1
|
Persson K, Rodriguez Perez C, Louis-Maerten E, Müller N, Shaw D. "Killing in the Name of 3R?" The Ethics of Death in Animal Research. JOURNAL OF AGRICULTURAL & ENVIRONMENTAL ETHICS 2024; 38:4. [PMID: 39635660 PMCID: PMC11611953 DOI: 10.1007/s10806-024-09936-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Changing relationships with nonhuman animals have led to important modifications in animal welfare legislations, including the protection of animal life. However, animal research regulations are largely based on welfarist assumptions, neglecting the idea that death can constitute a harm to animals. In this article, four different cases of killing animals in research contexts are identified and discussed against the background of philosophical, societal, and scientific-practical discourses: 1. Animals killed during experimentation, 2. Animals killed before research, 3. "Surplus" animals and 4. "Leftover" animals. The scientific community and, accordingly, animal research regulations such as the internationally acknowledged framework 3R ("Replace", "Reduce", "Refine") tend to aim at the reduction of "surplus" and, to some extent, "leftover" animals, whereas the first two classes are rather neglected. However, the perspective that animal death matters morally is supported by both societal moral intuitions and certain theoretical accounts in animal ethics. Therefore, we suggest the implementation of the 3Rs in regulations, so that they: 1. Make their underlying philosophical position transparent; 2. Are based on a weighing account of animal death; 3. Are applicable to procedures on living and dead animals; 4. Apply the "reduction" principle to procedures on dead animals; 5. Entail that methods using (parts of) dead animals need to be replaced by animal free methods, if possible; 6. Do not suggest replacing research on living animals by research on killed animals; 7. Include all kinds of animals, depending on the respective harm of death; 8. Are applied to the broader context of experimentation, including breeding and the fate of the animals after the experiment.
Collapse
Affiliation(s)
- Kirsten Persson
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
- Institute for Animal Hygiene, Animal Welfare, and Farm Animal Behaviour, University of Veterinary Medicine, Hannover, Foundation, Hanover, Germany
| | | | | | - Nico Müller
- Philosophical Seminar, Department of Arts, Media, Philosophy, University of Basel, Basel, Switzerland
| | - David Shaw
- Institute for Biomedical Ethics, University of Basel, Basel, Switzerland
- Care and Public Health Research Institute Maastricht University, Maastricht, Netherlands
| |
Collapse
|
2
|
Arndt SS, van der Staay FJ, Goerlich VC. Near and Dear? If animal welfare concepts do not apply to species at a great phylogenetic distance from humans, what concepts might serve as alternatives? Anim Welf 2024; 33:e38. [PMID: 39464388 PMCID: PMC11503720 DOI: 10.1017/awf.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/29/2024] [Accepted: 06/12/2024] [Indexed: 10/29/2024]
Abstract
A wide range of animal taxa, including vertebrates and invertebrates, are controlled or kept by humans. They may be used as pets, for recreation, sport and hobbies, as working animals, as producers of animal-derived (food) products or as biomedical models in research. There is a need for clear guidance on the treatment of animals, regardless of their phylogenetic distance from humans. Current animal welfare concepts, which emphasise animal sentience and the ability of animals to experience negative or positive mental states, are limited in scope to a small proportion of the animal kingdom, as the vast majority of species are (currently) thought to lack sentience. We discuss four options for addressing the question of which basic concept(s) could be used to derive guidelines for the treatment of animal species, sentient or non-sentient: (1) alternative concepts tailored to specific groups of species; (2) 'welfare' concepts not presupposing sentience; (3) the precautionary principle; or (4) the concept of animal integrity. Since questions regarding the appropriate treatment of animals, including species with a large phylogenetic distance from humans, have an ethical/moral dimension, we also address who counts morally and how much, and how animals should be treated given their moral status. We suggest that the concept of animal integrity, possibly complemented and extended by the concept of habitat/ecosystem integrity, is suitable for application to all species. However, a current concept of animal welfare should serve as the primary basis for guidance on how to treat species that are sentient and capable of experiencing emotions.
Collapse
Affiliation(s)
- Saskia S Arndt
- Division of Animals in Science and Society, Animal Behaviour Group, Faculty of Veterinary Medicine, Utrecht University, PO Box 80166, 3508 TDUtrecht, The Netherlands
| | - F Josef van der Staay
- Department of Population Health Sciences, Division of Farm Animal Health, Behaviour and Welfare Group (Formerly: Emotion and Cognition Group), Faculty of Veterinary Medicine, University Utrecht, Utrecht, The Netherlands
- University Medical Center (UMC) Utrecht, Brain Centre, Utrecht, The Netherlands
| | - Vivian C Goerlich
- Division of Animals in Science and Society, Animal Behaviour Group, Faculty of Veterinary Medicine, Utrecht University, PO Box 80166, 3508 TDUtrecht, The Netherlands
| |
Collapse
|
3
|
Wang ZY, Ragsdale CW. Signaling Ligand Heterogeneities in the Peduncle Complex of the Cephalopod Mollusc Octopus bimaculoides. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:158-170. [PMID: 38688255 DOI: 10.1159/000539128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION The octopus peduncle complex is an agglomeration of neural structures with remarkably diverse functional roles. The complex rests on the optic tract, between the optic lobe and the central brain, and comprises the peduncle lobe proper, the olfactory lobe, and the optic gland. The peduncle lobe regulates visuomotor behaviors, the optic glands control sexual maturation and maternal death, and the olfactory lobe is thought to receive input from the olfactory organ. Recent transcriptomic and metabolomic studies have identified candidate peptide and steroid ligands in the Octopus bimaculoides optic gland. METHODS With gene expression for these ligands and their biosynthetic enzymes, we show that optic gland neurochemistry extends beyond the traditional optic gland secretory tissue and into lobular territories. RESULTS A key finding is that the classically defined olfactory lobe is itself a heterogeneous territory and includes steroidogenic territories that overlap with cells expressing molluscan neuropeptides and the synthetic enzyme dopamine beta-hydroxylase. CONCLUSION Our study reveals the neurochemical landscape of the octopus peduncle complex, highlighting the unexpected overlap between traditionally defined regions.
Collapse
Affiliation(s)
- Z Yan Wang
- Department of Psychology, University of Washington, Seattle, Washington, USA
- Department of Biology, University of Washington, Seattle, Washington, USA
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Destanović D, Schultz DT, Styfhals R, Cruz F, Gómez-Garrido J, Gut M, Gut I, Fiorito G, Simakov O, Alioto TS, Ponte G, Seuntjens E. A chromosome-level reference genome for the common octopus, Octopus vulgaris (Cuvier, 1797). G3 (BETHESDA, MD.) 2023; 13:jkad220. [PMID: 37850903 PMCID: PMC10700109 DOI: 10.1093/g3journal/jkad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/18/2023] [Indexed: 10/19/2023]
Abstract
Cephalopods are emerging animal models and include iconic species for studying the link between genomic innovations and physiological and behavioral complexities. Coleoid cephalopods possess the largest nervous system among invertebrates, both for cell counts and brain-to-body ratio. Octopus vulgaris has been at the center of a long-standing tradition of research into diverse aspects of cephalopod biology, including behavioral and neural plasticity, learning and memory recall, regeneration, and sophisticated cognition. However, no chromosome-scale genome assembly was available for O. vulgaris to aid in functional studies. To fill this gap, we sequenced and assembled a chromosome-scale genome of the common octopus, O. vulgaris. The final assembly spans 2.8 billion basepairs, 99.34% of which are in 30 chromosome-scale scaffolds. Hi-C heatmaps support a karyotype of 1n = 30 chromosomes. Comparisons with other octopus species' genomes show a conserved octopus karyotype and a pattern of local genome rearrangements between species. This new chromosome-scale genome of O. vulgaris will further facilitate research in all aspects of cephalopod biology, including various forms of plasticity and the neural machinery underlying sophisticated cognition, as well as an understanding of cephalopod evolution.
Collapse
Affiliation(s)
- Dalila Destanović
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| | - Darrin T Schultz
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| | - Ruth Styfhals
- Department of Biology, Lab of Developmental Neurobiology, Animal Physiology and Neurobiology Division, KU Leuven, Leuven 3000, Belgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples 80121, Italy
| | - Fernando Cruz
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | | | - Marta Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | - Ivo Gut
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples 80121, Italy
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, Vienna 1030, Austria
| | - Tyler S Alioto
- Centro Nacional de Análisis Genómico (CNAG), Barcelona 08028, Spain
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples 80121, Italy
| | - Eve Seuntjens
- Department of Biology, Lab of Developmental Neurobiology, Animal Physiology and Neurobiology Division, KU Leuven, Leuven 3000, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven 3000, Belgium
- Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
5
|
Di Cosmo A, Maselli V, Cirillo E, Norcia M, de Zoysa HKS, Polese G, Winlow W. The Use of Isoflurane and Adjunctive Magnesium Chloride Provides Fast, Effective Anaesthetization of Octopus vulgaris. Animals (Basel) 2023; 13:3579. [PMID: 38003196 PMCID: PMC10668643 DOI: 10.3390/ani13223579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
A wide variety of substances have been used to anaesthetise invertebrates, but many are not anaesthetics and merely incapacitate animals rather than preventing pain. In essence, the role of an ideal general anaesthetic is to act as a muscle relaxant, an analgesic, an anaesthetic, and an amnesic. To achieve all these properties with a single substance is difficult, and various adjuvants usually need to be administered, resulting in a cocktail of drugs. In a clinical setting, the vast majority of patients are unaware of surgery being carried out and have no memory of it, so they can claim to have felt no pain, but this is much more difficult to demonstrate in invertebrates. Here, we show that 1% MgCl2, a muscle relaxant, is a useful adjuvant for the clinical anaesthetic isoflurane on Octopus vulgaris when applied alone in seawater for 10 min before the clinical anaesthetic. After this, full anaesthesia can be achieved in 5 min using 1% isoflurane insufflated into the saline still containing MgCl2. Full recovery takes place rapidly in about 10 to 15 min. The depth of anaesthesia was monitored using changes in respiratory rate, chromatophore pattern, and withdrawal movements of the arms and siphon. This methodology reduces stress on the animal and minimises the quantity of anaesthetic used.
Collapse
Affiliation(s)
- Anna Di Cosmo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.M.); (E.C.); (M.N.); (H.K.S.d.Z.); (G.P.)
- PNRR “MNESYS”, University of Naples Federico II, 80126 Naples, Italy
| | - Valeria Maselli
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.M.); (E.C.); (M.N.); (H.K.S.d.Z.); (G.P.)
| | - Emanuela Cirillo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.M.); (E.C.); (M.N.); (H.K.S.d.Z.); (G.P.)
- PNRR “MNESYS”, University of Naples Federico II, 80126 Naples, Italy
| | - Mariangela Norcia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.M.); (E.C.); (M.N.); (H.K.S.d.Z.); (G.P.)
| | - Heethaka K. S. de Zoysa
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.M.); (E.C.); (M.N.); (H.K.S.d.Z.); (G.P.)
- Department of Bioprocess Technology, Faculty of Technology, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.M.); (E.C.); (M.N.); (H.K.S.d.Z.); (G.P.)
| | - William Winlow
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (V.M.); (E.C.); (M.N.); (H.K.S.d.Z.); (G.P.)
- Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool L69 3BX, UK
| |
Collapse
|
6
|
Osorio D. Cephalopods and the law. Curr Biol 2023; 33:R1078-R1080. [PMID: 37875086 DOI: 10.1016/j.cub.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
In this My word Daniel Osorio explains why cephalopod molluscs were protected by a European Union directive on laboratory animal legislation in 2013, and how the scientific community responded to the challenges posed by this development.
Collapse
Affiliation(s)
- Daniel Osorio
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
7
|
Pungor JR, Allen VA, Songco-Casey JO, Niell CM. Functional organization of visual responses in the octopus optic lobe. Curr Biol 2023; 33:2784-2793.e3. [PMID: 37343556 PMCID: PMC11056276 DOI: 10.1016/j.cub.2023.05.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
Cephalopods are highly visual animals with camera-type eyes, large brains, and a rich repertoire of visually guided behaviors. However, the cephalopod brain evolved independently from those of other highly visual species, such as vertebrates; therefore, the neural circuits that process sensory information are profoundly different. It is largely unknown how their powerful but unique visual system functions, as there have been no direct neural measurements of visual responses in the cephalopod brain. In this study, we used two-photon calcium imaging to record visually evoked responses in the primary visual processing center of the octopus central brain, the optic lobe, to determine how basic features of the visual scene are represented and organized. We found spatially localized receptive fields for light (ON) and dark (OFF) stimuli, which were retinotopically organized across the optic lobe, demonstrating a hallmark of visual system organization shared across many species. An examination of these responses revealed transformations of the visual representation across the layers of the optic lobe, including the emergence of the OFF pathway and increased size selectivity. We also identified asymmetries in the spatial processing of ON and OFF stimuli, which suggest unique circuit mechanisms for form processing that may have evolved to suit the specific demands of processing an underwater visual scene. This study provides insight into the neural processing and functional organization of the octopus visual system, highlighting both shared and unique aspects, and lays a foundation for future studies of the neural circuits that mediate visual processing and behavior in cephalopods.
Collapse
Affiliation(s)
- Judit R Pungor
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA.
| | - V Angelique Allen
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA
| | - Jeremea O Songco-Casey
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene, OR 97405, USA.
| |
Collapse
|
8
|
Pungor JR, Allen VA, Songco-Casey JO, Niell CM. Functional organization of visual responses in the octopus optic lobe. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528734. [PMID: 36824726 PMCID: PMC9949128 DOI: 10.1101/2023.02.16.528734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cephalopods are highly visual animals with camera-type eyes, large brains, and a rich repertoire of visually guided behaviors. However, the cephalopod brain evolved independently from that of other highly visual species, such as vertebrates, and therefore the neural circuits that process sensory information are profoundly different. It is largely unknown how their powerful but unique visual system functions, since there have been no direct neural measurements of visual responses in the cephalopod brain. In this study, we used two-photon calcium imaging to record visually evoked responses in the primary visual processing center of the octopus central brain, the optic lobe, to determine how basic features of the visual scene are represented and organized. We found spatially localized receptive fields for light (ON) and dark (OFF) stimuli, which were retinotopically organized across the optic lobe, demonstrating a hallmark of visual system organization shared across many species. Examination of these responses revealed transformations of the visual representation across the layers of the optic lobe, including the emergence of the OFF pathway and increased size selectivity. We also identified asymmetries in the spatial processing of ON and OFF stimuli, which suggest unique circuit mechanisms for form processing that may have evolved to suit the specific demands of processing an underwater visual scene. This study provides insight into the neural processing and functional organization of the octopus visual system, highlighting both shared and unique aspects, and lays a foundation for future studies of the neural circuits that mediate visual processing and behavior in cephalopods. Highlights The functional organization and visual response properties of the cephalopod visual system are largely unknownUsing calcium imaging, we performed mapping of visual responses in the octopus optic lobeVisual responses demonstrate localized ON and OFF receptive fields with retinotopic organizationON/OFF pathways and size selectivity emerge across layers of the optic lobe and have distinct properties relative to other species.
Collapse
Affiliation(s)
- Judit R Pungor
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene OR 97405
| | - V Angelique Allen
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene OR 97405
| | - Jeremea O Songco-Casey
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene OR 97405
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, Eugene OR 97405
| |
Collapse
|
9
|
Gutnick T, Neef A, Cherninskyi A, Ziadi-Künzli F, Di Cosmo A, Lipp HP, Kuba MJ. Recording electrical activity from the brain of behaving octopus. Curr Biol 2023; 33:1171-1178.e4. [PMID: 36827988 DOI: 10.1016/j.cub.2023.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023]
Abstract
Octopuses, which are among the most intelligent invertebrates,1,2,3,4 have no skeleton and eight flexible arms whose sensory and motor activities are at once autonomous and coordinated by a complex central nervous system.5,6,7,8 The octopus brain contains a very large number of neurons, organized into numerous distinct lobes, the functions of which have been proposed based largely on the results of lesioning experiments.9,10,11,12,13 In other species, linking brain activity to behavior is done by implanting electrodes and directly correlating electrical activity with observed animal behavior. However, because the octopus lacks any hard structure to which recording equipment can be anchored, and because it uses its eight flexible arms to remove any foreign object attached to the outside of its body, in vivo recording of electrical activity from untethered, behaving octopuses has thus far not been possible. Here, we describe a novel technique for inserting a portable data logger into the octopus and implanting electrodes into the vertical lobe system, such that brain activity can be recorded for up to 12 h from unanesthetized, untethered octopuses and can be synchronized with simultaneous video recordings of behavior. In the brain activity, we identified several distinct patterns that appeared consistently in all animals. While some resemble activity patterns in mammalian neural tissue, others, such as episodes of 2 Hz, large amplitude oscillations, have not been reported. By providing an experimental platform for recording brain activity in behaving octopuses, our study is a critical step toward understanding how the brain controls behavior in these remarkable animals.
Collapse
Affiliation(s)
- Tamar Gutnick
- Okinawa Institute of Science and Technology, Graduate University, Physics and Biology Unit, 904 0495 Okinawa, Japan; Department of Biology, University of Naples Federico II, Via Cintia 26, 80126 Napoli, Italy.
| | - Andreas Neef
- Göttingen Campus Institute for Dynamics of Biological Networks, 37073 Göttingen, Germany; Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany; Bernstein Center for Computational Neuroscience, 37073 Göttingen, Germany; Institute for the Dynamics of Complex Systems, University of Göttingen, 37075 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, 37075 Göttingen, Germany
| | | | - Fabienne Ziadi-Künzli
- Okinawa Institute of Science and Technology, Graduate University, Nonlinear and Non-equilibrium Physics Unit, Okinawa 904-0495, Japan
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Via Cintia 26, 80126 Napoli, Italy
| | - Hans-Peter Lipp
- Institute of Evolutionary Medicine, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Michael J Kuba
- Okinawa Institute of Science and Technology, Graduate University, Physics and Biology Unit, 904 0495 Okinawa, Japan; Department of Biology, University of Naples Federico II, Via Cintia 26, 80126 Napoli, Italy
| |
Collapse
|
10
|
Ponte G, Roumbedakis K, Galligioni V, Dickel L, Bellanger C, Pereira J, Vidal EA, Grigoriou P, Alleva E, Santucci D, Gili C, Botta G, Imperadore P, Tarallo A, Juergens L, Northrup E, Anderson D, Aricò A, De Luca M, Pieroni EM, Fiorito G. General and species-specific recommendations for minimal requirements for the use of cephalopods in scientific research. Lab Anim 2023; 57:26-39. [PMID: 36205000 DOI: 10.1177/00236772221111261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Here we list species-specific recommendations for housing, care and management of cephalopod molluscs employed for research purposes with the aim of contributing to the standardization of minimum requirements for establishments, care and accommodation of these animals in compliance with the principles stated in Directive 2010/63/EU. Maximizing their psychophysical welfare was our priority. General recommendations on water surface area, water depth and tank shape here reported represent the outcome of the combined action of the analysis of the available literature and an expertise-based consensus reached - under the aegis of the COST Action FA1301 - among researchers working with the most commonly used cephalopod species in Europe. Information on water supply and quality, environmental conditions, stocking density, feeding and handling are also provided. Through this work we wish to set the stage for a more fertile ground of evidence-based approaches on cephalopod laboratory maintenance, thus facilitating standardization and replicability of research outcomes across laboratories, at the same time maximizing the welfare of these animals.
Collapse
Affiliation(s)
- Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy.,Association for Cephalopod Research 'CephRes', Napoli, Italy
| | - Katina Roumbedakis
- Association for Cephalopod Research 'CephRes', Napoli, Italy.,Ministry of Foreign Affairs and International Cooperation, Italy (MAECI) & Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | | | - Viola Galligioni
- Comparative Medicine Unit, Trinity College Dublin, Ireland.,Netherlands Institute for Neuroscience Royal Netherlands Academy of Arts and Sciences Amsterdam, The Netherlands
| | - Ludovic Dickel
- Normandie University, UNICAEN, Ethos (Ethologie Animale et Humaine) UMR 6552, Caen, France
| | - Cécile Bellanger
- Normandie University, UNICAEN, Ethos (Ethologie Animale et Humaine) UMR 6552, Caen, France
| | - Joao Pereira
- Instituto Português do Mar e da Atmosfera (IPMA), Divisão de Modelação e Gestão de Recursos de Pesca, Lisbon, Portugal
| | - Erica Ag Vidal
- Center for Marine Studies, University of Parana, Curitiba, Brazil
| | - Panos Grigoriou
- CRETAQUARIUM, Hellenic Centre for Marine Research, Heraklion, Greece
| | | | | | - Claudia Gili
- Department of Marine Animal Conservation and Public Engagement, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | | - Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Andrea Tarallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Lars Juergens
- Max-Planck-Institut for Brain Research, Frankfurt am Main, Germany
| | - Emily Northrup
- Max-Planck-Institut for Brain Research, Frankfurt am Main, Germany
| | | | - Arianna Aricò
- Association for Cephalopod Research 'CephRes', Napoli, Italy.,Merck RBM, Ivrea, Torino, Italy
| | | | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy.,Association for Cephalopod Research 'CephRes', Napoli, Italy
| |
Collapse
|
11
|
Kuo TH, Sneddon LU, Spencer JW, Chiao CC. Impact of Lidocaine on Pain-Related Grooming in Cuttlefish. BIOLOGY 2022; 11:1560. [PMID: 36358261 PMCID: PMC9687578 DOI: 10.3390/biology11111560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2024]
Abstract
Nociception is the neural process of encoding noxious stimuli and is typically accompanied by a reflex withdrawal response away from the potentially injurious stimulus. Studies on nociception in cephalopods have so far focused on octopus and squid, with no investigations to our knowledge on cuttlefish. Yet, these are an important species both in scientific and commercial use. Therefore, the present study demonstrated that a standard pain stimulus, acetic acid, induced grooming behaviour directed towards the injection site in cuttlefish and that the injection of lidocaine reduces grooming behaviours in acetic-acid-injected cuttlefish. Wound-directed behaviour demonstrates that the animal is aware of the damage; thus, when subjecting these animals to any painful treatments in the laboratory, researchers should consider alleviating pain by the administration of pain-relieving drugs.
Collapse
Affiliation(s)
- Tzu-Hsin Kuo
- Institute of Systems Neuroscience, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Lynne U. Sneddon
- Department of Biological & Environmental Sciences, University of Gothenburg, P.O. Box 463, SE-405 30 Gothenburg, Sweden
| | - Joseph W. Spencer
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK
| | - Chuan-Chin Chiao
- Institute of Systems Neuroscience, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| |
Collapse
|
12
|
Bidel F, Bennett NC, Wardill TJ. Octopus bimaculoides' arm recruitment and use during visually evoked prey capture. Curr Biol 2022; 32:4727-4733.e3. [PMID: 36130600 DOI: 10.1016/j.cub.2022.08.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/20/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Octopus' limb hyper-redundancy complicates traditional motor control system theory due to its extensive sensory inputs, subsequent decision-making, and arm coordination. Octopuses are thought to reduce flexibility control complexity by relying on highly stereotypical motor primitives (e.g., reaching1-4 and crawling5) and multi-level processes to coordinate movement,6,7 utilizing extensive peripheral nervous system (PNS) processing.2,8,9 Division of labor along the anterior-posterior axis10 and limb specialization of the four anterior arms in T-maze food retrieval11 further simplify control. However, specific arm recruitment and coordination during visually guided reaching behavior remains poorly understood. Here, we investigated visually evoked Octopus bimaculoides' prey capture capabilities12,13 by eliciting and examining prey-specific arm recruitment. When striking crabs, octopuses preferred synchronous arm recruitment, while sequential arm recruitment with a characteristic swaying movement is employed for shrimp. Such behavioral selection aligns with specific prey escape strategies and the octopus' flexible arm biomechanical constraints. Although side bias existed, we found significant bilateral symmetry, with one side being functionally a mirror of the other rather than anterior arm use being functionally equal and differing to posterior arm use. Among arms, the second limb is unequivocally dominant for goal-directed monocularly driven prey capture. Although the eight arms share gross anatomy and are considered equipotential,10,14 such arm use for specific actions could reflect subtle evolutionary adaptations. Finally, we quantitatively show, corroborating earlier observations,10,15 that octopuses employ a dimension reduction strategy by actively deciding to recruit adjacent arms over other available arms during either sequential or synchronous visually evoked prey attack.
Collapse
Affiliation(s)
- Flavie Bidel
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA.
| | - Natalie C Bennett
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA; Department of Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Trevor J Wardill
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108, USA; Department of Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
13
|
Andrews PLR, Ponte G, Rosas C. Methodological considerations in studying digestive system physiology in octopus: limitations, lacunae and lessons learnt. Front Physiol 2022; 13:928013. [PMID: 36160859 PMCID: PMC9501996 DOI: 10.3389/fphys.2022.928013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Current understanding of cephalopod digestive tract physiology is based on relatively “old” literature and a “mosaic of data” from multiple species. To provide a background to the discussion of methodologies for investigating physiology we first review the anatomy of the cephalopod digestive tract with a focus on Octopus vulgaris, highlighting structure-function relationships and species differences with potential functional consequences (e.g., absence of a crop in cuttlefish and squid; presence of a caecal sac in squid). We caution about extrapolation of data on the digestive system physiology from one cephalopod species to another because of the anatomical differences. The contribution of anatomical and histological techniques (e.g., digestive enzyme histochemistry and neurotransmitter immunohistochemistry) to understanding physiological processes is discussed. For each major digestive tract function we briefly review current knowledge, and then discuss techniques and their limitations for the following parameters: 1) Measuring motility in vitro (e.g., spatiotemporal mapping, tension and pressure), in vivo (labelled food, high resolution ultrasound) and aspects of pharmacology; 2) Measuring food ingestion and the time course of digestion with an emphasis on understanding enzyme function in each gut region with respect to time; 3) Assessing transepithelial transport of nutrients; 4) Measuring the energetic cost of food processing, impact of environmental temperature and metabolic rate (flow-through/intermittent respirometry); 4) Investigating neural (brain, gastric ganglion, enteric) and endocrine control processes with an emphasis on application of molecular techniques to identify receptors and their ligands. A number of major knowledge lacunae are identified where available techniques need to be applied to cephalopods, these include: 1) What is the physiological function of the caecal leaflets and intestinal typhlosoles in octopus? 2) What role does the transepithelial transport in the caecum and intestine play in ion, water and nutrient transport? 3) What information is signalled from the digestive tract to the brain regarding the food ingested and the progress of digestion? It is hoped that by combining discussion of the physiology of the cephalopod digestive system with an overview of techniques and identification of key knowledge gaps that this will encourage a more systematic approach to research in this area.
Collapse
Affiliation(s)
- Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
- *Correspondence: Paul L. R. Andrews,
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| |
Collapse
|
14
|
Petrosino G, Ponte G, Volpe M, Zarrella I, Ansaloni F, Langella C, Di Cristina G, Finaurini S, Russo MT, Basu S, Musacchia F, Ristoratore F, Pavlinic D, Benes V, Ferrante MI, Albertin C, Simakov O, Gustincich S, Fiorito G, Sanges R. Identification of LINE retrotransposons and long non-coding RNAs expressed in the octopus brain. BMC Biol 2022; 20:116. [PMID: 35581640 PMCID: PMC9115989 DOI: 10.1186/s12915-022-01303-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/21/2022] [Indexed: 01/07/2023] Open
Abstract
Background Transposable elements (TEs) widely contribute to the evolution of genomes allowing genomic innovations, generating germinal and somatic heterogeneity, and giving birth to long non-coding RNAs (lncRNAs). These features have been associated to the evolution, functioning, and complexity of the nervous system at such a level that somatic retrotransposition of long interspersed element (LINE) L1 has been proposed to be associated to human cognition. Among invertebrates, octopuses are fascinating animals whose nervous system reaches a high level of complexity achieving sophisticated cognitive abilities. The sequencing of the genome of the Octopus bimaculoides revealed a striking expansion of TEs which were proposed to have contributed to the evolution of its complex nervous system. We recently found a similar expansion also in the genome of Octopus vulgaris. However, a specific search for the existence and the transcription of full-length transpositionally competent TEs has not been performed in this genus. Results Here, we report the identification of LINE elements competent for retrotransposition in Octopus vulgaris and Octopus bimaculoides and show evidence suggesting that they might be transcribed and determine germline and somatic polymorphisms especially in the brain. Transcription and translation measured for one of these elements resulted in specific signals in neurons belonging to areas associated with behavioral plasticity. We also report the transcription of thousands of lncRNAs and the pervasive inclusion of TE fragments in the transcriptomes of both Octopus species, further testifying the crucial activity of TEs in the evolution of the octopus genomes. Conclusions The neural transcriptome of the octopus shows the transcription of thousands of putative lncRNAs and of a full-length LINE element belonging to the RTE class. We speculate that a convergent evolutionary process involving retrotransposons activity in the brain has been important for the evolution of sophisticated cognitive abilities in this genus. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01303-5.
Collapse
Affiliation(s)
- Giuseppe Petrosino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy.,Institute of Molecular Biology (IMB), Mainz, Germany
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy
| | - Massimiliano Volpe
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152, Genova, Italy.,Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Ilaria Zarrella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy
| | - Federico Ansaloni
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152, Genova, Italy
| | - Concetta Langella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy
| | - Giulia Di Cristina
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy.,Institute of Zoology, University of Cologne, Cologne, Germany
| | - Sara Finaurini
- Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Monia T Russo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy
| | - Swaraj Basu
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy.,Strand Life Sciences, Bengaluru, India
| | - Francesco Musacchia
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy
| | - Dinko Pavlinic
- Scientific Core Facilities & Technologies, GeneCore, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.,Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Vladimir Benes
- Scientific Core Facilities & Technologies, GeneCore, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Maria I Ferrante
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy
| | | | - Oleg Simakov
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 9040495, Japan.,Department of Molecular Evolution and Development, Wien University, Althanstraße 14 (UZA I), 1090, Wien, Austria
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152, Genova, Italy.,Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136, Trieste, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy.
| | - Remo Sanges
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, SZN, 80121, Naples, Italy. .,Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Via Enrico Melen 83, 16152, Genova, Italy. .,Neurobiology Sector, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
15
|
Genome and transcriptome mechanisms driving cephalopod evolution. Nat Commun 2022; 13:2427. [PMID: 35508532 PMCID: PMC9068888 DOI: 10.1038/s41467-022-29748-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/28/2022] [Indexed: 11/27/2022] Open
Abstract
Cephalopods are known for their large nervous systems, complex behaviors and morphological innovations. To investigate the genomic underpinnings of these features, we assembled the chromosomes of the Boston market squid, Doryteuthis (Loligo) pealeii, and the California two-spot octopus, Octopus bimaculoides, and compared them with those of the Hawaiian bobtail squid, Euprymna scolopes. The genomes of the soft-bodied (coleoid) cephalopods are highly rearranged relative to other extant molluscs, indicating an intense, early burst of genome restructuring. The coleoid genomes feature multi-megabase, tandem arrays of genes associated with brain development and cephalopod-specific innovations. We find that a known coleoid hallmark, extensive A-to-I mRNA editing, displays two fundamentally distinct patterns: one exclusive to the nervous system and concentrated in genic sequences, the other widespread and directed toward repetitive elements. We conclude that coleoid novelty is mediated in part by substantial genome reorganization, gene family expansion, and tissue-dependent mRNA editing. “Cephalopods are known for their large nervous systems, complex behaviors, and morphological innovations. Here, the authors find that soft-bodied cephalopod genomes are more rearranged than other extant molluscs and that mRNA editing patterns are associated with the nervous system and repetitive elements”.
Collapse
|
16
|
Stern‐Mentch N, Bostwick GW, Belenky M, Moroz L, Hochner B. Neurotransmission and neuromodulation systems in the learning and memory network of Octopus vulgaris. J Morphol 2022; 283:557-584. [PMID: 35107842 PMCID: PMC9303212 DOI: 10.1002/jmor.21459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/15/2022]
Abstract
The vertical lobe (VL) in the octopus brain plays an essential role in its sophisticated learning and memory. Early anatomical studies suggested that the VL is organized in a "fan-out fan-in" connectivity matrix comprising only three morphologically identified neuron types; input axons from the median superior frontal lobe (MSFL) innervating en passant millions of small amacrine interneurons (AMs), which converge sharply onto large VL output neurons (LNs). Recent physiological studies confirmed the feedforward excitatory connectivity; a glutamatergic synapse at the first MSFL-to-AM synaptic layer and a cholinergic AM-to-LNs synapse. MSFL-to-AMs synapses show a robust hippocampal-like activity-dependent long-term potentiation (LTP) of transmitter release. 5-HT, octopamine, dopamine and nitric oxide modulate short- and long-term VL synaptic plasticity. Here, we present a comprehensive histolabeling study to better characterize the neural elements in the VL. We generally confirmed glutamatergic MSFLs and cholinergic AMs. Intense labeling for NOS activity in the AMs neurites were in-line with the NO-dependent presynaptic LTP mechanism at the MSFL-to-AM synapse. New discoveries here reveal more heterogeneity of the VL neurons than previously thought. GABAergic AMs suggest a subpopulation of inhibitory interneurons in the first input layer. Clear γ-amino butyric acid labeling in the cell bodies of LNs supported an inhibitory VL output, yet the LNs co-expressed FMRFamide-like neuropeptides, suggesting an additional neuromodulatory role of the VL output. Furthermore, a group of LNs was glutamatergic. A new cluster of cells organized as a "deep nucleus" showed rich catecholaminergic labeling and may play a role in intrinsic neuromodulation. In-situ hybridization and immunolabeling allowed characterization and localization of a rich array of neuropeptides and neuromodulators, likely involved in reward/punishment signals. This analysis of the fast transmission system, together with the newly found cellular elements, help integrate behavioral, physiological, pharmacological and connectome findings into a more comprehensive understanding of an efficient learning and memory network.
Collapse
Affiliation(s)
- Naama Stern‐Mentch
- Department of Neurobiology, Silberman Institute of Life SciencesHebrew UniversityJerusalemIsrael
| | - Gabrielle Winters Bostwick
- Department of Neuroscience and McKnight Brain Institute, and Whitney Laboratory for Marine BioscienceUniversity of FloridaGainesvilleFloridaUSA
- Ocean Genome Atlas ProjectSan FranciscoUSA
| | - Michael Belenky
- Department of Neurobiology, Silberman Institute of Life SciencesHebrew UniversityJerusalemIsrael
| | - Leonid Moroz
- Department of Neuroscience and McKnight Brain Institute, and Whitney Laboratory for Marine BioscienceUniversity of FloridaGainesvilleFloridaUSA
| | - Binyamin Hochner
- Department of Neurobiology, Silberman Institute of Life SciencesHebrew UniversityJerusalemIsrael
| |
Collapse
|
17
|
Ponte G, Chiandetti C, Edelman DB, Imperadore P, Pieroni EM, Fiorito G. Cephalopod Behavior: From Neural Plasticity to Consciousness. Front Syst Neurosci 2022; 15:787139. [PMID: 35495582 PMCID: PMC9039538 DOI: 10.3389/fnsys.2021.787139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
It is only in recent decades that subjective experience - or consciousness - has become a legitimate object of scientific inquiry. As such, it represents perhaps the greatest challenge facing neuroscience today. Subsumed within this challenge is the study of subjective experience in non-human animals: a particularly difficult endeavor that becomes even more so, as one crosses the great evolutionary divide between vertebrate and invertebrate phyla. Here, we explore the possibility of consciousness in one group of invertebrates: cephalopod molluscs. We believe such a review is timely, particularly considering cephalopods' impressive learning and memory abilities, rich behavioral repertoire, and the relative complexity of their nervous systems and sensory capabilities. Indeed, in some cephalopods, these abilities are so sophisticated that they are comparable to those of some higher vertebrates. Following the criteria and framework outlined for the identification of hallmarks of consciousness in non-mammalian species, here we propose that cephalopods - particularly the octopus - provide a unique test case among invertebrates for examining the properties and conditions that, at the very least, afford a basal faculty of consciousness. These include, among others: (i) discriminatory and anticipatory behaviors indicating a strong link between perception and memory recall; (ii) the presence of neural substrates representing functional analogs of thalamus and cortex; (iii) the neurophysiological dynamics resembling the functional signatures of conscious states in mammals. We highlight the current lack of evidence as well as potentially informative areas that warrant further investigation to support the view expressed here. Finally, we identify future research directions for the study of consciousness in these tantalizing animals.
Collapse
Affiliation(s)
- Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - David B. Edelman
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
- Association for Cephalopod Research ‘CephRes' a non-profit Organization, Naples, Italy
| | - Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
18
|
Zullo L, Di Clemente A, Maiole F. How octopus arm muscle contractile properties and anatomical organization contribute to the arm functional specialization. J Exp Biol 2022; 225:274827. [PMID: 35244172 DOI: 10.1242/jeb.243163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
Abstract
Octopus arms are highly flexible structures capable of complex motions and are used in a wide repertoire of behaviors. Movements are generated by the coordinated summation of innervation signals to packed arrays of muscles oriented in different directions and moving based on their anatomical relationships. In this study, we investigated the interplay between muscle biomechanics and anatomical organization in the Octopus vulgaris arm to elucidate their role in different arm movements. We performed isometric and isotonic force measurements on isolated longitudinal (L) and transverse (T) arm muscles and showed that L has a higher rate of activation and relaxation, lower twitch-to-tetanus ratio, and lower passive tension than T muscles, thus prompting their use as faster and slower muscles, respectively. This points to the use of L in more graded responses, such as those involved in precise actions, and T in intense and sustained actions, such as motion stabilization and posture maintenance. Once activated, the arm muscles exert forces that cause deformations of the entire arm, which are determined by the amount, location, properties and orientation of their fibers. Here, we show that, although continuous, the arm manifests a certain degree of morphological specialization, where the arm muscles have a different aspect ratio along the arm. This possibly supports the functional specialization of arm portion observed in various motions, such as fetching and crawling. Hence, the octopus arm as a whole can be seen as a 'reservoir' of possibilities where different types of motion may emerge at the limb level through the co-option of the muscle contractile properties and structural arrangement.
Collapse
Affiliation(s)
- Letizia Zullo
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Alessio Di Clemente
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Federica Maiole
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| |
Collapse
|
19
|
Gutnick T, Zullo L, Hochner B, Kuba MJ. Protocol for controlled behavioral testing of octopuses using a single-arm tactile discrimination two-choice task. STAR Protoc 2022; 3:101192. [PMID: 35243377 PMCID: PMC8867113 DOI: 10.1016/j.xpro.2022.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Due to their unique body, standard behavioral testing protocols are often hard to apply to octopuses. Our protocol enables controlled behavioral testing of the sensory systems in single arms while allowing observation of the arm motion. The protocol allows the researcher to exclude the sense of vision without surgical manipulation and selectively test peripheral sensory input-derived learning and motor behavior. Applying the protocol requires systematic and multistage training of octopuses to associate correct maze interaction with food reward. For complete details on the use and execution of this profile, please refer to Gutnick et al. (2020). Protocol for training octopuses to use single arms in a Y maze Present stimuli to single arms and assess responses Test the arm sensory system – central nervous system (CNS) interaction Tactile input from the arm is used by the CNS to direct arm movement
Collapse
|
20
|
Imperadore P, Galli R, Winterhalder MJ, Zumbusch A, Uckermann O. Imaging Arm Regeneration: Label-Free Multiphoton Microscopy to Dissect the Process in Octopus vulgaris. Front Cell Dev Biol 2022; 10:814746. [PMID: 35186930 PMCID: PMC8855035 DOI: 10.3389/fcell.2022.814746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022] Open
Abstract
Cephalopod mollusks are endowed with an impressive range of features that have captured the attention of scientists from different fields, the imaginations of artists, and the interests of the public. The ability to spontaneously regrow lost or damaged structures quickly and functionally is among one of the most notable peculiarities that cephalopods possess. Microscopical imaging techniques represent useful tools for investigating the regenerative processes in several species, from invertebrates to mammals. However, these techniques have had limited use in cephalopods mainly due to the paucity of specific and commercially available markers. In addition, the commonly used immunohistochemical staining methods provide data that are specific to the antigens studied. New microscopical methods were recently applied to vertebrates to investigate regenerative events. Among them, multiphoton microscopy appears promising. For instance, it does not depend on species-related epitopes, taking advantage of the specific characteristics of tissues and allowing for its use in a species-independent way. Here, we illustrate the results obtained by applying this label-free imaging technique to the injured arm of Octopus vulgaris, a complex structure often subject to injury in the wild. This approach allowed for the characterization of the entire tissue arm architecture (muscular layers, nerve component, connective tissues, etc.) and elements usually hardly detectable (such as vessels, hemocytes, and chromatophores). More importantly, it also provided morpho-chemical information which helped decipher the regenerative phases after damage, from healing to complete arm regrowth, thereby appearing promising for regenerative studies in cephalopods and other non-model species.
Collapse
Affiliation(s)
- Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Napoli, Italy
- Association for Cephalopod Research—CephRes, Napoli, Italy
- *Correspondence: Pamela Imperadore, ,
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, TU Dresden, Dresden, Germany
- Medical Physics and Biomedical Engineering, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | | | - Andreas Zumbusch
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - Ortrud Uckermann
- Department of Neurosurgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
21
|
Di Clemente A, Maiole F, Bornia I, Zullo L. Beyond muscles: role of intramuscular connective tissue elasticity and passive stiffness in octopus arm muscle function. J Exp Biol 2021; 224:273394. [PMID: 34755832 DOI: 10.1242/jeb.242644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/01/2021] [Indexed: 11/20/2022]
Abstract
The octopus arm is a 'one of a kind' muscular hydrostat, as demonstrated by its high maneuverability and complexity of motions. It is composed of a complex array of muscles and intramuscular connective tissue, allowing force and shape production. In this study, we investigated the organization of the intramuscular elastic fibers in two main muscles composing the arm bulk: the longitudinal (L) and the transverse (T) muscles. We assessed their contribution to the muscles' passive elasticity and stiffness and inferred their possible roles in limb deformation. First, we performed confocal imaging of whole-arm samples and provided evidence of a muscle-specific organization of elastic fibers (more chaotic and less coiled in T than in L). We next showed that in an arm at rest, L muscles are maintained under 20% compression and T muscles under 30% stretching. Hence, tensional stresses are inherently present in the arm and affect the strain of elastic fibers. Because connective tissue in muscles is used to transmit stress and store elastic energy, we investigated the contribution of elastic fibers to passive forces using step-stretch and sinusoidal length-change protocols. We observed a higher viscoelasticity of L and a higher stiffness of T muscles, in line with their elastic fiber configurations. This suggests that L might be involved in energy storage and damping, whereas T is involved in posture maintenance and resistance to deformation. The elastic fiber configuration thus supports the specific role of muscles during movement and may contribute to the mechanics, energetics and control of arm motion.
Collapse
Affiliation(s)
- Alessio Di Clemente
- University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Federica Maiole
- University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy.,Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Irene Bornia
- University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Letizia Zullo
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
22
|
Janssens M. Animal Business: an Ethical Exploration of Corporate Responsibility Towards Animals. FOOD ETHICS 2021; 7:2. [PMID: 34746371 PMCID: PMC8556856 DOI: 10.1007/s41055-021-00094-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 11/25/2022]
Abstract
The aim of this paper is to take normative aspects of animal welfare in corporate practice from a blind spot into the spotlight, and thus connect the fields of business ethics and animal ethics. Using insights from business ethics and animal ethics, it argues that companies have a strong responsibility towards animals. Its rationale is that animals have a moral status, that moral actors have the moral obligation to take the interests of animals into account and thus, that as moral actors, companies should take the interests of animals into account, more specifically their current and future welfare. Based on this corporate responsibility, categories of corporate impact on animals in terms of welfare and longevity are offered, including normative implications for each of them. The article concludes with managerial implications for several business sectors, including the most animal-consuming and animal-welfare-threatening industry: the food sector. Welfare issues are discussed, including the issue of killing for food production.
Collapse
Affiliation(s)
- Monique Janssens
- Rotterdam School of Management, Erasmus University Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
23
|
Abbo LA, Himebaugh NE, DeMelo LM, Hanlon RT, Crook RJ. Anesthetic Efficacy of Magnesium Chloride and Ethyl Alcohol in Temperate Octopus and Cuttlefish Species. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2021; 60:556-567. [PMID: 34233805 PMCID: PMC8603373 DOI: 10.30802/aalas-jaalas-20-000076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/03/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
Cephalopods are important in biologic and biomedical research, yet relatively little objective information is available to guide researchers and veterinarians regarding the best methods for anesthetizing these animals for various experimental procedures. Recent studies demonstrate that ethyl alcohol and magnesium chloride are effective at depressing efferent and afferent neural signals in some tropical cephalopod species when measured via the pallial nerve. Here we used similar methods to test 2 temperate species (Octopus bimaculoides and Sepia officinalis) and demonstrate that (1) ethyl alcohol and magnesium chloride were effective at reversibly depressing evoked activity in the pallial nerve, (2) ethyl alcohol generally had shorter induction and recovery times compared with magnesium chloride, (3) both agents were associated with a latency between the behavioral and neural effects, and it was longer with magnesium chloride, and (4) senescent animals generally had longer induction or recovery times than young animals. Both agents successfully anesthetized both life stages; however, our data show that assessing anesthesia based solely on behavior may lead to premature commencement of invasive procedures. We conclude that temperate cephalopods can be humanely, effectively, and completely anesthetized by using these 2 agents and that the loss of neural signal we show here is consistent with true anesthesia and not merely paralysis. This relatively simple, nondestructive nerve recording technique can be applied to the study of other prospective anesthetic agents in cephalopods.
Collapse
Affiliation(s)
- Lisa A Abbo
- Marine Biological Laboratory, Woods Hole, Massachusetts;,
| | - Nicole E Himebaugh
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | | | | | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, California
| |
Collapse
|
24
|
Lopez-Cruz L, Bussey TJ, Saksida LM, Heath CJ. Using touchscreen-delivered cognitive assessments to address the principles of the 3Rs in behavioral sciences. Lab Anim (NY) 2021; 50:174-184. [PMID: 34140683 DOI: 10.1038/s41684-021-00791-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/11/2021] [Indexed: 02/05/2023]
Abstract
Despite considerable advances in both in silico and in vitro approaches, in vivo studies that involve animal model systems remain necessary in many research disciplines. Neuroscience is one such area, with studies often requiring access to a complete nervous system capable of dynamically selecting between and then executing a full range of cognitive and behavioral outputs in response to a given stimulus or other manipulation. The involvement of animals in research studies is an issue of active public debate and concern and is therefore carefully regulated. Such regulations are based on the principles of the 3Rs of Replacement, Reduction and Refinement. In the sub-specialty of behavioral neuroscience, Full/Absolute Replacement remains a major challenge, as the complete ex vivo recapitulation of a system as complex and dynamic as the nervous system has yet to be achieved. However, a number of very positive developments have occurred in this area with respect to Relative Replacement and to both Refinement and Reduction. In this review, we discuss the Refinement- and Reduction-related benefits yielded by the introduction of touchscreen-based behavioral assessment apparatus. We also discuss how data generated by a specific panel of behavioral tasks developed for this platform might substantially enhance monitoring of laboratory animal welfare and provide robust, quantitative comparisons of husbandry techniques to define and ensure maintenance of best practice.
Collapse
Affiliation(s)
- Laura Lopez-Cruz
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK. .,School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| | - Timothy J Bussey
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Lisa M Saksida
- Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK.,Robarts Research Institute & Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,The Brain and Mind Institute, Western University, London, Ontario, Canada
| | - Christopher J Heath
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| |
Collapse
|
25
|
Bublitz A, Dehnhardt G, Hanke FD. Reversal of a Spatial Discrimination Task in the Common Octopus (Octopus vulgaris). Front Behav Neurosci 2021; 15:614523. [PMID: 34248514 PMCID: PMC8267067 DOI: 10.3389/fnbeh.2021.614523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Reversal learning requires an animal to learn to discriminate between two stimuli but reverse its responses to these stimuli every time it has reached a learning criterion. Thus, different from pure discrimination experiments, reversal learning experiments require the animal to respond to stimuli flexibly, and the reversal learning performance can be taken as an illustration of the animal's cognitive abilities. We herein describe a reversal learning experiment involving a simple spatial discrimination task, choosing the right or left side, with octopus. When trained with positive reinforcement alone, most octopuses did not even learn the original task. The learning behavior changed drastically when incorrect choices were indicated by a visual signal: the octopuses learned the task within a few sessions and completed several reversals thereby decreasing the number of errors needed to complete a reversal successively. A group of octopus trained with the incorrect-choice signal directly acquired the task quickly and reduced their performances over reversals. Our results indicate that octopuses are able to perform successfully in a reversal experiment based on a spatial discrimination showing progressive improvement, however, without reaching the ultimate performance. Thus, depending on the experimental context, octopus can show behavioral flexibility in a reversal learning task, which goes beyond mere discrimination learning.
Collapse
Affiliation(s)
- Alexander Bublitz
- Sensory and Cognitive Ecology, Institute for Biosciences, University of Rostock, Rostock, Germany
| | - Guido Dehnhardt
- Sensory and Cognitive Ecology, Institute for Biosciences, University of Rostock, Rostock, Germany
| | - Frederike D Hanke
- Neuroethology, Institute for Biosciences, University of Rostock, Rostock, Germany
| |
Collapse
|
26
|
Goerger A, Darmaillacq AS, Shashar N, Dickel L. Early Exposure to Water Turbidity Affects Visual Capacities in Cuttlefish ( Sepia officinalis). Front Physiol 2021; 12:622126. [PMID: 33643067 PMCID: PMC7902506 DOI: 10.3389/fphys.2021.622126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/18/2021] [Indexed: 12/02/2022] Open
Abstract
In La Manche (English Channel) the level of turbidity changes, not only seasonally and daily in seawater but also along the coast. As a consequence, vision in marine species is limited when based only on contrast-intensity. It is hypothesized that polarization sensitivity (PS) may help individuals detect preys and predators in turbid environments. In the cuttlefish, Sepia officinalis, to date, all behavioral studies have been conducted on animals reared in clear water. But the cuttlefish sensory system is adapted to a range of turbid environments. Our hypothesis was that rearing cuttlefish in clear water may affect the development of their visual system, and potentially affect their visually guided behaviors. To test this, newly-hatched cuttlefish, from eggs laid by females brought in from the wild, were reared for 1 month under three different conditions: clear water (C group), low turbidity (0.1 g / l of clay, 50–80 NTU, LT group) and high turbidity (0.5 g / l of clay, 300–400 NTU, HT group). The visual capacities of cuttlefish were tested with an optomotor apparatus at 7 days and at 1 month post-hatching. Optomotor responses of juveniles were measured by using three screen patterns (black and white stripes, linearly polarized stripes set at different orientations, and a uniform gray screen). Optomotor responses of juveniles suggest that exposure to turbid water improves the development of their PS when tested in clear water (especially in LT group) but not when tested in turbid water. We suggest that the use of slightly turbid water in rearing systems may improve the development of vision in young cuttlefish with no detrimental effect to their survival rate. Future research will consider water turbidity as a possible factor for the improvement of cuttlefish well-being in artificial rearing systems.
Collapse
Affiliation(s)
- Alice Goerger
- Normandie Univ., UNICAEN, Ethos (Ethologie Animale et Humaine) UMR 6552, Caen, France
| | | | - Nadav Shashar
- Department of Life Sciences, Ben Gurion University of the Negev, Eilat, Israel
| | - Ludovic Dickel
- Normandie Univ., UNICAEN, Ethos (Ethologie Animale et Humaine) UMR 6552, Caen, France
| |
Collapse
|
27
|
de Linde Henriksen M, Ofri R, Shomrat T, Nesher N, Cleymaet A, Ross M, Pe'er O, Arad D, Katzenbach J, Dubielzig RR. Ocular anatomy and correlation with histopathologic findings in two common octopuses (Octopus vulgaris) and one giant Pacific octopus (Enteroctopus dofleini) diagnosed with inflammatory phakitis and retinitis. Vet Ophthalmol 2021; 24:218-228. [PMID: 33596337 DOI: 10.1111/vop.12872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 12/29/2020] [Accepted: 01/27/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE Review octopus ocular anatomy and describe the histopathologic findings in three octopuses diagnosed with phakitis and retinitis. ANIMALS Two common octopuses (Octopus vulgaris) and one giant Pacific octopus (Enteroctopus dofleini) with a history of ophthalmic disease. METHODS A literature search was performed for the ocular anatomy section. Both eyes from all three octopuses, and two control eyes, were submitted for histopathologic evaluation. Hematoxylin and eosin stain was used for standard histopathologic evaluation; GMS stain was used to screen for fungi, gram stain for bacteria; and Fite's acid fast stain for acid fast bacteria. RESULTS Anatomically, the anterior chamber of the octopus has direct contact with ambient water due to an opening in the dorsal aspect of a pseudocornea. The octopus lens is divided into anterior and posterior segments. The anterior half is exposed to the environment through the opening into the anterior chamber. Neither part of the lens has a lens capsule. The retina is everted, unlike the inverted vertebrate retina, and consists of just two layers. Histopathology revealed inflammatory phakitis and retinitis of varying severity in all six eyes of the study animals. No intraocular infectious organisms were recognized but one common octopus eye had clusters of coccidian parasites, identified as Aggregata sp., in extraocular tissues and blood vessels. CONCLUSION We describe inflammatory phakitis and retinitis in two species of octopuses. The underlying cause for the severe intraocular response may be direct intraocular infection, water quality, an ocular manifestation of a systemic disease, or natural senescence.
Collapse
Affiliation(s)
- Michala de Linde Henriksen
- Comparative Ophthalmology, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Mikhmoret, Israel
| | - Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Mikhmoret, Israel
| | - Allison Cleymaet
- Comparative Ophthalmology, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Maya Ross
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Oren Pe'er
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - Dikla Arad
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Richard R Dubielzig
- Department of Pathobiology Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
28
|
Gutnick T, Zullo L, Hochner B, Kuba MJ. Use of Peripheral Sensory Information for Central Nervous Control of Arm Movement by Octopus vulgaris. Curr Biol 2020; 30:4322-4327.e3. [PMID: 32916119 DOI: 10.1016/j.cub.2020.08.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/16/2020] [Accepted: 08/10/2020] [Indexed: 01/04/2023]
Abstract
Octopuses are active predators with highly flexible bodies and rich behavioral repertoires [1-3]. They display advanced cognitive abilities, and the size of their large nervous system rivals that of many mammals. However, only one third of the neurons constitute the CNS, while the rest are located in an elaborate PNS, including eight arms, each containing myriad sensory receptors of various modalities [2-4]. This led early workers to question the extent to which the CNS is privy to non-visual sensory input from the periphery and to suggest that it has limited capacity to finely control arm movement [3-5]. This conclusion seemed reasonable considering the size of the PNS and the results of early behavioral tests [3, 6-8]. We recently demonstrated that octopuses use visual information to control goal-directed complex single arm movements [9]. However, that study did not establish whether animals use information from the arm itself [9-12]. We here report on development of two-choice, single-arm mazes that test the ability of octopuses to perform operant learning tasks that mimic normal tactile exploration behavior and require the non-peripheral neural circuitry to use focal sensory information originating in single arms [1, 10]. We show that the CNS of the octopus uses peripheral information about arm motion as well as tactile input to accomplish learning tasks that entail directed control of movement. We conclude that although octopus arms have a great capacity to act independently, they are also subject to central control, allowing well-organized, purposeful behavior of the organism as a whole.
Collapse
Affiliation(s)
- Tamar Gutnick
- Department of Neurobiology, Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; Okinawa Institute of Science and Technology, Graduate University, 904-0495 Okinawa, Japan.
| | - Letizia Zullo
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Binyamin Hochner
- Department of Neurobiology, Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Michael J Kuba
- Department of Neurobiology, Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; Okinawa Institute of Science and Technology, Graduate University, 904-0495 Okinawa, Japan.
| |
Collapse
|
29
|
Soto C, Kelber A, Hanke FD. The Pupillary Response of the Common Octopus ( Octopus vulgaris). Front Physiol 2020; 11:1112. [PMID: 33041848 PMCID: PMC7530272 DOI: 10.3389/fphys.2020.01112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/11/2020] [Indexed: 12/05/2022] Open
Abstract
Cephalopods have very conspicuous eyes that are often compared to fish eyes. However, in contrast to many fish, the eyes of cephalopods possess mobile pupils. To increase the knowledge of pupillary and thus visual function in cephalopods, the dynamics of the pupil of one of the model species among cephalopods, the common octopus (Octopus vulgaris), was determined in this study. We measured pupillary area as a function of ambient luminance to document the light and dark reaction of the octopus eye. The results show that weak light (<1 cd/m2) is enough to cause a pupil constriction in octopus, and that the pupil reacts fast to changing light conditions. The t50-value defined as the time required for achieving half-maximum constriction ranged from 0.45 to 1.29 s and maximal constriction from 10 to 20% of the fully dilated pupil area, depending on the experimental condition. Axial light had a stronger influence on pupil shape than light from above, which hints at a shadow effect of the horizontal slit pupil. We observed substantial variation of the pupil area under all light conditions indicating that light-independent factors such as arousal or the need to camouflage the eye affect pupil dilation/constriction. In conclusion, the documentation of pupil dynamics provides evidence that the pupil of octopus is adapted to low ambient light levels. Nevertheless it can quickly adapt to and thus function under brighter illumination and in a very inhomogeneous light environment, an ability mediated by the dynamic pupil in combination with previously described additional processes of light/dark adaptation in octopus.
Collapse
Affiliation(s)
- Cecilia Soto
- Sensory and Cognitive Ecology, Institute for Biosciences, University of Rostock, Rostock, Germany
| | - Almut Kelber
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Frederike D. Hanke
- Vision Group, Department of Biology, Lund University, Lund, Sweden
- Neuroethology, Institute for Biosciences, University of Rostock, Rostock, Germany
| |
Collapse
|
30
|
Holst MM, Miller-Morgan T. The Use of a Species-Specific Health and Welfare Assessment Tool for the Giant Pacific Octopus, Enteroctopus dofleini. J APPL ANIM WELF SCI 2020; 24:272-291. [PMID: 32937082 DOI: 10.1080/10888705.2020.1809412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Cephalopods are increasingly viewed as sentient animals that require the same welfare consideration as their vertebrate counterparts. In this study, an observational welfare assessment tool developed by the EU Directive was revised to be species-specific for the giant Pacific octopus, Enteroctopus dofleini. This E. dofleini health and welfare assessment tool includes categories assessing E. dofleini external appearance, behavior, and clinical signs of stress and disease. These categories are scored in severity from 1 to 4, allowing a quantitative perspective on health observations. Six facilities used the health and welfare assessment tool to evaluate E. dofleini until the animal was humanely euthanized or died naturally. Results showed an irreversible upward trend in scores for feeding behavior and response to stimulus beginning 4 weeks prior to death, with significant changes in health and welfare scores between 4 weeks and the final week prior to death. This suggests that upward trends in these two variables predict death within 3-4 weeks. Highly variable results between individuals for other categories indicate that a quantitative tool can help assess health and welfare at the individual level.
Collapse
Affiliation(s)
- Meghan M Holst
- Animal Care Department, Aquarium of the Bay, San Francisco, CA, USA
| | - Tim Miller-Morgan
- Oregon Sea Grant/Carlson College of Veterinary Medicine, Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| |
Collapse
|
31
|
Garcia de la Serrana D, Pérez M, Nande M, Hernández-Urcera J, Pérez E, Coll-Lladó C, Hollenbeck C. Regulation of growth-related genes by nutrition in paralarvae of the common octopus (Octopus vulgaris). Gene 2020; 747:144670. [PMID: 32298760 DOI: 10.1016/j.gene.2020.144670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/26/2020] [Accepted: 04/12/2020] [Indexed: 02/07/2023]
Abstract
The common octopus (Octopus vulgaris) is a species of great interest to the aquaculture industry. However, the high mortalities registered during different phases of the octopus lifecycle, particularly the paralarvae stage, present a challenge for commercial aquaculture. Improvement of diet formulation is seen as one way to reduce mortality and improve growth. Molecular growth-markers could help to improve rearing protocols and increase survival and growth performance; therefore, over a hundred orthologous genes related to protein balance and muscle growth in vertebrates were identified for the common octopus and their suitability as molecular markers for growth in octopus paralarvae explored. We successfully amplified 14 of those genes and studied their transcription in paralarvae either fed with artemia, artemia + zoea diets or submitted to a short fasting-refeeding procedure. Paralarvae fed with artemia + zoea had higher growth rates compared to those fed only with artemia, as well as a significant increase in octopus mtor (mtor-L) and hsp90 (hsp90-L) transcription, with both genes also up-regulated during refeeding. Our results suggest that at least mtor-L and hsp90-L are likely linked to somatic growth in octopus paralarvae. Conversely, ckip1-L, crk-L, src-L and srf-L had expression patterns that did not match to periods of growth as would be expected based on similar studies in vertebrates, indicating that further research is needed to understand their function during growth and in a muscle specific context.
Collapse
Affiliation(s)
- D Garcia de la Serrana
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain; Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK.
| | - M Pérez
- AQUACOV. Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain
| | - M Nande
- AQUACOV. Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain; CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - J Hernández-Urcera
- AQUACOV. Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain; Department of Ecology and Marine Resources, Instituto de Investigaciones Marinas (CSIC), Vigo, Spain
| | - E Pérez
- AQUACOV. Centro Oceanográfico de Vigo, Instituto Español de Oceanografía, Vigo, Spain
| | - C Coll-Lladó
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - C Hollenbeck
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
32
|
Roumbedakis K, Alexandre MN, Puch JA, Martins ML, Pascual C, Rosas C. Short and Long-Term Effects of Anesthesia in Octopus maya (Cephalopoda, Octopodidae) Juveniles. Front Physiol 2020; 11:697. [PMID: 32695019 PMCID: PMC7338579 DOI: 10.3389/fphys.2020.00697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 05/28/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Katina Roumbedakis
- AQUOS – Aquatic Organisms Health Laboratory, Department of Aquaculture, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
- *Correspondence: Katina Roumbedakis,
| | - Marina N. Alexandre
- AQUOS – Aquatic Organisms Health Laboratory, Department of Aquaculture, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - José A. Puch
- Unidad Mulidisicplinaria de Docencia e Investigación, Facultad de Ciencias, Universdidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Maurício L. Martins
- AQUOS – Aquatic Organisms Health Laboratory, Department of Aquaculture, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | - Cristina Pascual
- Unidad Mulidisicplinaria de Docencia e Investigación, Facultad de Ciencias, Universdidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Carlos Rosas
- Unidad Mulidisicplinaria de Docencia e Investigación, Facultad de Ciencias, Universdidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Carlos Rosas,
| |
Collapse
|
33
|
De Sio F, Hanke FD, Warnke K, Marazia C, Galligioni V, Fiorito G, Stravidou I, Ponte G. E Pluribus Octo - Building Consensus on Standards of Care and Experimentation in Cephalopod Research; a Historical Outlook. Front Physiol 2020; 11:645. [PMID: 32655409 PMCID: PMC7325997 DOI: 10.3389/fphys.2020.00645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/20/2020] [Indexed: 11/13/2022] Open
Abstract
The Directive 2010/63/EU "on the protection of animals used for scientific purposes" originally induced some concern among cephalopod researchers, because of the inclusion of cephalopod mollusks as the only invertebrates among the protected species. Here we reflect on the challenges and issues raised by the Directive on cephalopod science, and discuss some of the arguments that elicited discussion within the scientific community, to facilitate the implementation of the Directive 2010/63/EU in the scientific research context. A short overview of the aims of the COST Action FA1301 "CephsInAction," serves as a paradigmatic instance of a pragmatic and progressive approach adopted to respond to novel legislative concerns through community-building and expansion of the historical horizon. Between 2013 and 2017, the COST Action FA1301 has functioned as a hub for consolidation of the cephalopod research community, including about 200 representatives from 21 countries (19 European). Among its aims, CephsInAction promoted the collection, rationalization, and diffusion of knowledge relevant to cephalopods. In the Supplementary Material to this work, we present the translation of the first-published systematic set of guidelines on the care, management and maintenance of cephalopods in captivity (Grimpe, 1928), as an example of the potential advantages deriving from the confluence of pressing scientific concerns and historical interests.
Collapse
Affiliation(s)
- Fabio De Sio
- Department of the History, Philosophy and Ethics of Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | - Kerstin Warnke
- Institute of Geological Sciences, Palaeontology, Freie Universität Berlin, Berlin, Germany
| | - Chantal Marazia
- Department of the History, Philosophy and Ethics of Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Viola Galligioni
- Comparative Medicine Unit, Trinity College Dublin, Dublin, Ireland
- Association for Cephalopod Research “CephRes,” Naples, Italy
| | - Graziano Fiorito
- Association for Cephalopod Research “CephRes,” Naples, Italy
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Ioanna Stravidou
- COST Association, Brussels, Belgium
- European Research Area, European Commission, Brussels, Belgium
| | - Giovanna Ponte
- Association for Cephalopod Research “CephRes,” Naples, Italy
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
34
|
Deryckere A, Styfhals R, Vidal EAG, Almansa E, Seuntjens E. A practical staging atlas to study embryonic development of Octopus vulgaris under controlled laboratory conditions. BMC DEVELOPMENTAL BIOLOGY 2020; 20:7. [PMID: 32299349 PMCID: PMC7164171 DOI: 10.1186/s12861-020-00212-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Octopus vulgaris has been an iconic cephalopod species for neurobiology research as well as for cephalopod aquaculture. It is one of the most intelligent and well-studied invertebrates, possessing both long- and short-term memory and the striking ability to perform complex cognitive tasks. Nevertheless, how the common octopus developed these uncommon features remains enigmatic. O. vulgaris females spawn thousands of small eggs and remain with their clutch during their entire development, cleaning, venting and protecting the eggs. In fact, eggs incubated without females usually do not develop normally, mainly due to biological contamination (fungi, bacteria, etc.). This high level of parental care might have hampered laboratory research on the embryonic development of this intriguing cephalopod. RESULTS Here, we present a completely parameter-controlled artificial seawater standalone egg incubation system that replaces maternal care and allows successful embryonic development of a small-egged octopus species until hatching in a laboratory environment. We also provide a practical and detailed staging atlas based on bright-field and light sheet fluorescence microscopy imaging for precise monitoring of embryonic development. The atlas has a comparative section to benchmark stages to the different scales published by Naef (1928), Arnold (1965) and Boletzky (2016). Finally, we provide methods to monitor health and wellbeing of embryos during organogenesis. CONCLUSION Besides introducing the study of O. vulgaris embryonic development to a wider community, this work can be a high-quality reference for comparative evolutionary developmental biology.
Collapse
Affiliation(s)
- Astrid Deryckere
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Ruth Styfhals
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Erica A G Vidal
- Center for Marine Studies, University of Parana, Curitiba, Brazil
| | - Eduardo Almansa
- Instituto Español de Oceanografía (IEO), Santa Cruz de Tenerife, Spain
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
35
|
Vidal EAG, Salvador B. The Tentacular Strike Behavior in Squid: Functional Interdependency of Morphology and Predatory Behaviors During Ontogeny. Front Physiol 2019; 10:1558. [PMID: 31956313 PMCID: PMC6945192 DOI: 10.3389/fphys.2019.01558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/11/2019] [Indexed: 01/13/2023] Open
Abstract
This study examines the relationship between morphology and predatory behaviors to evaluate the ontogeny of the specialized tentacular strike (TS) in Doryteuthis opalescens squid reared under laboratory conditions [hatching to 80 day-old; 2–16 mm mantle length (ML)]. Ontogenetic morphological changes in the arm-crown and the role played by the arms and tentacles during predatory behavior was correlated with prey types captured and revealed interconnected morphological and behavior traits that enabled paralarvae to perform the TS. Hatchlings have a poorly developed arm-crown and tentacles that resemble and function as arms, in which tentacular clubs (suckerfull non-contractile portion) and stalks (suckerless contractile portion) have not yet formed. Only a basic attack (BA) behavior was observed, involving arms and tentacles, which were not ejected during prey capture. A more elaborated behavior, the arm-net (AN) was first employed by 30 day-old (>4.7 mm ML) paralarvae, in which the tentacles were eject down, but not toward the prey. The TS was first observed in 40–50 day-old (6.7–7.8 mm ML) squid, which stay stationary by sustainable swimming prior to ejecting the tentacles toward the prey. Thus, the ability to perform sustainable swimming and acquisition of swimming coordination (schooling behavior) are prerequisites for the expression of the TS. The arms played the same roles after prey was captured: hold, subdue and manipulate the prey, while the actions performed by the tentacles truly defined each behavior. Prey size captured increased with increasing squid size. Morphometric data showed that hatchlings have little ability of elongating their tentacles, but this ability increases significantly with size. Squid older than 40 days could elongate their tentacles up to 61% of their ML, whereas early paralarvae 13% on average. Paralarvae were frequently observed elongating and contracting their tentacles, while not attempting to capture prey, which could perhaps serve to adjust muscle activity and development, while specializations for the strike – stalks, clubs, muscle fibers, arm-crown and swimming coordination – are still being developed. The expression of the TS is constrained by development in early paralarvae as it involves interdependency of morphology and behavior and as such, represents a major developmental milestone in the early life history of squid.
Collapse
Affiliation(s)
- Erica A G Vidal
- Center for Marine Studies, Federal University of Parana, Pontal do Paraná, Brazil
| | - Bianca Salvador
- Center for Marine Studies, Federal University of Parana, Pontal do Paraná, Brazil
| |
Collapse
|
36
|
Imperadore P, Parazzoli D, Oldani A, Duebbert M, Büschges A, Fiorito G. From injury to full repair: nerve regeneration and functional recovery in the common octopus, Octopus vulgaris. ACTA ACUST UNITED AC 2019; 222:jeb.209965. [PMID: 31527179 DOI: 10.1242/jeb.209965] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/11/2019] [Indexed: 11/20/2022]
Abstract
Spontaneous nerve regeneration in cephalopod molluscs occurs in a relative short time after injury, achieving functional recovery of lost capacity. In particular, transection of the pallial nerve in the common octopus (Octopus vulgaris) determines the loss and subsequent restoration of two functions fundamental for survival, i.e. breathing and skin patterning, the latter involved in communication between animals and concealment. The phenomena occurring after lesion have been investigated in a series of previous studies, but a complete analysis of the changes taking place at the level of the axons and the effects on the animals' appearance during the whole regenerative process is still missing. Our goal was to determine the course of events following injury, from impairment to full recovery. Through imaging of the traced damaged nerves, we were able to characterize the pathways followed by fibres during regeneration and end-target re-innervation, while electrophysiology and behavioural observations highlighted the regaining of functional connections between the central brain and periphery, using the contralateral nerve in the same animal as an internal control. The final architecture of a fully regenerated pallial nerve does not exactly mirror the original structure; however, functionality returns to match the phenotype of an intact octopus with no observable impact on the behaviour of the animal. Our findings provide new important scenarios for the study of regeneration in cephalopods and highlight the octopus pallial nerve as a valuable 'model' among invertebrates.
Collapse
Affiliation(s)
- Pamela Imperadore
- Association for Cephalopod Research - CephRes, 80133 Napoli, Italy .,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Dario Parazzoli
- IFOM-FIRC Institute of Molecular Oncology, via Adamello 16, 20139 Milan, Italy
| | - Amanda Oldani
- IFOM-FIRC Institute of Molecular Oncology, via Adamello 16, 20139 Milan, Italy
| | - Michael Duebbert
- Institute for Zoology, Biocenter Cologne, University of Cologne, 50674 Cologne, Germany
| | - Ansgar Büschges
- Institute for Zoology, Biocenter Cologne, University of Cologne, 50674 Cologne, Germany
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
37
|
Maiole F, Giachero S, Fossati SM, Rocchi A, Zullo L. mTOR as a Marker of Exercise and Fatigue in Octopus vulgaris Arm. Front Physiol 2019; 10:1161. [PMID: 31572212 PMCID: PMC6749024 DOI: 10.3389/fphys.2019.01161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/28/2019] [Indexed: 01/07/2023] Open
Abstract
Cephalopods are highly evolved marine invertebrates that colonized almost all the oceans of the world at all depths. This imposed the occurrence of several modifications of their brain and body whose muscle component represents the major constituent. Hence, studying their muscle physiology may give important hints in the context of animal biology and environmental adaptability. One major pathway involved in muscle metabolism in vertebrates is the evolutionary conserved mTOR-signaling cascade; however, its role in cephalopods has never been elucidated. mTOR is regulating cell growth and homeostasis in response to a wide range of cues such as nutrient availability, body temperature and locomotion. It forms two functionally heteromeric complexes, mTORC1 and mTORC2. mTORC1 regulates protein synthesis and degradation and, in skeletal muscles, its activation upon exercise induces muscle growth. In this work, we characterized Octopus vulgaris mTOR full sequence and functional domains; we found a high level of homology with vertebrates’ mTOR and the conservation of Ser2448 phosphorylation site required for mTORC1 activation. We then designed and tested an in vitro protocol of resistance exercise (RE) inducing fatigue in arm samples. We showed that, upon the establishment of fatigue, a transient increase in mTORC1 phosphorylation reaching a pick 30 min after exercise was induced. Our data indicate the activation of mTORC1 pathway in exercise paradigm and possibly in the regulation of energy homeostasis in octopus and suggest that mTORC1 activity can be used to monitor animal response to changes in physiological and ecological conditions and, more in general, the animal welfare.
Collapse
Affiliation(s)
- Federica Maiole
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sarah Giachero
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sara Maria Fossati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Anna Rocchi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Zullo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.,IRCSS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
38
|
Imperadore P, Uckermann O, Galli R, Steiner G, Kirsch M, Fiorito G. Nerve regeneration in the cephalopod mollusc Octopus vulgaris: label-free multiphoton microscopy as a tool for investigation. J R Soc Interface 2019; 15:rsif.2017.0889. [PMID: 29643223 DOI: 10.1098/rsif.2017.0889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/16/2018] [Indexed: 01/16/2023] Open
Abstract
Octopus and cephalopods are able to regenerate injured tissues. Recent advancements in the study of regeneration in cephalopods appear promising encompassing different approaches helping to decipher cellular and molecular machinery involved in the process. However, lack of specific markers to investigate degenerative/regenerative phenomena and inflammatory events occurring after damage is limiting these studies. Label-free multiphoton microscopy is applied for the first time to the transected pallial nerve of Octopus vulgaris Various optical contrast methods including coherent anti-Stokes Raman scattering (CARS), endogenous two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) have been used. We detected cells and structures often not revealed with classical staining methods. CARS highlighted the involvement of haemocytes in building up scar tissue; CARS and TPEF facilitated the identification of degenerating fibres; SHG allowed visualization of fibrillary collagen, revealing the formation of a connective tissue bridge between the nerve stumps, likely involved in axon guidance. Using label-free multiphoton microscopy, we studied the regenerative events in octopus without using any other labelling techniques. These imaging methods provided extremely helpful morpho-chemical information to describe regeneration events. The techniques applied here are species-specific independent and should facilitate the comparison among various animal species.
Collapse
Affiliation(s)
- Pamela Imperadore
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy .,Association for Cephalopod Research - CephRes, 80133 Napoli, Italy
| | - Ortrud Uckermann
- Department of Neurosurgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Gerald Steiner
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Matthias Kirsch
- Department of Neurosurgery, University Hospital Carl Gustav Carus and Faculty of Medicine, TU Dresden, Dresden, Germany.,CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, TU Dresden, Dresden, Germany
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| |
Collapse
|
39
|
Cooke GM, Anderson DB, Begout ML, Dennison N, Osorio D, Tonkins B, Kristiansen T, Fiorito G, Galligioni V, Ponte G, Andrews PL. Prospective severity classification of scientific procedures in cephalopods: Report of a COST FA1301 Working Group survey. Lab Anim 2019; 53:541-563. [PMID: 31474182 DOI: 10.1177/0023677219864626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cephalopods are the first invertebrate class regulated by the European Union (EU) under Directive 2010/63/EU on the protection of animals used for scientific purposes, which requires prospective assessment of severity of procedures. To assist the scientific community in establishing severity classification for cephalopods, we undertook a web-based survey of the EU cephalopod research community as represented by the participants in the European COoperation on Science and Technology (COST) Action FA1301, CephsInAction'. The survey consisted of 50 scenarios covering a range of procedures involving several cephalopod species at different life stages. Respondents (59 people from 15 countries) either allocated a severity classification to each scenario or indicated that they were unable to decide (UTD). Analyses evaluated score distributions and clustering. Overall, the UTD scores were low (7.0 ± 0.6%) and did not affect the severity classification. Procedures involving paralarvae and killing methods (not specified in Annexe IV) had the highest UTD scores. Consensus on non-recovery procedures was reached consistently, although occasionally non-recovery appeared to be confused with killing methods. Scenarios describing procedures above the lower threshold for regulation, including those describing behavioural studies, were also identified and allocated throughout the full range of severity classifications. Severity classification for scenarios based on different species (e.g. cuttlefish vs. octopus) was consistent, comparable and dependent on potentially more harmful interventions. We found no marked or statistically significant differences in the overall scoring of scenarios between the demographic subgroups (age, sex, PhD and cephalopod experience). The COST Action FA1301 survey data provide a basis for a prospective severity classification for cephalopods to serve as guide for researchers, project assessors and regulators.
Collapse
Affiliation(s)
- Gavan M Cooke
- Anglia Ruskin University, Faculty of Life Sciences, UK
| | | | | | | | | | | | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy.,Association for Cephalopod Research 'CephRes', Italy
| | - Viola Galligioni
- Comparative Medicine Unit, Trinity College, Ireland.,Association for Cephalopod Research 'CephRes', Italy
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy.,Association for Cephalopod Research 'CephRes', Italy
| | - Paul Lr Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Italy.,Association for Cephalopod Research 'CephRes', Italy
| |
Collapse
|
40
|
Nesher N, Maiole F, Shomrat T, Hochner B, Zullo L. From synaptic input to muscle contraction: arm muscle cells of Octopus vulgaris show unique neuromuscular junction and excitation-contraction coupling properties. Proc Biol Sci 2019; 286:20191278. [PMID: 31455193 DOI: 10.1098/rspb.2019.1278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The muscular-hydrostat configuration of octopus arms allows high manoeuvrability together with the efficient motor performance necessary for its multitasking abilities. To control this flexible and hyper-redundant system the octopus has evolved unique strategies at the various levels of its brain-to-body organization. We focus here on the arm neuromuscular junction (NMJ) and excitation-contraction (E-C) properties of the arm muscle cells. We show that muscle cells are cholinergically innervated at single eye-shaped locations where acetylcholine receptors (AChR) are concentrated, resembling the vertebrate neuromuscular endplates. Na+ and K+ contribute nearly equally to the ACh-activated synaptic current mediating membrane depolarization, thereby activating voltage-dependent L-type Ca2+ channels. We show that cell contraction can be mediated directly by the inward Ca2+ current and also indirectly by calcium-induced calcium release (CICR) from internal stores. Indeed, caffeine-induced cell contraction and immunohistochemical staining revealed the presence and close association of dihydropyridine (DHPR) and ryanodine (RyR) receptor complexes, which probably mediate the CICR. We suggest that the dynamics of octopus arm contraction can be controlled in two ways; motoneurons with large synaptic inputs activate vigorous contraction via activation of the two routs of Ca2+ induced contraction, while motoneurons with lower-amplitude inputs may regulate a graded contraction through frequency-dependent summation of EPSP trains that recruit the CICR. Our results thus suggest that these motoneuronal pools are likely to be involved in the activation of different E-C coupling modes, thus enabling a dynamics of muscles activation appropriate for various tasks such as stiffening versus motion generation.
Collapse
Affiliation(s)
- Nir Nesher
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
| | - Federica Maiole
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy
| | - Tal Shomrat
- Faculty of Marine Sciences, Ruppin Academic Center, Michmoret, Israel
| | - Benyamin Hochner
- Department of Neurobiology, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Letizia Zullo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genova, Italy.,IRCSS, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy
| |
Collapse
|
41
|
Holden-Dye L, Ponte G, Allcock AL, Vidal EAG, Nakajima R, Peterson TR, Fiorito G. Editorial: Cephs InAction: Towards Future Challenges for Cephalopod Science. Front Physiol 2019; 10:980. [PMID: 31402875 PMCID: PMC6670287 DOI: 10.3389/fphys.2019.00980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022] Open
Affiliation(s)
- Lindy Holden-Dye
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Giovanna Ponte
- Association for Cephalopod Research 'CephRes', Naples, Italy.,Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - A Louise Allcock
- Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Erica A G Vidal
- Centro de Estudos do Mar, Universidade Federal do Paraná (UFPR), Pontal do Paraná, Brazil
| | - Ryuta Nakajima
- University of Minnesota Duluth, Duluth, MN, United States
| | | | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
42
|
Drinkwater E, Robinson EJH, Hart AG. Keeping invertebrate research ethical in a landscape of shifting public opinion. Methods Ecol Evol 2019. [DOI: 10.1111/2041-210x.13208] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - Adam G. Hart
- School of Natural and Social Science University of Gloucestershire Cheltenham UK
| |
Collapse
|
43
|
Motor control pathways in the nervous system of Octopus vulgaris arm. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:271-279. [PMID: 30919046 PMCID: PMC6478645 DOI: 10.1007/s00359-019-01332-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 12/30/2022]
Abstract
The octopus’s arms have virtually infinite degrees of freedom, providing a unique opportunity for studying movement control in a redundant motor system. Here, we investigated the organization of the connections between the brain and arms through the cerebrobrachial tracts (CBT). To do this, we analyzed the neuronal activity associated with the contraction of a small muscle strand left connected at the middle of a long isolated CBT. Both electrical activity in the CBT and muscle contraction could be induced at low threshold values irrespective of stimulus direction and distance from the muscle strand. This suggests that axons associated with transmitting motor commands run along the CBT and innervate a large pool of motor neurons en passant. This type of innervation implies that central and peripheral motor commands involve the simultaneous recruitment of large groups of motor neurons along the arm as required, for example, in arm stiffening, and that the site of movement initiation along the arm may be determined through a unique interplay between global central commands and local sensory signals.
Collapse
|
44
|
Ponte G, Andrews P, Galligioni V, Pereira J, Fiorito G. Cephalopod Welfare, Biological and Regulatory Aspects: An EU Experience. Anim Welf 2019. [DOI: 10.1007/978-3-030-13947-6_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
|
46
|
Wang ZY, Ragsdale CW. Multiple optic gland signaling pathways implicated in octopus maternal behaviors and death. J Exp Biol 2018; 221:jeb185751. [PMID: 30104305 PMCID: PMC6198452 DOI: 10.1242/jeb.185751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/01/2018] [Indexed: 01/02/2023]
Abstract
Post-reproductive life in the female octopus is characterized by an extreme pattern of maternal care: the mother cares for her clutch of eggs without feeding until her death. These maternal behaviors are eradicated if the optic glands, the octopus analog of the vertebrate pituitary gland, are removed from brooding females. Despite the optic gland's importance in regulating maternal behavior, the molecular features underlying optic gland function are unknown. Here, we identify major signaling systems of the Octopus bimaculoides optic gland. Through behavioral analyses and transcriptome sequencing, we report that the optic gland undergoes remarkable molecular changes that coincide with transitions between behavioral stages. These include the dramatic upregulation and downregulation of catecholamine, steroid, insulin and feeding peptide pathways. Transcriptome analyses in other tissues demonstrate that these molecular changes are not generalized markers of senescence, but instead, specific features of the optic glands. Our study expands the classic optic gland-pituitary gland analogy and more specifically, it indicates that, rather than a single 'self-destruct' hormone, the maternal optic glands employ multiple pathways as systemic hormonal signals of behavioral regulation.
Collapse
Affiliation(s)
- Z Yan Wang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
47
|
Zoratto F, Cordeschi G, Grignani G, Bonanni R, Alleva E, Nascetti G, Mather JA, Carere C. Variability in the "stereotyped" prey capture sequence of male cuttlefish (Sepia officinalis) could relate to personality differences. Anim Cogn 2018; 21:773-785. [PMID: 30178104 DOI: 10.1007/s10071-018-1209-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/17/2018] [Accepted: 08/23/2018] [Indexed: 11/24/2022]
Abstract
Studies of animal personality have shown consistent between-individual variation in behaviour in many social and non-social contexts, but hunting behaviour has been overlooked. Prey capture sequences, especially in invertebrates, are supposed to be quite invariant. In cuttlefish, the attack includes three components: attention, positioning, and seizure. The previous studies indicated some variability in these components and we quantified it under the hypothesis that it could relate to personality differences. We, therefore, analysed predation sequences of adult cuttlefish to test their association with personality traits in different contexts. Nineteen subjects were first exposed to an "alert" and a "threat" test and then given a live prey, for 10 days. Predation sequences were scored for components of the attack, locomotor and postural elements, body patterns, and number of successful tentacle ejections (i.e. seizure). PCA analysis of predatory patterns identified three dimensions accounting for 53.1%, 15.9%, and 9.6% of the variance and discriminating individuals based on "speed in catching prey", "duration of attack behaviour", and "attention to prey". Predation rate, success rate, and hunting time were significantly correlated with the first, second, and third PCA factors, respectively. Significant correlations between capture patterns and responsiveness in the alert and threat tests were found, highlighting a consistency of prey capture patterns with measures of personality in other contexts. Personality may permeate even those behaviour patterns that appear relatively invariant.
Collapse
Affiliation(s)
- Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Giulia Cordeschi
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Giacomo Grignani
- Ichthyogenic Experimental Marine Centre (CISMAR), Department of Ecological and Biological Sciences, University of Tuscia, Tarquinia, Viterbo, Italy
| | - Roberto Bonanni
- Independent Researcher, Via Giuseppe Donati 32, 00159, Rome, Italy
| | - Enrico Alleva
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Giuseppe Nascetti
- Ichthyogenic Experimental Marine Centre (CISMAR), Department of Ecological and Biological Sciences, University of Tuscia, Tarquinia, Viterbo, Italy
| | - Jennifer A Mather
- Department of Psychology, University of Lethbridge, Lethbridge, Canada
| | - Claudio Carere
- Ichthyogenic Experimental Marine Centre (CISMAR), Department of Ecological and Biological Sciences, University of Tuscia, Tarquinia, Viterbo, Italy.,Laboratory of Experimental and Comparative Ethology, University of Paris 13, Sorbonne Paris Cité, Villetaneuse, France
| |
Collapse
|
48
|
Winlow W, Polese G, Moghadam HF, Ahmed IA, Di Cosmo A. Sense and Insensibility - An Appraisal of the Effects of Clinical Anesthetics on Gastropod and Cephalopod Molluscs as a Step to Improved Welfare of Cephalopods. Front Physiol 2018; 9:1147. [PMID: 30197598 PMCID: PMC6117391 DOI: 10.3389/fphys.2018.01147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/31/2018] [Indexed: 12/24/2022] Open
Abstract
Recent progress in animal welfare legislation stresses the need to treat cephalopod molluscs, such as Octopus vulgaris, humanely, to have regard for their wellbeing and to reduce their pain and suffering resulting from experimental procedures. Thus, appropriate measures for their sedation and analgesia are being introduced. Clinical anesthetics are renowned for their ability to produce unconsciousness in vertebrate species, but their exact mechanisms of action still elude investigators. In vertebrates it can prove difficult to specify the differences of response of particular neuron types given the multiplicity of neurons in the CNS. However, gastropod molluscs such as Aplysia, Lymnaea, or Helix, with their large uniquely identifiable nerve cells, make studies on the cellular, subcellular, network and behavioral actions of anesthetics much more feasible, particularly as identified cells may also be studied in culture, isolated from the rest of the nervous system. To date, the sorts of study outlined above have never been performed on cephalopods in the same way as on gastropods. However, criteria previously applied to gastropods and vertebrates have proved successful in developing a method for humanely anesthetizing Octopus with clinical doses of isoflurane, i.e., changes in respiratory rate, color pattern and withdrawal responses. However, in the long term, further refinements will be needed, including recordings from the CNS of intact animals in the presence of a variety of different anesthetic agents and their adjuvants. Clues as to their likely responsiveness to other appropriate anesthetic agents and muscle relaxants can be gained from background studies on gastropods such as Lymnaea, given their evolutionary history.
Collapse
Affiliation(s)
- William Winlow
- Department of Biology, University of Naples Federico II, Naples, Italy
- Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, United Kingdom
- NPC Newton, Preston, United Kingdom
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Hadi-Fathi Moghadam
- Department of Physiology, Faculty of Medicine, Physiology Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
49
|
O’Brien CE, Roumbedakis K, Winkelmann IE. The Current State of Cephalopod Science and Perspectives on the Most Critical Challenges Ahead From Three Early-Career Researchers. Front Physiol 2018; 9:700. [PMID: 29962956 PMCID: PMC6014164 DOI: 10.3389/fphys.2018.00700] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/18/2018] [Indexed: 12/14/2022] Open
Abstract
Here, three researchers who have recently embarked on careers in cephalopod biology discuss the current state of the field and offer their hopes for the future. Seven major topics are explored: genetics, aquaculture, climate change, welfare, behavior, cognition, and neurobiology. Recent developments in each of these fields are reviewed and the potential of emerging technologies to address specific gaps in knowledge about cephalopods are discussed. Throughout, the authors highlight specific challenges that merit particular focus in the near-term. This review and prospectus is also intended to suggest some concrete near-term goals to cephalopod researchers and inspire those working outside the field to consider the revelatory potential of these remarkable creatures.
Collapse
Affiliation(s)
- Caitlin E. O’Brien
- Normandie Univ., UNICAEN, Rennes 1 Univ., UR1, CNRS, UMR 6552 ETHOS, Caen, France
- Association for Cephalopod Research – CephRes, Naples, Italy
| | - Katina Roumbedakis
- Association for Cephalopod Research – CephRes, Naples, Italy
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Inger E. Winkelmann
- Section for Evolutionary Genomics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Imperadore P, Fiorito G. Cephalopod Tissue Regeneration: Consolidating Over a Century of Knowledge. Front Physiol 2018; 9:593. [PMID: 29875692 PMCID: PMC5974545 DOI: 10.3389/fphys.2018.00593] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/02/2018] [Indexed: 01/10/2023] Open
Abstract
Regeneration, a process consisting in regrowth of damaged structures and their functional recovery, is widespread in several phyla of the animal kingdom from lower invertebrates to mammals. Among the regeneration-competent species, the actual ability to restore the full form and function of the injured tissue varies greatly, from species being able to undergo whole-body and internal organ regeneration, to instances in which this ability is limited to a few tissues. Among invertebrates, cephalopod mollusks retain the ability to regenerate several structures (i.e., muscles, nerves, or entire appendages). Here we provide an overview of more than one-hundred studies carried out over the last 160 years of research. Despite the great effort, many aspects of tissue regeneration in cephalopods, including the associated molecular and cellular machinery, remain largely unexplored. Our approach is largely descriptive and aims to provide a reference to prior work thus to facilitate future research efforts. We believe such research may lead to important discoveries and approaches that can be applied to other animal taxa including higher vertebrates, as well as other research fields such as regenerative medicine.
Collapse
Affiliation(s)
- Pamela Imperadore
- Association for Cephalopod Research - CephRes, Napoli, Italy
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Graziano Fiorito
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| |
Collapse
|