach to ACE2 via their spike proteins (S), causing the destruction of the enzyme. Because ACE2 limits the production of Ang II (by converting it into Ang-(1-7)), its destruction leads to a dysregulated inflammatory response. The purpose of this review is to decipher the complex pathophysiological mechanisms underlying the multiorgan complications (oral, cardiac, pulmonary, systemic) that appear as a result of the interaction of the SARS CoV-2 virus with the angiotensin-converting enzyme type 2.
Collapse
Affiliation(s)
- Minela Aida Maranduca
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
| | - Calin George Vamesu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Daniela Maria Tanase
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ilie Cristian Drochioi
- Department of Oral and Maxillofacial Surgery and Reconstructive, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700020 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nina Filip
- Department of Morpho-Functional Sciences II, Discipline of Biochemistry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nicoleta Dima
- Internal Medicine Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700115 Iasi, Romania
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionut Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iasi, Romania
| | - Dragomir Nicolae Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
13
|
Akhavanfar R, Hojati A, Kahrizi MS, Farhangi MA, Ardekani AM. Adherence to lifelines diet score and risk factors of metabolic syndrome among overweight and obese adults: A cross-sectional study. Front Nutr 2022; 9:961468. [PMID: 36466413 PMCID: PMC9713010 DOI: 10.3389/fnut.2022.961468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 11/02/2022] [Indexed: 09/28/2023] Open
Abstract
Background Metabolic syndrome (MetS) is one of the most significant public health issues worldwide, and diet quality is an important controllable environmental factor influencing the incidence of MetS. Numerous dietary scores have been established to assess compliance with dietary recommendations or eating patterns, many of which are not entirely food-based. Hence, Lifelines Diet Score (LLDS) was developed in response to the shortcomings of existing tools. This study aimed to assess any possible links between total food quality and cardiometabolic risk factors among overweight and obese adults. Methods This cross-sectional study included 338 overweight and obese individuals [body mass index (BMI) > 25 kg/m2] aged 20-50 years in Tabriz, Iran. To collect dietary data, we used a validated semi-quantitative Food Frequency Questionnaire (FFQ) for Iranian population. Enzymatic-colorimetric methods were used to assess serum glucose and lipids, and enzyme-linked immunosorbent assay (ELISA) kits were used to measure insulin levels. In addition, the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and Quantitative Insulin Sensitivity Check Index (QUICKI) were calculated. Results BMI and hip circumference (HC) were significantly different (P < 0.05) amongst LLDS tertiles. Adherence to the highest tertile of LLDS was associated with lower SBP, and the subjects in higher LLDS tertiles significantly had lower systolic blood pressure (SBP) (P = 0.04). Triglyceride (TG) levels were also lower in the third tertile of LLDS with a near-significant P-value (P = 0.05). Conclusion According to our results, a higher diet quality score, determined by LLDS, can be associated with a lower risk of MetS. Further experimental and longitudinal studies are needed to better understand this relationship.
Collapse
Affiliation(s)
- Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Hojati
- Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Abnoos Mokhtari Ardekani
- Endocrinoligy and Metabolism Research Center, Institute of Basic and Clinical Physiology Science and Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Takata T, Hamada S, Mae Y, Iyama T, Ogihara R, Seno M, Nakamura K, Takata M, Sugihara T, Isomoto H. Uromodulin Regulates Murine Aquaporin-2 Activity via Thick Ascending Limb-Collecting Duct Cross-Talk during Water Deprivation. Int J Mol Sci 2022; 23:ijms23169410. [PMID: 36012675 PMCID: PMC9408883 DOI: 10.3390/ijms23169410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
Uromodulin, a urinary protein synthesized and secreted from the thick ascending limb (TAL) of the loop of Henle, is associated with hypertension through the activation of sodium reabsorption in the TAL. Uromodulin is a potential target for hypertension treatment via natriuresis. However, its biological function in epithelial cells of the distal nephron segment, particularly the collecting duct, remains unknown. Herein, we examined the regulation of uromodulin production during water deprivation in vivo as well as the effect of uromodulin on the activity of the water channel aquaporin−2 (AQP2) in vitro and in vivo using transgenic mice. Water deprivation upregulated uromodulin production; immunofluorescence experiments revealed uromodulin adhesion on the apical surface of the collecting duct. Furthermore, the activation of AQP2 was attenuated in mice lacking uromodulin. Uromodulin enhanced the phosphorylation and apical trafficking of AQP2 in mouse collecting duct cells treated with the vasopressin analog dDAVP. The uromodulin-induced apical trafficking of AQP2 was attenuated via endocytosis inhibitor treatment, suggesting that uromodulin activates AQP2 through the suppression of endocytosis. This study provides novel insights into the cross−talk between TAL and the collecting duct, and indicates that the modulation of uromodulin is a promising approach for diuresis and hypertension treatment.
Collapse
Affiliation(s)
- Tomoaki Takata
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
- Correspondence: ; Tel.: +81-859-38-6527
| | - Shintaro Hamada
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yukari Mae
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Takuji Iyama
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Ryohei Ogihara
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Misako Seno
- Advanced Medicine & Translational Research Center, Organization for Research Initiative and Promotion, Tottori University, Yonago 683-8504, Japan
| | - Kazuomi Nakamura
- Advanced Medicine, Innovation and Clinical Research Center, Tottori University Hospital, Yonago 683-8504, Japan
| | - Miki Takata
- Division of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Takaaki Sugihara
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
15
|
Wang AS, Steers NJ, Parab AR, Gachon F, Sweet MJ, Mysorekar IU. Timing is everything: impact of development, ageing and circadian rhythm on macrophage functions in urinary tract infections. Mucosal Immunol 2022; 15:1114-1126. [PMID: 36038769 DOI: 10.1038/s41385-022-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023]
Abstract
The bladder supports a diversity of macrophage populations with functional roles related to homeostasis and host defense, including clearance of cell debris from tissue, immune surveillance, and inflammatory responses. This review examines these roles with particular attention given to macrophage origins, differentiation, recruitment, and engagement in host defense against urinary tract infections (UTIs), where these cells recognize uropathogens through a combination of receptor-mediated responses. Time is an important variable that is often overlooked in many clinical and biological studies, including in relation to macrophages and UTIs. Given that ageing is a significant factor in urinary tract infection pathogenesis and macrophages have been shown to harbor their own circadian system, this review also explores the influence of age on macrophage functions and the role of diurnal variations in macrophage functions in host defense and inflammation during UTIs. We provide a conceptual framework for future studies that address these key knowledge gaps.
Collapse
Affiliation(s)
- Alison S Wang
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia
| | - Nicholas J Steers
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| | - Adwaita R Parab
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
| | - Frédéric Gachon
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, QLD, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, QLD, Australia.
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA. .,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
16
|
Kim YJ, Lee JH, Jung SH, Kim KH, Choi CH, Jo S, Woo DH. An Octopus-Derived Peptide with Antidiuretic Activity in Rats. Mar Drugs 2022; 20:328. [PMID: 35621979 PMCID: PMC9144402 DOI: 10.3390/md20050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/14/2022] [Indexed: 12/04/2022] Open
Abstract
Discovering new drug candidates with high efficacy and few side effects is a major challenge in new drug development. The two evolutionarily related peptides oxytocin (OXT) and arginine vasopressin (AVP) are known to be associated with a variety of physiological and psychological processes via the association of OXT with three types of AVP receptors. Over decades, many synthetic analogs of these peptides have been designed and tested for therapeutic applications; however, only a few studies of their natural analogs have been performed. In this study, we investigated the bioactivity and usefulness of two natural OXT/AVP analogs that originate from the marine invertebrate Octopus vulgaris, named octopressin (OTP) and cephalotocin (CPT). By measuring the intracellular Ca2+ or cyclic AMP increase in each OXT/AVP receptor subtype-overexpressing cell, we found that CPT, but not OTP, acts as a selective agonist of human AVP type 1b and 2 receptors. This behavior is reminiscent of desmopressin, the most widely prescribed antidiuretic drug in the world. Similar to the case for desmopressin, a single intravenous tail injection of CPT into Sprague-Dawley rats reduced urine output and increased urinary osmolality. In conclusion, we suggest that CPT has a significant antidiuretic effect and that CPT might be beneficial for treating urological conditions such as nocturia, enuresis, and diabetes insipidus.
Collapse
Affiliation(s)
- Ye-Ji Kim
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea; (Y.-J.K.); (C.-H.C.)
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Korea
| | - Jei Ha Lee
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (J.H.L.); (S.-H.J.); (K.H.K.)
| | - Seung-Hyun Jung
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (J.H.L.); (S.-H.J.); (K.H.K.)
| | - Ki Hyun Kim
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (J.H.L.); (S.-H.J.); (K.H.K.)
| | - Chang-Hoon Choi
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea; (Y.-J.K.); (C.-H.C.)
| | - Seonmi Jo
- Department of Genetic Resources, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea; (J.H.L.); (S.-H.J.); (K.H.K.)
| | - Dong Ho Woo
- Research Center for Convergence Toxicology, Korea Institute of Toxicology, Daejeon 34114, Korea; (Y.-J.K.); (C.-H.C.)
- Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Korea
| |
Collapse
|
17
|
Savić B, Murphy D, Japundžić-Žigon N. The Paraventricular Nucleus of the Hypothalamus in Control of Blood Pressure and Blood Pressure Variability. Front Physiol 2022; 13:858941. [PMID: 35370790 PMCID: PMC8966844 DOI: 10.3389/fphys.2022.858941] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/26/2022] Open
Abstract
The paraventricular nucleus (PVN) is a highly organized structure of the hypothalamus that has a key role in regulating cardiovascular and osmotic homeostasis. Functionally, the PVN is divided into autonomic and neuroendocrine (neurosecretory) compartments, both equally important for maintaining blood pressure (BP) and body fluids in the physiological range. Neurosecretory magnocellular neurons (MCNs) of the PVN are the main source of the hormones vasopressin (VP), responsible for water conservation and hydromineral balance, and oxytocin (OT), involved in parturition and milk ejection during lactation. Further, neurosecretory parvocellular neurons (PCNs) take part in modulation of the hypothalamic–pituitary–adrenal axis and stress responses. Additionally, the PVN takes central place in autonomic adjustment of BP to environmental challenges and contributes to its variability (BPV), underpinning the PVN as an autonomic master controller of cardiovascular function. Autonomic PCNs of the PVN modulate sympathetic outflow toward heart, blood vessels and kidneys. These pre-autonomic neurons send projections to the vasomotor nucleus of rostral ventrolateral medulla and to intermediolateral column of the spinal cord, where postganglionic fibers toward target organs arise. Also, PVN PCNs synapse with NTS neurons which are the end-point of baroreceptor primary afferents, thus, enabling the PVN to modify the function of baroreflex. Neuroendocrine and autonomic parts of the PVN are segregated morphologically but they work in concert when the organism is exposed to environmental challenges via somatodendritically released VP and OT by MCNs. The purpose of this overview is to address both neuroendocrine and autonomic PVN roles in BP and BPV regulation.
Collapse
Affiliation(s)
- Bojana Savić
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Nina Japundžić-Žigon
- Laboratory for Cardiovascular Pharmacology and Toxicology, Faculty of Medicine, Institute of Pharmacology, Clinical Pharmacology and Toxicology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Nina Japundžić-Žigon,
| |
Collapse
|
18
|
Kobayashi A, Hamada M, Yoshida MA, Kobayashi Y, Tsutsui N, Sekiguchi T, Matsukawa Y, Maejima S, Gingell JJ, Sekiguchi S, Hamamoto A, Hay DL, Morris JF, Sakamoto T, Sakamoto H. Vasopressin-oxytocin-type signaling is ancient and has a conserved water homeostasis role in euryhaline marine planarians. SCIENCE ADVANCES 2022; 8:eabk0331. [PMID: 35245108 PMCID: PMC8896804 DOI: 10.1126/sciadv.abk0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Vasopressin/oxytocin (VP/OT)-related peptides are essential for mammalian antidiuresis, sociosexual behavior, and reproduction. However, the evolutionary origin of this peptide system is still uncertain. Here, we identify orthologous genes to those for VP/OT in Platyhelminthes, intertidal planarians that have a simple bilaterian body structure but lack a coelom and body-fluid circulatory system. We report a comprehensive characterization of the neuropeptide derived from this VP/OT-type gene, identifying its functional receptor, and name it the "platytocin" system. Our experiments with these euryhaline planarians, living where environmental salinities fluctuate due to evaporation and rainfall, suggest that platytocin functions as an "antidiuretic hormone" and also organizes diverse actions including reproduction and chemosensory-associated behavior. We propose that bilaterians acquired physiological adaptations to amphibious lives by such regulation of the body fluids. This neuropeptide-secreting system clearly became indispensable for life even without the development of a vascular circulatory system or relevant synapses.
Collapse
Affiliation(s)
- Aoshi Kobayashi
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Mayuko Hamada
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Masa-aki Yoshida
- Oki Marine Biological Station, Shimane University, 194 Kamo, Okinoshima, Oki, Shimane 685-0024, Japan
| | - Yasuhisa Kobayashi
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
- Laboratory for Aquatic Biology, Department of Fisheries, Faculty of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Naoaki Tsutsui
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
- Department of Marine Bioresources, Faculty of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Division of Marine Environmental Studies, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Yuta Matsukawa
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Sho Maejima
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Joseph J. Gingell
- Vertex Pharmaceuticals (Europe) Ltd., Milton Park, Abingdon OX11 4RW, UK
| | - Shoko Sekiguchi
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Ayumu Hamamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
- Department of Biology, Faculty of Science, Okayama University, 3-1-1 Kita-ku, Tsushimanaka, Okayama 700-8530, Japan
| | - Debbie L. Hay
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Toxicology, University of Otago, Otago, New Zealand
| | - John F. Morris
- Department of Physiology, Anatomy, and Genetic, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama 701-4303, Japan
- Department of Physiology, Anatomy, and Genetic, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
- Corresponding author.
| |
Collapse
|
19
|
Verta R, Gurrieri M, Borga S, Benetti E, Pollicino P, Cavalli R, Thurmond RL, Chazot PL, Pini A, Rosa AC, Grange C. The Interplay between Histamine H 4 Receptor and the Kidney Function: The Lesson from H 4 Receptor Knockout Mice. Biomolecules 2021; 11:biom11101517. [PMID: 34680152 PMCID: PMC8533779 DOI: 10.3390/biom11101517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 01/15/2023] Open
Abstract
Previous studies implicated the histamine H4 receptor in renal pathophysiology. The aim here is to elucidate the role of this receptor on renal function using H4 receptor knockout mice (H4R-/-). Healthy and diabetic H4R-/- mice compared to their C57BL/6J wild-type counterpart for renal function and the expression of crucial tubular proteins. H4R-/- and wild-type mice, matched for ages, showed comparable weight gain curves reaching similar median weight at the end of the study. However, H4R-/- mice displayed a higher basal glycemia. H4R-/- mice showed a lower urine 24 h outflow, and albumin-to-creatinine ratio (ACR) compared to wild-type mice. Consistently, H4R-/- mice presented a higher expression of megalin and a lower basal expression of the sodium-hydrogen exchanger (NHE)3 and aquaporin (AQP)2. According to these basal differences, diabetic H4R-/- mice developed more severe hyperglycemia and a higher 24 h urine volume, but a lower increase in ACR and decrease in urine pH were observed. These events were paralleled by a reduced NHE3 over-expression and megalin loss in diabetic H4R-/- mice. The AQP1 and AQP7 patterns were also different between H4R-/- and wild-type diabetic mice. The collected results highlight the role of the histamine H4 receptor in the control of renal reabsorption processes, particularly albumin uptake.
Collapse
Affiliation(s)
- Roberta Verta
- Department of Biotechnology and Health Sciences, University of Turin, C.So Dogliotti 14, 10126 Turin, Italy;
| | - Maura Gurrieri
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (M.G.); (S.B.); (E.B.); (R.C.)
| | - Sara Borga
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (M.G.); (S.B.); (E.B.); (R.C.)
| | - Elisa Benetti
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (M.G.); (S.B.); (E.B.); (R.C.)
| | - Paolo Pollicino
- Direzione Ricerca e Terza Missione, University of Turin, Via Bogino 9 Torino, 10123 Turin, Italy;
| | - Roberta Cavalli
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (M.G.); (S.B.); (E.B.); (R.C.)
| | - Robin L. Thurmond
- Janssen Research & Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, USA;
| | - Paul L. Chazot
- Department of Biosciences and Wolfson Research Institute, Durham University, South Road, Durham DH1 3LE, UK;
| | - Alessandro Pini
- Department of Clinical and Experimental Medicine, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy;
| | - Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via P. Giuria 9, 10125 Turin, Italy; (M.G.); (S.B.); (E.B.); (R.C.)
- Correspondence: ; Tel.: +39-011-6707955
| | - Cristina Grange
- Department of Medical Sciences, University of Turin, C.So Dogliotti 14, 10126 Turin, Italy;
| |
Collapse
|
20
|
Taavo M, Rundgren M, Frykholm P, Larsson A, Franzén S, Vargmar K, Valarcher JF, DiBona GF, Frithiof R. Role of Renal Sympathetic Nerve Activity in Volatile Anesthesia's Effect on Renal Excretory Function. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab042. [PMID: 35330795 PMCID: PMC8788708 DOI: 10.1093/function/zqab042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/18/2021] [Accepted: 08/16/2021] [Indexed: 01/07/2023]
Abstract
Regulation of fluid balance is pivotal during surgery and anesthesia and affects patient morbidity, mortality, and hospital length of stay. Retention of sodium and water is known to occur during surgery but the mechanisms are poorly defined. In this study, we explore how the volatile anesthetic sevoflurane influences renal function by affecting renal sympathetic nerve activity (RSNA). Our results demonstrate that sevoflurane induces renal sodium and water retention during pediatric anesthesia in association with elevated plasma concentration of renin but not arginine-vasopressin. The mechanisms are further explored in conscious and anesthetized ewes where we show that RSNA is increased by sevoflurane compared with when conscious. This is accompanied by renal sodium and water retention and decreased renal blood flow (RBF). Finally, we demonstrate that renal denervation normalizes renal excretory function and improves RBF during sevoflurane anesthesia in sheep. Taken together, this study describes a novel role of the renal sympathetic nerves in regulating renal function and blood flow during sevoflurane anesthesia.
Collapse
Affiliation(s)
| | - Mats Rundgren
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Peter Frykholm
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Anders Larsson
- Department of Medical Sciences and Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Stephanie Franzén
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Karin Vargmar
- Department of Biomedical Sciences and Veterinary Public Health, Section of Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jean F Valarcher
- Department of Clinical Sciences, Division of Ruminant Medicine, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gerald F DiBona
- Carver College of Medicine, University of Iowa, Iowa, IA, USA
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Liu CCS, Cheung PW, Dinesh A, Baylor N, Paunescu TC, Nair AV, Bouley R, Brown D. Actin-related protein 2/3 complex plays a critical role in the aquaporin-2 exocytotic pathway. Am J Physiol Renal Physiol 2021; 321:F179-F194. [PMID: 34180716 PMCID: PMC8424666 DOI: 10.1152/ajprenal.00015.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The trafficking of proteins such as aquaporin-2 (AQP2) in the exocytotic pathway requires an active actin cytoskeleton network, but the mechanism is incompletely understood. Here, we show that the actin-related protein (Arp)2/3 complex, a key factor in actin filament branching and polymerization, is involved in the shuttling of AQP2 between the trans-Golgi network (TGN) and the plasma membrane. Arp2/3 inhibition (using CK-666) or siRNA knockdown blocks vasopressin-induced AQP2 membrane accumulation and induces the formation of distinct AQP2 perinuclear patches positive for markers of TGN-derived clathrin-coated vesicles. After a 20°C cold block, AQP2 formed perinuclear patches due to continuous endocytosis coupled with inhibition of exit from TGN-associated vesicles. Upon rewarming, AQP2 normally leaves the TGN and redistributes into the cytoplasm, entering the exocytotic pathway. Inhibition of Arp2/3 blocked this process and trapped AQP2 in clathrin-positive vesicles. Taken together, these results suggest that Arp2/3 is essential for AQP2 trafficking, specifically for its delivery into the post-TGN exocytotic pathway to the plasma membrane.NEW & NOTEWORTHY Aquaporin-2 (AQP2) undergoes constitutive recycling between the cytoplasm and plasma membrane, with an intricate balance between endocytosis and exocytosis. By inhibiting the actin-related protein (Arp)2/3 complex, we prevented AQP2 from entering the exocytotic pathway at the post-trans-Golgi network level and blocked AQP2 membrane accumulation. Arp2/3 inhibition, therefore, enables us to separate and target the exocytotic process, while not affecting endocytosis, thus allowing us to envisage strategies to modulate AQP2 trafficking and treat water balance disorders.
Collapse
Affiliation(s)
- Chen-Chung Steven Liu
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pui Wen Cheung
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anupama Dinesh
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Noah Baylor
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Theodor C. Paunescu
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anil V. Nair
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Richard Bouley
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
22
|
Kikuchi H, Jung HJ, Raghuram V, Leo KT, Park E, Yang CR, Chou CL, Chen L, Knepper MA. Bayesian identification of candidate transcription factors for the regulation of Aqp2 gene expression. Am J Physiol Renal Physiol 2021; 321:F389-F401. [PMID: 34308668 DOI: 10.1152/ajprenal.00204.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aquaporin-2 (Aqp2) gene transcription is strongly regulated by vasopressin in the renal collecting duct. However, the transcription factors (TFs) responsible for the regulation of expression of Aqp2 remain largely unknown. We used Bayes' theorem to integrate several -omics data sets to stratify the 1,344 TFs present in the mouse genome with regard to probabilities of regulating Aqp2 gene transcription. Also, we carried out new RNA sequencing experiments mapping the time course of vasopressin-induced changes in the transcriptome of mpkCCD cells to identify TFs that change in tandem with Aqp2. The analysis identified 17 of 1,344 TFs that are most likely to be involved in the regulation of Aqp2 gene transcription. These TFs included eight that have been proposed in prior studies to play a role in Aqp2 regulation, viz., Cebpb, Elf1, Elf3, Ets1, Jun, Junb, Nfkb1, and Sp1. The remaining nine represent new candidates for future studies (Atf1, Irf3, Klf5, Klf6, Mef2d, Nfyb, Nr2f6, Stat3, and Nr4a1). Conspicuously absent is CREB (Creb1), which has been widely proposed to mediate vasopressin-induced regulation of Aqp2 gene transcription (Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Physiol Rev 82: 205-244, 2002; Kortenoeven ML, Fenton RA. Biochim Biophys Acta 1840: 1533-1549, 2014; Bockenhauer D, Bichet DG. Nat Rev Nephrol 11: 576-588, 2015; Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE. Clin J Am Soc Nephrol 10: 135-146, 2015). Instead, another CREB-like TF, Atf1, ranked fourth among all TFs. RNA sequencing time-course experiments showed a rapid increase in Aqp2 mRNA, within 3 h of vasopressin exposure. This response was matched by an equally rapid increase in the abundance of the mRNA coding for Cebpb, which we have shown by chromatin immunoprecipitation-sequencing studies to bind downstream from the Aqp2 gene. The identified TFs provide a roadmap for future studies to understand regulation of Aqp2 gene expression.NEW & NOTEWORTHY Abetted by the advent of systems biology-based ("-omics") techniques in the 21st century, there has been a massive expansion of published data relevant to virtually every physiological question. The authors have developed a large-scale data integration approach based on the application of Bayes'' theorem. In the current work, they integrated 12 different -omics data sets to identify the transcription factors most likely to mediate vasopressin-dependent regulation of transcription of the aquaporin-2 gene.
Collapse
Affiliation(s)
- Hiroaki Kikuchi
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Hyun Jun Jung
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland.,Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Kirby T Leo
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chun-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
23
|
Valenti G, Tamma G. The vasopressin-aquaporin-2 pathway syndromes. HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:249-259. [PMID: 34238461 DOI: 10.1016/b978-0-12-820683-6.00018-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vasopressin is the key hormone involved in water conservation and regulation of water balance, essential for life. In the renal collecting duct, vasopressin binds to the V2 receptor, increasing water permeability through activation of aquaporin-2 redistribution to the luminal membrane. This mechanism promotes rapid water reabsorption, important for immediate survival; however, only recently it has become clear that long-term adverse effects are associated with alterations of the vasopressin-aquaporin-2 pathway, leading to several syndromes associated with water balance disorders. The kidney resistance to the vasopressin action may cause severe dehydration for patients and, conversely, nonosmotic release of vasopressin is associated with water retention and increasing the circulatory blood volume. This chapter discusses the relevance of the altered vasopressin-aquaporin-2 pathway in some diseases associated with water balance disorders, including congenital nephrogenic diabetes insipidus, syndrome of inappropriate secretion of antidiuretic hormone, nephrogenic syndrome of inappropriate antidiuresis, and autosomal dominant polycystic kidney disease. The emerging picture suggests that targeting the vasopressin-AQP2 axis can provide therapeutic benefits in those patients.
Collapse
Affiliation(s)
- Giovanna Valenti
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy.
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Bari, Italy
| |
Collapse
|
24
|
Abstract
TRPC3 is a Ca2+-permeable cation channel commonly activated by the G-protein coupled receptors (GPCR) and mechanical distortion of the plasma membrane. TRPC3-mediated Ca2+ influx has been implicated in a variety of signaling processes in both excitable and non-excitable cells. Kidneys play a commanding role in maintaining whole-body homeostasis and setting blood pressure. TRPC3 is expressed abundantly in the renal vasculature and in epithelial cells, where it is well positioned to mediate signaling and transport functions in response to GPCR-dependent endocrine stimuli. In addition, TRPC3 could be activated by mechanical forces resulting from dynamic changes in the renal tubule fluid flow and osmolarity. This review critically analyzes the available published evidence of the physiological roles of TRPC3 in different parts of the kidney and describes the pathophysiological ramifications of TRPC3 ablation. We also speculate how this evidence could be further translated into the clinic.
Collapse
Affiliation(s)
- Naghmeh Hassanzadeh Khayyat
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Viktor N Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston , Houston, TX, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston , Houston, TX, USA
| |
Collapse
|
25
|
Kim S, Jo CH, Kim GH. Psychotropic drugs upregulate aquaporin-2 via vasopressin-2 receptor/cAMP/protein kinase A signaling in inner medullary collecting duct cells. Am J Physiol Renal Physiol 2021; 320:F963-F971. [PMID: 33843270 DOI: 10.1152/ajprenal.00576.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Psychotropic drugs may be associated with hyponatremia, but an understanding of how they induce water retention in the kidney remains elusive. Previous studies have postulated that they may increase vasopressin production in the hypothalamus without supporting evidence. In this study, we investigated the possibility of drug-induced nephrogenic syndrome of inappropriate antidiuresis using haloperidol, sertraline, and carbamazepine. Haloperidol, sertraline, or carbamazepine were treated in inner medullary collecting duct (IMCD) suspensions and primary cultured IMCD cells prepared from male Sprague-Dawley rats. The responses of intracellular cAMP production, aquaporin-2 (AQP2) protein expression and localization, vasopressin-2 receptor (V2R) and AQP2 mRNA, and cAMP-responsive element-binding protein (CREB) were tested with and without tolvaptan and the protein kinase A (PKA) inhibitors H89 and Rp-cAMPS. In IMCD suspensions, cAMP production was increased by haloperidol, sertraline, or carbamazepine and was relieved by tolvaptan cotreatment. In primary cultured IMCD cells, haloperidol, sertraline, or carbamazepine treatment increased total AQP2 and decreased phosphorylated Ser261-AQP2 protein expression. Notably, these responses were reversed by cotreatment with tolvaptan or a PKA inhibitor. AQP2 membrane trafficking was induced by haloperidol, sertraline, or carbamazepine and was also blocked by cotreatment with tolvaptan or a PKA inhibitor. Furthermore, upregulation of V2R and AQP2 mRNA and phosphorylated CREB was induced by haloperidol, sertraline, or carbamazepine and was blocked by tolvaptan cotreatment. We conclude that, in the rat IMCD, psychotropic drugs upregulate AQP2 via V2R-cAMP-PKA signaling in the absence of vasopressin stimulation. The vasopressin-like action on the kidney appears to accelerate AQP2 transcription and dephosphorylate AQP2 at Ser261.NEW & NOTEWORTHY It is unclear whether antipsychotic drugs can retain water in the kidney in the absence of vasopressin. This study demonstrates that haloperidol, sertraline, and carbamazepine can produce nephrogenic syndrome of inappropriate antidiuresis because they directly upregulate vasopressin-2 receptor and aquaporin-2 (AQP2) via cAMP/PKA signaling. We showed that, in addition to AQP2 trafficking, AQP2 protein abundance was rapidly increased by treatment with antipsychotic drugs in association with dephosphorylation of AQP2 at Ser261 and accelerated AQP2 transcription.
Collapse
Affiliation(s)
- Sua Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Chor Ho Jo
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Gheun-Ho Kim
- Institute of Biomedical Science, Hanyang University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
26
|
Tardelli M, Stulnig TM. Aquaporin regulation in metabolic organs. VITAMINS AND HORMONES 2021; 112:71-93. [PMID: 32061350 DOI: 10.1016/bs.vh.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aquaporins (AQPs) are a family of 13 small trans-membrane proteins, which facilitate shuttling of glycerol, water and urea. The peculiar role of AQPs in glycerol transport makes them attractive targets in metabolic organs since glycerol represents the backbone of triglyceride synthesis. Importantly, AQPs are known to be regulated by various nuclear receptors which in turn govern lipid and glucose metabolism as well as inflammatory cascades. Here, we review the role of AQPs regulation in metabolic organs exploring their physiological impact in health and disease.
Collapse
Affiliation(s)
- Matteo Tardelli
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY, United States; Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas M Stulnig
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Ranieri M, Di Mise A, Centrone M, D'Agostino M, Tingskov SJ, Venneri M, Pellegrino T, Difonzo G, Caponio F, Norregaard R, Valenti G, Tamma G. Olive Leaf Extract (OLE) impaired vasopressin-induced aquaporin-2 trafficking through the activation of the calcium-sensing receptor. Sci Rep 2021; 11:4537. [PMID: 33633156 PMCID: PMC7907100 DOI: 10.1038/s41598-021-83850-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Vasopressin (AVP) increases water permeability in the renal collecting duct through the regulation of aquaporin-2 (AQP2) trafficking. Several disorders, including hypertension and inappropriate antidiuretic hormone secretion (SIADH), are associated with abnormalities in water homeostasis. It has been shown that certain phytocompounds are beneficial to human health. Here, the effects of the Olive Leaf Extract (OLE) have been evaluated using in vitro and in vivo models. Confocal studies showed that OLE prevents the vasopressin induced AQP2 translocation to the plasma membrane in MCD4 cells and rat kidneys. Incubation with OLE decreases the AVP-dependent increase of the osmotic water permeability coefficient (Pf). To elucidate the possible effectors of OLE, intracellular calcium was evaluated. OLE increases the intracellular calcium through the activation of the Calcium Sensing Receptor (CaSR). NPS2143, a selective CaSR inhibitor, abolished the inhibitory effect of OLE on AVP-dependent water permeability. In vivo experiments revealed that treatment with OLE increases the expression of the CaSR mRNA and decreases AQP2 mRNA paralleled by an increase of the AQP2-targeting miRNA-137. Together, these findings suggest that OLE antagonizes vasopressin action through stimulation of the CaSR indicating that this extract may be beneficial to attenuate disorders characterized by abnormal CaSR signaling and affecting renal water reabsorption.
Collapse
Affiliation(s)
- Marianna Ranieri
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy.
| | - Annarita Di Mise
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Mariangela Centrone
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Mariagrazia D'Agostino
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | | | - Maria Venneri
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Tommaso Pellegrino
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Rikke Norregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Giovanna Valenti
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Grazia Tamma
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
28
|
Al-Sagan AA, Al-Abdullatif A, Hussein EOS, Saadeldin IM, Al-Mufarrej SI, Qaid M, Albaadani HH, Swelum AAA, Alhotan R. Effects of Betaine Supplementation on Live Performance, Selected Blood Parameters, and Expression of Water Channel and Stress-Related mRNA Transcripts of Delayed Placement Broiler Chicks. Front Vet Sci 2021; 7:632101. [PMID: 33521096 PMCID: PMC7840959 DOI: 10.3389/fvets.2020.632101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 11/23/2022] Open
Abstract
This study examined the effect of supplemental betaine on live performance, selected blood parameters, and gene expression of water channel proteins (Aquaporins, AQP) of broiler chicks delayed in placement for 48 h post-hatch. In total, 540 newly-hatched male broiler chicks were obtained from a local hatchery and were randomly allotted to one of five treatments with nine replicates per treatment (12 chicks per replicate). Chicks were either placed immediately, control; held for 48 h post-hatch with no access to feed or water, Holdnull; held for 48 h with free access to drinking water only, HoldW; held for 48 h with free access to drinking water supplemented with 1 ml per L of betaine solution (40% betaine), HoldB1; or held for 48 h with free access to drinking water supplemented with 2 ml per L of betaine solution (40% betaine), HoldB2 group. The results showed that post-hatch holding for 48 h depressed feed intake and body weight gain during the entire 15 d study period with no beneficial effect of supplemental betaine. Chicks in the HoldB2 group had elevated serum glucose, triglycerides, and aspartate aminotransferase 48 h post-hatch. Early water deprivation directly affected the brain proopiomelanocortin (POMC) and hepatic glucocorticoid receptors (GR) expression and induced significant changes in various aquaporins (AQP1, AQP2, AQP4, and AQP9). In conclusion, betaine supplementation to chicks held for 48 h post-hatch resulted in some changes in blood biochemical indices with no effects on performance during the first 15 days of life. The results suggest that betaine supplementation could ameliorate the stressful effects of water deprivation on POMC and GR expression and maintain cellular osmosis through interactions with variable aquaporins expression, particularly the AQP1 and AQP2. Further investigations are required to investigate the molecular mechanisms underlying the selective regulatory expression of different aquaporins in relation to betaine supplementation.
Collapse
Affiliation(s)
| | | | | | - Islam M Saadeldin
- Department of Animal Production, King Saud University, Riyadh, Saudi Arabia
| | - Saud I Al-Mufarrej
- Department of Animal Production, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Qaid
- Department of Animal Production, King Saud University, Riyadh, Saudi Arabia
| | - Hani H Albaadani
- Department of Animal Production, King Saud University, Riyadh, Saudi Arabia
| | | | - Rashed Alhotan
- Department of Animal Production, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Abstract
For decades, recycling of membrane proteins has been represented in figures by arrows between the "endosome" and the plasma membrane, but recently there has been an explosion in the understanding of the mechanisms and protein complexes required to facilitate protein recycling. Here, some key discoveries will be introduced, including assigning function to a number of recently recognized protein complexes and linking their function to protein recycling. Furthermore, the importance of lipid interactions and links to diseases and epithelial polarity will be summarized.
Collapse
Affiliation(s)
- Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Abstract
In the pregnant patient, hypotonic polyuria in the setting of elevated serum osmolality and polydipsia should narrow the differential to causes related to diabetes insipidus (DI). Gestational DI, also called transient DI of pregnancy, is a distinct entity, unique from central DI or nephrogenic DI which may both become exacerbated during pregnancy. These three different processes relate to vasopressin, where increased metabolism, decreased production or altered renal sensitivity to this neuropeptide should be considered. Gestational DI involves progressively rising levels of placental vasopressinase throughout pregnancy, resulting in decreased endogenous vasopressin and resulting hypotonic polyuria worsening through the pregnancy. Gestational DI should be distinguished from central and nephrogenic DI that may be seen during pregnancy through use of clinical history, urine and serum osmolality measurements, response to desmopressin and potentially, the newer, emerging copeptin measurement. This review focuses on a brief overview of osmoregulatory and vasopressin physiology in pregnancy and how this relates to the clinical presentation, pathophysiology, diagnosis and management of gestational DI, with comparisons to the other forms of DI during pregnancy. Differentiating the subtypes of DI during pregnancy is critical in order to provide optimal management of DI in pregnancy and avoid dehydration and hypernatremia in this vulnerable population.
Collapse
Affiliation(s)
- Sonia Ananthakrishnan
- Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine/Boston Medical Center, 72 Concord Street, Evans 122, Boston, MA, 02118, United States.
| |
Collapse
|
31
|
Sakai M, Yamamoto K, Mizumura H, Matsumoto T, Tanaka Y, Noda Y, Ishibashi K, Yamamoto T, Sasaki S. Phosphorylation profile of human AQP2 in urinary exosomes by LC-MS/MS phosphoproteomic analysis. Clin Exp Nephrol 2020; 24:762-769. [PMID: 32529500 PMCID: PMC7474712 DOI: 10.1007/s10157-020-01899-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/01/2020] [Indexed: 11/24/2022]
Abstract
Background Aquaporin-2 (AQP2) is a key water channel protein which determines the water permeability of the collecting duct. Multiple phosphorylation sites are present at the C-terminal of AQP2 including S256 (serine at 256 residue), S261, S264 and S/T269, which are regulated by vasopressin (VP) to modulate AQP2 trafficking. As the dynamics of these phosphorylations have been studied mostly in rodents, little is known about the phosphorylation of human AQP2 which has unique T269 in the place of S269 of rodent AQP2. Because AQP2 is excreted in urinary exosomes, the phosphoprotein profile of human AQP2 can be easily examined through urinary exosomes without any intervention. Methods Human urinary exosomes digested with trypsin or glutamyl endopeptidase (Glu-C) were examined by the liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) phosphoproteomic analysis. Results The most dominant phosphorylated AQP2 peptide identified was S256 phosphorylated form (pS256), followed by pS261 with less pS264 and far less pT269, which was confirmed by the western blot analyses using phosphorylated AQP2-specific antibodies. In a patient lacking circulating VP, administration of a VP analogue showed a transient increase (peak at 30–60 min) in excretion of exosomes with pS261 AQP2. Conclusion These data suggest that all phosphorylation sites of human AQP2 including T269 are phosphorylated and phosphorylations at S256 and S261 may play a dominant role in the urinary exosomal excretion of AQP2.
Collapse
Affiliation(s)
- Masaki Sakai
- Department of Pathophysiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Keiko Yamamoto
- Biofluid Biomarker Center, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan
| | - Hiroaki Mizumura
- Department of Pathophysiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Tomoki Matsumoto
- Department of Pathophysiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Yasuko Tanaka
- Department of Pathophysiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Yumi Noda
- Department of Nephrology, Nitobe Memorial Nakano General Hospital, Tokyo, 164-8607, Japan
| | - Kenichi Ishibashi
- Department of Pathophysiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Tadashi Yamamoto
- Biofluid Biomarker Center, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181, Japan.
| | - Sei Sasaki
- Department of Pathophysiology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan. .,Department of Nephrology, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan.
| |
Collapse
|
32
|
Ranieri M, Venneri M, Pellegrino T, Centrone M, Di Mise A, Cotecchia S, Tamma G, Valenti G. The Vasopressin Receptor 2 Mutant R137L Linked to the Nephrogenic Syndrome of Inappropriate Antidiuresis (NSIAD) Signals through an Alternative Pathway that Increases AQP2 Membrane Targeting Independently of S256 Phosphorylation. Cells 2020; 9:cells9061354. [PMID: 32486031 PMCID: PMC7349359 DOI: 10.3390/cells9061354] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
NSIAD is a rare X-linked condition, caused by activating mutations in the AVPR2 gene coding for the vasopressin V2 receptor (V2R) associated with hyponatremia, despite undetectable plasma vasopressin levels. We have recently provided in vitro evidence that, compared to V2R-wt, expression of activating V2R mutations R137L, R137C and F229V cause a constitutive redistribution of the AQP2 water channel to the plasma membrane, higher basal water permeability and significantly higher basal levels of p256-AQP2 in the F229V mutant but not in R137L or R137C. In this study, V2R mutations were expressed in collecting duct principal cells and the associated signalling was dissected. V2R-R137L and R137C mutants had significantly higher basal pT269-AQP2 levels -independently of S256 and PKA-which were reduced to control by treatment with Rho kinase (ROCK) inhibitor. Interestingly, ROCK activity was found significantly higher in V2R-R137L along with activation of the Gα12/13–Rho–ROCK pathway. Of note, inhibition of ROCK reduced the basal elevated osmotic water permeability to control. To conclude, our data demonstrate for the first time that the gain-of-function mutation of the V2R, R137L causing NSIAD, signals through an alternative PKA-independent pathway that increases AQP2 membrane targeting through ROCK-induced phosphorylation at S/T269 independently of S256 of AQP2.
Collapse
Affiliation(s)
- Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
| | - Maria Venneri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
| | - Tommaso Pellegrino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
| | - Mariangela Centrone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
| | - Susanna Cotecchia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
- Istituto Nazionale di Biostrutture e Biosistemi, 00136 Roma, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy; (M.R.); (M.V.); (T.P.); (M.C.); (A.D.M.); (S.C.); (G.T.)
- Istituto Nazionale di Biostrutture e Biosistemi, 00136 Roma, Italy
- Center of Excellence in Comparative Genomics (CEGBA), University of Bari, 70125 Bari, Italy
- Correspondence: ; Tel.: +39-080-5443444
| |
Collapse
|
33
|
Xu LH, Yang Y, Liu HX, Xiao SF, Qiu WX, Wang JX, Zhao CC, Gui YH, Liu GZ, Peng B, Li X, Wang GH, Zhou X, Jiang ZL. Inner Ear Arginine Vasopressin-Vasopressin Receptor 2-Aquaporin 2 Signaling Pathway Is Involved in the Induction of Motion Sickness. J Pharmacol Exp Ther 2020; 373:248-260. [PMID: 32165443 DOI: 10.1124/jpet.119.264390] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/24/2020] [Indexed: 11/22/2022] Open
Abstract
It has been identified that arginine vasopressin (AVP), vasopressin receptor 2(V2R), and the aquaporin 2 (AQP2) signaling pathway in the inner ear play important roles in hearing and balance functions through regulating the endolymph equilibrium; however, the contributions of this signaling pathway to the development of motion sickness are unclear. The present study was designed to investigate whether the activation of the AVP-V2R-AQP2 signaling pathway in the inner ear is involved in the induction of motion sickness and whether mozavaptan, a V2R antagonist, could reduce motion sickness. We found that both rotatory stimulus and intraperitoneal AVP injection induced conditioned taste aversion (a confirmed behavioral index for motion sickness) in rats and activated the AVP-V2R-AQP2 signaling pathway with a responsive V2R downregulation in the inner ears, and AVP perfusion in cultured epithelial cells from rat endolymphatic sacs induced similar changes in this pathway signaling. Vestibular training, V2R antagonist mozavaptan, or PKA inhibitor H89 blunted these changes in the V2R-AQP2 pathway signaling while reducing rotatory stimulus- or DDAVP (a V2R agonist)-induced motion sickness in rats and dogs. Therefore, our results suggest that activation of the inner ear AVP-V2R-AQP2 signaling pathway is potentially involved in the development of motion sickness; thus, mozavaptan targeting AVP V2Rs in the inner ear may provide us with a new application option to reduce motion sickness. SIGNIFICANCE STATEMENT: Motion sickness affects many people traveling or working. In the present study our results showed that activation of the inner ear arginine vasopressin-vaspopressin receptor 2 (V2R)-aquaporin 2 signaling pathway was potentially involved in the development of motion sickness and that blocking V2R with mozavaptan, a V2R antagonist, was much more effective in reducing motion sickness in both rat and dog; therefore, we demonstrated a new mechanism to underlie motion sickness and a new candidate drug to reduce motion sickness.
Collapse
Affiliation(s)
- Li-Hua Xu
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yao Yang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Hong-Xia Liu
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Shui-Feng Xiao
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Wen-Xia Qiu
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Jin-Xing Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Chen-Chen Zhao
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Yuan-Hong Gui
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Gui-Zhu Liu
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Bin Peng
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xia Li
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Guo-Hua Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xin Zhou
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Zheng-Lin Jiang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Institute of Nautical Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
34
|
TRPC3 determines osmosensitive [Ca2+]i signaling in the collecting duct and contributes to urinary concentration. PLoS One 2019; 14:e0226381. [PMID: 31851715 PMCID: PMC6919627 DOI: 10.1371/journal.pone.0226381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
It is well-established that the kidney collecting duct (CD) plays a central role in regulation of systemic water homeostasis. Aquaporin 2 (AQP2)-dependent water reabsorption in the CD critically depends on the arginine vasopressin (AVP) antidiuretic input and the presence of a favorable osmotic gradient at the apical plasma membrane with tubular lumen being hypotonic compared to the cytosol. This osmotic difference creates a mechanical force leading to an increase in [Ca2+]i in CD cells. The significance of the osmosensitive [Ca2+]i signaling for renal water transport and urinary concentration remain unknown. To examine molecular mechanism and physiological relevance of osmosensitivity in the CD, we implemented simultaneous direct measurements of [Ca2+]i dynamics and the rate of cell swelling as a readout of the AQP2-dependent water reabsorption in freshly isolated split-opened CDs of wild type and genetically manipulated animals and combined this with immunofluorescent detection of AVP-induced AQP2 trafficking and assessment of systemic water balance. We identified the critical role of the Ca2+-permeable TRPC3 channel in osmosensitivity and water permeability in the CD. We further demonstrated that TRPC3 -/- mice exhibit impaired urinary concentration, larger urinary volume and a greater weight loss in response to water deprivation despite increased AVP levels and AQP2 abundance. TRPC3 deletion interfered with AQP2 translocation to the plasma membrane in response to water deprivation. In summary, we provide compelling multicomponent evidence in support of a critical contribution of TRPC3 in the CD for osmosensitivity and renal water handling.
Collapse
|
35
|
Wang Q, Wu ZL, Yuan X, Dong HY, Xu X, Xin H, Wang YH, Zhang JB, Chen L, Li HL, Zhang XM, Zhang WD. Bilobetin induces kidney injury by influencing cGMP-mediated AQP-2 trafficking and podocyte cell cycle arrest. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153073. [PMID: 31542661 DOI: 10.1016/j.phymed.2019.153073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/26/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Ginkgo biloba (Gb) extracts have been used as a traditional Chinese medicine. Gb contains flavonoids, which are considered to be its active ingredients and have been used in the treatment of a variety of diseases. However, few scientific research studies on the side effects of flavonoid in Gb have been reported. PURPOSE The present study aimed to investigate the effect of bilobetin on the kidney of Sprague-Dawley (SD) rats. STUDY DESIGN AND RESULT In this study, rats were injected with 50 mg/kg of bilobetin, a biflavone isolated from Gb, for 7 days and aristolochic acid was used as positive controls. The results showed that the body weight and urine output of the rats were dramatically decreased, and urinary protein increased after the intraperitoneal injection of bilobetin compared with the control group. Bilobetin treatment showed vacuolar degeneration in the renal tubular epithelium, glomerular atrophy by histostaining, and podocyte fusion by electron microscopy. This study further showed that bilobetin promoted the trafficking of aquaporin 2 (AQP-2) onto the plasma membrane to achieve the function of urine concentration by in vivo study in rats and in vitro study in IMCD-3 cells. The redistribution of AQP-2 is due to increased expression of cGMP in IMCD-3 cells, which in turn promoted the phosphorylation of AQP-2 at site Ser-256. The proteinuria caused by bilobetin may be attributed to podocyte cell cycle arrest at G2/M transition, which is may associated with AKT and MAPK signaling. CONCLUSIONS The current study showed that bilobetin has some side effects on kidneys at a dose of 50 mg/kg in SD rats and provides insight into the potential detrimental effects of monomeric ingredients in Gb.
Collapse
Affiliation(s)
- Qun Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; Institute of Interdisciplinary Research Complex, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhi Li Wu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xing Yuan
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hong Yuan Dong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xin Xu
- Institute of Interdisciplinary Research Complex, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yin Hang Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jian Bing Zhang
- WanBangDe Pharmaceutical Group Co.,Ltd. Wenlin, Zhejiang 317500, China
| | - Li Chen
- WanBangDe Pharmaceutical Group Co.,Ltd. Wenlin, Zhejiang 317500, China
| | - Hui Liang Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xue Mei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wei Dong Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Institute of Interdisciplinary Research Complex, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
36
|
Ziemens A, Sonntag SR, Wulfmeyer VC, Edemir B, Bleich M, Himmerkus N. Claudin 19 Is Regulated by Extracellular Osmolality in Rat Kidney Inner Medullary Collecting Duct Cells. Int J Mol Sci 2019; 20:ijms20184401. [PMID: 31500238 PMCID: PMC6770061 DOI: 10.3390/ijms20184401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 01/27/2023] Open
Abstract
The inner medullary collecting duct (IMCD) is subject to severe changes in ambient osmolality and must either allow water transport or be able to seal the lumen against a very high osmotic pressure. We postulate that the tight junction protein claudin-19 is expressed in IMCD and that it takes part in epithelial adaptation to changing osmolality at different functional states. Presence of claudin-19 in rat IMCD was investigated by Western blotting and immunofluorescence. Primary cell culture of rat IMCD cells on permeable filter supports was performed under different osmotic culture conditions and after stimulation by antidiuretic hormone (AVP). Electrogenic transepithelial transport properties were measured in Ussing chambers. IMCD cells cultivated at 300 mosm/kg showed high transepithelial resistance, a cation selective paracellular pathway and claudin-19 was mainly located in the tight junction. Treatment by AVP increased cation selectivity but did not alter transepithelial resistance or claudin-19 subcellular localization. In contrast, IMCD cells cultivated at 900 mosm/kg had low transepithelial resistance, anion selectivity, and claudin-19 was relocated from the tight junctions to intracellular vesicles. The data shows osmolality-dependent transformation of IMCD epithelium from tight and sodium-transporting to leaky, with claudin-19 expression in the tight junction associated to tightness and cation selectivity under low osmolality.
Collapse
Affiliation(s)
- Annalisa Ziemens
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
| | - Svenja R Sonntag
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
- Department of Ophthalmology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Vera C Wulfmeyer
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
- Department of Nephrology and Hypertension, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Bayram Edemir
- Department of Internal Medicine IV, Hematology and Oncology, University Hospital Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany.
| | - Markus Bleich
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrecht-University Kiel, Hermann-Rodewald-Str. 5, 24118 Kiel, Germany.
| |
Collapse
|
37
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
38
|
Maroli N, Jayakrishnan A, Ramalingam Manoharan R, Kolandaivel P, Krishna K. Combined Inhibitory Effects of Citrinin, Ochratoxin-A, and T-2 Toxin on Aquaporin-2. J Phys Chem B 2019; 123:5755-5768. [DOI: 10.1021/acs.jpcb.9b03829] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
Bao LZ, Shen M, Qudirat H, Shi JB, Su T, Song JW, Wang ZK, Zhao XX, Jing Q, Zheng X, Guo ZF. Obestatin ameliorates water retention in chronic heart failure by downregulating renal aquaporin 2 through GPR39, V2R and PPARG signaling. Life Sci 2019; 231:116493. [PMID: 31153818 DOI: 10.1016/j.lfs.2019.05.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/16/2019] [Accepted: 05/19/2019] [Indexed: 12/28/2022]
Abstract
AIMS Obestatin regulates water metabolism by inhibiting arginine vasopressin (AVP) release and upregulated obestatin has been detected in patients with chronic heart failure (CHF). However, the significance of obestatin in CHF, particularly with regard to water retention and aquaporin 2 (AQP2) expression, remains unknown. MAIN METHODS Using a CHF rat model, the effects of 2-week exogenous obestatin administration were evaluated. Expression of AQP2 was evaluated by immunoblotting, immunohistochemical staining, and quantitative real-time PCR (qPCR) in CHF rat model and mouse inner medullary collecting duct (mIMCD) 3 cell line. Moreover, the influence of obestatin on the genetic transcription profile in mIMCD3 cells was evaluated by microarray, and the potential regulatory mechanisms of obestatin on AQP2 were evaluated by RNA silencing of vasopressin receptor 2 (V2R), peroxisome proliferator-activated receptor gamma (PPARG), and G protein-coupled receptor 39 (GPR39). KEY FINDINGS Obestatin increased urinary output and improved expression of CHF biomarker without significantly altering cardiac function, plasma electrolyte concentrations, or the plasma AVP concentration. AQP2 expression was significantly reduced. The results of microarray analyses and qPCR indicated that mRNA levels of Aqp2, Pparg, and V2r were significantly decreased. Inhibition of V2r and Pparg mRNA further reduced the expression of AQP2, while the inhibitory efficacy of obestatin on AQP2 was significantly offset after Gpr39 knockdown. SIGNIFICANCE Long-term treatment with obestatin improves water retention in CHF by increasing urinary output through downregulation of AQP2 expression in renal IMCD cells. These effects may be at least partially mediated by regulation of GPR39, V2R and PPARG signaling.
Collapse
Affiliation(s)
- Li-Zhi Bao
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Ming Shen
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hannisa Qudirat
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jian-Bo Shi
- Department of Cardiology, HongKou Branch of Changhai Hospital of PLA, Shanghai 200081, China
| | - Ting Su
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jing-Wen Song
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Zhong-Kai Wang
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xian-Xian Zhao
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qing Jing
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Xing Zheng
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Zhi-Fu Guo
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
40
|
Miyado M, Fukami M, Takada S, Terao M, Nakabayashi K, Hata K, Matsubara Y, Tanaka Y, Sasaki G, Nagasaki K, Shiina M, Ogata K, Masunaga Y, Saitsu H, Ogata T. Germline-Derived Gain-of-Function Variants of Gs α-Coding GNAS Gene Identified in Nephrogenic Syndrome of Inappropriate Antidiuresis. J Am Soc Nephrol 2019; 30:877-889. [PMID: 30962325 DOI: 10.1681/asn.2018121268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/02/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The stimulatory G-protein α-subunit encoded by GNAS exons 1-13 (GNAS-Gsα) mediates signal transduction of multiple G protein-coupled receptors, including arginine vasopressin receptor 2 (AVPR2). Various germline-derived loss-of-function GNAS-Gsα variants of maternal and paternal origin have been found in pseudohypoparathyroidism type Ia and pseudopseudohypoparathyroidism, respectively. Specific somatic gain-of-function GNAS-Gsα variants have been detected in McCune-Albright syndrome and may result in phosphate wasting. However, no germline-derived gain-of-function variant has been identified, implying that such a variant causes embryonic lethality. METHODS We performed whole-exome sequencing in two families with dominantly inherited nephrogenic syndrome of inappropriate antidiuresis (NSIAD) as a salient phenotype after excluding a gain-of-function variant of AVPR2 and functional studies for identified variants. RESULTS Whole-exome sequencing revealed two GNAS-Gsα candidate variants for NSIAD: GNAS-Gsα p.(F68_G70del) in one family and GNAS-Gsα p.(M255V) in one family. Both variants were absent from public and in-house databases. Of genes with rare variants, GNAS-Gsα alone was involved in AVPR2 signaling and shared by the families. Protein structural analyses revealed a gain-of-function-compatible conformational property for p.M255V-Gsα, although such assessment was not possible for p.F68_G70del-Gsα. Both variants had gain-of-function effects that were significantly milder than those of McCune-Albright syndrome-specific somatic Gsα variants. Model mice for p.F68_G70del-Gsα showed normal survivability and NSIAD-compatible phenotype, whereas those for p.M255V-Gsα exhibited severe failure to thrive. CONCLUSIONS This study shows that germline-derived gain-of-function rare variants of GNAS-Gsα exist and cause NSIAD as a novel Gsα-mediated genetic disease. It is likely that AVPR2 signaling is most sensitive to GNAS-Gsα's gain-of-function effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yoichi Matsubara
- Head Office, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yoko Tanaka
- Department of Pediatrics, Tokyo Dental College, Ichikawa General Hospital, Ichikawa, Japan
| | - Goro Sasaki
- Department of Pediatrics, Tokyo Dental College, Ichikawa General Hospital, Ichikawa, Japan
| | - Keisuke Nagasaki
- Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Shiina
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan; and
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan; and
| | | | - Hirotomo Saitsu
- Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Departments of Molecular Endocrinology, .,Departments of Pediatrics and
| |
Collapse
|
41
|
Wang H, Morris RG, Knepper MA, Zhou X. Sickle cell disease up-regulates vasopressin, aquaporin 2, urea transporter A1, Na-K-Cl cotransporter 2, and epithelial Na channels in the mouse kidney medulla despite compromising urinary concentration ability. Physiol Rep 2019; 7:e14066. [PMID: 31033226 PMCID: PMC6487471 DOI: 10.14814/phy2.14066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/18/2019] [Accepted: 03/29/2019] [Indexed: 11/24/2022] Open
Abstract
Sickle cell disease (SCD)-induced urinary concentration defect has been proposed as caused by impaired ability of the occluded vasa recta due to red blood cell sickling to serve as countercurrent exchangers and renal tubules to absorb water and solutes. However, the exact molecular mechanisms remain largely unknown. The present studies were undertaken to determine the effects of SCD on vasopressin, aquaporin2 (AQP2), urea transporter A1 (UTA1), Na-K-Cl co-transporter 2 (NKCC2), epithelial Na channels (ENaC), aquaporin1 (AQP1), nuclear factor of activated T cells 5 (NFAT5) and Src homology region-2 domain-containing phosphatase-1 (SHP-1), an important regulator of NFAT5, in the Berkeley SCD mouse kidney medulla. Under water repletion, SCD only induced a minor urinary concentration defect associated with increased urinary vasopressin level alone with the well-known effects of vasopressin: protein abundance of AQP2, UTA1 and ENaC-β and apical targeting of AQP2 as compared with non-SCD. SCD did not significantly affect AQP1 protein level. Water restriction had no further significant effect on SCD urinary vasopressin. NFAT5 is also critical to urinary concentration. Instead, water restriction-activated NFAT5 associated with inhibition of SHP-1 in the SCD mice. Yet, water restriction only elevated urinary osmolality by 28% in these mice as opposed to 104% in non-SCD mice despite similar degree increases of protein abundance of AQP2, NKCC2 and AQP2-S256-P. Water-restriction had no significant effect on protein abundance of ENaC or AQP1 in either strain. In conclusion, under water repletion SCD, only induces a minor defect in urinary concentration because of compensation from the up-regulated vasopressin system. However, under water restriction, SCD mice struggle to concentrate urine despite activating NFAT5. SCD-induced urinary concentration defect appears to be resulted from the poor blood flow in vasa recta rather than the renal tubules' ability to absorb water and solutes.
Collapse
Affiliation(s)
- Hong Wang
- Department of MedicineUniformed Services University of Health SciencesBethesdaMaryland
| | | | | | - Xiaoming Zhou
- Department of MedicineUniformed Services University of Health SciencesBethesdaMaryland
| |
Collapse
|
42
|
Ikarashi N, Nagoya C, Kon R, Kitaoka S, Kajiwara S, Saito M, Kawabata A, Ochiai W, Sugiyama K. Changes in the Expression of Aquaporin-3 in the Gastrointestinal Tract Affect Drug Absorption. Int J Mol Sci 2019; 20:ijms20071559. [PMID: 30925715 PMCID: PMC6479729 DOI: 10.3390/ijms20071559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aquaporin-3 (AQP3) plays an important role in water transport in the gastrointestinal (GI) tract. In this study, we conducted a Caco-2 cell permeability assay to examine how changes in the expression and function of AQP3 affect the rate at which a drug is absorbed via passive transport in the GI tract. When the function of AQP3 was inhibited by mercuric chloride or phloretin, there was no change in warfarin permeability. In contrast, when the expression of AQP3 protein was decreased by prostaglandin E₂ (PGE₂) treatment, warfarin permeability increased to approximately twice the control level, and membrane fluidity increased by 15%. In addition, warfarin permeability increased to an extent comparable to that after PGE₂ treatment when cell membrane fluidity was increased by 10% via boric acid/EDTA treatment. These findings suggest the possibility that the increased drug absorption under decreased AQP3 expression was attributable to increased membrane fluidity. The results of this study demonstrate that the rate of water transport has little effect on drug absorption. However, our findings also indicate that although AQP3 and other similar transmembrane proteins do not themselves transport drugs, changes in their expression levels can cause changes in cell membrane fluidity, thus affecting drug absorption rates.
Collapse
Affiliation(s)
- Nobutomo Ikarashi
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Chika Nagoya
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Satoshi Kitaoka
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Sayuri Kajiwara
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Masayo Saito
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Akane Kawabata
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Wataru Ochiai
- Department of Clinical Pharmacokinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Kiyoshi Sugiyama
- Department of Functional Molecular Kinetics, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
43
|
Kim WY, Nam SA, Choi A, Kim YM, Park SH, Kim HL, Kim H, Han KH, Yang CW, Lee MS, Kim YK, Kim J. Atg7-dependent canonical autophagy regulates the degradation of aquaporin 2 in prolonged hypokalemia. Sci Rep 2019; 9:3021. [PMID: 30816234 PMCID: PMC6395725 DOI: 10.1038/s41598-019-39702-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/23/2018] [Indexed: 01/31/2023] Open
Abstract
Prolonged hypokalemia induces a decrease of urinary concentrating ability via down-regulation of aquaporin 2 (AQP2); however, the precise mechanisms remain unknown. To investigate the role of autophagy in the degradation of AQP2, we generated the principal cell-specific Atg7 deletion (Atg7Δpc) mice. In hypokalemic Atg7-floxed (Atg7f/f) mice, huge irregular shaped LC3-positive autophagic vacuoles accumulated mainly in inner medullary collecting duct (IMCD) cells. Total- and pS261-AQP2 were redistributed from apical and subapical domains into these vacuoles, which were not co-localized with RAB9. However, in the IMCD cells of hypokalemic Atg7Δpc mice, these canonical autophagic vacuoles were markedly reduced, whereas numerous small regular shaped LC3-negative/RAB9-positive non-canonical autophagic vacuoles were observed along with diffusely distributed total- and pS261-AQP2 in the cytoplasm. The immunoreactivity of pS256-AQP2 in the apical membrane of IMCD cells was markedly decreased, and no redistribution was observed in both hypokalemic Atg7f/f and Atg7Δpc mice. These findings suggest that AQP2 down regulation in hypokalemia was induced by reduced phosphorylation of AQP2, resulting in a reduction of apical plasma labeling of pS256-AQP2 and degradation of total- and pS261-AQP2 via an LC3/ATG7-dependent canonical autophagy pathway.
Collapse
Affiliation(s)
- Wan-Young Kim
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sun Ah Nam
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Arum Choi
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu-Mi Kim
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sang Hee Park
- Institute of Clinical Medicine Research of Bucheon St. Mary's Hospital, Bucheon, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyang Kim
- Division of Nephrology, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Ki-Hwan Han
- Department of Anatomy, Ewha Womans University School of Medicine, Seoul, Korea
| | - Chul Woo Yang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myung-Shik Lee
- Severance Biomedical Science Institute, College of Medicine, Yonsei University, Seoul, Korea
| | - Yong Kyun Kim
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea. .,Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Jin Kim
- Department of Anatomy and Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
44
|
Michałek K, Grabowska M, Lepczyński A. Cellular localization and putative role of aquaporin-2 Ser-261 in the bovine kidney. JOURNAL OF ANIMAL AND FEED SCIENCES 2019. [DOI: 10.22358/jafs/103815/2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Cherezova A, Tomilin V, Buncha V, Zaika O, Ortiz PA, Mei F, Cheng X, Mamenko M, Pochynyuk O. Urinary concentrating defect in mice lacking Epac1 or Epac2. FASEB J 2019; 33:2156-2170. [PMID: 30252533 PMCID: PMC6338637 DOI: 10.1096/fj.201800435r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/27/2018] [Indexed: 11/11/2022]
Abstract
cAMP is a universal second messenger regulating a plethora of processes in the kidney. Two downstream effectors of cAMP are PKA and exchange protein directly activated by cAMP (Epac), which, unlike PKA, is often linked to elevation of [Ca2+]i. While both Epac isoforms (Epac1 and Epac2) are expressed along the nephron, their relevance in the kidney remains obscure. We combined ratiometric calcium imaging with quantitative immunoblotting, immunofluorescent confocal microscopy, and balance studies in mice lacking Epac1 or Epac2 to determine the role of Epac in renal water-solute handling. Epac1-/- and Epac2-/- mice developed polyuria despite elevated arginine vasopressin levels. We did not detect major deficiencies in arginine vasopressin [Ca2+]i signaling in split-opened collecting ducts or decreases in aquaporin water channel type 2 levels. Instead, sodium-hydrogen exchanger type 3 levels in the proximal tubule were dramatically reduced in Epac1-/- and Epac2-/- mice. Water deprivation revealed persisting polyuria, impaired urinary concentration ability, and augmented urinary excretion of Na+ and urea in both mutant mice. In summary, we report a nonredundant contribution of Epac isoforms to renal function. Deletion of Epac1 and Epac2 decreases sodium-hydrogen exchanger type 3 expression in the proximal tubule, leading to polyuria and osmotic diuresis.-Cherezova, A., Tomilin, V., Buncha, V., Zaika, O., Ortiz, P. A., Mei, F., Cheng, X., Mamenko, M., Pochynyuk, O. Urinary concentrating defect in mice lacking Epac1 or Epac2.
Collapse
Affiliation(s)
- Alena Cherezova
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Viktor Tomilin
- Department of Integrative Biology and Pharmacology The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Vadym Buncha
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Pablo A. Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA; and
| | - Fang Mei
- Department of Integrative Biology and Pharmacology The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Texas Therapeutics Institute, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Mykola Mamenko
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
46
|
Zhang Y, Hansson KM, Liu T, Magnell K, Huang Y, Carlson NG, Kishore BK. Genetic deletion of ADP-activated P2Y 12 receptor ameliorates lithium-induced nephrogenic diabetes insipidus in mice. Acta Physiol (Oxf) 2019; 225:e13191. [PMID: 30257062 DOI: 10.1111/apha.13191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022]
Abstract
AIM Therapeutic use of lithium in bipolar disorder is limited by the development of nephrogenic diabetes insipidus (NDI). We reported that pharmacological blockade of P2Y12 receptor (R) with clopidogrel or prasugrel significantly ameliorated lithium-induced NDI in rodents. Using mice genetically lacking P2Y12 -R we evaluated whether the observed amelioration is mediated through P2Y12 -R METHODS: P2ry12-/- mouse line (C57/BL6) was rederived from cryopreserved embryos of the knockout (KO) mice generated by Deltagen Inc. Syngeneic wild type (WT) mice obtained by heterozygous crossing were inbred. Groups of adult WT and KO mice were fed lithium-added (40 mmol LiCl/kg food) or regular diet, and euthanized after 2 or 4 weeks. Twenty-four hour urine samples and terminal blood and kidney samples were analyzed. RESULTS At both time points, lithium-induced polyuria and decrease in aquaporin-2 (AQP2) protein abundance in the kidney medulla were less marked in KO vs WT mice. Immunofluorescence microscopy revealed that lithium-induced alterations in the cellular disposition of AQP2 protein in the medullary collecting ducts of WT mice were blunted in KO mice. Serum lithium, sodium and osmolality were similar in both genotypes after lithium treatment. After 2 weeks, lithium induced marked increases in urinary excretion of Na, K, and arginine vasopressin in WT mice but not in KO mice. CONCLUSION Taken together, our data show that similar to pharmacological blockade, deletion of P2Y12 -R significantly ameliorates lithium-induced NDI, without reducing serum lithium levels. Hence, targeting P2Y12 -R with currently available drugs in the market offers a novel and safer method for treating NDI.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Internal Medicine; University of Utah Health Sciences Center; Salt Lake City Utah
- Nephrology Research, Department of Veterans Affairs Salt; Lake City Health Care System; Salt Lake City Utah
| | - Kenny M. Hansson
- Cardiovascular, Renal and Metabolism Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Gothenburg Sweden
| | - Tao Liu
- Department of Internal Medicine; University of Utah Health Sciences Center; Salt Lake City Utah
- Nephrology Research, Department of Veterans Affairs Salt; Lake City Health Care System; Salt Lake City Utah
| | - Kerstin Magnell
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit; AstraZeneca; Gothenburg Sweden
| | - Yufeng Huang
- Department of Internal Medicine; University of Utah Health Sciences Center; Salt Lake City Utah
| | - Noel G. Carlson
- Center on Aging; University of Utah Health Sciences Center; Salt Lake City Utah
- Department of Neurobiology and Anatomy; University of Utah Health Sciences Center; Salt Lake City Utah
- Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Salt; Lake City Health Care System; Salt Lake City Utah
| | - Bellamkonda K. Kishore
- Department of Internal Medicine; University of Utah Health Sciences Center; Salt Lake City Utah
- Nephrology Research, Department of Veterans Affairs Salt; Lake City Health Care System; Salt Lake City Utah
- Center on Aging; University of Utah Health Sciences Center; Salt Lake City Utah
- Department of Nutrition and Integrative Physiology; University of Utah College of Health; Salt Lake City Utah
| |
Collapse
|
47
|
Dos Santos IF, Sheriff S, Amlal S, Ahmed RPH, Thakar CV, Amlal H. Adenine acts in the kidney as a signaling factor and causes salt- and water-losing nephropathy: early mechanism of adenine-induced renal injury. Am J Physiol Renal Physiol 2019; 316:F743-F757. [PMID: 30623725 DOI: 10.1152/ajprenal.00142.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chronic adenine feeding is extensively used to develop animal models of chronic renal failure with metabolic features resembling those observed in humans. However, the mechanism by which adenine induces renal failure is poorly understood. In this study, we examined the early effects of adenine on water metabolism and salt balance in rats placed in metabolic cages and fed control or adenine-containing diets for 7 days. Molecular and functional studies demonstrated that adenine-fed rats exhibited a significant reduction in food intake, polyuria, polydipsia, decreased urine osmolality, and increased salt wasting. These effects are independent of changes in food intake and result from a coordinated downregulation of water channel aquaporin-2 (AQP2) and salt transporter (Na+-K+-Cl- cotransporter 2; NKCC2) in the collecting duct and medullary thick ascending limb, respectively. As a result, adenine-fed rats exhibited massive volume depletion, as indicated by a significant body weight loss, increased blood urea nitrogen, and increased hematocrit and hemoglobin levels, all of which were significantly corrected with NaCl replacement. Adenine-induced urinary concentrating defect was not corrected by exogenous arginine vasopressin (AVP), and it correlated with reduced cAMP production in vivo and in vitro. In conclusion, adenine acts on renal tubules as a signaling molecule and causes nephrogenic diabetes insipidus with salt wasting, at least, by directly interfering with AVP V2 receptor signaling with subsequent downregulation of NKCC2 and AQP2 in the kidney. The combination of renal fluid loss and decreased food intake with subsequent massive volume depletion likely plays an important role in the development of early prerenal failure that progresses to chronic kidney disease in long-term adenine feeding.
Collapse
Affiliation(s)
- Ingrid F Dos Santos
- Department of Internal Medicine, Division of Nephrology and Kidney C.A.R.E, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Sulaiman Sheriff
- Department of Surgery, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Sihame Amlal
- Department of Internal Medicine, Division of Nephrology and Kidney C.A.R.E, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Rafeeq P H Ahmed
- Department of Pathology, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Charuhas V Thakar
- Department of Internal Medicine, Division of Nephrology and Kidney C.A.R.E, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| | - Hassane Amlal
- Department of Internal Medicine, Division of Nephrology and Kidney C.A.R.E, College of Medicine, University of Cincinnati , Cincinnati, Ohio
| |
Collapse
|
48
|
Sisto M, Ribatti D, Lisi S. Aquaporin water channels: New perspectives on the potential role in inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:311-345. [PMID: 31036295 DOI: 10.1016/bs.apcsb.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aquaporins (AQPs) are a family of membrane water channel proteins that osmotically modulate water fluid homeostasis in several tissues; some of them also transport small solutes such as glycerol. At the cellular level, the AQPs regulate not only cell migration and transepithelial fluid transport across membranes, but also common events that are crucial for the inflammatory response. Emerging data reveal a new function of AQPs in the inflammatory process, as demonstrated by their dysregulation in a wide range of inflammatory diseases including edematous states, cancer, obesity, wound healing and several autoimmune diseases. This chapter summarizes the discoveries made so far about the structure and functions of the AQPs and provides updated information on the underlying mechanisms of AQPs in several human inflammatory diseases. The discovery of new functions for AQPs opens new vistas offering promise for the discovery of mechanisms and therapeutic opportunities in inflammatory disorders.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy.
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| | - Sabrina Lisi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs (SMBNOS), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
49
|
Shen M, Bao LZ, Zheng X, Zhao XX, Guo ZF. Obestatin Downregulating Aquaporin 2 Plasma Membrane Distribution Through a Short-Term Regulatory Effect. Am J Med Sci 2018; 357:247-254. [PMID: 30797506 DOI: 10.1016/j.amjms.2018.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/27/2018] [Accepted: 12/22/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND Previous studies have found that obestatin significantly inhibited water drinking and reduced the arginine vasopressin levels in the brain to decrease renal water reabsorption. However, obestatin is unable to cross the blood-brain barrier. Its effect on the body's kidney water metabolism in peripheral remains unknown. MATERIALS AND METHODS Expression and subcellular distribution of aquaporin 2 (AQP2) were detected by immunoblotting and immunofluorescence in mouse inner medullary collecting duct-3 (mIMCD-3) cells and congestive heart failure model rats. Moreover, expression of phosphorylated AQP2 (P-AQP2; Ser256) in mIMCD-3 cells was evaluated by immunoblotting. RESULTS After a 30-minute treatment with obestatin in mIMCD-3 cells and congestive heart failure model rats, the AQP2 plasma membrane distribution decreased, while AQP2 protein level, P-AQP2 (Ser256) protein level and phosphorylation ratio of AQP2 showed no significant change. CONCLUSIONS These findings suggest that obestatin has a short-term regulatory effect on the AQP2 plasma membrane distribution. In addition, obestatin decreases the APQ2 plasma membrane distribution probably by promoting the endocytosis of AQP2.
Collapse
Affiliation(s)
- Ming Shen
- Department of Cardiovascular Diseases, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li-Zhi Bao
- Department of Cardiovascular Diseases, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xing Zheng
- Department of Cardiovascular Diseases, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xian-Xian Zhao
- Department of Cardiovascular Diseases, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Zhi-Fu Guo
- Department of Cardiovascular Diseases, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
50
|
Liwang JK, Ruiz JA, LaRocque LM, Rianto F, Ma F, Wang Y. Role of PKC and AMPK in hypertonicity-stimulated water reabsorption in rat inner medullary collecting ducts. Am J Physiol Renal Physiol 2018; 316:F253-F262. [PMID: 30427219 DOI: 10.1152/ajprenal.00491.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypertonicity increases water permeability, independently of vasopressin, in the inner medullary collecting duct (IMCD) by increasing aquaporin-2 (AQP2) membrane accumulation. We investigated whether protein kinase C (PKC) and adenosine monophosphate kinase (AMPK) are involved in hypertonicity-regulated water permeability. Increasing perfusate osmolality from 150 to 290 mosmol/kgH2O and bath osmolality from 290 to 430 mosmol/kgH2O significantly stimulated osmotic water permeability. The PKC inhibitors chelerythrine (10 µM) and rottlerin (50 µM) significantly reversed the increase in osmotic water permeability stimulated by hypertonicity in perfused rat terminal IMCDs. Chelerythrine significantly increased phosphorylation of AQP2 at S261 but not at S256. Previous studies show that AMPK is stimulated by osmotic stress. We tested AMPK phosphorylation under hypertonic conditions. Hypertonicity significantly increased AMPK phosphorylation in inner medullary tissues. Blockade of AMPK with Compound C decreased hypertonicity-stimulated water permeability but did not alter phosphorylation of AQP2 at S256 and S261. AICAR, an AMPK stimulator, caused a transient increase in osmotic water permeability and increased phosphorylation of AQP2 at S256. When inner medullary tissue was treated with the PKC activator phorbol dibutyrate (PDBu), the AMPK activator metformin, or both, AQP2 phosphorylation at S261 was decreased with PDBu or metformin alone, but there was no additive effect on phosphorylation with PDBu and metformin together. In conclusion, hypertonicity regulates water reabsorption by activating PKC. Hypertonicity-stimulated water reabsorption by PKC may be related to the decrease in endocytosis of AQP2. AMPK activation promotes water reabsorption, but the mechanism remains to be determined. PKC and AMPK do not appear to act synergistically to regulate water reabsorption.
Collapse
Affiliation(s)
- Josephine K Liwang
- Division of Renal Medicine, Department of Medicine, Emory University , Atlanta, Georgia
| | - Joseph A Ruiz
- Division of Renal Medicine, Department of Medicine, Emory University , Atlanta, Georgia
| | - Lauren M LaRocque
- Division of Renal Medicine, Department of Medicine, Emory University , Atlanta, Georgia
| | - Fitra Rianto
- Division of Renal Medicine, Department of Medicine, Emory University , Atlanta, Georgia
| | - Fuying Ma
- Division of Renal Medicine, Department of Medicine, Emory University , Atlanta, Georgia
| | - Yanhua Wang
- Division of Renal Medicine, Department of Medicine, Emory University , Atlanta, Georgia
| |
Collapse
|