1
|
Zhang Z, Wang L, Chen W, Fu Z, Zhao S, E Y, Zhang H, Zhang B, Sun M, Han P, Chang Y, Tang K, Gao Y, Zhang H, Li X, Zheng W. Integration of mRNA and miRNA analysis reveals the molecular mechanisms of sugar beet (Beta vulgaris L.) response to salt stress. Sci Rep 2023; 13:22074. [PMID: 38086906 PMCID: PMC10716384 DOI: 10.1038/s41598-023-49641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/10/2023] [Indexed: 12/18/2023] Open
Abstract
The continuous increase of saline-alkali areas worldwide has led to the emergence of saline-alkali conditions, which are the primary abiotic stress or hindering the growth of plants. Beet is among the main sources of sugar, and its yield and sugar content are notably affected by saline-alkali stress. Despite sugar beet being known as a salt-tolerant crop, there are few studies on the mechanisms underlying its salt tolerance, and previous studies have mainly delineated the crop's response to stress induced by NaCl. Recently, advancements in miRNA-mRNA network analysis have led to an increased understanding of how plants, including sugar beet, respond to stress. In this study, seedlings of beet variety "N98122" were grown in the laboratory using hydroponics culture and were exposed to salt stress at 40 days of growth. According to the phenotypic adaptation of the seedlings' leaves from a state of turgidity to wilting and then back to turgidity before and after exposure, 18 different time points were selected to collect samples for analysis. Subsequently, based on the data of real-time quantitative PCR (qRT-PCR) of salt-responsive genes, the samples collected at the 0, 2.5, 7.5, and 16 h time points were subjected to further analysis with experimental materials. Next, mRNA-seq data led to the identification of 8455 differentially expressed mRNAs (DEMs) under exposure to salt stress. In addition, miRNA-seq based investigation retrieved 3558 miRNAs under exposure to salt stress, encompassing 887 known miRNAs belonging to 783 families and 2,671 novel miRNAs. With the integrated analysis of miRNA-mRNA network, 57 miRNA-target gene pairs were obtained, consisting of 55 DEMIs and 57 DEMs. Afterwards, we determined the pivotal involvement of aldh2b7, thic, and δ-oat genes in the response of sugar beet to the effect of salt stress. Subsequently, we identified the miRNAs novel-m035-5p and novel-m0365-5p regulating the aldh gene and miRNA novel-m0979-3p regulating the thic gene. The findings of miRNA and mRNA expression were validated by qRT-PCR.
Collapse
Affiliation(s)
- Ziqiang Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Liang Wang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Wenjin Chen
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Zengjuan Fu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Shangmin Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yuanyuan E
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Hui Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Bizhou Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Mengyuan Sun
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Pingan Han
- Inner Mongolia Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yue Chang
- Inner Mongolia Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Kuangang Tang
- Inner Mongolia Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Yanyan Gao
- Linxi County Agriculture and Animal Husbandry Bureau, Chifeng, 025250, China
| | - Huizhong Zhang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China
| | - Xiaodong Li
- Inner Mongolia Key Laboratory of Sugar Beet Genetics and Germplasm Enhancement, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China.
| | - Wenzhe Zheng
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, China.
| |
Collapse
|
2
|
Misra V, Mall AK, Pandey H, Srivastava S, Sharma A. Advancements and prospects of CRISPR/Cas9 technologies for abiotic and biotic stresses in sugar beet. Front Genet 2023; 14:1235855. [PMID: 38028586 PMCID: PMC10665535 DOI: 10.3389/fgene.2023.1235855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar beet is a crop with high sucrose content, known for sugar production and recently being considered as an emerging raw material for bioethanol production. This crop is also utilized as cattle feed, mainly when animal green fodder is scarce. Bioethanol and hydrogen gas production from this crop is an essential source of clean energy. Environmental stresses (abiotic/biotic) severely affect the productivity of this crop. Over the past few decades, the molecular mechanisms of biotic and abiotic stress responses in sugar beet have been investigated using next-generation sequencing, gene editing/silencing, and over-expression approaches. This information can be efficiently utilized through CRISPR/Cas 9 technology to mitigate the effects of abiotic and biotic stresses in sugar beet cultivation. This review highlights the potential use of CRISPR/Cas 9 technology for abiotic and biotic stress management in sugar beet. Beet genes known to be involved in response to alkaline, cold, and heavy metal stresses can be precisely modified via CRISPR/Cas 9 technology for enhancing sugar beet's resilience to abiotic stresses with minimal off-target effects. Similarly, CRISPR/Cas 9 technology can help generate insect-resistant sugar beet varieties by targeting susceptibility-related genes, whereas incorporating Cry1Ab and Cry1C genes may provide defense against lepidopteron insects. Overall, CRISPR/Cas 9 technology may help enhance sugar beet's adaptability to challenging environments, ensuring sustainable, high-yield production.
Collapse
Affiliation(s)
- Varucha Misra
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - A. K. Mall
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Himanshu Pandey
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
- Khalsa College, Amritsar, India
| | | | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, India
| |
Collapse
|
3
|
Shaaban A, El-Mageed TAA, El-Momen WRA, Saudy HS, Al-Elwany OAAI. The Integrated Application of Phosphorous and Zinc Affects the Physiological Status, Yield and Quality of Canola Grown in Phosphorus-suffered Deficiency Saline Soil. GESUNDE PFLANZEN 2023. [DOI: 10.1007/s10343-023-00843-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/18/2023] [Indexed: 09/01/2023]
Abstract
AbstractDespite the soil could contain high amount of phosphorus (P), salinity reduce its availability for crop plants. Hence, farmers should practice several tactics to ameliorate P deficiency in soils. The current study aimed to assess the importance of zinc (Zn) supply for mitigating the deficiency of P for canola grown in saline soil. The effects of three Zn rates (0, 150 and 300 mg L−1, Zn0, Zn150 and Zn300, respectively) under three P rates (0, 36 and 72 kg P2O5 ha−1, P0, P36, and P72, respectively) on physiological status, yield and quality of canola were measured. Treatments were arranged in the strip plot design based on completely randomized blocks with three replicates. Findings exhibited that P36 recorded the highest values of membrane stability index in the 2nd season, while statistically leveled P72 for relative water content and chlorophyll fluorescence in both seasons. Zn300 exhibited potent effect on all canola physiological traits in both seasons. In both seasons, P36 × Zn300, P72 × Zn150 and P72 × Zn300 showed the maximum chlorophyll fluorescence and performance index values. Plots treated with P72 achieved 70.0% increase in canola seed yield, greater than the untreated ones. Seed yield obtained with Zn300 were higher than Zn0 and Zn150 by1.30 and 1.10 times in 2019/20 season and 1.23 and 1.05 times in 2020/21 season. The highest oil % was recorded with P0 × Zn150 and P72 × Zn0 in the 1st season and with P72 × Zn150 in the 2nd season.
Collapse
|
4
|
Wang G, Dong Y, Stevanato P, Lv C, Liu Y, Cheng S, Geng G, Yu L, Wang Y. Growth status and physiological changes of sugar beet seedlings in response to acidic pH environments. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153771. [PMID: 36044811 DOI: 10.1016/j.jplph.2022.153771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Sugar beet (Beta vulgaris L.) is an important sugar crop that is popularly cultivated in a variety of agriculture conditions. Here, we studied sugar beet growth in different pH soils (pH 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, and 9.0) and analyzed their growth status and physiology. Sugar beet growth was best at pH 9.0 and worst at pH 5.0. As the soil pH decreased from 9.0 to 5.0, the osmoregulatory substances, antioxidant enzyme activity, and elemental contents in leaves and roots showed increasing trends, while photosynthesis and macronutrient contents showed decreasing trends. To explore the physiological mechanisms sugar beet use to respond to different pH environments, we analyzed the correlations between leaf net photosynthesis rate and physiological changes and nutrient contents of sugar beet. One of the factors inhibiting sugar beet growth in low pH soils was a reduction in photosynthetic capacity. The accumulation of osmoregulatory substances and increased peroxidative damage may have led to the decrease in leaf net photosynthesis rate. Furthermore, the decrease in nutrient content and accumulation of metal elements were correlated with the decrease in leaf photosynthetic rate. QRT-PCR analysis showed higher expression levels of antioxidant enzyme genes in the leaves and roots of sugar beet grown in low pH environments compared to those in high pH environments. Correspondingly, antioxidant enzyme activity was significantly higher in beets in low pH environments than in beets in high pH environments. These results provide important insight into the physiological responses by which sugar beet can adapt to different pH soils.
Collapse
Affiliation(s)
- Gang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Yinzhuang Dong
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Piergiorgio Stevanato
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università degli Studi di Padova, Padova, Italy
| | - Chunhua Lv
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Yu Liu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China
| | - Shaochen Cheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Gui Geng
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China.
| | - Lihua Yu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Yuguang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin, 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
5
|
A physiological and metabolomic analysis reveals the effect of shading intensity on blueberry fruit quality. Food Chem X 2022; 15:100367. [PMID: 35769330 PMCID: PMC9234079 DOI: 10.1016/j.fochx.2022.100367] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/02/2022] [Accepted: 06/12/2022] [Indexed: 11/23/2022] Open
Abstract
The FT1 shading treatment yielded the largest values for blueberry single fruit weight. The highest total phenol, anthocyanin and vitamin C contents under the FT1 shading treatment. 470 known metabolites were obtained from blueberry fruits. This study provides scientific basis for improving the quality of blueberry fruit.
With the advancement of blueberry industrialization, cultivation measures for obtaining high-quality fruits and technologies for obtaining high levels of the main secondary metabolites have become inevitable requirements for further development of the blueberry industry. This study applied different shading treatments and found that the FT1 shading treatment yielded the largest values for the single fruit weight, solid longitudinal diameter and transverse diameter of blueberry fruit as well as the highest solidity-acid ratio and total phenol and vitamin C contents. Moreover, 470 known metabolites were obtained from blueberry fruits. Interestingly, the differentially abundant metabolites related to ABC transporters, pyrimidine metabolism, and purine metabolism pathways were commonly identified from the three comparisons, which indicated that these three metabolic pathways in blueberry fruits are vulnerable to shading treatment. This study provides a theoretical basis for the application of summer shading to improve the quality and antioxidant substances of small berries.
Collapse
|
6
|
Takao K, Shirakura H, Hatakeyama Y, Ueno O. Salt stress induces Kranz anatomy and expression of C 4 photosynthetic enzymes in the amphibious sedge Eleocharis vivipara. PHOTOSYNTHESIS RESEARCH 2022; 153:93-102. [PMID: 35352232 DOI: 10.1007/s11120-022-00913-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Eleocharis vivipara Link is a unique amphibious leafless plant of the Cyperaceae. The terrestrial form develops culms with Kranz anatomy and C4-like traits, while the submerged form does culms with non-Kranz anatomy and C3 traits. The submerged form develops new culms with C4-like mode when exposed to air or exogenous abscisic acid. In this study, we investigated whether salt stress (0.05-0.3 M NaCl) has a similar effect. When the submerged form was grown for one month in solutions of 0.1 M NaCl and more, culm growth was strongly suppressed. However, these plants slowly developed new culms that had Kranz anatomy with chloroplast-abundant Kranz bundle sheath cells. Although the culms of the submerged form had only few stomata, culms grown in the NaCl solution had many stomata. The NaCl-grown culms also accumulated large amounts of C4 photosynthetic enzymes (phosphoenolpyruvate carboxylase and pyruvate Pi dikinase), and the cellular localization patterns of these enzymes and ribulose 1,5-bisphosphate carboxylase/oxygenase were similar to those in terrestrial culms. Accumulation of C4 enzymes increased in mature culms of the submerged form (with non-Kranz anatomy) when exposed to 0.2 M NaCl solution for one week. These results suggest that salt stress induces development of Kranz anatomy and expression of C4 photosynthetic enzymes in the submerged C3 form of E. vivipara, whereas the anatomical and biochemical traits of C4 photosynthesis appear to be regulated independently.
Collapse
Affiliation(s)
- Kazuya Takao
- Graduate School of Bioresources and Environmental Sciences, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Hiroko Shirakura
- School of Agriculture, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Yuto Hatakeyama
- Graduate School of Bioresources and Environmental Sciences, Kyushu University, Motooka, Fukuoka, 819-0395, Japan
| | - Osamu Ueno
- Faculty of Agriculture, Kyushu University, Motooka, Fukuoka, 819-0395, Japan.
| |
Collapse
|
7
|
Mugani R, El Khalloufi F, Redouane EM, Haida M, Zerrifi SEA, Campos A, Kasada M, Woodhouse J, Grossart HP, Vasconcelos V, Oudra B. Bacterioplankton Associated with Toxic Cyanobacteria Promote Pisum sativum (Pea) Growth and Nutritional Value through Positive Interactions. Microorganisms 2022; 10:1511. [PMID: 35893569 PMCID: PMC9394358 DOI: 10.3390/microorganisms10081511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Research on Plant Growth-Promoting Bacteria (PGPB) has focused much more on rhizospheric bacteria. However, PGPB associated with toxic cyanobacterial bloom (TCB) could enter the rhizosphere through irrigation water, helping plants such as Pisum sativum L. (pea) overcome oxidative stress induced by microcystin (MC) and improve plant growth and nutritional value. This study aimed to isolate bacteria associated with toxic cyanobacteria, test PGPB properties, and inoculate them as a consortium to pea seedlings irrigated with MC to investigate their role in plant protection as well as in improving growth and nutritional value. Two bacterioplankton isolates and one rhizosphere isolate were isolated and purified on a mineral salt medium supplemented with 1000 μg/L MC and identified via their 16S rRNA gene. The mixed strains were inoculated to pea seedlings in pots irrigated with 0, 50, and 100 μg/L MC. We measured the morphological and physiological parameters of pea plants at maturity and evaluated the efficiency of the plant’s enzymatic and non-enzymatic antioxidant responses to assess the role and contribution of PGPB. Both bacterioplankton isolates were identified as Starkeya sp., and the rhizobacterium was identified as Brevundimonas aurantiaca. MC addition significantly (p < 0.05) reduced all the growth parameters of the pea, i.e., total chlorophyll content, leaf quantum yield, stomatal conductance, carotenoids, and polyphenol contents, in an MC concentration-dependent manner, while bacterial presence positively affected all the measured parameters. In the MC treatment, the levels of the pea’s antioxidant traits, including SOD, CAT, POD, PPO, GST, and ascorbic acid, were increased in the sterile pots. In contrast, these levels were reduced with double and triple PGPB addition. Additionally, nutritional values such as sugars, proteins, and minerals (Ca and K) in pea fruits were reduced under MC exposure but increased with PGPB addition. Overall, in the presence of MC, PGPB seem to positively interact with pea plants and thus may constitute a natural alternative for soil fertilization when irrigated with cyanotoxin-contaminated water, increasing the yield and nutritional value of crops.
Collapse
Affiliation(s)
- Richard Mugani
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; (M.K.); (J.W.); (H.-P.G.)
| | - Fatima El Khalloufi
- Natural Resources Engineering and Environmental Impacts Team, Multidisciplinary Research and Innovation Laboratory, Polydisciplinary Faculty of Khouribga, Sultan Moulay Slimane University of Beni Mellal, P.O. Box 145, Khouribga 25000, Morocco;
| | - El Mahdi Redouane
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
| | - Mohammed Haida
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
| | - Soukaina El Amrani Zerrifi
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
| | - Alexandre Campos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
| | - Minoru Kasada
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; (M.K.); (J.W.); (H.-P.G.)
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai 980-8578, Japan
| | - Jason Woodhouse
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; (M.K.); (J.W.); (H.-P.G.)
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Zur alten Fischerhuette 2, 14775 Stechlin, Germany; (M.K.); (J.W.); (H.-P.G.)
- Institute for Biochemistry and Biology, University of Potsdam, Maulbeeralle 2, 14469 Potsdam, Germany
| | - Vitor Vasconcelos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal;
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Brahim Oudra
- Water, Biodiversity and Climate Change Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, Av. Prince My Abdellah, P.O. Box 2390, Marrakech 40000, Morocco; (R.M.); (E.M.R.); (M.H.); (S.E.A.Z.); (B.O.)
| |
Collapse
|
8
|
Wei J, Liu D, Liu Y, Wei S. Physiological Analysis and Transcriptome Sequencing Reveal the Effects of Salt Stress on Banana ( Musa acuminata cv. BD) Leaf. FRONTIERS IN PLANT SCIENCE 2022; 13:822838. [PMID: 35498665 PMCID: PMC9039761 DOI: 10.3389/fpls.2022.822838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
The salinization of soil is a widespread environmental problem. Banana (Musa acuminata L.) is a salt-sensitive plant whose growth, development, and production are constrained by salt stresses. However, the tolerance mechanism of this salt-sensitive banana to salt stress is still unclear. This study aimed to investigate the influence of NaCl treatment on phenotypic, physiological, and transcriptome changes in bananas. We found that the content of root activity, MDA, Pro, soluble sugar, soluble protein, and antioxidant enzymes activity in salt-stress treatment were significantly higher than the control in bananas. Transcriptome sequencing result identified an overall of 3,378 differentially expressed genes (DEGs) in banana leaves, and the Kyoto Encyclopedia of Genes and Genomes analysis indicated that these DEGs were involved in phenylpropanoid biosynthesis process, ribosome process, starch and sucrose metabolism, amino sugar process, and plant hormone signal transduction process that had simultaneously changed their expression under salt stress, which indicated these DEGs may play a role in promoting BD banana growth under salt treatments. The genes which were enriched in the phenylpropanoid biosynthesis process, starch and sucrose metabolism process, amino sugar process, and plant hormone signal transduction process were specifically regulated to respond to the salt stress treatments. Here, totally 48 differentially expressed transcription factors (TFs), including WRKY, MYB, NAC, and bHLH, were annotated in BD banana under salt stress. In the phenylpropane biosynthesis pathway, all transcripts encoding key enzymes were found to be significantly up-regulated, indicating that the genes in these pathways may play a significant function in the response of BD banana to salt stress. In conclusion, this study provides new insights into the mechanism of banana tolerance to salt stress, which provides a potential application for the genetic improvement of banana with salt tolerance.
Collapse
Affiliation(s)
- Junya Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Debing Liu
- Applied Science and Technology College, Hainan University, Haikou, China
| | - Yuewei Liu
- Applied Science and Technology College, Hainan University, Haikou, China
| | - Shouxing Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
9
|
Jańczak-Pieniążek M, Migut D, Piechowiak T, Balawejder M. Assessment of the Impact of the Application of a Quercetin-Copper Complex on the Course of Physiological and Biochemical Processes in Wheat Plants ( Triticum aestivum L.) Growing under Saline Conditions. Cells 2022; 11:cells11071141. [PMID: 35406704 PMCID: PMC8997712 DOI: 10.3390/cells11071141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salt stress is one of the main stressors limiting plant growth and yield. As a result of salt stress, unfavorable changes in the photosynthesis process take place, leading to a decrease in plant productivity. Therefore, it is necessary to use biologically active substances that reduce the effects of this stress. An example of such a substance is quercetin, classified as a flavonoid, which plays an important role in alleviating the effects of salt stress, mainly by the inactivation of reactive oxygen species (ROS) and by improvement of the photosynthesis process. A study was made of the effect of the quercetin–copper complex (Q-Cu (II)), which has a stronger antioxidant effect than pure quercetin. By means of a pot experiment, the influence of solutions of the Q-Cu (II) complex (100 mg∙L−1 [Q1], 500 mg∙L−1 [Q2] and 1000 mg∙L−1 [Q3]) on the physiological and biochemical processes occurring in wheat plants subjected to salt stress was investigated. The plants were given two sprays of Q-Cu (II) solution, and their physiological parameters were examined both 1 and 7 days after each application of this solution. The level of ROS and the activity of antioxidant enzymes (catalase [CAT], superoxide dismutase [SOD] and guaiacol peroxidase [GPOX]) were also determined. It has been shown that spraying with Q2 and Q3 solutions improves the chlorophyll content, the values of chlorophyll fluorescence parameters (the photochemical efficiency of PS II [Fv/Fm], the maximum quantum yield of primary photochemistry [Fv/F0], and the performance index of PS II [PI]), and gas exchange (net photosynthetic rate [Pn], stomatal conductance [gs], transpiration rate [E] and intercellular CO2 concentration [Ci]). As a result of the application of Q2 and Q3 solutions, the level of ROS and the activity of the antioxidant enzymes tested decreased, which means that these concentrations are most effective in counteracting the effects of salt stress.
Collapse
Affiliation(s)
- Marta Jańczak-Pieniążek
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
- Correspondence:
| | - Dagmara Migut
- Department of Crop Production, University of Rzeszow, Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Tomasz Piechowiak
- Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland; (T.P.); (M.B.)
| | - Maciej Balawejder
- Department of Food Chemistry and Toxicology, University of Rzeszow, Ćwiklińskiej 1A, 35-601 Rzeszów, Poland; (T.P.); (M.B.)
| |
Collapse
|
10
|
Liu Z, Ma C, Hou L, Wu X, Wang D, Zhang L, Liu P. Exogenous SA Affects Rice Seed Germination under Salt Stress by Regulating Na +/K + Balance and Endogenous GAs and ABA Homeostasis. Int J Mol Sci 2022; 23:ijms23063293. [PMID: 35328712 PMCID: PMC8952856 DOI: 10.3390/ijms23063293] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/02/2022] Open
Abstract
Salinity reduces agricultural productivity majorly by inhibiting seed germination. Exogenous salicylic acid (SA) can prevent the harm caused to rice by salinity, but the mechanisms by which it promotes rice seed germination under salt stress are unclear. In this study, the inhibition of germination in salt-sensitive Nipponbare under salt stress was greater than that in salt-tolerant Huaidao 5. Treatment with exogenous SA significantly improved germination of Nipponbare, but had little effect on Huaidao 5. The effects of exogenous SA on ion balance, metabolism of reactive oxygen species (ROS), hormone homeostasis, starch hydrolysis, and other physiological processes involved in seed germination of rice under salt stress were investigated. Under salt stress, Na+ content and the Na+/K+ ratio in rice seeds increased sharply. Seeds were subjected to ion pressure, which led to massive accumulation of H2O2, O2−, and malonaldehyde (MDA); imbalanced endogenous hormone homeostasis; decreased gibberellic acid (GA1 and GA4) content; increased abscisic acid (ABA) content; inhibition of α-amylase (EC 3.2.1.1) activity; and slowed starch hydrolysis rate, all which eventually led to the inhibition of the germination of rice seeds. Exogenous SA could effectively enhance the expression of OsHKT1;1, OsHKT1;5, OsHKT2;1 and OsSOS1 to reduce the absorption of Na+ by seeds; reduce the Na+/K+ ratio; improve the activities of SOD, POD, and CAT; reduce the accumulation of H2O2, O2−, and MDA; enhance the expression of the GA biosynthetic genes OsGA20ox1 and OsGA3ox2; inhibit the expression of the ABA biosynthetic gene OsNCED5; increase GA1 and GA4 content; reduce ABA content; improve α-amylase activity, and increase the content of soluble sugars. In summary, exogenous SA can alleviate ion toxicity by reducing Na+ content, thereby helping to maintain ROS and hormone homeostasis, promote starch hydrolysis, and provide sufficient energy for seed germination, all of which ultimately improves rice seed germination under salt stress. This study presents a feasible means for improving the germination of direct-seeded rice in saline soil.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271000, China; (Z.L.); (L.H.); (X.W.); (D.W.); (L.Z.)
| | - Chunyang Ma
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271000, China;
| | - Lei Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an 271000, China; (Z.L.); (L.H.); (X.W.); (D.W.); (L.Z.)
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271000, China; (Z.L.); (L.H.); (X.W.); (D.W.); (L.Z.)
| | - Dan Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271000, China; (Z.L.); (L.H.); (X.W.); (D.W.); (L.Z.)
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271000, China; (Z.L.); (L.H.); (X.W.); (D.W.); (L.Z.)
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271000, China; (Z.L.); (L.H.); (X.W.); (D.W.); (L.Z.)
- Correspondence:
| |
Collapse
|
11
|
Li Z, An M, Hong D, Chang D, Wang K, Fan H. Transcriptomic and Metabolomic Analyses Reveal the Differential Regulatory Mechanisms of Compound Material on the Responses of Brassica campestris to Saline and Alkaline Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:820540. [PMID: 35283897 PMCID: PMC8905141 DOI: 10.3389/fpls.2022.820540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Oilseed rape not only has the function of improve saline and alkaline soils, but also alleviate the local feed shortage. However, medium- and high-degree soil salinization and alkalinization always inhibit the growth of oilseed rape. Studies have shown that compound material can improve the tolerance to saline and alkaline stress of crops, but the difference in the regulation mechanism of compound material on oilseed rape in saline and alkaline soils is not clear. This study explored the difference through determining the leaf ion contents, physiological indexes, transcriptomics, and metabolomics of oilseed rape in salinized soil (NaCl 8 g kg-1) and alkalinized soil (Na2CO3 8 g kg-1) at full flowering stage, respectively after the application of compound material. The results showed that in salinized and alkalinized soil, the compound material upregulated the genes related to the regulation of potassium ion transport, and changed the amino acid metabolic pathway, which reduced the contents of Na+, malondialdehyde (MDA), and relative conductivity (REC) in leaves, and increased the contents of K+ and Mg2+ and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). However, there were differences in the regulation mechanism of compound material in salinized and alkalinized soil. In salinized soil, the compound material improved the tolerance of oilseed rape to saline stress by upregulating transcription factors mannose-1-phosphate guanylyltransferase (GPMM) and Glutamine--fructose-6-phosphate transaminase (GFPT) and downregulating phosphomannomutase (PMM) to change nucleotide metabolism pathway and lipid metabolism pathway. In alkalized soil, the compound material improved the tolerance of oilseed rape to alkaline stress by upregulating transcription factors Phenylalanine ammonia lyase (PAL) to change the biosynthesis pathway of other secondary metabolites. Therefore, the compound material can improve the tolerance of oilseed rape to saline and alkaline stress by regulating the genetic adaptability and apparent plasticity, but the mechanisms were different. This study provides a practical method for the ecological environment restoration and the development of animal husbandry.
Collapse
|
12
|
Yolcu S, Alavilli H, Ganesh P, Asif M, Kumar M, Song K. An Insight into the Abiotic Stress Responses of Cultivated Beets ( Beta vulgaris L.). PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010012. [PMID: 35009016 PMCID: PMC8747243 DOI: 10.3390/plants11010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 05/03/2023]
Abstract
Cultivated beets (sugar beets, fodder beets, leaf beets, and garden beets) belonging to the species Beta vulgaris L. are important sources for many products such as sugar, bioethanol, animal feed, human nutrition, pulp residue, pectin extract, and molasses. Beta maritima L. (sea beet or wild beet) is a halophytic wild ancestor of all cultivated beets. With a requirement of less water and having shorter growth period than sugarcane, cultivated beets are preferentially spreading from temperate regions to subtropical countries. The beet cultivars display tolerance to several abiotic stresses such as salt, drought, cold, heat, and heavy metals. However, many environmental factors adversely influence growth, yield, and quality of beets. Hence, selection of stress-tolerant beet varieties and knowledge on the response mechanisms of beet cultivars to different abiotic stress factors are most required. The present review discusses morpho-physiological, biochemical, and molecular responses of cultivated beets (B. vulgaris L.) to different abiotic stresses including alkaline, cold, heat, heavy metals, and UV radiation. Additionally, we describe the beet genes reported for their involvement in response to these stress conditions.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Odisha 761211, India;
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul 10326, Korea;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
- Correspondence: (S.Y.); (H.A.); (K.S.)
| |
Collapse
|
13
|
Naguib WB, Divte PR, Chandra A, Sathee L, Singh B, Mandal PK, Anand A. Raffinose accumulation and preferential allocation of carbon ( 14 C) to developing leaves impart salinity tolerance in sugar beet. PHYSIOLOGIA PLANTARUM 2021; 173:1421-1433. [PMID: 33837561 DOI: 10.1111/ppl.13420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Sugar beet is a salt-tolerant crop that can be explored for crop production in degraded saline soils. Seeds of multigerm genotypes LKC-2006 (susceptible) and LKC-HB (tolerant) were grown in 150 mM NaCl, from germination to 60 days after sowing, to decipher the mechanism of salinity tolerance at the vegetative stage. The biomass of the root and leaf were maintained in the tolerant genotype, LKC-HB, under saline conditions. Na+ /K+ ratios were similar in roots and leaves of LKC-HB, with lower values under salinity compared to LKC 2006. Infrared temperatures were 0.96°C lower in LKC-HB than in LKC-2006, which helped regulate the leaf water status under stressed conditions. Pulse-chase experiment showed that 14 C photosynthate was preferentially allocated towards the development of new leaves in the tolerant genotype. The sugar profile of leaves and roots showed accumulation of raffinose in leaves of LKC-HB, indicating a plausible role in imparting salinity tolerance by serving as an osmolyte or scavenger. The molecular analysis of the genes responsible for raffinose synthesis revealed an 18-fold increase in the expression of BvRS2 in the tolerant genotype, suggesting its involvement in raffinose synthesis. Our study accentuated that raffinose accumulation in leaves is vital for inducing salinity tolerance and maintenance of shoot dry weight in sugar beet.
Collapse
Affiliation(s)
- Wassem B Naguib
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Division of Plant Physiology and Biochemistry, ARC-Sugar Crops Research Institute, Giza, Egypt
| | - Pandurang R Divte
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amaresh Chandra
- Division of Plant Physiology and Biochemistry, ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bhupinder Singh
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Pranab Kumar Mandal
- ICAR-National Institute for Plant Biotechnology, LBS Centre, New Delhi, India
| | - Anjali Anand
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
14
|
Yolcu S, Alavilli H, Ganesh P, Panigrahy M, Song K. Salt and Drought Stress Responses in Cultivated Beets ( Beta vulgaris L.) and Wild Beet ( Beta maritima L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:1843. [PMID: 34579375 PMCID: PMC8472689 DOI: 10.3390/plants10091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Cultivated beets, including leaf beets, garden beets, fodder beets, and sugar beets, which belong to the species Beta vulgaris L., are economically important edible crops that have been originated from a halophytic wild ancestor, Beta maritima L. (sea beet or wild beet). Salt and drought are major abiotic stresses, which limit crop growth and production and have been most studied in beets compared to other environmental stresses. Characteristically, beets are salt- and drought-tolerant crops; however, prolonged and persistent exposure to salt and drought stress results in a significant drop in beet productivity and yield. Hence, to harness the best benefits of beet cultivation, knowledge of stress-coping strategies, and stress-tolerant beet varieties, are prerequisites. In the current review, we have summarized morpho-physiological, biochemical, and molecular responses of sugar beet, fodder beet, red beet, chard (B. vulgaris L.), and their ancestor, wild beet (B. maritima L.) under salt and drought stresses. We have also described the beet genes and noncoding RNAs previously reported for their roles in salt and drought response/tolerance. The plant biologists and breeders can potentiate the utilization of these resources as prospective targets for developing crops with abiotic stress tolerance.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| | - Pushpalatha Ganesh
- Department of Plant Biotechnology, M. S. Swaminathan School of Agriculture, Centurion University of Technology and Management, Khurda 761211, Odisha, India;
| | - Madhusmita Panigrahy
- Biofuel & Bioprocessing Research Center, Institute of Technical Education & Research, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar 751030, Odisha, India;
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea
| |
Collapse
|
15
|
Zhang R, Xu C, Bao Z, Xiao R, Chen X, Xiao W, Li D, Fu X, Yang C, Li L. Auxin alters sodium ion accumulation and nutrient accumulation by playing protective role in salinity challenged strawberry. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:1-9. [PMID: 33932693 DOI: 10.1016/j.plaphy.2021.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 04/06/2021] [Indexed: 05/20/2023]
Abstract
High salinity in soil affects the strawberry production and fruit quality. Auxin-primed plants have enhanced responses to soil salinization. In this study, we report that exogenous application of IAA can partially relieve stress responses of strawberry seedlings. Cytological analysis showed that the ultrastructure of root tip and leaf cells in strawberry seedlings were altered under high salinity condition, which was partially recovered after the application of IAA. The study showed that the ultrastructure of root tip and leaf cells in strawberry seedlings were altered under salt stress condition, which was partially recovered after the application of IAA. Exogenous IAA ameliorated deleterious effects on seedling growth under salinity were attributed to accelerated Na+ fluxes, decreased the contents of Na+ to maintain the ion homeostasis, protect root growth, and promote the absorption of nutrients for improved photosynthetic efficiency in strawberry.
Collapse
Affiliation(s)
- Rui Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China; State Key Laboratory of Crop Biology, Taian, Shandong, 271018, China
| | - Chen Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China; State Key Laboratory of Crop Biology, Taian, Shandong, 271018, China
| | - Zhilong Bao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China; State Key Laboratory of Crop Biology, Taian, Shandong, 271018, China
| | - Rong Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China; State Key Laboratory of Crop Biology, Taian, Shandong, 271018, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China; State Key Laboratory of Crop Biology, Taian, Shandong, 271018, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China; State Key Laboratory of Crop Biology, Taian, Shandong, 271018, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China; State Key Laboratory of Crop Biology, Taian, Shandong, 271018, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China; State Key Laboratory of Crop Biology, Taian, Shandong, 271018, China
| | - Chao Yang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China.
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China; State Key Laboratory of Crop Biology, Taian, Shandong, 271018, China.
| |
Collapse
|
16
|
Kim BM, Lee HJ, Song YH, Kim HJ. Effect of salt stress on the growth, mineral contents, and metabolite profiles of spinach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3787-3794. [PMID: 33300600 DOI: 10.1002/jsfa.11011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Increased soil salt concentration decreases productivity and changes the physiological and chemical properties of plants. Various omics technologies have been used to understand the salt response in plants but overall changes in the metabolite profiles of spinach (Spinacia oleracea L.) under salt stress have not been studied. In this article, therefore, the changes in mineral and metabolite profiles of spinach plants cultivated with different NaCl concentrations of 0-200 mmol L-1 in the irrigation water were analyzed to investigate the effect of salt stress on nutritional quality. RESULTS Increasing NaCl concentration decreased plant growth due to mineral imbalance. The amounts of minerals (K+ , Ca2+ , and Fe2+ ) were reduced with increasing NaCl concentration, resulting in altered ratios of Na+ :K+ and Na+ :Ca2+ . The change in the mineral ratios due to NaCl irrigation led to a decrease in the height and an increase in the weight of spinach. Moreover, the profiles of 32 metabolites, including flavonoids, amino acids, acidic compounds, sugars, and lipid-related compounds, were altered by NaCl irrigation; most of them showed decreased levels. In particular, at 200 mmol L-1 NaCl, the levels of sucrose, glutamic acid, hexose sugars, and acidic compounds significantly decreased upon NaCl irrigation. Based on these metabolites, a salt-stress-related spinach metabolomic pathway was proposed. CONCLUSION Sodium chloride irrigation increased mineral imbalance, resulting in decreased plant growth, and the levels of most metabolites involved in energy production, sensory quality, and health benefits decreased with NaCl irrigation. The results suggest that NaCl irrigation negatively affects the nutritional quality of spinach. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bo-Min Kim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, South Korea
| | - Hyeon-Jeong Lee
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, South Korea
| | - Yeong H Song
- Department of Food Science & Technology, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju, South Korea
- Institute of Animal Medicine, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
17
|
Islam MJ, Ryu BR, Azad MOK, Rahman MH, Rana MS, Lim JD, Lim YS. Exogenous Putrescine Enhances Salt Tolerance and Ginsenosides Content in Korean Ginseng ( Panax ginseng Meyer) Sprouts. PLANTS (BASEL, SWITZERLAND) 2021; 10:1313. [PMID: 34203403 PMCID: PMC8309092 DOI: 10.3390/plants10071313] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022]
Abstract
The effect of exogenously applied putrescine (Put) on salt stress tolerance was investigated in Panax ginseng. Thirty-day-old ginseng sprouts were grown in salinized nutrient solution (150 mM NaCl) for five days, while the control sprouts were grown in nutrients solution. Putrescine (0.3, 0.6, and 0.9 mM) was sprayed on the plants once at the onset of salinity treatment, whereas control plants were sprayed with water only. Ginseng seedlings tested under salinity exhibited reduced plant growth and biomass production, which was directly interlinked with reduced chlorophyll and chlorophyll fluorescence due to higher reactive oxygen species (hydrogen peroxide; H2O2) and lipid peroxidation (malondialdehyde; MDA) production. Application of Put enhanced accumulation of proline, total soluble carbohydrate, total soluble sugar and total soluble protein. At the same time, activities of antioxidant enzymes like superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase in leaves, stems, and roots of ginseng seedlings were increased. Such modulation of physio-biochemical processes reduced the level of H2O2 and MDA, which indicates a successful adaptation of ginseng seedlings to salinity stress. Moreover, protopanaxadiol (PPD) ginsenosides enhanced by both salinity stress and exogenous Put treatment. On the other hand, protopanaxatriol (PPT) ginsenosides enhanced in roots and reduced in leaves and stems under salinity stress condition. In contrast, they enhanced by exogenous Put application in all parts of the plants for most cases, also evidenced by principal component analysis. Collectively, our findings provide an important prospect for the use of Put in modulating salinity tolerance and ginsenosides content in ginseng sprouts.
Collapse
Affiliation(s)
- Md. Jahirul Islam
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
- Physiology and Sugar Chemistry Division, Bangladesh Sugarcrop Research Institute, Ishurdi 6620, Pabna, Bangladesh
| | - Byeong Ryeol Ryu
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Md. Obyedul Kalam Azad
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Md. Hafizur Rahman
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Md. Soyel Rana
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Jung-Dae Lim
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| | - Young-Seok Lim
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Korea; (M.J.I.); (B.R.R.); (M.O.K.A.); (M.H.R.); (M.S.R.)
| |
Collapse
|
18
|
Functional Characterization of a Sugar Beet BvbHLH93 Transcription Factor in Salt Stress Tolerance. Int J Mol Sci 2021; 22:ijms22073669. [PMID: 33915978 PMCID: PMC8037259 DOI: 10.3390/ijms22073669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
The basic/helix–loop–helix (bHLH) transcription factor (TF) plays an important role for plant growth, development, and stress responses. Previously, proteomics of NaCl treated sugar beet leaves revealed that a bHLH TF, BvbHLH93, was significantly increased under salt stress. The BvbHLH93 protein localized in the nucleus and exhibited activation activity. The expression of BvbHLH93 was significantly up-regulated in roots and leaves by salt stress, and the highest expression level in roots and leaves was 24 and 48 h after salt stress, respectively. Furthermore, constitutive expression of BvbHLH93 conferred enhanced salt tolerance in Arabidopsis, as indicated by longer roots and higher content of chlorophyll than wild type. Additionally, the ectopic expression lines accumulated less Na+ and MDA, but more K+ than the WT. Overexpression of the BvBHLH93 enhanced the activities of antioxidant enzymes by positively regulating the expression of antioxidant genes SOD and POD. Compared to WT, the overexpression plants also had low expression levels of RbohD and RbohF, which are involved in reactive oxygen species (ROS) production. These results suggest that BvbHLH93 plays a key role in enhancing salt stress tolerance by enhancing antioxidant enzymes and decreasing ROS generation.
Collapse
|
19
|
Geng G, Wang G, Stevanato P, Lv C, Wang Q, Yu L, Wang Y. Physiological and Proteomic Analysis of Different Molecular Mechanisms of Sugar Beet Response to Acidic and Alkaline pH Environment. FRONTIERS IN PLANT SCIENCE 2021; 12:682799. [PMID: 34178001 PMCID: PMC8220161 DOI: 10.3389/fpls.2021.682799] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/17/2021] [Indexed: 05/20/2023]
Abstract
Soil pH is a major constraint to crop plant growth and production. Limited data are available on sugar beet growth status under different pH conditions. In this study, we analyzed the growth status and phenotype of sugar beet under pH 5, pH 7.5, and pH 9.5. It was found that the growth of sugar beet was best at pH 9.5 and worst at pH 5. The activities of superoxide dismutase (SOD) and peroxidase (POD) in leaves and roots increased as pH decreased from 9.5 to 5. Moreover, compared with pH 9.5, the levels of soluble sugar and proline in leaves increased significantly at pH 5. To explore the mechanisms of sugar beet response to different soil pH environments, we hypothesized that proteins play an important role in plant response to acidic and alkaline pH environment. Thus, the proteome changes in sugar beet modulated by pH treatment were accessed by TMT-based quantitative proteomic analysis. A total of three groups of differentially expressed proteins (DEPs) (pH 5 vs. pH 7.5, pH 9.5 vs. pH7.5 and pH 5 vs. pH 9.5) were identified in the leaves and roots of sugar beet. Several key proteins related to the difference of sugar beet response to acid (pH 5) and alkaline (pH 9.5) and involved in response to acid stress were detected and discussed. Moreover, based on proteomics results, QRT-PCR analysis confirmed that expression levels of three N transporters (NTR1, NRT2.1, and NRT2.5) in roots were relatively high under alkaline conditions (pH 9.5) compared with pH 5 or pH 7.5. The total nitrogen content of pH 9.5 in sugar beet was significantly higher than that of pH 7.5 and pH 5. These studies increase our understanding of the molecular mechanism of sugar beet response to different pH environments.
Collapse
Affiliation(s)
- Gui Geng
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Gang Wang
- College of Life Sciences, Heilongjiang University, Harbin, China
| | - Piergiorgio Stevanato
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università degli Studi di Padova, Padova, Italy
| | - Chunhua Lv
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Qiuhong Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Lihua Yu
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yuguang Wang
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- *Correspondence: Yuguang Wang,
| |
Collapse
|
20
|
Liu L, Wang B, Liu D, Zou C, Wu P, Wang Z, Wang Y, Li C. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. BMC PLANT BIOLOGY 2020; 20:138. [PMID: 32245415 PMCID: PMC7118825 DOI: 10.1186/s12870-020-02349-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 03/23/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Beta vulgaris L. is one of the main sugar-producing crop species and is highly adaptable to saline soil. This study explored the alterations to the carbon and nitrogen metabolism mechanisms enabling the roots of sugar beet seedlings to adapt to salinity. RESULTS The ionome, metabolome, and transcriptome of the roots of sugar beet seedlings were evaluated after 1 day (short term) and 7 days (long term) of 300 mM Na+ treatment. Salt stress caused reactive oxygen species (ROS) damage and ion toxicity in the roots. Interestingly, under salt stress, the increase in the Na+/K+ ratio compared to the control ratio on day 7 was lower than that on day 1 in the roots. The transcriptomic results showed that a large number of differentially expressed genes (DEGs) were enriched in various metabolic pathways. A total of 1279 and 903 DEGs were identified on days 1 and 7, respectively, and were mapped mainly to 10 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the genes were involved in carbon metabolism and amino acid (AA) biosynthesis. Furthermore, metabolomic analysis revealed that sucrose metabolism and the activity of the tricarboxylic acid (TCA) cycle increased in response to salt stress. After 1 day of stress, the content of sucrose decreased, whereas the content of organic acids (OAs) such as L-malic acid and 2-oxoglutaric acid increased. After 7 days of salt stress, nitrogen-containing metabolites such as AAs, betaine, melatonin, and (S)-2-aminobutyric acid increased significantly. In addition, multiomic analysis revealed that the expression of the gene encoding xanthine dehydrogenase (XDH) was upregulated and that the expression of the gene encoding allantoinase (ALN) was significantly downregulated, resulting in a large accumulation of allantoin. Correlation analysis revealed that most genes were significantly related to only allantoin and xanthosine. CONCLUSIONS Our study demonstrated that carbon and nitrogen metabolism was altered in the roots of sugar beet plants under salt stress. Nitrogen metabolism plays a major role in the late stages of salt stress. Allantoin, which is involved in the purine metabolic pathway, may be a key regulator of sugar beet salt tolerance.
Collapse
Affiliation(s)
- Lei Liu
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Bin Wang
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Dan Liu
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Chunlei Zou
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Peiran Wu
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Ziyang Wang
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Yubo Wang
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| | - Caifeng Li
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang China
| |
Collapse
|
21
|
Geng G, Li R, Stevanato P, Lv C, Lu Z, Yu L, Wang Y. Physiological and Transcriptome Analysis of Sugar Beet Reveals Different Mechanisms of Response to Neutral Salt and Alkaline Salt Stresses. FRONTIERS IN PLANT SCIENCE 2020; 11:571864. [PMID: 33193507 PMCID: PMC7604294 DOI: 10.3389/fpls.2020.571864] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/28/2020] [Indexed: 05/20/2023]
Abstract
The salinization and alkalization of soil are widespread environmental problems. Sugar beet (B. vulgaris L.) is a moderately salt tolerant glycophyte, but little is known about the different mechanisms of sugar beet response to salt and alkaline stresses. The aim of this study was to investigate the influence of neutral salt (NaCl:Na2SO4, 1:1) and alkaline salt (Na2CO3) treatment on physiological and transcriptome changes in sugar beet. We found that a low level of neutral salt (NaCl:Na2SO4; 1:1, Na+ 25 mM) or alkaline salt (Na2CO3, Na+ 25 mM) significantly enhanced total biomass, leaf area and photosynthesis indictors in sugar beet. Under a high concentration of alkaline salt (Na2CO3, Na+ 100 mM), the growth of plants was not significantly affected compared with the control. But a high level of neutral salt (NaCl: Na2SO4; 1:1, Na+ 100 mM) significantly inhibited plant growth and photosynthesis. Furthermore, sugar beet tends to synthesize higher levels of soluble sugar and reducing sugar to cope with high neutral salt stress, and more drastic changes in indole acetic acid (IAA) and abscisic acid (ABA) contents were detected. We used next-generation RNA-Seq technique to analyze transcriptional changes under neutral salt and alkaline salt treatment in sugar beet. Overall, 4,773 and 2,251 differentially expressed genes (DEGs) were identified in leaves and roots, respectively. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that genes involving cutin, suberine and wax biosynthesis, sesquiterpenoid and triterpenoid biosynthesis and flavonoid biosynthesis had simultaneously changed expression under low neutral salt or alkaline salt, so these genes may be related to stimulating sugar beet growth in both low salt treatments. Genes enriched in monoterpenoid biosynthesis, amino acids metabolism and starch and sucrose metabolism were specifically regulated to respond to the high alkaline salt. Meanwhile, compared with high alkaline salt, high neutral salt induced the expression change of genes involved in DNA replication, and decreased the expression of genes participating in cutin, suberine and wax biosynthesis, and linoleic acid metabolism. These results indicate the presence of different mechanisms responsible for sugar beet responses to neutral salt and alkaline salt stresses.
Collapse
Affiliation(s)
- Gui Geng
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Renren Li
- College of Life Sciences, Heilongjiang University, Harbin, China
| | - Piergiorgio Stevanato
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università degli Studi di Padova, Legnaro, Padua, Italy
| | - Chunhua Lv
- College of Life Sciences, Heilongjiang University, Harbin, China
| | - Zhengyu Lu
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Lihua Yu
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Yuguang Wang
- Heilongjiang Sugar Beet Center of Technology Innovation, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
- *Correspondence: Yuguang Wang,
| |
Collapse
|
22
|
Mechanisms of Sugar Beet Response to Biotic and Abiotic Stresses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:167-194. [PMID: 32383121 DOI: 10.1007/978-3-030-41283-8_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Sugar beet is used not only in the sugar production, but also in a wide range of industries including the production of bioethanol as a source of renewable energy, extraction of pectin and production of molasses. The red beetroot has attracted much attention as health-promoting and disease-preventing functional food. The negative effects of environmental stresses, including abiotic and biotic ones, significantly decrease the cash crop sugar beet productivity. In this paper, we outline the mechanisms of sugar beet response to biotic and abiotic stresses at the levels of physiological change, the genes' functions, transcription and translation. Regarding the physiological changes, most research has been carried out on salt and drought stress. The functions of genes from sugar beet in response to salt, cold and heavy metal stresses were mainly investigated by transgenic technologies. At the transcriptional level, the transcriptome analysis of sugar beet in response to salt, cold and biotic stresses were conducted by RNA-Seq or SSH methods. At the translational level, more than 800 differentially expressed proteins in response to salt, K+/Na+ ratio, iron deficiency and resupply and heavy metal (zinc) stress were identified by quantitative proteomics techniques. Understanding how sugar beet respond and tolerate biotic and abiotic stresses is important for boosting sugar beet productivity under these challenging conditions. In order to minimize the negative impact of these stresses, studying how the sugar beet has evolved stress coping mechanisms will provide new insights and lead to novel strategies for improving the breeding of stress-resistant sugar beet and other crops.
Collapse
|
23
|
Geng G, Lv C, Stevanato P, Li R, Liu H, Yu L, Wang Y. Transcriptome Analysis of Salt-Sensitive and Tolerant Genotypes Reveals Salt-Tolerance Metabolic Pathways in Sugar Beet. Int J Mol Sci 2019; 20:ijms20235910. [PMID: 31775274 PMCID: PMC6928841 DOI: 10.3390/ijms20235910] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
Soil salinization is a common environmental problem that seriously affects the yield and quality of crops. Sugar beet (Beta vulgaris L.), one of the main sugar crops in the world, shows a strong tolerance to salt stress. To decipher the molecular mechanism of sugar beet under salt stress, we conducted transcriptomic analyses of two contrasting sugar beet genotypes. To the best of our knowledge, this is the first comparison of salt-response transcriptomes in sugar beet with contrasting genotypes. Compared to the salt-sensitive cultivar (S710), the salt-tolerant one (T710MU) showed better growth and exhibited a higher chlorophyll content, higher antioxidant enzyme activity, and increased levels of osmotic adjustment molecules. Based on a high-throughput experimental system, 1714 differentially expressed genes were identified in the leaves of the salt-sensitive genotype, and 2912 in the salt-tolerant one. Many of the differentially expressed genes were involved in stress and defense responses, metabolic processes, signal transduction, transport processes, and cell wall synthesis. Moreover, expression patterns of several genes differed between the two cultivars in response to salt stress, and several key pathways involved in determining the salt tolerance of sugar beet, were identified. Our results revealed the mechanism of salt tolerance in sugar beet and provided potential metabolic pathways and gene markers for growing salt-tolerant cultivars.
Collapse
Affiliation(s)
- Gui Geng
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Crop Academy of Heilongjiang University, Heilongjiang University, Harbin 150080, China; (G.G.); (L.Y.)
- Heilongjiang Sugar beet Center of Technology Innovation, Crop Academy of Heilongjiang University, Heilongjiang University, Harbin 150080, China
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin 150080, China; (C.L.); (R.L.); (H.L.)
| | - Chunhua Lv
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin 150080, China; (C.L.); (R.L.); (H.L.)
| | - Piergiorgio Stevanato
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente, Università degli Studi di Padova, Viale dell’Università 16, Legnaro, 35020 Padova, Italy;
| | - Renren Li
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin 150080, China; (C.L.); (R.L.); (H.L.)
| | - Hui Liu
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, College of Life Sciences, Heilongjiang University, Harbin 150080, China; (C.L.); (R.L.); (H.L.)
| | - Lihua Yu
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Crop Academy of Heilongjiang University, Heilongjiang University, Harbin 150080, China; (G.G.); (L.Y.)
- Heilongjiang Sugar beet Center of Technology Innovation, Crop Academy of Heilongjiang University, Heilongjiang University, Harbin 150080, China
| | - Yuguang Wang
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Crop Academy of Heilongjiang University, Heilongjiang University, Harbin 150080, China; (G.G.); (L.Y.)
- Heilongjiang Sugar beet Center of Technology Innovation, Crop Academy of Heilongjiang University, Heilongjiang University, Harbin 150080, China
- Correspondence: ; Tel.: +86-0451-8660-9753
| |
Collapse
|
24
|
Favreau B, Denis M, Ployet R, Mounet F, Peireira da Silva H, Franceschini L, Laclau JP, Labate C, Carrer H. Distinct leaf transcriptomic response of water deficient Eucalyptus grandis submitted to potassium and sodium fertilization. PLoS One 2019; 14:e0218528. [PMID: 31220144 PMCID: PMC6586347 DOI: 10.1371/journal.pone.0218528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/04/2019] [Indexed: 01/06/2023] Open
Abstract
While potassium fertilization increases growth yield in Brazilian eucalyptus plantations, it could also increase water requirements, making trees more vulnerable to drought. Sodium fertilization, which has been shown to promote eucalyptus growth compared to K-deficient trees, could partially mitigate this adverse effect of potassium. However, little is known about the influence of K and Na fertilization on the tree metabolic response to water deficit. The aim of the present study was thus to analyze the transcriptome of leaves sampled from Eucalyptus grandis trees subjected to 37% rainfall reduction, and fertilized with potassium (K), sodium (Na), compared to control trees (C). The multifactorial experiment was set up in a field with a throughfall exclusion system. Transcriptomic analysis was performed on leaves from two-year-old trees, and data analyzed using multifactorial statistical analysis and weighted gene co-expression network analysis (WGCNA). Significant sets of genes were seen to respond to rainfall reduction, in interaction with K or Na fertilization, or to fertilization only (regardless of the water supply regime). The genes were involved in stress signaling, primary and secondary metabolism, secondary cell wall formation and photosynthetic activity. Our focus on key genes related to cation transporters and aquaporins highlighted specific regulation of ion homeostasis, and plant adjustment to water deficit. While water availability significantly affects the transcriptomic response of eucalyptus species, this study points out that the transcriptomic response is highly dependent on the fertilization regime. Our study is based on the first large-scale field trial in a tropical region, specifically designed to study the interaction between water availability and nutrition in eucalyptus. To our knowledge, this is the first global transcriptomic analysis to compare the influence of K and Na fertilization on tree adaptive traits in water deficit conditions.
Collapse
Affiliation(s)
- Bénédicte Favreau
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Marie Denis
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Raphael Ployet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Hana Peireira da Silva
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - Livia Franceschini
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Labate
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Wang Y, Stevanato P, Lv C, Li R, Geng G. Comparative Physiological and Proteomic Analysis of Two Sugar Beet Genotypes with Contrasting Salt Tolerance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6056-6073. [PMID: 31070911 DOI: 10.1021/acs.jafc.9b00244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Soil salinity is one of the major constraints affecting agricultural production and crop yield. A detailed understanding of the underlying physiological and molecular mechanisms of the different genotypic salt tolerance response in crops under salinity is therefore a prerequisite for enhancing this tolerance. In this study, we explored the changes in physiological and proteome profiles of salt-sensitive (S210) and salt-tolerant (T510) sugar beet cultivars in response to salt stress. T510 showed better growth status, higher antioxidant enzymes activities and proline level, less Na accumulation, and lower P levels after salt-stress treatments. With iTRAQ-based comparative proteomics method, 47 and 56 differentially expressed proteins were identified in the roots and leaves of S210, respectively. In T510, 56 and 50 proteins changed significantly in the roots and leaves of T510, respectively. These proteins were found to be involved in multiple aspects of functions such as photosynthesis, metabolism, stress and defense, protein synthesis, and signal transduction. Our proteome results indicated that sensitive and tolerant sugar beet cultivars respond differently to salt stress. The proteins that were mapped to the protein modification, amino acid metabolism, tricarboxylic acid cycle, cell wall synthesis, and reactive oxygen species scavenging changed differently between the sensitive and tolerant cultivars, suggesting that these pathways may promote salt tolerance in the latter. This work leads to a better understanding of the salinity mechanism in sugar beet and provides a list of potential markers for the further engineering of salt tolerance in crops.
Collapse
Affiliation(s)
| | - Piergiorgio Stevanato
- DAFNAE, Dipartimento di Agronomia, Animali, Alimenti, Risorse Naturali e Ambiente , Università degli Studi di Padova , Viale dell'Università 16 , Legnaro, Padova 35020 , Italy
| | | | | | | |
Collapse
|
26
|
Ji M, Wang K, Wang L, Chen S, Li H, Ma C, Wang Y. Overexpression of a S-Adenosylmethionine Decarboxylase from Sugar Beet M14 Increased Araidopsis Salt Tolerance. Int J Mol Sci 2019; 20:ijms20081990. [PMID: 31018555 PMCID: PMC6515516 DOI: 10.3390/ijms20081990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 12/15/2022] Open
Abstract
Polyamines play an important role in plant growth and development, and response to abiotic stresses. Previously, differentially expressed proteins in sugar beet M14 (BvM14) under salt stress were identified by iTRAQ-based quantitative proteomics. One of the proteins was an S-adenosylmethionine decarboxylase (SAMDC), a key rate-limiting enzyme involved in the biosynthesis of polyamines. In this study, the BvM14-SAMDC gene was cloned from the sugar beet M14. The full-length BvM14-SAMDC was 1960 bp, and its ORF contained 1119 bp encoding the SAMDC of 372 amino acids. In addition, we expressed the coding sequence of BvM14-SAMDC in Escherichia coli and purified the ~40 kD BvM14-SAMDC with high enzymatic activity. Quantitative real-time PCR analysis revealed that the BvM14-SAMDC was up-regulated in the BvM14 roots and leaves under salt stress. To investigate the functions of the BvM14-SAMDC, it was constitutively expressed in Arabidopsis thaliana. The transgenic plants exhibited greater salt stress tolerance, as evidenced by longer root length and higher fresh weight and chlorophyll content than wild type (WT) under salt treatment. The levels of spermidine (Spd) and spermin (Spm) concentrations were increased in the transgenic plants as compared with the WT. Furthermore, the overexpression plants showed higher activities of antioxidant enzymes and decreased cell membrane damage. Compared with WT, they also had low expression levels of RbohD and RbohF, which are involved in reactive oxygen species (ROS) production. Together, these results suggest that the BvM14-SAMDC mediated biosynthesis of Spm and Spd contributes to plant salt stress tolerance through enhancing antioxidant enzymes and decreasing ROS generation.
Collapse
Affiliation(s)
- Meichao Ji
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Kun Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
| | - Lin Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
| | - Sixue Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA.
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Yuguang Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
27
|
Ji M, Wang K, Wang L, Chen S, Li H, Ma C, Wang Y. Overexpression of a S-Adenosylmethionine Decarboxylase from Sugar Beet M14 Increased Araidopsis Salt Tolerance. Int J Mol Sci 2019. [PMID: 31018555 DOI: 10.3390/ijms20081990e1990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Polyamines play an important role in plant growth and development, and response to abiotic stresses. Previously, differentially expressed proteins in sugar beet M14 (BvM14) under salt stress were identified by iTRAQ-based quantitative proteomics. One of the proteins was an S-adenosylmethionine decarboxylase (SAMDC), a key rate-limiting enzyme involved in the biosynthesis of polyamines. In this study, the BvM14-SAMDC gene was cloned from the sugar beet M14. The full-length BvM14-SAMDC was 1960 bp, and its ORF contained 1119 bp encoding the SAMDC of 372 amino acids. In addition, we expressed the coding sequence of BvM14-SAMDC in Escherichia coli and purified the ~40 kD BvM14-SAMDC with high enzymatic activity. Quantitative real-time PCR analysis revealed that the BvM14-SAMDC was up-regulated in the BvM14 roots and leaves under salt stress. To investigate the functions of the BvM14-SAMDC, it was constitutively expressed in Arabidopsis thaliana. The transgenic plants exhibited greater salt stress tolerance, as evidenced by longer root length and higher fresh weight and chlorophyll content than wild type (WT) under salt treatment. The levels of spermidine (Spd) and spermin (Spm) concentrations were increased in the transgenic plants as compared with the WT. Furthermore, the overexpression plants showed higher activities of antioxidant enzymes and decreased cell membrane damage. Compared with WT, they also had low expression levels of RbohD and RbohF, which are involved in reactive oxygen species (ROS) production. Together, these results suggest that the BvM14-SAMDC mediated biosynthesis of Spm and Spd contributes to plant salt stress tolerance through enhancing antioxidant enzymes and decreasing ROS generation.
Collapse
Affiliation(s)
- Meichao Ji
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Kun Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
| | - Lin Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
| | - Sixue Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA.
| | - Haiying Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
- Key Laboratory of Molecular Biology, College of Heilongjiang Province, College of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Yuguang Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China.
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
28
|
Lv X, Chen S, Wang Y. Advances in Understanding the Physiological and Molecular Responses of Sugar Beet to Salt Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1431. [PMID: 31781145 PMCID: PMC6851198 DOI: 10.3389/fpls.2019.01431] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 10/15/2019] [Indexed: 05/04/2023]
Abstract
Soil salinity is a major environmental stress on crop growth and productivity. A better understanding of the molecular and physiological mechanisms underlying salt tolerance will facilitate efforts to improve crop performance under salinity. Sugar beet is considered to be a salt-tolerant crop, and it is therefore a good model for studying salt acclimation in crops. Recently, many determinants of salt tolerance and regulatory mechanisms have been studied by using physiological and 'omics approaches. This review provides an overview of recent research advances regarding sugar beet response and tolerance to salt stress. We summarize the physiological and molecular mechanisms involved, including maintenance of ion homeostasis, accumulation of osmotic-adjustment substances, and antioxidant regulation. We focus on progress in deciphering the mechanisms using 'omic technologies and describe the key candidate genes involved in sugar beet salt tolerance. Understanding the response and tolerance of sugar beet to salt stress will enable translational application to other crops and thus will have significant impacts on agricultural sustainability and global food security.
Collapse
Affiliation(s)
- Xiaoyan Lv
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, United States
| | - Yuguang Wang
- Key Laboratory of Sugar Beet Genetic Breeding of Heilongjiang Province, Heilongjiang University, Harbin, China
- *Correspondence: Yuguang Wang;
| |
Collapse
|