1
|
Sharma AD, Chhabra R, Rani J, Chauhan A, Kaur I, Kapoor G. Oil/water (O/W) nanoemulsions developed from essential oil extracted from wildly growing Calotropis gigantea (Linn.) Aiton F.: synthesis, characterization, stability and evaluation of anti-cancerous, anti-oxidant, anti-inflammatory and anti-diabetic activities. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2506-2527. [PMID: 39137303 DOI: 10.1080/09205063.2024.2384801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024]
Abstract
Calotropis gigantea essential oil is utilized in outmoded medicine, therapeutics, and the cosmetic industries. However, the extreme volatility, oxidation susceptibility, and instability of this oil restricts its application. Thus, encapsulation is a more effective method of shielding this oil from unfavorable circumstances. The creation of oil/water (O/W) nanoemulsions based on Calotropis gigantea essential oil (CEO), known as CNE (Calotropis gigantea essential oil nanoemulsions), and an assessment of its biological potential were the goals of this work. UV, fluorescence, and FT-IR methods were used for physiological characterization. Biological activities, including anti-inflammatory, anti-diabetic, and anti-cancer effects. Studies on the pharmacokinetics of CNE were conducted. CNEs encapsulation efficiency was found to be 92%. The CNE nanoemulsions had a spherical shape with polydispersity index of 0.531, size of 200 nm, and a zeta potential of -35.9 mV. Even after being stored at various temperatures for 50 days, CNE nanoemulsions remained stable. Numerous tests were used to determine the antioxidant capacity of CNE, and the following IC50 values (µl/mL) were found: iron chelating assay: 18, hydroxyl radical scavenging: 37, and nitric oxide radical scavenging activity: 58. The percentage of HeLa cells that remained viable after being treated with CNE was 41% at a higher dose of 1 µl. CNE inhibited α-amylase in a dose-dependent manner, with 72% inhibition at its higher dose of 250 µL. Research on the kinetics of drugs showed that nanoemulsions showed Higuchi pattern. This research showed potential use of Calotropis gigantea oil-based nanoemulsions in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Arun Dev Sharma
- Department of Biotechnology, Lyallpur Khalsa College, Mohyal Nagar Jalandhar, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Bathinda, India
| | - Jyoti Rani
- Department of Biochemistry, Central University of Punjab, VPO Ghudda, Bathinda, India
| | - Amrita Chauhan
- Department of Biotechnology, Lyallpur Khalsa College, Mohyal Nagar Jalandhar, Punjab, India
| | - Inderjeet Kaur
- Department of Biotechnology, Lyallpur Khalsa College, Mohyal Nagar Jalandhar, Punjab, India
| | - Gaurika Kapoor
- Department of Biotechnology, Lyallpur Khalsa College, Mohyal Nagar Jalandhar, Punjab, India
| |
Collapse
|
2
|
Li M, Li X, Ren H, Shao W, Wang C, Huang Y, Zhang S, Han Y, Zhang Y, Yin M, Zhang F, Cheng Y, Yang Y. Preparation and characterization of agarose-sodium alginate hydrogel beads for the co-encapsulation of lycopene and resveratrol nanoemulsion. Int J Biol Macromol 2024; 277:133753. [PMID: 39084974 DOI: 10.1016/j.ijbiomac.2024.133753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024]
Abstract
In the study, lycopene and resveratrol nanoemulsion hydrogel beads were prepared by using agarose‑sodium alginate as a carrier and the semi-interpenetrating polymer network technique, characteristics and morphologies were evaluated by scanning electron microscopy, fluorescence microscopy, rheological measurement. The synergistic antioxidant effect of lycopene and resveratrol was confirmed, the best synergistic antioxidant performance is achieved when the ratio of 1:1. To increase the solubility and improve the stability, the lycopene was prepared as solid dispersion added to the nanoemulsion. The encapsulation rate of lycopene and resveratrol reached 93.60 ± 2.94 % and 89.30 ± 1.75 %, respectively, and the cumulative release showed that the addition of agarose slowed down the release rate of the compound, which improves the applicability of lycopene and resveratrol and development of carriers for the delivery of different bioactive ingredients.
Collapse
Affiliation(s)
- Mingyuan Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinyi Li
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hongmeng Ren
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wanhui Shao
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chaojie Wang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yu Huang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Siqi Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yanqi Han
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Zhang
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mengsi Yin
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Faxin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Cheng
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yanfang Yang
- Beijing Key laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
3
|
Marena GD, Nascimento ALCSD, Carvalho GC, Sábio RM, Bauab TM, Chorilli M. Amphotericin B and micafungin duo-loaded nanoemulsion as a potential strategy against Candida auris biofilms. BIOFOULING 2024; 40:602-616. [PMID: 39245976 DOI: 10.1080/08927014.2024.2396020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Candida auris is a multidrug-resistant yeast that has seen a worrying increase during the COVID-19 pandemic. Give7/n this, new therapeutic options, such as controlled-release nanomaterials, may be promising in combating the infection. Therefore, this study aimed to develop amphotericin B (AmB) and micafungin (MICA)-loaded nanoemulsions (NEMA) and evaluated against biofilms of C. auris. Nanoemulsions (NEs) were characterized and determined minimum inhibitory concentration MIC90, checkerboard and anti-biofilm. NEMA presented a size of 53.7 and 81.4 nm for DLS and NTA, respectively, with good stability and spherical morphology. MICAmB incorporated efficiency was 88.4 and 99.3%, respectively. The release results show that AmB and MICA obtained a release of 100 and 63.4%, respectively. MICAmB and NEMA showed MIC90 values of 0.015 and 0.031 ug/mL, respectively and synergism. NEMA showed greater metabolic inhibition and morphological changes in mature biofilms. This drugs combination and co-encapsulation proved to be a promising therapy against C. auris biofilms.
Collapse
Affiliation(s)
- Gabriel Davi Marena
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | | | - Gabriela Corrêa Carvalho
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | - Rafael Miguel Sábio
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | - Tais Maria Bauab
- Department of Biological Sciences, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| | - Marlus Chorilli
- Department of Drug and Medicines, São Paulo State University (UNESP), School of Pharmaceutical Sciences, São Paulo State, Brazil
| |
Collapse
|
4
|
Bezerra I, Santos ERSD, Bisneto JSR, Perruci PP, Ferreira AID, Macêdo DCDS, Luz MA, Galdino TP, Machado G, Magalhães NS, Nogueira MCBL, Gubert P. Synthesis and Physicochemical Stability of a Copaiba Balsam Oil ( Copaifera sp.) Nanoemulsion and Prospecting of Toxicological Effects on the Nematode Caenorhabditis elegans. ACS OMEGA 2024; 9:39100-39118. [PMID: 39310144 PMCID: PMC11411554 DOI: 10.1021/acsomega.4c05930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
Nanoemulsions are dispersions of oil-in-water (O/W) and water-in-oil (W/O) immiscible liquids. Thus, our main goal was to formulate a nanoemulsion with low surfactant concentrations and outstanding stability using Copaiba balsam oil (Copaifera sp.). The high-energy cavitation homogenization with low Tween 80 levels was employed. Then, electrophoretic and physical mobility properties were assessed, in addition to a one- and two-year physicochemical characterization studies assessment. Copaiba balsam oil and nanoemulsions obtained caryophyllene as a major constituent. The nanoemulsions stored at 4 ± 2 °C exhibited better physical stability. Two years after formulation, the nanoemulsion showed a reduction in the particle size. The size underwent changes in gastric, intestinal, and blood pH, and the PdI was not changed. In FTIR, characteristic bands of sesquiterpenes and overlapping bands were detected. When subjected to freezing and heating cycles, nanoemulsions did not show macroscopic changes in higher concentrations. Nanoemulsions subjected to centrifuge force by 1000 rpm do not show macroscopic instability and phase inversion or destabilization characteristics when diluted. Therefore, the nanoemulsion showed stability for long-term storage. The nematode Caenorhabditis elegans was used to assess the potential toxicity of nanoemulsions. The nanoemulsion did not cause toxicity in the animal model, except in the highest concentration tested, which decreased the defecation cycle interval and body length. The toxicity and stability outcomes reinforce the nanoemulsions' potential for future studies to explore pharmacological mechanisms in superior experimental designs.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Charles dos Santos Macêdo
- Keizo
Asami Institute (iLIKA), Federal University of Pernambuco, Recife 50670-901, Brazil
- Department
of Pharmaceutical Sciences, Federal University
of Pernambuco, Recife 50670-901, Brazil
| | - Mateus Araújo
da Luz
- Northeast
Biomaterials Assessment and Development Laboratory (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Taynah Pereira Galdino
- Northeast
Biomaterials Assessment and Development Laboratory (CERTBIO), Federal University of Campina Grande, Campina Grande 58429-900, Brazil
| | - Giovanna Machado
- Northeast
Strategic Technologies Center (CETENE), Recife 50740-545, Brazil
| | - Nereide Stela
Santos Magalhães
- Keizo
Asami Institute (iLIKA), Federal University of Pernambuco, Recife 50670-901, Brazil
- Department
of Pharmaceutical Sciences, Federal University
of Pernambuco, Recife 50670-901, Brazil
| | | | - Priscila Gubert
- Keizo
Asami Institute (iLIKA), Federal University of Pernambuco, Recife 50670-901, Brazil
- Federal
University of Western Bahia (UFOB), Barreiras 47800-000, Brazil
| |
Collapse
|
5
|
Rajendran AT, Vadakkepushpakath AN. Natural Food Components as Biocompatible Carriers: A Novel Approach to Glioblastoma Drug Delivery. Foods 2024; 13:2812. [PMID: 39272576 PMCID: PMC11394703 DOI: 10.3390/foods13172812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/15/2024] Open
Abstract
Efficient drug delivery methods are crucial in modern pharmacotherapy to enhance treatment efficacy, minimize adverse effects, and improve patient compliance. Particularly in the context of glioblastoma treatment, there has been a recent surge in interest in using natural dietary components as innovative carriers for drug delivery. These food-derived carriers, known for their safety, biocompatibility, and multifunctional properties, offer significant potential in overcoming the limitations of conventional drug delivery systems. This article thoroughly overviews numerous natural dietary components, such as polysaccharides, proteins, and lipids, used as drug carriers. Their mechanisms of action, applications in different drug delivery systems, and specific benefits in targeting glioblastoma are examined. Additionally, the safety, biocompatibility, and regulatory considerations of employing food components in drug formulations are discussed, highlighting their viability and future prospects in the pharmaceutical field.
Collapse
Affiliation(s)
- Arunraj Tharamelveliyil Rajendran
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| | - Anoop Narayanan Vadakkepushpakath
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences (NGSMIPS), Nitte (Deemed to be University), Mangalore 575018, Karnataka, India
| |
Collapse
|
6
|
Haghbayan H, Moghimi R, Sarrafi Y, Taleghani A, Hosseinzadeh R. Enhancing bioactivity of Callistemon citrinus (Curtis) essential oil through novel nanoemulsion formulation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-22. [PMID: 39102358 DOI: 10.1080/09205063.2024.2386787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
The main focus of this study was to create a stable and efficient nanoemulsion (NE) using Callistemon citrinus essential oil (EO). Various factors affecting the NE's stability were optimized including oil %, Tween 80%, time of sonication, and its accelerated stability was examined. The research also considered the antibacterial, antifungal, and larvicidal effects of the optimized NE (B10). The optimum NE stood out for its stability, featuring a particle size of 33.15 ± 0.32 nm. Analysis via IR spectroscopy confirmed successful EO encapsulation in B10. The formulation remained stable for six months, with B10 showing significantly higher antibacterial and antifungal potency compared to the pure oil. When samples were subjected to tests against Fusarium oxysporum, B10 exhibited a MIC value of 62.5 mg/mL, whereas the pure oil showed a MIC value of 250 mg/mL. This indicates that the B10 formulation was 50 times more effective than the EO. In terms of antibacterial activity against Escherichia coli, the MIC value was 0.256 mg/mL for B10 and 4 mg/mL for the EO. Also, pure oil and B10 displayed larvicidal effects against Chilo suppressalis (Walker) larvae, with B10 eliminating 95.2% of larvae in 48 h. Overall, stable and optimum C. citrinus NE with its strong antimicrobial qualities, shows promise as an effective fungicide and insecticide.
Collapse
Affiliation(s)
- Hamta Haghbayan
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Roya Moghimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Yaghoub Sarrafi
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Akram Taleghani
- Department of Chemistry, Faculty of Science, Gonbad Kavous University, Gonbad-e Kavus, Iran
| | - Rahman Hosseinzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
7
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
8
|
Santos Porto D, da Costa Bernardo Port B, Conte J, Fretes Argenta D, Pereira Balleste M, Amadeu Micke G, Machado Campos Â, Silva Caumo K, Caon T. Development of ophthalmic nanoemulsions of β-caryophyllene for the treatment of Acanthamoeba keratitis. Int J Pharm 2024; 659:124252. [PMID: 38782149 DOI: 10.1016/j.ijpharm.2024.124252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Although rare, amoebic keratitis (AK) is a disease caused by Acanthamoeba spp. that can lead to blindness. The drugs currently available for its treatment are very toxic, which has motivated the investigation for more effective and safe therapeutic options. In this study, the in vitro activity of ß-caryophyllene (BCP) was exploited taking into account its action against other protozoans as well as its well-known healing and anti-inflammatory properties (aspects relevant for the AK pathogenesis). On the other hand, high volatilization and oxidation phenomena are found for this compound, which led to its incorporation into nanoemulsions (NEs). Two emulsifying agents were tested, resulting in monodisperse systems with reduced droplet size (<265 nm) and high surface charge (positive and negative for NEs prepared with cetrimonium bromide -CTAB and Phosal® 50+, respectively). NEs prepared with CTAB were shown to be more stable after long-term storage at 4 and 25 °C than those prepared with Phosal®. Pure BCP, at the highest concentration (500 µM), resulted in a level of inhibition of Acanthamoeba trophozoites equivalent to that of reference drug (chlorhexidine). This activity was even greater after oil nanoencapsulation. The reduced droplet size could improve the interaction of the oil with the microorganism, justifying this finding. Changes in surface charge did not impact the activity. Positively charged NEs improved the interaction and retention of BCP in the cornea and thus should be prioritized for further studies.
Collapse
Affiliation(s)
- Douglas Santos Porto
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | | - Júlia Conte
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Debora Fretes Argenta
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Maira Pereira Balleste
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Gustavo Amadeu Micke
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Ângela Machado Campos
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Karin Silva Caumo
- Department of Clinical Analyses, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Thiago Caon
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| |
Collapse
|
9
|
Lee CC, Suttikhana I, Ashaolu TJ. Techno-Functions and Safety Concerns of Plant-Based Peptides in Food Matrices. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12398-12414. [PMID: 38797944 DOI: 10.1021/acs.jafc.4c02464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Plant-based peptides (PBPs) benefit functional food development and environmental sustainability. Proteolysis remains the primary method of peptide production because it is a mild and nontoxic technique. However, potential safety concerns still emanate from toxic or allergenic sequences, amino acid racemization, iso-peptide bond formation, Maillard reaction, dose usage, and frequency. The main aim of this review is to investigate the techno-functions of PBPs in food matrices, as well as their safety concerns. The distinctive characteristics of PBPs exhibit their techno-functions for improving food quality and functionality by contributing to several crucial food formulations and processing. The techno-functions of PBPs include solubility, hydrophobicity, bitterness, foaming, oil-binding, and water-holding capacities, which subsequently affect food matrices. The safety and quality of foodstuff containing PBPs depend on the proper source of plant proteins, the selection of processing approaches, and compliance with legal regulations for allergen labeling and safety evaluations. The safety concerns in allergenicity and toxicity were discussed. The conclusion is that food technologists must apply safe limits and consider potential allergenic components generated during the development of food products with PBPs. Therefore, functional food products containing PBPs can be a promising strategy to provide consumers with wholesome health benefits.
Collapse
Affiliation(s)
- Chi-Ching Lee
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Halkalı Avenue No: 28, Halkalı, Küçükçekmece, Istanbul 34303, Türkiye
| | - Itthanan Suttikhana
- Department of Multifunctional Agriculture, Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, České Budějovice, Branišovská 1645/31a, 370 05 České Budějovice 2, Czechia
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Viet Nam
- Faculty of Medicine, Duy Tan University, Da Nang 550000, Viet Nam
| |
Collapse
|
10
|
Ye X, Fung NSK, Lam WC, Lo ACY. Nutraceuticals for Diabetic Retinopathy: Recent Advances and Novel Delivery Systems. Nutrients 2024; 16:1715. [PMID: 38892648 PMCID: PMC11174689 DOI: 10.3390/nu16111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Diabetic retinopathy (DR) is a major vision-threatening disease among the working-age population worldwide. Present therapeutic strategies such as intravitreal injection of anti-VEGF and laser photocoagulation mainly target proliferative DR. However, there is a need for early effective management in patients with early stage of DR before its progression into the more severe sight-threatening proliferative stage. Nutraceuticals, natural functional foods with few side effects, have been proposed to be beneficial in patients with DR. Over the decades, many studies, either in vitro or in vivo, have demonstrated the advantages of a number of nutraceuticals in DR with their antioxidative, anti-inflammatory, neuroprotective, or vasoprotective effects. However, only a few clinical trials have been conducted, and their outcomes varied. The low bioavailability and instability of many nutraceuticals have indeed hindered their utilization in clinical use. In this context, nanoparticle carriers have been developed to deliver nutraceuticals and to improve their bioavailability. Despite its preclinical nature, research of interventive nutraceuticals for DR may yield promising information in their clinical applications.
Collapse
Affiliation(s)
- Xiaoyuan Ye
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| | - Nicholas Siu Kay Fung
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| | - Wai Ching Lam
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
- Department of Ophthalmology, University of British Columbia, 2550 Willow Street, Room 301, Vancouver, BC V5Z 3N9, Canada
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, The University of Hong Kong, Hong Kong 999077, China; (X.Y.); (N.S.K.F.); (W.C.L.)
| |
Collapse
|
11
|
Huang B, Hu Q, Zhang G, Zou J, Fei P, Wang Z. Exploring the emulsification potential of chitosan modified with phenolic acids: Emulsifying properties, functional activities, and application in curcumin encapsulation. Int J Biol Macromol 2024; 263:130450. [PMID: 38412937 DOI: 10.1016/j.ijbiomac.2024.130450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
This study successfully grafted caffeic acid and 3,4-dihydroxybenzoic acid into chitosan through a coupling reaction, yielding grafting ratio of 8.93 % for caffeic acid grafted chitosan (CA-GC) and 9.15 % for 3,4-dihydroxybenzoic acid grafted chitosan (DHB-GC) at an optimal concentration of 4 mmol phenolic acids. The characterization of modified chitosans through ultraviolet visible spectrometer (UV-vis), Fourier transform infrared spectrometer (FTIR), proton nuclear magnetic resonance (1H NMR), and x-ray photoelectron spectrometer (XPS) confirmed the successful grafting of phenolic acids. In the subsequent step of emulsion preparation, confocal laser scanning microscope images confirmed the formation of O/W (oil-in-water) emulsions. The phenolic acid-grafted chitosans exhibited better emulsification properties compared to native chitosan, such as reduced droplet size, more uniform emulsion droplet distribution, increased ζ-potential, and enhanced emulsifying activity and stability. Moreover, the modified chitosans demonstrated increased antioxidant activities (evidenced by DPPH and β-carotene assays) and displayed greater antimicrobial effects against E. coli and S. aureus. Its efficacy in curcumin encapsulation was also notable, with improved encapsulation efficiency, sustained release rates, and enhanced storage and photostability. These findings hint at the potential of modified chitosans as an effective emulsifier.
Collapse
Affiliation(s)
- Bingqing Huang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Qianyi Hu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Guoguang Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Jinmei Zou
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Peng Fei
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Zhenjiong Wang
- College of Food Science & Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
12
|
da Silva Gomes B, Cláudia Paiva-Santos A, Veiga F, Mascarenhas-Melo F. Beyond the adverse effects of the systemic route: Exploiting nanocarriers for the topical treatment of skin cancers. Adv Drug Deliv Rev 2024; 207:115197. [PMID: 38342240 DOI: 10.1016/j.addr.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 12/21/2023] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Skin cancer is a heterogeneous disease that can be divided into two main groups, melanoma and nonmelanoma skin cancers. Conventional therapies for skin cancer have numerous systemic side effects and a high recurrence rate. Topical treatment is an alternative approach, but drug permeability remains a challenge. Therefore, nanocarriers appear as important nanotechnology tools that reduces both the side effects and improves clinical outcomes. This is why they are attracting growing interest. In this review, scientific articles on the use of nanocarriers for the topical treatment of skin cancer were collected. Despite the promising results of the presented nanocarriers and considering that some of them are already on the market, there is an urgent need for investment in the development of manufacturing methods, as well as of suitable toxicological and regulatory evaluations, since the conventional methods currently used to develop these nanocarriers-based products are more time-consuming and expensive than conventional products.
Collapse
Affiliation(s)
- Beatriz da Silva Gomes
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Francisco Veiga
- Laboratory of Development and Drug Technologies, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal.
| | - Filipa Mascarenhas-Melo
- University of Coimbra, LAQV-REQUIMTE, Department of Pharmaceutical Technology, Faculty of Pharmacy, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; Higher School of Health, Polytechnic Institute of Guarda, Rua da Cadeia, 6300 - 307 Guarda, Portugal.
| |
Collapse
|
13
|
Mishra I, Mishra R, Dubey A, Dhakad PK. A Perspective on Various Facets of Nanoemulsions and its Commercial Utilities. Assay Drug Dev Technol 2024; 22:97-117. [PMID: 38489509 DOI: 10.1089/adt.2023.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
Nanotechnology is a captivating contemporary technology owing to its extensive range of potential applications. This study emphasizes nanomaterials, substances with a size <100 nm, offering better qualities than coarse particles. Nanoparticles have several advantages compared with conventional drug delivery methods, including enhanced bioavailability and a larger surface area because of their smaller particle size. These characteristics make the nanoparticles a viable clinical candidate. Controlled-release drug delivery systems and targeted drug delivery systems rely heavily on nanoparticles. Because traditional drug delivery methods fail to achieve targeted drug delivery, resulting in toxicity, low bioavailability, poor therapeutic outcomes, and so on, these drug nanoparticles excel in all these areas. Researchers are already interested in developing drug delivery systems such as niosomes, bilosomes, and dendrimers. Nanoemulsion is one of these technologies; nanoemulsions outperform traditional emulsions in terms of pharmacodynamics and pharmacokinetics. Nanoemulsion effectively surpasses the constraints of standard emulsions, primarily by offering enhanced bioavailability, reduced toxicity, improved absorption, and the potential to be used in targeted drug delivery or controlled-release drug delivery systems. This particular work explores several aspects of nanoemulsions, including their constituents, classification, techniques for preparation, criteria for assessment, commercial applications, and future prospects.
Collapse
Affiliation(s)
- Isha Mishra
- Galgotias College of Pharmacy, Greater Noida, Uttar Pradesh, India
| | - Raghav Mishra
- Lloyd School of Pharmacy, Greater Noida, Uttar Pradesh, India
| | | | | |
Collapse
|
14
|
Xu X, Tang Q, Gao Y, Chen S, Yu Y, Qian H, McClements DJ, Cao C, Yuan B. Recent developments in the fabrication of food microparticles and nanoparticles using microfluidic systems. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38520155 DOI: 10.1080/10408398.2024.2329967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Microfluidics is revolutionizing the production of microparticles and nanoparticles, offering precise control over dimensions and internal structure. This technology facilitates the creation of colloidal delivery systems capable of encapsulating and releasing nutraceuticals. Nutraceuticals, often derived from food-grade ingredients, can be used for developing functional foods. This review focuses on the principles and applications of microfluidic systems in crafting colloidal delivery systems for nutraceuticals. It explores the foundational principles behind the development of microfluidic devices for nutraceutical encapsulation and delivery. Additionally, it examines the prospects and challenges with using microfluidics for functional food development. Microfluidic systems can be employed to form emulsions, liposomes, microgels and microspheres, by manipulating minute volumes of fluids flowing within microchannels. This versatility can enhance the dispersibility, stability, and bioavailability of nutraceuticals. However, challenges as scaling up production, fabrication complexity, and microchannel clogging hinder the widespread application of microfluidic technologies. In conclusion, this review highlights the potential role of microfluidics in design and fabrication of nutraceutical delivery systems. At present, this technology is most suitable for exploring the role of specific delivery system features (such as particle size, composition and morphology) on the stability and bioavailability of nutraceuticals, rather than for large-scale production of nutraceutical delivery systems.
Collapse
Affiliation(s)
- Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Qi Tang
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yating Gao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shaoqin Chen
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Yingying Yu
- School of Life Science, Shaoxing University, Shaoxing, Zhejiang, China
| | - Hongliang Qian
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | | | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Liu T, Wang Y, Zhang M, Zhang J, Kang N, Zheng L, Ding Z. The Optimization Design of Macrophage Membrane Camouflaging Liposomes for Alleviating Ischemic Stroke Injury through Intranasal Delivery. Int J Mol Sci 2024; 25:2927. [PMID: 38474179 DOI: 10.3390/ijms25052927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Ischemic stroke is associated with a high mortality rate, and effective treatment strategies are currently lacking. In this study, we aimed to develop a novel nano delivery system to treat ischemic stroke via intranasal administration. A three-factor Box-Behnken experimental design was used to optimize the formulation of liposomes co-loaded with Panax notoginseng saponins (PNSs) and Ginsenoside Rg3 (Rg3) (Lip-Rg3/PNS). Macrophage membranes were coated onto the surface of the optimized liposomes to target the ischemic site of the brain. The double-loaded liposomes disguised by macrophage membranes (MM-Lip-Rg3/PNS) were spherical, in a "shell-core" structure, with encapsulation rates of 81.41% (PNS) and 93.81% (Rg3), and showed good stability. In vitro, MM-Lip-Rg3/PNS was taken up by brain endothelial cells via the clathrin-dependent endocytosis and micropinocytosis pathways. Network pharmacology experiments predicted that MM-Lip-Rg3/PNS could regulate multiple signaling pathways and treat ischemic stroke by reducing apoptosis and inflammatory responses. After 14 days of treatment with MM-Lip-Rg3/PNS, the survival rate, weight, and neurological score of middle cerebral artery occlusion (MCAO) rats significantly improved. The hematoxylin and eosin (H&E) and TUNEL staining results showed that MM-Lip-Rg3/PNS can reduce neuronal apoptosis and inflammatory cell infiltration and protect the ischemic brain. In vivo biological experiments have shown that free Rg3, PNS, and MM-Lip-Rg3/PNS can alleviate inflammation and apoptosis, especially MM-Lip-Rg3/PNS, indicating that biomimetic liposomes can improve the therapeutic effects of drugs. Overall, MM-Lip-Rg3/PNS is a potential biomimetic nano targeted formulation for ischemic stroke therapy.
Collapse
Affiliation(s)
- Tianshu Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Yan Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Mengfan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Naijin Kang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Linlin Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhiying Ding
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
16
|
Yong J, Shu H, Zhang X, Yang K, Luo G, Yu L, Li J, Huang H. Natural Products-Based Inhaled Formulations for Treating Pulmonary Diseases. Int J Nanomedicine 2024; 19:1723-1748. [PMID: 38414528 PMCID: PMC10898359 DOI: 10.2147/ijn.s451206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Given the unique physiological and pathological characteristics of the lung, the direct, inhalable route is more conducive to pulmonary drug delivery and disease control than traditional systemic drug delivery, significantly circumventing drug loss, off-target effects, systemic and organ toxicity, etc., and is widely regarded as the preferred regimen for pulmonary drug delivery. However, very few lung diseases are currently treated with the preferred inhaled formulations, such as asthma, chronic obstructive pulmonary disease and pulmonary hypertension. And there is a lack of appropriate inhaled formulations for other critical lung diseases, such as lung cancer and pulmonary fibrosis, due to the fact that the physicochemical properties of the drugs and their pharmacokinetic profiles do not match the physiology of the lung, and conventional inhalation devices are unable to deliver them to the specific parts of the lung. Phytochemicals of natural origin, due to their wide availability and clear safety profile, hold great promise for the preparation of inhalable formulations to improve the current dilemma in the treatment of lung diseases. In particular, the preparation of inhalable formulations based on nano- and microparticulate carriers for drug delivery to deep lung tissues, which overcome the shortcomings of conventional inhalation therapies while targeting the drug activity directly to a specific part of the lung, may be the best approach to change the current dilemma of lung disease treatment. In this review, we discuss recent advances in nano- and micron-carrier-based inhalation formulations for the delivery of natural products for the treatment of pulmonary diseases, which may represent an opportunity for practical clinical translation of natural products.
Collapse
Affiliation(s)
- Jiangyan Yong
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Hongli Shu
- Department of Clinical Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 610072, People’s Republic of China
| | - Xiao Zhang
- Department of Clinical Laboratory, Chengdu Children Special Hospital, Chengdu, Sichuan, 610031, People’s Republic of China
| | - Kun Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Guining Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Lu Yu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Jiaqi Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People’s Republic of China
| | - Hong Huang
- Department of Clinical Laboratory, the People’s Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, People’s Republic of China
| |
Collapse
|
17
|
Jia M, Bai W, Deng J, Li W, Lin Q, Zhong F, Luo F. Enhancing solubility and bioavailability of octacosanol: Development of a green O/W nanoemulsion synthesis process. Int J Pharm 2024; 651:123726. [PMID: 38135259 DOI: 10.1016/j.ijpharm.2023.123726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
Octacosanol, a naturally occurring higher fatty alcohol, possessed numerous biological effects. However, octacosanol limited solubility in water due to its lipophilic nature and large structure, resulting in poor absorption and low bioavailability. To overcome this challenge, we developed a simple, environmentally friendly, and energy-efficient O/W nanoemulsion synthesis process. The nanoemulsion achieved an average droplet size of approximately 30 nm, exhibited excellent dispersibility and stability at room temperature for 60 days, and showcased robust storage properties insensitive to ambient temperature, pH, NaCl, and sucrose. Remarkably, the preparation process of the nanoemulsion maintained the biological activity of octacosanol while demonstrating significantly enhancing antioxidant activity compared to octacosanol suspension. Additionally, the nanoemulsion displayed negligible cytotoxic effects on Caco-2 cells. Significantly, the octacosanol nanoemulsion exhibited a 5.4-fold enhancement in transmembrane transport efficiency when compared to the suspension in Caco-2 cell monolayers. Additionally, in an in vivo experiment, there was a notable 2.9-fold increase in rat intestinal absorption. These findings could provide valuable insights into the development of octacosanol nanoemulsion, supporting its future applications and paving the way for the design of stable nanoemulsion systems for other lipophilic and sparingly soluble substances.
Collapse
Affiliation(s)
- Mingxi Jia
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, JiangSu, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, JiangSu, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha 410004, China.
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, JiangSu, China; Hunan Provincial Engineering Technology Research Center of Seasonings Green Manufacturing, Changsha 410004, China
| | - Feifei Zhong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Changsha Institute for Food and Drug Control, Changsha 410016, Hunan, China
| | - Feijun Luo
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
18
|
Jamir Y, Bhushan M, Sanjukta R, Robindro Singh L. Plant-based essential oil encapsulated in nanoemulsions and their enhanced therapeutic applications: An overview. Biotechnol Bioeng 2024; 121:415-433. [PMID: 37941510 DOI: 10.1002/bit.28590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/22/2023] [Accepted: 10/28/2023] [Indexed: 11/10/2023]
Abstract
In recent years, studies on the formulation of nanoemulsions have been the focus of attention due to their potential applicability in food, pharmaceuticals, cosmetics, and agricultural industries. Nanoemulsions can be formulated using ingredients approved by the Food and Drug Administration (FDA), which assures their safety profiles to a great extent. Bioactive compounds such as essential oils although have strong biological properties and antimicrobial compounds, their usage is restricted due to their high volatility, instability, and hydrophobic nature. Therefore, nanoemulsion as carrier vehicle can be used to encapsulate essential oils to obtain stable and enhanced physicochemical characteristics of the essential oils. This review details the structure, formulation, and characterization techniques used for nanoemulsions, with a focus on the essential oil-based nanoemulsions which have the potential to be used as antimicrobial and anticancer therapeutics.
Collapse
Affiliation(s)
- Yangerdenla Jamir
- Department of Nanotechnology, North Eastern Hill University, Shillong, Meghalaya, India
- Division of Animal and Fisheries Sciences, ICAR-RC for NEH Region, Umiam, Meghalaya, India
| | - Mayank Bhushan
- Department of Nanotechnology, North Eastern Hill University, Shillong, Meghalaya, India
| | - Rajkumari Sanjukta
- Division of Animal and Fisheries Sciences, ICAR-RC for NEH Region, Umiam, Meghalaya, India
| | | |
Collapse
|
19
|
Marques Borges GS, Santos TT, Pinto CM, Frézard F, Blanco VF, Ondei R, Rumbelow S, Miranda Ferreira LA, Gontijo de Aguiar MM, Castro Goulart GA. Distearoyl phosphatidylglycerol and dioleoyl phosphatidylglycerol increase the retention and reduce the toxicity of amphotericin B-loaded in nanoemulsions. Nanomedicine (Lond) 2024; 19:383-396. [PMID: 38293893 DOI: 10.2217/nnm-2023-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Aim: To develop nanoemulsions (NEs) loading amphotericin B (AmB) and to evaluate the influence of different excipients on the stability and the supramolecular organization, retention and toxicity of AmB. Materials & methods: The NEs were developed from different oils, surfactants, external media and anionic lipids (disteaoryl phosphatidylglycerol [DSPG] and dioleoyl phosphatidylglycerol [DOPG]). Their impact on the size, pH, zeta potential, AmB encapsulation efficiency, AmB retention and hemolytic potential of the NEs was evaluated. Results & conclusion: The use of soybean oil (lipid matrix), Span 80 (surfactant), phosphate buffer (external phase) and DSPG or DOPG (hydrophobic ion pair) provided better NE stability, higher AmB retention within the NEs and a safer formulation profile in hemolysis tests.
Collapse
Affiliation(s)
- Gabriel Silva Marques Borges
- Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, 39100-000, Brazil
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Thais Tunes Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Cristiane Monteiro Pinto
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Frédéric Frézard
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Roberta Ondei
- Croda do Brasil, Rua Croda, 580, Campinas, 13054-710, Brazil
| | - Stephen Rumbelow
- Croda Inc, Building 2, Suite 200, 777 Scudders Mill Road, Plainsboro, NJ 08540, USA
| | - Lucas Antônio Miranda Ferreira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Marta Marques Gontijo de Aguiar
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Gisele Assis Castro Goulart
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| |
Collapse
|
20
|
Sghier K, Mur M, Veiga F, Paiva-Santos AC, Pires PC. Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases. Gels 2024; 10:45. [PMID: 38247768 PMCID: PMC10815052 DOI: 10.3390/gels10010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions.
Collapse
Affiliation(s)
- Kamil Sghier
- Faculty of Pharmacy, Masaryk University, Palackého tř. 1946, Brno-Královo Pole, 612 00 Brno, Czech Republic
| | - Maja Mur
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva c. 7, 1000 Ljubljana, Slovenia
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Patrícia C. Pires
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilhã, Portugal
| |
Collapse
|
21
|
Kumar V, Garg V, Saini N, Aggarwal N, Kumar H, Kumar D, Chopra H, Kamal MA, Dureja H. An Updated Review on Nanoemulsion: Factory for Food and Drug Delivery. Curr Pharm Biotechnol 2024; 25:2218-2252. [PMID: 38415490 DOI: 10.2174/0113892010267771240211124950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 02/29/2024]
Abstract
BACKGROUND A nanoemulsion is a colloidal system of small droplets dispersed in another liquid. It has attracted considerable attention due to its unique properties and various applications. Throughout this review, we provide an overview of nanoemulsions and how they can be applied to various applications such as drug delivery, food applications, and pesticide formulations. OBJECTIVE This updated review aims to comprehensively overview nanoemulsions and their applications as a versatile platform for drug delivery, food applications, and pesticide formulations. METHODS Research relevant scientific literature across various databases, including PubMed, Scopus, and Web of Science. Suitable keywords for this purpose include "nanoemulsion," "drug delivery," and "food applications." Ensure the search criteria include recent publications to ensure current knowledge is included. RESULTS Several benefits have been demonstrated in the delivery of drugs using nanoemulsions, including improved solubility, increased bioavailability, and controlled delivery. Nanoemulsions have improved some bioactive compounds in food applications, including vitamins and antioxidants. At the same time, pesticide formulations based on nanoemulsions have also improved solubility, shelf life, and effectiveness. CONCLUSION The versatility of nanoemulsions makes them ideal for drug delivery, food, and pesticide formulation applications. These products are highly soluble, bioavailable, and targeted, providing significant advantages. More research and development are required to implement nanoemulsion-based products on a commercial scale.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Vandana Garg
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Nakul Saini
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Navidha Aggarwal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Harsh Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
- Vaish Institute of Pharmaceutical Education and Research, Rohtak, 124001, India
| | - Davinder Kumar
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
22
|
Yan X, Lu E, Song Z, Wu Y, Sha X. Development and In Vivo Evaluation of a Novel Vitamin D3 Oral Spray Delivery System. Pharmaceutics 2023; 16:25. [PMID: 38258036 PMCID: PMC10819964 DOI: 10.3390/pharmaceutics16010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Developing drugs that are highly selective to host tissues but are the least toxic remains one of the most difficult challenges in cancer treatment. Recent studies have shown that tumor cells from a variety of sources can express vitamin D3 receptors and that the response to vitamin D3 and its analogs is prone to growth arrest and cell death. However, conventional vitamin D3 drug formulations lack dose control and cannot target specific cells or tissues. The aim of this study was to prepare vitamin D3 nanospray for inhalation delivery route. This study evaluated the physical properties of the formulation (particle size distribution and biological stability), the total number of sprays per bottle, the spray volume per spray, and the loading variance of the spray. The optimized vitamin D3 spray formula is easy to spray, has fewer drips, and has a fast drying time. It can be stored for 3 months at 37 ± 2 °C temperature, 75 ± 5% relative humidity, and away from light, and can maintain biological stability. This study showed that compared with traditional nasal sprays, the spray has a larger fan angle (82.1 degrees) and beam width (104.88 mm), more symmetrical spray on both sides of the spray column, a faster coverage of the administration site, and a wider range, which is suitable for inhalation delivery routes.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China; (X.Y.); (E.L.)
| | - Enhao Lu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China; (X.Y.); (E.L.)
| | - Zhuo Song
- Shanghai JiaLanHai NanoTechnology Group Co., Ltd., Shanghai 200335, China; (Z.S.); (Y.W.)
| | - Yuexing Wu
- Shanghai JiaLanHai NanoTechnology Group Co., Ltd., Shanghai 200335, China; (Z.S.); (Y.W.)
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China; (X.Y.); (E.L.)
- The Institutes of Integrative Medicine, Fudan University, Shanghai 200040, China
| |
Collapse
|
23
|
Valenti GE, Marengo B, Milanese M, Zuccari G, Brullo C, Domenicotti C, Alfei S. Imidazo-Pyrazole-Loaded Palmitic Acid and Polystyrene-Based Nanoparticles: Synthesis, Characterization and Antiproliferative Activity on Chemo-Resistant Human Neuroblastoma Cells. Int J Mol Sci 2023; 24:15027. [PMID: 37834475 PMCID: PMC10573130 DOI: 10.3390/ijms241915027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Neuroblastoma (NB) is a childhood cancer, commonly treated with drugs, such as etoposide (ETO), whose efficacy is limited by the onset of resistance. Here, aiming at identifying new treatments for chemo-resistant NB, the effects of two synthesized imidazo-pyrazoles (IMPs) (4G and 4I) were investigated on ETO-sensitive (HTLA-230) and ETO-resistant (HTLA-ER) NB cells, detecting 4I as the more promising compound, that demonstrated IC50 values lower than those of ETO on HTLA ER. Therefore, to further improve the activity of 4I, we developed 4I-loaded palmitic acid (PA) and polystyrene-based (P5) cationic nanoparticles (P5PA-4I NPs) with high drug loading (21%) and encapsulation efficiency (97%), by a single oil-in-water emulsification technique. Biocompatible PA was adopted as an emulsion stabilizer, while synthesized P5 acted as an encapsulating agent, solubilizer and hydrophilic-lipophilic balance (HLB) improver. Optic microscopy and cytofluorimetric analyses were performed to investigate the micromorphology, size and complexity distributions of P5PA-4I NPs, which were also structurally characterized by chemometric-assisted Fourier transform infrared spectroscopy (FTIR). Potentiometric titrations allowed us to estimate the milliequivalents of PA and basic nitrogen atoms present in NPs. P5PA-4I NPs afforded dispersions in water with excellent buffer capacity, essential to escape lysosomal degradation and promote long residence time inside cells. They were chemically stable in an aqueous medium for at least 40 days, while in dynamic light scattering (DLS) analyses, P5PA-4I showed a mean hydrodynamic diameter of 541 nm, small polydispersity (0.194), and low positive zeta potentials (+8.39 mV), assuring low haemolytic toxicity. Biological experiments on NB cells, demonstrated that P5PA-4I NPs induced ROS-dependent cytotoxic effects significantly higher than those of pristine 4I, showing a major efficacy compared to ETO in reducing cell viability in HTLA-ER cells. Collectively, this 4I-based nano-formulation could represent a new promising macromolecular platform to develop a new delivery system able to increase the cytotoxicity of the anticancer drugs.
Collapse
Affiliation(s)
- Giulia Elda Valenti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Marco Milanese
- Department of Pharmacy, Section of Chemistry and Pharmaceutical and Food Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry and Cosmetic Product, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.Z.); (C.B.)
| | - Chiara Brullo
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry and Cosmetic Product, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy; (G.Z.); (C.B.)
| | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (G.E.V.); (B.M.)
| | - Silvana Alfei
- Department of Pharmacy, Section of Chemistry and Pharmaceutical and Food Technologies, University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy;
| |
Collapse
|
24
|
Patel P, Pal R, Butani K, Singh S, Prajapati BG. Nanomedicine-fortified cosmeceutical serums for the mitigation of psoriasis and acne. Nanomedicine (Lond) 2023; 18:1769-1793. [PMID: 37990979 DOI: 10.2217/nnm-2023-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Cosmetics have a long history of use for regenerative and therapeutic purposes that are appealing to both genders. The untapped potential of nanotechnology in cosmeceuticals promises enhanced efficacy and addresses the issues associated with conventional cosmetics. In the field of cosmetics, the incorporation of nanomedicine using various nanocarriers such as vesicle and solid lipid nanoparticles significantly enhances product effectiveness and promotes satisfaction, especially in tackling prevalent skin diseases. Moreover, vesicle-fortified serum is known for high skin absorption with the capacity to incorporate and deliver various therapeutics. Additionally, nano-embedded serum-based cosmeceuticals hold promise for treating various skin disorders, including acne and psoriasis, heralding potential therapeutic advancements. This review explores diverse nanotechnology-based approaches for delivering cosmetics with maximum benefits.
Collapse
Affiliation(s)
- Priya Patel
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, 360005, India
| | - Rohit Pal
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, 360005, India
| | - Krishna Butani
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, 360005, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics & Pharmaceutical Technology, Shree S.K. Patel College of Pharmaceutical Education & Research, Ganpat University, Mehsana, Gujarat, 384012, India
| |
Collapse
|
25
|
Ngoc LTN, Moon JY, Lee YC. Plant Extract-Derived Carbon Dots as Cosmetic Ingredients. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2654. [PMID: 37836295 PMCID: PMC10574410 DOI: 10.3390/nano13192654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Plant extract-derived carbon dots (C-dots) have emerged as promising components for sustainability and natural inspiration to meet consumer demands. This review comprehensively explores the potential applications of C-dots derived from plant extracts in cosmetics. This paper discusses the synthesis methodologies for the generation of C-dots from plant precursors, including pyrolysis carbonization, chemical oxidation, hydrothermal, microwave-assisted, and ultrasonic methods. Plant extract-derived C-dots offer distinct advantages over conventional synthetic materials by taking advantage of the inherent properties of plants, such as antioxidant, anti-inflammatory, and UV protective properties. These outstanding properties are critical for novel cosmetic applications such as for controlling skin aging, the treatment of inflammatory skin conditions, and sunscreen. In conclusion, plant extract-derived C-dots combine cutting-edge nanotechnology and sustainable cosmetic innovation, presenting an opportunity to revolutionize the industry by offering enhanced properties while embracing eco-friendly practices.
Collapse
Affiliation(s)
- Le Thi Nhu Ngoc
- Department of Nano Science and Technology Convergence, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Ju-Young Moon
- Major in Beauty Convergence, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
26
|
MOHAPATRA PRIYADARSHINI, CHANDRASEKARAN NATARAJAN. OPTIMIZATION AND CHARACTERIZATION OF ESSENTIAL OILS FORMULATION FOR ENHANCED STABILITY AND DRUG DELIVERY SYSTEM OF MEFLOQUINE. INTERNATIONAL JOURNAL OF APPLIED PHARMACEUTICS 2023:145-154. [DOI: 10.22159/ijap.2023v15i5.48624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Objective: This work aims to choose suitable essential oil formulations to improve the bioavailability and long-term aqueous stability of mefloquine in drug delivery systems.
Methods: Oil phases of pomegranate oil, black cumin seed oil, and garlic oil. To choose the proper oil and surfactant for creating pseudo-ternary phase diagrams, cremophore EL, tween®20 and tween®80 (surfactants), and brij 35 (co-surfactants) were used in a variety of concentrations and combinations (Smix). Mefloquine was estimated to be soluble in a variety of oils, surfactants, and co-surfactants. Drug solubility, drug release research, thermodynamic stability, mean hydrodynamic size and zeta potential.
Results: Garlic with smix of cremophore EL and brij 35, Pomegranate with Tween 2.0, and Black cumin seed oil with Tween 80 showed the highest solubilization and emulsification capabilities and were further investigated using ternary phase diagrams. When combined with the co-surfactants under investigation, cremophore EL demonstrated a greater self-emulsification zone than tween® 80 and tween 20. Garlic oil, cremophore EL, and brij 35 nanoemulsion showed smaller size, greater zeta potential, less emulsification time, high transmittance, and better drug solubility than microemulsion formulations on especially those made with tween®20 and tween 80. Mefloquine loaded garlic oil nanoemulsion showed considerably low release in body fluid (32.48%) and a good release in intestinal fluid (82.78%) by 12 h in a drug release study.
Conclusion: Garlic oil as the oil phase and a mixture of cremophore EL and brij 35 as the surfactant phase are ideal surfactants and co-surfactant for mefloquine loaded garlic oil nanoemulsion with greater drug release in release kinetics investigation.
Collapse
|
27
|
Castangia I, Fulgheri F, Perra M, Bacchetta G, Fancello L, Corrias F, Usach I, Peris JE, Manca ML, Manconi M. A Cocktail-Based Formula for the Design of Nanosized Cosmeceuticals as Skincare and Anti-Age Products. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2485. [PMID: 37686993 PMCID: PMC10489923 DOI: 10.3390/nano13172485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Nasco and Bovale grape pomace extracts, alone or in association, were loaded in nanoemulsions tailored for cosmetic application, using Kolliphor®RH40 (kolliphor) as the synthetic surfactant, Olivem®1000 (olivem) as the natural one, and lecithin as the cosurfactant. Pink transparent or milky dispersions, as a function of the used extract and surfactant, were obtained to be used as cosmeceutical serum or milk. The sizes of the nanoemulsion droplets were small (≈77 nm with kolliphor and ≈141 nm with olivem), homogenously dispersed (~0.24 with kolliphor and ~0.16 with olivem), highly negatively charged (≈-43 mV irrespective of the used surfactant) and their stability either on storage or under stressing conditions was affected by the used extract and surfactant. Formulations protected the extracts from the degradation caused by UV exposition, were biocompatible against keratinocytes, protected them against oxidative damages induced using hydrogen peroxide and inhibited the release of nitrite induced in macrophages using the lipopolysaccharide inflammatory stimulus. The overall results underlined the key role played by the composition of the formula to achieve a suitable cosmeceutical for skin care but even for the prevention of premature aging and chronic damages caused by the stressing conditions.
Collapse
Affiliation(s)
- Ines Castangia
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Cagliari, Italy; (I.C.); (F.F.); (G.B.); (L.F.); (F.C.); (M.M.)
| | - Federica Fulgheri
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Cagliari, Italy; (I.C.); (F.F.); (G.B.); (L.F.); (F.C.); (M.M.)
| | - Matteo Perra
- Biomedical and Tissue Engineering Laboratory, Fundación de Investigación Hospital General Universitario, 46022 Valencia, Spain;
| | - Gianluigi Bacchetta
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Cagliari, Italy; (I.C.); (F.F.); (G.B.); (L.F.); (F.C.); (M.M.)
| | - Laura Fancello
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Cagliari, Italy; (I.C.); (F.F.); (G.B.); (L.F.); (F.C.); (M.M.)
| | - Francesco Corrias
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Cagliari, Italy; (I.C.); (F.F.); (G.B.); (L.F.); (F.C.); (M.M.)
| | - Iris Usach
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100 Valencia, Spain; (I.U.); (J.E.P.)
| | - Josè Esteban Peris
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100 Valencia, Spain; (I.U.); (J.E.P.)
| | - Maria Letizia Manca
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Cagliari, Italy; (I.C.); (F.F.); (G.B.); (L.F.); (F.C.); (M.M.)
| | - Maria Manconi
- Department of Life and Environmental Sciences, University of Cagliari, University Campus, S.P. Monserrato-Sestu Km 0.700, 09042 Monserrato, Cagliari, Italy; (I.C.); (F.F.); (G.B.); (L.F.); (F.C.); (M.M.)
| |
Collapse
|
28
|
Tello P, Calero N, Santos J, Trujillo-Cayado LA. Development of Avocado and Lemon Oil Emulgels Based on Natural Products: Phycocyanin and Pectin. Pharmaceutics 2023; 15:2067. [PMID: 37631281 PMCID: PMC10458885 DOI: 10.3390/pharmaceutics15082067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Phycocyanin (PC), a natural product obtained from algae, is attracting attention due to its health benefits, such as its antioxidant and anti-inflammatory properties. This work studies the use of PC as the main stabilizer in avocado and lemon oil emulgels, a format for drug delivery. The influence of PC concentration on droplet size distribution, rheological properties, and physical stability is studied using a laser diffraction technique, rheological measurements, and multiple light scattering. The 5 wt.% PC emulsions show the lowest droplet size and, consequently, the best stability against creaming and droplet growth. Emulsions formulated with PC as the only stabilizer show a slight pseudoplastic character with an apparent viscosity below 10 mPa·s at 2 Pa. This indicates that these emulsions undergo creaming with aging time. In order to reduce creaming, pectin is incorporated into the 5 wt.% PC emulsion at different concentrations. Interestingly, yield stress and an incipient gel character are observed due to the presence of pectin. This is why the creaming mechanism is reduced. In conclusion, PC forms a layer that protects the interface against coalescence and Ostwald ripening. And, pectin is incorporated to reduce creaming. This research has the potential to make valuable contributions to diverse fields, such as health, medicine, and encapsulation technology.
Collapse
Affiliation(s)
- Patricia Tello
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, c/Virgen de África 7, E41011 Sevilla, Spain; (P.T.); (L.A.T.-C.)
| | - Nuria Calero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, c/Profesor García González S/N, E41012 Sevilla, Spain
| | - Jenifer Santos
- Facultad de Ciencias de la Salud, Universidad Loyola Andalucía, Avda. de las Universidades s/n, Dos Hermanas, E41703 Sevilla, Spain
| | - Luis A. Trujillo-Cayado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, c/Virgen de África 7, E41011 Sevilla, Spain; (P.T.); (L.A.T.-C.)
| |
Collapse
|
29
|
Shehabeldine AM, Doghish AS, El-Dakroury WA, Hassanin MMH, Al-Askar AA, AbdElgawad H, Hashem AH. Antimicrobial, Antibiofilm, and Anticancer Activities of Syzygium aromaticum Essential Oil Nanoemulsion. Molecules 2023; 28:5812. [PMID: 37570781 PMCID: PMC10421252 DOI: 10.3390/molecules28155812] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
In the current study, clove oil nanoemulsion (CL-nanoemulsion) and emulsion (CL-emulsion) were prepared through an ecofriendly method. The prepared CL-nanoemulsion and CL-emulsion were characterized using dynamic light scattering (DLS) and a transmission electron microscope (TEM), where results illustrated that CL-nanoemulsion droplets were approximately 32.67 nm in size and spherical in shape, while CL-nanoemulsion droplets were approximately 225.8 nm with a spherical shape. The antibacterial activity of CL-nanoemulsion and CL-emulsion was carried out using a microbroth dilution method. Results revealed that the preferred CL-nanoemulsion had minimal MIC values between 0.31 and 5 mg/mL. The antibiofilm efficacy of CL-nanoemulsion against S. aureus significantly decreased the development of biofilm compared with CL-emulsion. Furthermore, results illustrated that CL-nanoemulsion showed antifungal activity significantly higher than CL-emulsion. Moreover, the prepared CL-nanoemulsion exhibited outstanding antifungal efficiency toward Candida albicans, Cryptococcus neoformans, Aspergillus brasiliensis, A. flavus, and A. fumigatus where MICs were 12.5, 3.12, 0.78, 1.56, and 1.56 mg/mL, respectively. Additionally, the prepared CL-nanoemulsion was analyzed for its antineoplastic effects through a modified MTT assay for evaluating apoptotic and cytotoxic effects using HepG2 and MCF-7 cell lines. MCF-7 breast cancer cells showed the lowest IC50 values (3.4-fold) in CL-nanoemulsion relative to that of CL-emulsion. Thus, CL-nanoemulsion induces apoptosis in breast cancer cells by inducing caspase-8 and -9 activity and suppressing VEGFR-2. In conclusion, the prepared CL-nanoemulsion had antibacterial, antifungal, and antibiofilm as well as anticancer properties, which can be used in different biomedical applications after extensive studies in vivo.
Collapse
Affiliation(s)
- Amr M. Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt
| | - Walaa A. El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Egypt;
| | - Mahmoud M. H. Hassanin
- Ornamental, Medicinal and Aromatic Plant Disease Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2022 Antwerp, Belgium;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| |
Collapse
|
30
|
Hao Y, Ji Z, Zhou H, Wu D, Gu Z, Wang D, ten Dijke P. Lipid-based nanoparticles as drug delivery systems for cancer immunotherapy. MedComm (Beijing) 2023; 4:e339. [PMID: 37560754 PMCID: PMC10407046 DOI: 10.1002/mco2.339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have shown remarkable success in cancer treatment. However, in cancer patients without sufficient antitumor immunity, numerous data indicate that blocking the negative signals elicited by immune checkpoints is ineffective. Drugs that stimulate immune activation-related pathways are emerging as another route for improving immunotherapy. In addition, the development of nanotechnology presents a promising platform for tissue and cell type-specific delivery and improved uptake of immunomodulatory agents, ultimately leading to enhanced cancer immunotherapy and reduced side effects. In this review, we summarize and discuss the latest developments in nanoparticles (NPs) for cancer immuno-oncology therapy with a focus on lipid-based NPs (lipid-NPs), including the characteristics and advantages of various types. Using the agonists targeting stimulation of the interferon genes (STING) transmembrane protein as an exemplar, we review the potential of various lipid-NPs to augment STING agonist therapy. Furthermore, we present recent findings and underlying mechanisms on how STING pathway activation fosters antitumor immunity and regulates the tumor microenvironment and provide a summary of the distinct STING agonists in preclinical studies and clinical trials. Ultimately, we conduct a critical assessment of the obstacles and future directions in the utilization of lipid-NPs to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Hao
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| | - Zhonghao Ji
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
- Department of Basic MedicineChangzhi Medical CollegeChangzhiChina
| | - Hengzong Zhou
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Dongrun Wu
- Departure of Philosophy, Faculty of HumanitiesLeiden UniversityLeidenThe Netherlands
| | - Zili Gu
- Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Dongxu Wang
- Department of Laboratory AnimalsCollege of Animal SciencesJilin UniversityChangchunChina
| | - Peter ten Dijke
- Department of Cell and Chemical Biology and Oncode InstituteLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
31
|
Chen P, Chen F, Guo Z, Lei J, Zhou B. Recent advancement in bioeffect, metabolism, stability, and delivery systems of apigenin, a natural flavonoid compound: challenges and perspectives. Front Nutr 2023; 10:1221227. [PMID: 37565039 PMCID: PMC10410563 DOI: 10.3389/fnut.2023.1221227] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Apigenin is a bioflavonoid compound that is widely present in dietary plant foods and possesses biological activities that protect against immune, cardiovascular, and neurodegenerative diseases and cancer. Therefore, apigenin is widely used in food and medicine, and increasing attention has been drawn to developing new delivery systems for apigenin. This review highlights the biological effects, metabolism, stability, and bioactivity of apigenin. In addition, we summarized advancements in the delivery of apigenin, which provides some references for its widespread use in food and medicine. Better stability of apigenin may enhance digestion and absorption and provide health benefits. Constructing delivery systems (such as emulsions, nanostructured lipid carriers, hydrogels, and liposomes) for apigenin is an effective strategy to improve its bioavailability, but more animal and cell experiments are needed to verify these findings. Developing apigenin delivery systems for food commercialization is still challenging, and further research is needed to promote their in-depth development and utilization.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fuchao Chen
- Department of Pharmacy, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - ZhiLei Guo
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Jiexin Lei
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
32
|
Rathee P, Sehrawat R, Rathee P, Khatkar A, Akkol EK, Khatkar S, Redhu N, Türkcanoğlu G, Sobarzo-Sánchez E. Polyphenols: Natural Preservatives with Promising Applications in Food, Cosmetics and Pharma Industries; Problems and Toxicity Associated with Synthetic Preservatives; Impact of Misleading Advertisements; Recent Trends in Preservation and Legislation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4793. [PMID: 37445107 PMCID: PMC10343617 DOI: 10.3390/ma16134793] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023]
Abstract
The global market of food, cosmetics, and pharmaceutical products requires continuous tracking of harmful ingredients and microbial contamination for the sake of the safety of both products and consumers as these products greatly dominate the consumer's health, directly or indirectly. The existence, survival, and growth of microorganisms in the product may lead to physicochemical degradation or spoilage and may infect the consumer at another end. It has become a challenge for industries to produce a product that is safe, self-stable, and has high nutritional value, as many factors such as physical, chemical, enzymatic, or microbial activities are responsible for causing spoilage to the product within the due course of time. Thus, preservatives are added to retain the virtue of the product to ensure its safety for the consumer. Nowadays, the use of synthetic/artificial preservatives has become common and has not been widely accepted by consumers as they are aware of the fact that exposure to preservatives can lead to adverse effects on health, which is a major area of concern for researchers. Naturally occurring phenolic compounds appear to be extensively used as bio-preservatives to prolong the shelf life of the finished product. Based on the convincing shreds of evidence reported in the literature, it is suggested that phenolic compounds and their derivatives have massive potential to be investigated for the development of new moieties and are proven to be promising drug molecules. The objective of this article is to provide an overview of the significant role of phenolic compounds and their derivatives in the preservation of perishable products from microbial attack due to their exclusive antioxidant and free radical scavenging properties and the problems associated with the use of synthetic preservatives in pharmaceutical products. This article also analyzes the recent trends in preservation along with technical norms that regulate the food, cosmetic, and pharmaceutical products in the developing countries.
Collapse
Affiliation(s)
- Priyanka Rathee
- Faculty of Pharmaceutical Sciences, Baba Mastnath University, Rohtak 124021, India;
| | - Renu Sehrawat
- School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram 122103, India;
| | - Pooja Rathee
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Anurag Khatkar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Sarita Khatkar
- Vaish Institute of Pharmaceutical Education and Research, Rohtak 124001, India;
| | - Neelam Redhu
- Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, India;
| | - Gizem Türkcanoğlu
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
33
|
Chiang TC, Chang JY, Chou TH. Formulation and Characteristics of Edible Oil Nanoemulsions Modified with Polymeric Surfactant for Encapsulating Curcumin. Polymers (Basel) 2023; 15:2864. [PMID: 37447509 DOI: 10.3390/polym15132864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Curcumin (Cur) is a beneficial phytochemical with numerous health advantages. However, its limited solubility in oil and poor stability hinder its potential for biomedical applications. In this study, we employed a mixture of food-grade Tween 60, a polymeric surfactant, and Span 60 to adjust the hydrophilic lipophilic balance number (HLBt) and prepared nanoemulsions (NEs) of coconut oil (Cc oil) as carriers for Cur. The effects of HLBt values, surfactant-to-oil ratio, and oil ratio on the physicochemical characteristics of the food-grade oil-NEs were investigated using dynamic light scattering, transmission electron microscopy, differential scanning calorimetry, fluorescence polarization spectroscopy, and viscometry. Increasing the addition ratio of Tween 60 in the NEs, thereby increasing the HLBt, resulted in a reduction in NE size and an improvement in their storage stability. The temperature and size of the phase transition region of the NEs decreased with increasing HLBt. NEs with higher HLBt exhibited a disordering effect on the intra-NE molecular packing of Cc oil. NEs with high HLBt displayed low viscosity and demonstrated nearly Newtonian fluid behavior, while those with lower HLBt exhibited pseudoplastic fluid behavior. Cur was effectively encapsulated into the Cc oil-NEs, with higher encapsulation efficiency observed in NEs with higher HLBt values. Furthermore, the Cur remaining activity was significantly enhanced through encapsulation within stable NEs. The biocompatibility of the Cc oil-NEs was also demonstrated in vitro. In summary, this study highlights the preparation of stable NEs of Cc oil by adjusting the HLBt using Tween 60, facilitating effective encapsulation of Cur. These findings provide valuable insights for the development of Cur carriers with improved solubility, stability, and bioavailability.
Collapse
Affiliation(s)
- Tzu-Chi Chiang
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu 64022, Taiwan
| | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Tzung-Han Chou
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliu 64022, Taiwan
| |
Collapse
|
34
|
Zhu X, Li S. Nanomaterials in tumor immunotherapy: new strategies and challenges. Mol Cancer 2023; 22:94. [PMID: 37312116 DOI: 10.1186/s12943-023-01797-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Tumor immunotherapy exerts its anti-tumor effects by stimulating and enhancing immune responses of the body. It has become another important modality of anti-tumor therapy with significant clinical efficacy and advantages compared to chemotherapy, radiotherapy and targeted therapy. Although various kinds of tumor immunotherapeutic drugs have emerged, the challenges faced in the delivery of these drugs, such as poor tumor permeability and low tumor cell uptake rate, had prevented their widespread application. Recently, nanomaterials had emerged as a means for treatment of different diseases due to their targeting properties, biocompatibility and functionalities. Moreover, nanomaterials possess various characteristics that overcome the defects of traditional tumor immunotherapy, such as large drug loading capacity, precise tumor targeting and easy modification, thus leading to their wide application in tumor immunotherapy. There are two main classes of novel nanoparticles mentioned in this review: organic (polymeric nanomaterials, liposomes and lipid nanoparticles) and inorganic (non-metallic nanomaterials and metallic nanomaterials). Besides, the fabrication method for nanoparticles, Nanoemulsions, was also introduced. In summary, this review article mainly discussed the research progress of tumor immunotherapy based on nanomaterials in the past few years and offers a theoretical basis for exploring novel tumor immunotherapy strategies in the future.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
35
|
Tomou EM, Papakyriakopoulou P, Saitani EM, Valsami G, Pippa N, Skaltsa H. Recent Advances in Nanoformulations for Quercetin Delivery. Pharmaceutics 2023; 15:1656. [PMID: 37376104 DOI: 10.3390/pharmaceutics15061656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Quercetin (QUE) is a flavonol that has recently received great attention from the research community due to its important pharmacological properties. However, QUE's low solubility and extended first-pass metabolism limit its oral administration. This review aims to present the potential of various nanoformulations in the development of QUE dosage forms for bioavailability enhancement. Advanced drug delivery nanosystems can be used for more efficient encapsulation, targeting, and controlled release of QUE. An overview of the primary nanosystem categories, formulation processes, and characterization techniques are described. In particular, lipid-based nanocarriers, such as liposomes, nanostructured-lipid carries, and solid-lipid nanoparticles, are widely used to improve QUE's oral absorption and targeting, increase its antioxidant activity, and ensure sustained release. Moreover, polymer-based nanocarriers exhibit unique properties for the improvement of the Absorption, Distribution, Metabolism, Excretion, and Toxicology (ADME(T)) profile. Namely, micelles and hydrogels composed of natural or synthetic polymers have been applied in QUE formulations. Furthermore, cyclodextrin, niosomes, and nanoemulsions are proposed as formulation alternatives for administration via different routes. This comprehensive review provides insight into the role of advanced drug delivery nanosystems for the formulation and delivery of QUE.
Collapse
Affiliation(s)
- Ekaterina-Michaela Tomou
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Paraskevi Papakyriakopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Elmina-Marina Saitani
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Helen Skaltsa
- Section of Pharmacognosy & Chemistry of Natural Products, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
36
|
Diedrich C, Zittlau IC, Khalil NM, Leontowich AFG, Freitas RAD, Badea I, Mainardes RM. Optimized Chitosan-Based Nanoemulsion Improves Luteolin Release. Pharmaceutics 2023; 15:1592. [PMID: 37376041 DOI: 10.3390/pharmaceutics15061592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 06/29/2023] Open
Abstract
Luteolin (LUT) is a flavonoid found in several edible and medicinal plants. It is recognized for its biological activities such as antioxidant, anti-inflammatory, neuroprotective, and antitumor effects. However, the limited water solubility of LUT leads to poor absorption after oral administration. Nanoencapsulation may improve the solubility of LUT. Nanoemulsions (NE) were selected for the encapsulation of LUT due to their biodegradability, stability, and ability to control drug release. In this work, chitosan (Ch)-based NE was developed to encapsulate luteolin (NECh-LUT). A 23 factorial design was built to obtain a formulation with optimized amounts of oil, water, and surfactants. NECh-LUT showed a mean diameter of 67.5 nm, polydispersity index 0.174, zeta potential of +12.8 mV, and encapsulation efficiency of 85.49%. Transmission electron microscopy revealed spherical shape and rheological analysis verified the Newtonian behavior of NECh-LUT. SAXS technique confirmed the bimodal characteristic of NECh-LUT, while stability analysis confirmed NECh-LUT stability when stored at room temperature for up to 30 days. Finally, in vitro release studies showed LUT controlled release up to 72 h, indicating the promising potential of NECh-LUT to be used as novel therapeutic option to treat several disorders.
Collapse
Affiliation(s)
- Camila Diedrich
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| | - Isabella C Zittlau
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| | - Najeh M Khalil
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| | | | - Rilton A de Freitas
- Biopol, Chemistry Department, Federal University of Parana, Curitiba 81531-980, Brazil
| | - Ildiko Badea
- Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Rubiana M Mainardes
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Guarapuava 85040-167, Brazil
| |
Collapse
|
37
|
Huang TH, Chen CJ, Lin HCA, Chen CH, Fang JY. Self-Nanoemulsifying Drug Delivery System-Containing the Poorly Absorbed Drug - Valsartan in Post-Bariatric Surgery. Int J Nanomedicine 2023; 18:2647-2658. [PMID: 37220630 PMCID: PMC10200115 DOI: 10.2147/ijn.s394624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Purpose Morbid obesity and its related metabolic syndrome are an important health issue. Recently, sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) have accounted for the most popular bariatric surgeries. Valsartan (VST) is a common hypertension drug, and nano-carriers can increase its solubility and bioavailability. This study aims to explore the nano-VST formula in bariatric surgery subjects. Methods High-fat fed animals were used as obese models. Operations were performed according to a standardized protocol. The drug was administrated by gavage, and blood samples were taken by serial tail vein sampling. Caco-2 cells were used for examining cell viability and drug uptake. A self-nano-emusifying drug delivery system (SNEDDS) formula was composed of sefsol-218, RH-40 and propylene glycol by a specified ratio, while high-performance liquid chromatography (HPLC) was used for determining drug concentrations. Results Post-operatively, subjects that underwent RYGB lost more body weight compared to the SG group. The SNEDDS did not exhibit cytotoxicity after adequate dilution, and the cytotoxicity was not related to VST dose. A better cellular uptake of SNEDDS was observed in vitro. The SNEDDS formula achieved a diameter of 84 nm in distilled water and 140 nm in simulated gastric fluid. In obese animals, the maximum serum concentration (Cmax) of VST was increased 1.68-folds by SNEDDS. In RYGB with SUS, the Cmax was reduced to less than 50% of the obese group. SNEDDS increased the Cmax to 3.5 folds higher than SUS and resulted in 3.28-folds higher AUC0-24 in the RYGB group. Fluorescence imaging also confirmed a stronger signal of SNEDDS in the gastrointestinal mucosa. SNEDDS accumulated a higher drug concentration than suspension alone in the liver of the obese group. Conclusion SNEDDS could reverse the VST malabsorption in RYGB. Further studies are mandatory to clarify post-SG change of drug absorption.
Collapse
Affiliation(s)
- Tzu-Hao Huang
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsin-Chia Angela Lin
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chun-Han Chen
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
38
|
Ciuca MD, Racovita RC. Curcumin: Overview of Extraction Methods, Health Benefits, and Encapsulation and Delivery Using Microemulsions and Nanoemulsions. Int J Mol Sci 2023; 24:ijms24108874. [PMID: 37240220 DOI: 10.3390/ijms24108874] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Curcumin is the principal curcuminoid found in the rhizomes of turmeric. Due to its therapeutic action against cancer, depression, diabetes, some bacteria, and oxidative stress, it has been used widely in medicine since ancient times. Due to its low solubility, the human organism cannot completely absorb it. Advanced extraction technologies, followed by encapsulation in microemulsion and nanoemulsion systems, are currently being used to improve bioavailability. This review discusses the different methods available for curcumin extraction from plant material, methods for the identification of curcumin in the resulting extracts, its beneficial effects on human health, and the encapsulation techniques into small colloidal systems that have been used over the past decade to deliver this compound.
Collapse
Affiliation(s)
- Maria D Ciuca
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania
| | - Radu C Racovita
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, 1-7 Gh. Polizu St., District 1, 011061 Bucharest, Romania
| |
Collapse
|
39
|
Wang Y, Zhang X, Yan M, Zhao Q. Enhancing the stability of lutein emulsions with a water-soluble antioxidant and a oil-soluble antioxidant. Heliyon 2023; 9:e15459. [PMID: 37113795 PMCID: PMC10126903 DOI: 10.1016/j.heliyon.2023.e15459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Lutein is critical for protecting the eye against light damage. The low solubility and high sensitivity of lutein to environmental stresses prevent its further application. The hypothesis is that the combination of one water-soluble antioxidant and one oil-soluble antioxidant will be beneficial to improve the stability of lutein emulsions. A low-energy method was performed to prepare lutein emulsions. The combination of a lipid-soluble antioxidant (propyl gallate or ethylenediaminetetraacetic acid) and a water-soluble antioxidant (tea polyphenol or ascobic acid) were investigated for improving the lutein retention rates. It was shown that the highest lutein retention rate was achieved by using propyl gallate and tea polyphenol, 92.57%, at Day 7. It was proven that the lutein retention rates of emulsions with propyl gallate and tea polyphenol were 89.8%, 73.5% and 55.2% at 4 °C, 25 °C and 37 °C, respectively, at Day 28. The current study is helpful to prepare for the further application of lutein emulsions for ocular delivery.
Collapse
|
40
|
Wang X, Lu J, Cao Y, Liang Y, Dai X, Liu K, Xie L, Li X. Does binary blend emulsifier enhance emulsifier performance? Preparation of baicalin nanoemulsions using tea saponins and glycyrrhizic acid as binary blend emulsifier. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
41
|
Corrêa JAF, de Melo Nazareth T, Rocha GFD, Luciano FB. Bioactive Antimicrobial Peptides from Food Proteins: Perspectives and Challenges for Controlling Foodborne Pathogens. Pathogens 2023; 12:pathogens12030477. [PMID: 36986399 PMCID: PMC10052163 DOI: 10.3390/pathogens12030477] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Bioactive peptides (BAPs) derived from food proteins have been extensively studied for their health benefits, majorly exploring their potential use as nutraceuticals and functional food components. These peptides possess a range of beneficial properties, including antihypertensive, antioxidant, immunomodulatory, and antibacterial activities, and are naturally present within dietary protein sequences. To release food-grade antimicrobial peptides (AMPs), enzymatic protein hydrolysis or microbial fermentation, such as with lactic acid bacteria (LAB), can be employed. The activity of AMPs is influenced by various structural characteristics, including the amino acid composition, three-dimensional conformation, liquid charge, putative domains, and resulting hydrophobicity. This review discusses the synthesis of BAPs and AMPs, their potential for controlling foodborne pathogens, their mechanisms of action, and the challenges and prospects faced by the food industry. BAPs can regulate gut microbiota by promoting the growth of beneficial bacteria or by directly inhibiting pathogenic microorganisms. LAB-promoted hydrolysis of dietary proteins occurs naturally in both the matrix and the gastrointestinal tract. However, several obstacles must be overcome before BAPs can replace antimicrobials in food production. These include the high manufacturing costs of current technologies, limited in vivo and matrix data, and the difficulties associated with standardization and commercial-scale production.
Collapse
Affiliation(s)
- Jessica Audrey Feijó Corrêa
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Tiago de Melo Nazareth
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giovanna Fernandes da Rocha
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| |
Collapse
|
42
|
Sari MHM, Cobre ADF, Pontarolo R, Ferreira LM. Status and Future Scope of Soft Nanoparticles-Based Hydrogel in Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030874. [PMID: 36986736 PMCID: PMC10057168 DOI: 10.3390/pharmaceutics15030874] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Wounds are alterations in skin integrity resulting from any type of trauma. The healing process is complex, involving inflammation and reactive oxygen species formation. Therapeutic approaches for the wound healing process are diverse, associating dressings and topical pharmacological agents with antiseptics, anti-inflammatory, and antibacterial actions. Effective treatment must maintain occlusion and moisture in the wound site, suitable capacity for the absorption of exudates, gas exchange, and the release of bioactives, thus stimulating healing. However, conventional treatments have some limitations regarding the technological properties of formulations, such as sensory characteristics, ease of application, residence time, and low active penetration in the skin. Particularly, the available treatments may have low efficacy, unsatisfactory hemostatic performance, prolonged duration, and adverse effects. In this sense, there is significant growth in research focusing on improving the treatment of wounds. Thus, soft nanoparticles-based hydrogels emerge as promising alternatives to accelerate the healing process due to their improved rheological characteristics, increased occlusion and bioadhesiveness, greater skin permeation, controlled drug release, and a more pleasant sensory aspect in comparison to conventional forms. Soft nanoparticles are based on organic material from a natural or synthetic source and include liposomes, micelles, nanoemulsions, and polymeric nanoparticles. This scoping review describes and discusses the main advantages of soft nanoparticle-based hydrogels in the wound healing process. Herein, a state-of-the-art is presented by addressing general aspects of the healing process, current status and limitations of non-encapsulated drug-based hydrogels, and hydrogels formed by different polymers containing soft nanostructures for wound healing. Collectively, the presence of soft nanoparticles improved the performance of natural and synthetic bioactive compounds in hydrogels employed for wound healing, demonstrating the scientific advances obtained so far.
Collapse
Affiliation(s)
| | - Alexandre de Fátima Cobre
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil
| | - Roberto Pontarolo
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Paraná, Curitiba 80210-170, Brazil
- Pharmacy Department, Federal University of Paraná, Curitiba 80210-170, Brazil
| | - Luana Mota Ferreira
- Pharmacy Department, Federal University of Paraná, Curitiba 80210-170, Brazil
- Correspondence: ; Tel.: +55-41-3360-4095
| |
Collapse
|
43
|
Gayathri K, Bhaskaran M, Selvam C, Thilagavathi R. Nano formulation approaches for curcumin delivery- a review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
44
|
Guedes MDV, Marques MS, Berlitz SJ, Facure MHM, Correa DS, Steffens C, Contri RV, Külkamp-Guerreiro IC. Lamivudine and Zidovudine-Loaded Nanostructures: Green Chemistry Preparation for Pediatric Oral Administration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:770. [PMID: 36839138 PMCID: PMC9965208 DOI: 10.3390/nano13040770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Here, we report on the development of lipid-based nanostructures containing zidovudine (1 mg/mL) and lamivudine (0.5 mg/mL) for oral administration in the pediatric population, eliminating the use of organic solvents, which is in accordance with green chemistry principles. The formulations were obtained by ultrasonication using monoolein (MN) or phytantriol (PN), which presented narrow size distributions with similar mean particle sizes (~150 nm) determined by laser diffraction. The zeta potential and the pH values of the formulations were around -4.0 mV and 6.0, respectively. MN presented a slightly higher incorporation rate compared to PN. Nanoemulsions were obtained when using monoolein, while cubosomes were obtained when using phytantriol, as confirmed by Small-Angle X-ray Scattering. The formulations enabled drug release control and protection against acid degradation. The drug incorporation was effective and the analyses using an electronic tongue indicated a difference in palatability between the nanotechnological samples in comparison with the drug solutions. In conclusion, PN was considered to have the strongest potential as a novel oral formulation for pediatric HIV treatment.
Collapse
Affiliation(s)
- Marina D. V. Guedes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Morgana S. Marques
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Simone J. Berlitz
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre 35400-000, RS, Brazil
| | - Murilo H. M. Facure
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação, São Carlos 70770-901, SP, Brazil
- Programa de Pós-Graduação em Química (PPGQ), Universidade Federal de São Carlos, São Carlos 66075-110, SP, Brazil
| | - Daniel S. Correa
- Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação, São Carlos 70770-901, SP, Brazil
- Programa de Pós-Graduação em Química (PPGQ), Universidade Federal de São Carlos, São Carlos 66075-110, SP, Brazil
| | - Clarice Steffens
- Programa de Pós-Graduação em Engenharia de Alimentos, Universidade Regional Integrada do Alto Uruguai e Missões, Erechim 99709-910, RS, Brazil
| | - Renata V. Contri
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
| | - Irene C. Külkamp-Guerreiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90610-000, RS, Brazil
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre 35400-000, RS, Brazil
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
45
|
Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics 2023; 15:pharmaceutics15020656. [PMID: 36839978 PMCID: PMC9967415 DOI: 10.3390/pharmaceutics15020656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Skin delivery is an exciting and challenging field. It is a promising approach for effective drug delivery due to its ease of administration, ease of handling, high flexibility, controlled release, prolonged therapeutic effect, adaptability, and many other advantages. The main associated challenge, however, is low skin permeability. The skin is a healthy barrier that serves as the body's primary defence mechanism against foreign particles. New advances in skin delivery (both topical and transdermal) depend on overcoming the challenges associated with drug molecule permeation and skin irritation. These limitations can be overcome by employing new approaches such as lipid nanosystems. Due to their advantages (such as easy scaling, low cost, and remarkable stability) these systems have attracted interest from the scientific community. However, for a successful formulation, several factors including particle size, surface charge, components, etc. have to be understood and controlled. This review provided a brief overview of the structure of the skin as well as the different pathways of nanoparticle penetration. In addition, the main factors influencing the penetration of nanoparticles have been highlighted. Applications of lipid nanosystems for dermal and transdermal delivery, as well as regulatory aspects, were critically discussed.
Collapse
|
46
|
Fabrication of Monarda citriodora essential oil nanoemulsions: characterization and antifungal activity against Penicillium digitatum of kinnow. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
47
|
Liu F, Anton N, Niko Y, Klymchenko AS. Controlled Release and Capture of Aldehydes by Dynamic Imine Chemistry in Nanoemulsions: From Delivery to Detoxification. ACS APPLIED BIO MATERIALS 2023; 6:246-256. [PMID: 36516427 DOI: 10.1021/acsabm.2c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current biomedical applications of nanocarriers are focused on drug delivery, where encapsulated cargo is released in the target tissues under the control of external stimuli. Here, we propose a very different approach, where the active toxic molecules are removed from biological tissues by the nanocarrier. It is based on the drug-sponge concept, where specific molecules are captured by the lipid nanoemulsion (NE) droplets due to dynamic covalent chemistry inside their oil core. To this end, we designed a highly lipophilic amine (LipoAmine) capable of reacting with a free cargo-aldehyde (fluorescent dye and 4-hydroxynonenal toxin) directly inside lipid NEs, yielding a lipophilic imine conjugate well encapsulated in the oil core. The formation of imine bonds was first validated using a push-pull pyrene aldehyde dye, which changes its emission color during the reaction. The conjugate formation was independently confirmed by mass spectrometry. As a result, LipoAmine-loaded NEs spontaneously loaded cargo-aldehydes, yielding formulations stable against leakage at pH 7.4, which can further release the cargo in a low pH range (4-6) in solutions and living cells. Using fluorescence microscopy, we showed that LipoAmine NEs can extract pyrene aldehyde dye from cells as well as from an epithelial tissue (chicken skin). Moreover, successful extraction from cells was also achieved for a highly toxic aliphatic aldehyde 4-hydroxynonenal, which allowed obtaining the proof of concept for detoxification of living cells. Taken together, these results show that the dynamic imine chemistry inside NEs can be used to develop detoxification platforms.
Collapse
Affiliation(s)
- Fei Liu
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, Illkirch 67401, France.,INSERM UMR 1260, Regenerative Nanomedicine (RNM), CRBS, Université de Strasbourg, Strasbourg 67000, France
| | - Nicolas Anton
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), CRBS, Université de Strasbourg, Strasbourg 67000, France
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, Illkirch 67401, France
| |
Collapse
|
48
|
Azadi S, Osanloo M, Zarenezhad E, Farjam M, Jalali A, Ghanbariasad A. Nano-scaled emulsion and nanogel containing Mentha pulegium essential oil: cytotoxicity on human melanoma cells and effects on apoptosis regulator genes. BMC Complement Med Ther 2023; 23:6. [PMID: 36624422 PMCID: PMC9830879 DOI: 10.1186/s12906-023-03834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Topical drug delivery using nanoemulsions and nanogels is a promising approach to treating skin disorders such as melanoma. METHODS In this study, the chemical composition of Mentha pulegium essential oil with five major compounds, including pulegone (68.11%), l-menthone (8.83%), limonene (2.90%), iso-pulegone (2.69%), and iso-menthone (1.48%) was first identified using GC-MS (Gas chromatography-Mass Spectrometry) analysis. Afterward, a nano-scaled emulsion containing the essential oil with a droplet size of 7.70 ± 1 nm was prepared. Nanogel containing the essential oil was then prepared by adding (2% w/v) carboxymethyl cellulose to the nano-scaled emulsion. Moreover, the successful loading of M. pulegium essential oil in the nano-scaled emulsion and nanogel was confirmed using ATR-FTIR (Attenuated total reflectance-Fourier Transform InfraRed) analysis. Then, human A375 melanoma cells were treated with different concentrations of samples, the MTT assay evaluated cell viability, and cell apoptosis was confirmed by flow cytometry. In addition, the expression of apoptotic and anti-apoptotic genes, including Bax and Bcl-2, was evaluated using the qPCR (quantitative Polymerase Chain Reaction) technique. RESULTS The results showed that cell viability was reduced by 90 and 45% after treatment with 300 μg/mL of the nanogel and nano-scaled emulsion. As confirmed by flow cytometry, this effect was mediated by apoptosis. Furthermore, gene expression analysis showed up-regulation of Bax and down-regulation of Bcl-2 genes. Therefore, the prepared nanogel, with high efficacy, could be considered a potent anticancer agent for supplementary medicine and in vivo research.
Collapse
Affiliation(s)
- Sareh Azadi
- grid.411135.30000 0004 0415 3047Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- grid.411135.30000 0004 0415 3047Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mojtaba Farjam
- grid.411135.30000 0004 0415 3047Department of Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Akram Jalali
- grid.411950.80000 0004 0611 9280Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Ghanbariasad
- grid.411135.30000 0004 0415 3047Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
49
|
Rohilla S, Rohilla A, Narwal S, Dureja H, Bhagwat DP. Global Trends of Cosmeceutical in Nanotechnology: A Review. Pharm Nanotechnol 2023; 11:410-424. [PMID: 37157203 DOI: 10.2174/2211738511666230508161611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 05/10/2023]
Abstract
Nanotechnology suggests different innovative solutions to augment the worth of cosmetic products through the targeted delivery of content that manifests scientific innovation in research and development. Different nanosystems, like liposomes, niosomes, microemulsions, solid lipid nanoparticles, nanoform lipid carriers, nanoemulsions, and nanospheres, are employed in cosmetics. These nanosystems exhibit various innovative cosmetic functions, including site-specific targeting, controlled content release, more stability, improved skin penetration and enhanced entrapment efficiency of loaded compounds. Thus, cosmeceuticals are assumed as the highest-progressing fragment of the personal care industries that have progressed drastically over the years. In recent decades, cosmetic science has widened the origin of its application in different fields. Nanosystems in cosmetics are beneficial in treating different conditions like hyperpigmentation, wrinkles, dandruff, photoaging and hair damage. This review highlights the different nanosystems used in cosmetics for the targeted delivery of loaded content and commercially available formulations. Moreover, this review article has delineated different patented nanocosmetic formulation nanosystems and future aspects of nanocarriers in cosmetics.
Collapse
Affiliation(s)
- Seema Rohilla
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| | - Ankur Rohilla
- Department of Pharmacology, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, 140413, Mohali, India
| | - Sonia Narwal
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Deepak Prabhakar Bhagwat
- Department of Pharmacy, Panipat Institute of Engineering and Technology (PIET), Smalkha, Panipat, Haryana, 132102, India
| |
Collapse
|
50
|
Anosov A, Astanina P, Proskuryakov I, Koplak O, Morgunov R. Surface and Structure of Phosphatidylcholine Membranes Reconstructed with CoFe 2O 4 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14517-14526. [PMID: 36383134 DOI: 10.1021/acs.langmuir.2c02659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Structural changes in phosphatidylcholine lipid membranes caused by the introduction of insoluble CoFe2O4 nanoparticles (NPs) are analyzed. Changes in nuclear magnetic resonance spectrum, infrared spectrum, and ionic conductivity of membranes are observed with the addition of NPs. The presence of NPs in membranes is proved by atomic force and magnetic force microscopy. Structural changes in the membranes in the vicinity of the lipid C-O bonds caused by NPs are observed by Scanning near-field optical microscopy. Analysis of nuclear magnetic resonance (NMR) spectra allowed us to identify the affected atomic groups in the membrane surface layers. Conductivity measurements of the bilayer membranes were performed in DC as well as in time-resolved modes. Hydrophobic NPs stimulate surface distortion and creation of pores, which depending on NP concentration leads to an increase in the ionic conductivity of membranes. Concentration dependence demonstrating percolation threshold was analyzed in the frame of the fractal theory approach.
Collapse
Affiliation(s)
- Andrey Anosov
- I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
| | - Polina Astanina
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
| | - Ivan Proskuryakov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia
| | - Oksana Koplak
- I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
| | - Roman Morgunov
- I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
- Federal Research Center of Problem of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
| |
Collapse
|