1
|
Lever JEP, Turner KB, Fernandez CM, Leung HM, Hussain SS, Shei RJ, Lin VY, Birket SE, Chu KK, Tearney GJ, Rowe SM, Solomon GM. Metachrony drives effective mucociliary transport via a calcium-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2024; 327:L282-L292. [PMID: 38860289 PMCID: PMC11444503 DOI: 10.1152/ajplung.00392.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
The mucociliary transport apparatus is critical for maintaining lung health via the coordinated movement of cilia to clear mucus and particulates. A metachronal wave propagates across the epithelium when cilia on adjacent multiciliated cells beat slightly out of phase along the proximal-distal axis of the airways in alignment with anatomically directed mucociliary clearance. We hypothesized that metachrony optimizes mucociliary transport (MCT) and that disruptions of calcium signaling would abolish metachrony and decrease MCT. We imaged bronchi from human explants and ferret tracheae using micro-optical coherence tomography (µOCT) to evaluate airway surface liquid depth (ASL), periciliary liquid depth (PCL), cilia beat frequency (CBF), MCT, and metachrony in situ. We developed statistical models that included covariates of MCT. Ferret tracheae were treated with BAPTA-AM (chelator of intracellular Ca2+), lanthanum chloride (nonpermeable Ca2+ channel competitive antagonist), and repaglinide (inhibitor of calaxin) to test calcium dependence of metachrony. We demonstrated that metachrony contributes to mucociliary transport of human and ferret airways. MCT was augmented in regions of metachrony compared with nonmetachronous regions by 48.1%, P = 0.0009 or 47.5%, P < 0.0020 in humans and ferrets, respectively. PCL and metachrony were independent contributors to MCT rate in humans; ASL, CBF, and metachrony contribute to ferret MCT rates. Metachrony can be disrupted by interference with calcium signaling including intracellular, mechanosensitive channels, and calaxin. Our results support that the presence of metachrony augments MCT in a calcium-dependent mechanism.NEW & NOTEWORTHY We developed a novel imaging-based analysis to detect coordination of ciliary motion and optimal coordination, a process called metachrony. We found that metachrony is key to the optimization of ciliary-mediated mucus transport in both ferret and human tracheal tissue. This process appears to be regulated through calcium-dependent mechanisms. This study demonstrates the capacity to measure a key feature of ciliary coordination that may be important in genetic and acquired disorders of ciliary function.
Collapse
Grants
- F31 HL146083 NHLBI NIH HHS
- 3T32GM008361-30S1 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- 2T32HL105346-11A1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- T32 GM008361 NIGMS NIH HHS
- Solomon 20Y0 Cystic Fibrosis Foundation (CFF)
- P30 DK072482 NIDDK NIH HHS
- 5F31HL146083-02 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35 HL135816 NHLBI NIH HHS
- K08 HL138153 NHLBI NIH HHS
- 2P30DK072482-12 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- T32 HL105346 NHLBI NIH HHS
- 1K08HL138153-01A1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R35 HL135816-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- Jacelyn E Peabody Lever
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - K Brett Turner
- Division of Pulmonary Medicine, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Courtney M Fernandez
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Hui Min Leung
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Shah Saddad Hussain
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ren-Jay Shei
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Vivian Y Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Susan E Birket
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kengyeh K Chu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Steven M Rowe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - George M Solomon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Sasaki K, Shiba K, Nakamura A, Kawano N, Satouh Y, Yamaguchi H, Morikawa M, Shibata D, Yanase R, Jokura K, Nomura M, Miyado M, Takada S, Ueno H, Nonaka S, Baba T, Ikawa M, Kikkawa M, Miyado K, Inaba K. Calaxin is required for cilia-driven determination of vertebrate laterality. Commun Biol 2019; 2:226. [PMID: 31240264 PMCID: PMC6586612 DOI: 10.1038/s42003-019-0462-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 05/14/2019] [Indexed: 12/24/2022] Open
Abstract
Calaxin is a Ca2+-binding dynein-associated protein that regulates flagellar and ciliary movement. In ascidians, calaxin plays essential roles in chemotaxis of sperm. However, nothing has been known for the function of calaxin in vertebrates. Here we show that the mice with a null mutation in Efcab1, which encodes calaxin, display typical phenotypes of primary ciliary dyskinesia, including hydrocephalus, situs inversus, and abnormal motility of trachea cilia and sperm flagella. Strikingly, both males and females are viable and fertile, indicating that calaxin is not essential for fertilization in mice. The 9 + 2 axonemal structures of epithelial multicilia and sperm flagella are normal, but the formation of 9 + 0 nodal cilia is significantly disrupted. Knockout of calaxin in zebrafish also causes situs inversus due to the irregular ciliary beating of Kupffer's vesicle cilia, although the 9 + 2 axonemal structure appears to remain normal.
Collapse
Affiliation(s)
- Keita Sasaki
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
| | - Akihiro Nakamura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535 Japan
| | - Natsuko Kawano
- Department of Life Science, School of Agriculture, Meiji University, Kanagawa, 214-8574 Japan
| | - Yuhkoh Satouh
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871 Japan
| | - Hiroshi Yamaguchi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Motohiro Morikawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Daisuke Shibata
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
| | - Ryuji Yanase
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
| | - Kei Jokura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
| | - Mami Nomura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535 Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, 157-8535 Japan
| | - Hironori Ueno
- Molecular Function & Life Sciences, Aichi University of Education, Aichi, 448-8542 Japan
| | - Shigenori Nonaka
- Spatiotemporal Regulations Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, 444-8585 Japan
- Laboratory for Spatiotemporal Regulations, National Institute for Basic Biology, Okazaki, 444-8585 Japan
| | - Tadashi Baba
- Faculty of Life and Environmental Sciences, and Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, 305-8577 Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871 Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535 Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, 415-0025 Japan
| |
Collapse
|
3
|
Manipulation of cell migration by laserporation-induced local wounding. Sci Rep 2019; 9:4291. [PMID: 30862930 PMCID: PMC6414676 DOI: 10.1038/s41598-019-39678-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/28/2019] [Indexed: 12/17/2022] Open
Abstract
Living organisms employ various mechanisms to escape harm. At the cellular level, mobile cells employ movement to avoid harmful chemicals or repellents. The present study is the first to report that cells move away from the site of injury in response to local wounding. When a migrating Dictyostelium cell was locally wounded at its anterior region by laserporation, the cell retracted its anterior pseudopods, extended a new pseudopod at the posterior region, and migrated in the opposite direction with increasing velocity. When wounded in the posterior region, the cell did not change its polarity and moved away from the site of wounding. Since the cells repair wounds within a short period, we successfully manipulated cell migration by applying multiple wounds. Herein, we discussed the signals that contributed to the wound-induced escape behavior of Dictyostelium cells. Our findings provide important insights into the mechanisms by which cells establish their polarity.
Collapse
|
4
|
Edwards BFL, Wheeler RJ, Barker AR, Moreira-Leite FF, Gull K, Sunter JD. Direction of flagellum beat propagation is controlled by proximal/distal outer dynein arm asymmetry. Proc Natl Acad Sci U S A 2018; 115:E7341-E7350. [PMID: 30030284 PMCID: PMC6077732 DOI: 10.1073/pnas.1805827115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 9 + 2 axoneme structure of the motile flagellum/cilium is an iconic, apparently symmetrical cellular structure. Recently, asymmetries along the length of motile flagella have been identified in a number of organisms, typically in the inner and outer dynein arms. Flagellum-beat waveforms are adapted for different functions. They may start either near the flagellar tip or near its base and may be symmetrical or asymmetrical. We hypothesized that proximal/distal asymmetry in the molecular composition of the axoneme may control the site of waveform initiation and the direction of waveform propagation. The unicellular eukaryotic pathogens Trypanosoma brucei and Leishmania mexicana often switch between tip-to-base and base-to-tip waveforms, making them ideal for analysis of this phenomenon. We show here that the proximal and distal portions of the flagellum contain distinct outer dynein arm docking-complex heterodimers. This proximal/distal asymmetry is produced and maintained through growth by a concentration gradient of the proximal docking complex, generated by intraflagellar transport. Furthermore, this asymmetry is involved in regulating whether a tip-to-base or base-to-tip beat occurs, which is linked to a calcium-dependent switch. Our data show that the mechanism for generating proximal/distal flagellar asymmetry can control waveform initiation and propagation direction.
Collapse
Affiliation(s)
| | - Richard John Wheeler
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom;
| | - Amy Rachel Barker
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | | | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, OX3 0BP Oxford, United Kingdom
| |
Collapse
|