1
|
Kishi T, Kobayashi K, Sasagawa K, Sakimura K, Minato T, Kida M, Hata T, Kitagawa Y, Okuma C, Murata T. Automated analysis of a novel object recognition test in mice using image processing and machine learning. Behav Brain Res 2025; 476:115278. [PMID: 39357746 DOI: 10.1016/j.bbr.2024.115278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The novel object recognition test (NORT) is one of the most commonly employed behavioral tests in experimental animals designed to evaluate an animal's interest in and recognition of novelty. However, manual procedures, which rely on researchers' observations, prevent high throughput analysis. In this study, we developed an automated analysis method for NORT utilizing machine learning-assisted exploratory behavior detection. We recorded the exploratory behavior of the mice using a video camera. The coordinates of the mouse nose and tail base in recorded video files were detected using a pre-trained machine learning model, DeepLabCut. Each video was then segmented into frame images, which were categorized into "exploratory," or "non-exploratory" frames based on manual observation. Mouse feature vectors were calculated as vectors from the nose to the vertices of the object and were utilized for SVM training. The trained SVM effectively detected exploratory behaviors, showing a strong correlation with human observer assessments. Upon application to NORT, the duration of mouse exploratory behavior towards objects predicted by the SVM exhibited a significant correlation with the assessments made by human observers. The novelty discrimination index derived from the SVM predictions also aligned well with that from human observations.
Collapse
Affiliation(s)
- Takuya Kishi
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Kobayashi
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Sasagawa
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Katsuya Sakimura
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Takashi Minato
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Misato Kida
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takahiro Hata
- Innovation to implementation Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Yoshihiro Kitagawa
- Research Planning, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Chihiro Okuma
- Biological/Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1 Murasaki-cho, Takatsuki, Osaka, Japan
| | - Takahisa Murata
- Food and Animal Systemics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan; Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Park J, Shimbo H, Tamura S, Tomoda T, Hikida T, Okado H, Hirai S. Impact of feeding age on cognitive impairment in mice with Disrupted-In-Schizophrenia 1 (Disc1) mutation under a high sucrose diet. Behav Brain Res 2025; 476:115291. [PMID: 39401692 DOI: 10.1016/j.bbr.2024.115291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/17/2024]
Abstract
A combination of genetic predisposition and environmental factors contributes to the development of psychiatric disorders such as schizophrenia, bipolar disorder and major depressive disorder. Previous studies using mouse models suggested that prolonged high sucrose intake during puberty can serve as an environmental risk factor for the onset of psychiatric disorders. However, the impact of both the duration and timing of high sucrose consumption during different developmental stages on pathogenesis remains poorly defined. We therefore investigated the effects of a long-term high sucrose diet on cognitive deficit, a core symptom of psychiatric disorders, using Disrupted-in-Schizophrenia 1 locus-impairment heterozygous mutant (Disc1het) mice as a model for genetic predisposition. First, Disc1het mice and their littermate control (WT) were fed either a high sucrose diet or a control starch diet for nine weeks starting at weaning (postnatal day 24), and tested for cognitive performance in the object location test (OLT) and the novel object recognition test (NORT) (assessing spatial and recognition memory, respectively). Only Disc1het mice on a high sucrose diet displayed deficits in OLT (p < 0.0001), demonstrating impaired hippocampus-dependent spatial memory. This behavioral abnormality was accompanied by a decreased proportion of the high parvalbumin-expressing interneurons (High-PV neurons) in the ventral hippocampus, a cell type that regulates neural activity and a variety of learning and memory processes such as spatial and working memory. We further explored the critical developmental period for high sucrose intake to cause cognitive deficits in adulthood by comparing specific feeding periods during puberty (P24-P65) and post-puberty (P65-P90). Compared to those on a standard chow diet, high sucrose intake caused deficits in spatial memory in both WT and Disc1het mice, with more pronounced effects in Disc1het mice. In particular, Disc1het mice on a sucrose diet during adolescence showed more pronounced cognitive deficit than those fed after adolescence. Our results suggest that adolescence is particularly vulnerable to nutritional environmental risk factors, and that high sucrose consumption may cause hippocampus-dependent memory deficits via decreased High-PV interneuron function when combined with Disc1-related genetic predisposition.
Collapse
Affiliation(s)
- Jonghyuk Park
- Metabolic Regulation Group, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Hiroko Shimbo
- Metabolic Regulation Group, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Japan; Clinical Research Institute, Kanagawa Children's Medical Center, Japan
| | - Shoko Tamura
- Metabolic Regulation Group, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Toshifumi Tomoda
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, University of Toronto, Canada
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Japan
| | - Haruo Okado
- Metabolic Regulation Group, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Shinobu Hirai
- Metabolic Regulation Group, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Japan.
| |
Collapse
|
3
|
Hui R, Xu J, Zhou M, Xie B, Zhou M, Zhang L, Cong B, Ma C, Wen D. Betaine improves METH-induced depressive-like behavior and cognitive impairment by alleviating neuroinflammation via NLRP3 inflammasome inhibition. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111093. [PMID: 39029648 DOI: 10.1016/j.pnpbp.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Methamphetamine abuse has been associated with central nervous system damage, contributing to the development of neuropsychiatric disorders such as depressive-like behavior and cognitive impairment. With the escalating prevalence of METH abuse, there is a pressing need to explore effective therapeutic interventions. Thus, the objective of this research was to investigate whether betaine can protect against depressive-like behavior and cognitive impairment induced by METH. Following intraperitoneal injections of METH in mice, varying doses of betaine were administered. Subsequently, the behavioral responses of mice and the impact of betaine intervention on METH-induced neural damage, synaptic plasticity, microglial activation, and NLRP3 inflammatory pathway activation were assessed. Administration 30 mg/kg and 100 mg/kg of betaine ameliorated METH-induced depressive-like behaviors in the open field test, tail suspension test, forced swimming test, and sucrose preference test and cognitive impairment in the novel object recognition test and Barnes maze test. Moreover, betaine exerted protective effects against METH-induced neural damage and reversed the reduced synaptic plasticity, including the decline in dendritic spine density, as well as alterations in the expression of hippocampal PSD95 and Synapsin-1. Additionally, betaine treatment suppressed hippocampal microglial activation induced by METH. Likewise, it also inhibited the activation of the hippocampal NLRP3 inflammasome pathway and reduced IL-1β and TNF-α release. These results collectively suggest that betaine's significant role in mitigating depressive-like behavior and cognitive impairment resulting from METH abuse, presenting potential applications in the prevention and treatment of substance addiction.
Collapse
Affiliation(s)
- Rongji Hui
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Jiabao Xu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Maijie Zhou
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Meiqi Zhou
- College of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei Province 050017, PR China
| | - Ludi Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China.
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Province, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Province, Shijiazhuang 050017, PR China.
| |
Collapse
|
4
|
Bale LK, West SA, Gades NM, Baker DJ, Conover CA. Gene deletion of Pregnancy-associated Plasma Protein-A (PAPP-A) improves pathology and cognition in an Alzheimer's disease mouse model. Exp Neurol 2024; 382:114976. [PMID: 39349117 PMCID: PMC11502239 DOI: 10.1016/j.expneurol.2024.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 10/02/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease of age with no effective preventative or treatment approaches. Deeper understanding of the mechanisms underlying the accumulation of toxic β-amyloid oligopeptides and the formation of amyloid plaque in AD has the potential to identify new therapeutic targets. Prior research links the insulin-like growth factor (IGF) system to pathologic mechanisms underlying AD. Suppression of local IGF-I receptor (IGFIR) signaling in AD mice has been shown to reduce plaque formation in the brain and delay neurodegeneration and behavioral changes. However, direct inhibitors of IGFIR signaling are not a viable treatment option for AD due to the essentiality of the IGFIR in physiological growth and metabolism. We have previously demonstrated a more selective means to reduce local IGFIR signaling through inhibition of PAPP-A, a novel zinc metalloprotease that regulates local IGF-I bioavailability through cleavage of inhibitory IGF binding proteins. Here we tested if deletion of PAPP-A in a mouse model of AD provides protection against pathology and behavioral changes. We show that compared to AD mice, AD/PAPP-A KO mice had significantly less plaque burden, reduced astrocytic activation, decreased IGF-IR activity, and improved cognition. Human senile AD plaques showed specific immunostaining for PAPP-A. Thus, inhibition of PAPP-A expression or activity may represent a novel treatment strategy for AD.
Collapse
Affiliation(s)
- Laurie K Bale
- Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, United States of America.
| | - Sally A West
- Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, United States of America.
| | - Naomi M Gades
- Department of Comparative Medicine, Mayo Clinic, Scottsdale, AZ 85259, United States of America.
| | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, United States of America; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, United States of America.
| | - Cheryl A Conover
- Department of Endocrinology, Mayo Clinic, Rochester, MN 55905, United States of America.
| |
Collapse
|
5
|
Waigi EW, Pernomian L, Crockett AM, Costa TJ, Townsend P, Webb RC, McQuail JA, McCarthy CG, Hollis F, Wenceslau CF. Vascular dysfunction occurs prior to the onset of amyloid pathology and Aβ plaque deposits colocalize with endothelial cells in the hippocampus of female APPswe/PSEN1dE9 mice. GeroScience 2024; 46:5517-5536. [PMID: 38862757 PMCID: PMC11493946 DOI: 10.1007/s11357-024-01213-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/18/2024] [Indexed: 06/13/2024] Open
Abstract
Increasing evidence shows that cardiovascular diseases (CVDs) are associated with an increased risk of cognitive impairment and Alzheimer's diseases (AD). It is unknown whether systemic vascular dysfunction occurs prior to the development of AD, if this occurs in a sex-dependent manner, and whether endothelial cells play a role in the deposition of amyloid beta (Aβ) peptides. We hypothesized that vascular dysfunction occurs prior to the onset of amyloid pathology, thus escalating its progression. Furthermore, endothelial cells from female mice will present with an exacerbated formation of Aβ peptides due to an exacerbated pressure pulsatility. To test this hypothesis, we used a double transgenic mouse model of early-onset AD (APPswe/PSEN1dE9). We evaluated hippocampus-dependent recognition memory and the cardiovascular function by echocardiography and direct measurements of blood pressure through carotid artery catheterization. Vascular function was evaluated in resistance arteries, morphometric parameters in the aortas, and immunofluorescence in the hippocampus and aortas. We observed that endothelial dysfunction occurred prior to the onset of amyloid pathology irrespective of sex. However, during the onset of amyloid pathology, only female APP/PS1 mice had vascular stiffness in the aorta. There was elevated Aβ deposition which colocalized with endothelial cells in the hippocampus from female APP/PS1 mice. Overall, these data showed that vascular abnormalities may be an early marker, and potential mediator of AD, but exacerbated aortic stiffness and pressure pulsatility after the onset of amyloid pathology may be associated with a greater burden of Aβ formation in hippocampal endothelial cells from female but not male APP/PS1 mice.
Collapse
Affiliation(s)
- Emily W Waigi
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Laena Pernomian
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Alexia M Crockett
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Tiago J Costa
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Paul Townsend
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA
| | - Joseph A McQuail
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Cameron G McCarthy
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA
| | - Fiona Hollis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Camilla F Wenceslau
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, USA.
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
6
|
Rossato DR, Rosa JLO, Fontoura MB, de Souza LEM, de Almeida TM, Kudrna KB, Schaffazick SR, da Silva CB, Birk L, Eller S, de Oliveira TF, Burger ME. Ferulic Acid-Loaded Nanostructure Maintains Brain Levels of ACh, Glutamate, and GABA and Ameliorates Anxiety and Memory Impairments Induced by the D-Galactose Aging Process in Rats. Neurochem Res 2024; 49:3383-3395. [PMID: 39302597 DOI: 10.1007/s11064-024-04248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Population aging is a global reality driven by increased life expectancy. This demographic phenomenon is intrinsically linked to the epidemic of cognitive disorders such as dementia and Alzheimer's disease, posing challenges for elderly and their families. In this context, the search for new therapeutic strategies to prevent or minimize cognitive impairments becomes urgent, as these deficits are primarily associated with oxidative damage and increased neuroinflammation. Ferulic acid (FA), a natural and potent antioxidant compound, is proposed to be nanoencapsulated to target the central nervous system effectively with lower doses and an extended duration of action. Here, we evaluated the effects of the nanoencapsulated FA on d-galactose (d-Gal)- induced memory impairments. Male Wistar adult rats were treated with ferulic acid-loaded nanocapsules (FA-Nc) or non-encapsulated ferulic acid (D-FA) for 8 weeks concurrently with d-Gal (150 mg/kg s.c.) injection. As expected, our findings showed that d-Gal injection impaired memory processes and increased anxiety behavior, whereas FA-Nc treatment ameliorated these behavioral impairments associated with the aging process induced by d-Gal. At the molecular level, nanoencapsulated ferulic acid (FA-Nc) ameliorated the decrease in ACh and glutamate induced by d-galactose (d-Gal), and also increased GABA levels in the dorsal hippocampus, indicating its therapeutic superiority. Additional studies are needed to elucidate the mechanisms underlying our current promising outcomes. Nanoscience applied to pharmacology can reduce drug dosage, thereby minimizing adverse effects while enhancing therapeutic response, particularly in neurodegenerative diseases associated with aging. Therefore, the strategy of brain-targeted drug delivery through nanoencapsulation can be effective in mitigating aging-related factors that may lead to cognitive deficits.
Collapse
Affiliation(s)
- Domenika R Rossato
- Graduation Program of Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Jéssica L O Rosa
- Graduation Program of Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Murilo B Fontoura
- Graduation Program of Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Leana E M de Souza
- Departamento de Fisiologia e Farmacologia, UFSM, Santa Maria, RS, Brazil
| | - Tielle M de Almeida
- Graduation Program of Pharmaceutical Sciences, UFSM, Santa Maria, RS, Brazil
| | | | - Scheila R Schaffazick
- Graduation Program of Pharmaceutical Sciences, UFSM, Santa Maria, RS, Brazil
- Departamento de Farmácia, UFSM, Santa Maria, RS, Brazil
| | - Cristiane B da Silva
- Graduation Program of Pharmaceutical Sciences, UFSM, Santa Maria, RS, Brazil
- Departamento de Farmácia, UFSM, Santa Maria, RS, Brazil
| | - Letícia Birk
- Graduation Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Sarah Eller
- Graduation Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Tiago F de Oliveira
- Graduation Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Marilise E Burger
- Graduation Program of Pharmacology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil.
- Departamento de Fisiologia e Farmacologia, UFSM, Santa Maria, RS, Brazil.
| |
Collapse
|
7
|
Sharma S, Chawla S, Kumar P, Ahmad R, Kumar Verma P. The chronic unpredictable mild stress (CUMS) Paradigm: Bridging the gap in depression research from bench to bedside. Brain Res 2024; 1843:149123. [PMID: 39025397 DOI: 10.1016/j.brainres.2024.149123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Depression is a complicated neuropsychiatric condition with an incompletely understoodetiology, making the discovery of effective therapies challenging. Animal models have been crucial in improving our understanding of depression and enabling antidepressant medication development. The CUMS model has significant face validity since it induces fundamental depression symptoms in humans, such as anhedonia, behavioral despair, anxiety, cognitive impairments, and changes in sleep, food, and social behavior. Its construct validity is demonstrated by the dysregulation of neurobiological systems involved in depression, including monoaminergic neurotransmission, the hypothalamic-pituitary-adrenal axis, neuroinflammatory processes, and structural brain alterations. Critically, the model's predictive validity is demonstrated by the reversal of CUMS-induced deficits following treatment with clinically effective antidepressants such as selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, tricyclic antidepressants, and monoamine oxidase inhibitors. This review comprehensivelyassesses the multifarious depressive-like phenotypes in the CUMS model using behavioral paradigms like sucrose preference, forced swim, tail suspension, elevated plus maze, and novel object recognition tests. It investigates the neurobiological mechanisms that underlie CUMS-induced behaviors, including signaling pathways involving tumor necrosis factor-alpha, brain-derived neurotrophic factor and its receptor TrkB, cyclooxygenase-2, glycogen synthase kinase-3 beta, and the kynurenine pathway. This review emphasizes the CUMS model's importance as a translationally relevant tool for unraveling the complex mechanisms underlying depression and facilitating the development of improved and targeted interventions for this debilitating neuropsychiatric disorder by providing a comprehensive overview of its validity, behavioral assessments, and neurobiological underpinnings.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Pharmacology, School of PharmaceuticalEducation & Research, Jamia Hamdard, New Delhi 110062, India
| | - Shivani Chawla
- Shri Baba Mastnath Institute of Pharmaceutical Sciences and Research, Baba Mastnath University, Rohtak, Haryana 124001, India
| | - Praveen Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Rizwan Ahmad
- Department of Pharmacology, School of PharmaceuticalEducation & Research, Jamia Hamdard, New Delhi 110062, India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India.
| |
Collapse
|
8
|
Tian L, Li H, Xiong W, Li X, Duan S, Yang C, Shi C. Proteomic Alteration in Catalpol Treatment of Alzheimer's disease by regulating HSPA5/ GPX4. Eur J Pharmacol 2024:177075. [PMID: 39522685 DOI: 10.1016/j.ejphar.2024.177075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, is characterized by the deposition of extracellular amyloid plaques and intracellular neurofibrillary tangles. Conventional anti-AD drugs exhibit high toxicity and adversely impact patients' quality of life. Therefore, novel treatments for AD are urgently required. In recent years, targeting ferroptosis through the modulation of lipid oxidation has emerged as a new approach in the treatment of neurodegenerative diseases. Catalpol, an iridoid glycoside isolated from the roots of Rehmannia glutinosa, has exhibited anti-inflammatory, antioxidant, and neuroprotective properties. Therefore, in this study, we investigated the protective effects and associated underlying mechanisms of catalpol in an APP/PS1 AD mouse model. Catalpol treatment significantly improved the cognitive capabilities and decreased Aβ1-40 and Aβ1-42 levels in mice. Morphological testing revealed that catalpol prevented neuronal loss and reduced mitochondrial swelling in the hippocampal CA1 region. Proteomic studies identified 2,495 hippocampus proteins whose expression was associated with the mechanism of catalpol treatment, including 44 ferroptosis-related proteins. Bioinformatic analysis revealed that catalpol significantly increased the protein levels of HSPA5 and GPX4 in the hippocampus. Additionally, catalpol modulated biological pathways related to apoptosis, cytokine-mediated signaling, and ferroptosis. The considerable upregulation of HSPA5 and GPX4 with catalpol was further confirmed through western blotting. Catalpol exhibited neuroprotective effects through a variety of mechanisms. Among these, HSPA5 and GPX4, associated with ferroptosis, may play key roles in AD pathogenesis, and present promising therapeutic targets.
Collapse
Affiliation(s)
- Leiyu Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongwei Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China; Comparative Medicine Center, Peking Union Medical College and Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Wei Xiong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xia Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shaobin Duan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chengzhi Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Changhua Shi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
9
|
Mousavi SR, Shadravanan M, Farrokhi MR, Karimi F, Karbalaei N, Zadeh MA, Naseh M. Exposure to Sunset Yellow FCF since post-weaning causes hippocampal structural changes and memory impairment in the adult rat: The neuroprotective effects of Coenzyme Q10. Int J Dev Neurosci 2024. [PMID: 39520069 DOI: 10.1002/jdn.10385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND This study aimed to investigate whether exposure to Sunset Yellow FCF (SY) since post-weaning can lead to hippocampal structural changes and memory impairment in adult rat and whether the Coenzyme Q10 (CoQ10) can protect against these adverse effects. METHODS The weanling rats were randomly divided into six groups and were treated daily by oral gavage for 6 weeks, as follows: (I) control group, administered distilled water (0.3 mL/100 g/day); (II) CoQ10 group, received 10 mg/kg/day CoQ10; (III) low SY group, received 2.5 mg/kg/day SY; (IV) high SY group, received 70 mg/kg/day SY; (V) low SY + CoQ10 group; and (VI) high SY + CoQ10 group. At the end of the sixth week, the novel object recognition (NOR) test was conducted to evaluate memory. Then, after sacrificing animals, the cerebral hemispheres were removed for stereological study and evaluation of MDA levels. RESULTS The low and high doses of SY led to significant neuronal loss and a decrease in the volume of the hippocampus (CA1 and DG subregions), as well as increased the MDA level, which was associated with short- and long-term memory impairment. Although, administration of CoQ10 prevented the hippocampal neural loss and volume, and caused a reduction in MDA and improved memory in the low and high SY groups. CONCLUSION It seems that CoQ10 could prevent the neuronal loss and hippocampal atrophy caused by post-weaning exposure to SY through preventing oxidative stress, ultimately improving memory impairment in rats.
Collapse
Affiliation(s)
- Seyed Reza Mousavi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Shadravanan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Reza Farrokhi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurosurgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Karimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Anatomy Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Physiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Melika Arzhang Zadeh
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Naseh
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Duarte RMF, Ribeiro-Barbosa ER, Ferreira FR, Espindola FS, Spini VBMG. Resveratrol prevents offspring's behavioral impairment associated with immunogenic stress during pregnancy. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111188. [PMID: 39522792 DOI: 10.1016/j.pnpbp.2024.111188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Evidence suggests that prenatal maternal immunological stress is associated with an increased risk of neurological and psychiatric disorders in the developing offspring. Protecting the embryo during this critical period of neurodevelopment, when the brain is especially vulnerable, is therefore crucial. Polyphenols, with their antioxidant and anti-inflammatory properties, offer promising therapeutic approaches. This study demonstrated a series of behavioral changes induced by maternal immune activation (MIA) triggered by an antigenic solution derived from the H1N1 virus. These changes include significant differences in anxiety and risk assessment behaviors, increased immobility in the forced swim test, impairments in memory and object recognition, and social deficits resembling autism. The phenolic compound resveratrol (RSV) was evaluated for its in vitro antioxidant capacity and characterized using infrared spectroscopy. Administering RSV from embryonic day 14 (E14) to embrionyc day 19 (E19) during MIA effectively reduced its harmful effects on the offspring. This was evidenced by a significant restoration of social behaviors, memory, and recognition, as well as anxiolytic and antidepressant effects in the adult offspring. These findings contribute to new therapeutic strategies for preventing psychiatric disorders associated with neurodevelopmental stressors.
Collapse
Affiliation(s)
- Rener Mateus Francisco Duarte
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil.
| | - Erika Renata Ribeiro-Barbosa
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Foued Salmen Espindola
- Department of Biochemistry and Molecular Biology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | |
Collapse
|
11
|
Barzegar Behrooz A, Aghanoori MR, Nazari M, Latifi-Navid H, Vosoughian F, Anjomani M, Lotfi J, Ahmadiani A, Eliassi A, Nabavizadeh F, Soleimani E, Ghavami S, Khodagholi F, Fahanik-Babaei J. 40 Hz light preserves synaptic plasticity and mitochondrial function in Alzheimer's disease model. Sci Rep 2024; 14:26949. [PMID: 39506052 PMCID: PMC11541745 DOI: 10.1038/s41598-024-78528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia. Its causes are not fully understood, but it is now known that factors like mitochondrial dysfunction, oxidative stress, and compromised ion channels contribute to its onset and progression. Flickering light therapy has shown promise in AD treatment, though its mechanisms remain unclear. In this study, we used a rat model of streptozotocin (STZ)-induced AD to evaluate the effects of 40 Hz flickering light therapy. Rats received intracerebroventricular (ICV) STZ injections, and 7 days after, they were exposed to 40 Hz flickering light for 15 min daily over seven days. Cognitive and memory functions were assessed using Morris water maze, novel object recognition, and passive avoidance tests. STZ-induced AD rats exhibited cognitive decline, elevated reactive oxygen species, amyloid beta accumulation, decreased serotonin and dopamine levels, and impaired mitochondrial function. However, light therapy prevented these effects, preserving cognitive function and synaptic plasticity. Additionally, flickering light restored mitochondrial metabolites and normalized ATP-insensitive mitochondrial calcium-sensitive potassium (mitoBKCa) channel activity, which was otherwise downregulated in AD rats. Our findings suggest that 40 Hz flickering light therapy could be a promising treatment for neurodegenerative disorders like AD by preserving synaptic and mitochondrial function.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Mohamad-Reza Aghanoori
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary & Alberta Children's Hospital Research Institute, Calgary, AB, T2N 4N1, Canada
| | - Maryam Nazari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Latifi-Navid
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Fatemeh Vosoughian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Anjomani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jabar Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Eliassi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Soleimani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Zabrze, 41-800, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB, Canada
- Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Wu X, Ding S, Wang G, Zhang W, He K. ZLN005 Reduces Neuroinflammation and Improves Mitochondrial Function in Mice with Perioperative Neurocognitive Disorders. J Inflamm Res 2024; 17:8135-8146. [PMID: 39525311 PMCID: PMC11545616 DOI: 10.2147/jir.s482051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background The decrease expression of PGC-1α contributes to perioperative neurocognitive disorders (PND). This study aimed to investigate the effects of the PGC-1α agonist ZLN005 in preventing PND and to explore the potential mechanism. Methods C57BL/6 mice were randomly divided into four groups: the control group (Group C), the surgery group (Group S), the surgery and ZLN005 (5 mg/(kg⋅d)) group (Group L), and the surgery and ZLN005 (7.5 mg/(kg⋅d)) group (Group H). Except for Group C, the other three groups received intraperitoneal injections of vehicle or ZLN005 once a day from 3 days before surgery to 3 days after surgery. The open field test, novel object recognition test and fear conditioning test were performed to measure anxiety behaviors, locomotor activity and memory. The levels of IL-6 and IL-1β were measured at 24 hours after surgery. ATP and ROS levels were measured at 3 days post-surgery. PGC-1α, NRF-1, Atp5d, Atp5k and Cox5a were measured at one day or three days post-surgery. Results ZLN005 treatment improved the cognitive function of mice in Group L and Group H compared with Group S. The expression of IL-6 and IL-1β in the hippocampus of the S group was increased after surgery, and ZLN005 reduced the expression of IL-6 and IL-1β in the hippocampus of mice one day after surgery. There were parallel decreases in the expression of PGC-1α/NRF-1 and mitochondrial function in the hippocampus of the Group S mice compared with the Group C mice. The expression of PGC-1α/NRF-1 and mitochondrial function were upregulated after ZLN005 treatment. Conclusion Neuroinflammation and mitochondrial damage are involved in the occurrence of PND. ZLN005 activates PGC-1α to increase the expression of mitochondrial proteins, improve mitochondrial function, and ultimately ameliorate the cognitive status of mice after surgery.
Collapse
Affiliation(s)
- Xiaofan Wu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
- Department of Anesthesiology, Bengbu Medical College Graduate School, Bengbu, Anhui, 233000, People’s Republic of China
| | - Sheng Ding
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
- Department of Anesthesiology, Bengbu Medical College Graduate School, Bengbu, Anhui, 233000, People’s Republic of China
| | - Guizhi Wang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
- Department of Anesthesiology, Bengbu Medical College Graduate School, Bengbu, Anhui, 233000, People’s Republic of China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| | - Keqiang He
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People’s Republic of China
| |
Collapse
|
13
|
Nadei OV, Agalakova NI. AMPA and NMDA Receptors in Hippocampus of Rats with Fluoride-Induced Cognitive Decline. Int J Mol Sci 2024; 25:11796. [PMID: 39519348 PMCID: PMC11546234 DOI: 10.3390/ijms252111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This experimental study was performed to evaluate the alterations in the expression of a few subunits composing glutamate AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) receptors in the hippocampal cells of Wistar rats in response to long-term fluoride (F-) exposure. The animals were given water with background 0.4 (control), 5, 20, and 50 ppm F- (as NaF) for 12 months. The cognitive capacities of rats were examined by novel object recognition (NOR), Y-maze test, and Morris water maze tests. RT-qPCR and Western blotting techniques were used to evaluate the expression of different AMPA and NMDA subunits at transcriptional and translational levels, respectively. Long-term F- poisoning disturbed the formation of hippocampus-dependent working spatial and long-term non-spatial memory. The expression of Gria1, Gria2, and Gria3 genes encoding different subunits of AMPA receptors were comparable in hippocampi of control and F--exposed animals, although the levels of both Grin2a and Grin2b mRNA increased. Long-term F- intake enhanced the ratio of phospho-GluA1/total-GluA1 proteins in subcellular fraction enriched with cytosolic proteins, while decreased content of GluA2 but elevated level of GluA3 were observed in subcellular fraction enriched with membrane proteins. Such changes were accompanied by increased phosphorylation of GluN2A and GluN2B subunits, higher ratios of GluN2A/GluN1 and GluN2B/GluN1 proteins in the cytosol, and GluN2A/GluN2B ratio in membranes. These changes indicate the predominance of Ca2+-permeable AMPARs in membranes and a shift between different NMDARs subunits in hippocampal cells of F--exposed rats, which is typical for neurodegeneration and can at least partially underly the observed disturbances in cognitive capacities of animals.
Collapse
Affiliation(s)
| | - Natalia Ivanovna Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, Saint-Petersburg 194223, Russia;
| |
Collapse
|
14
|
Agni MB, Hegde PS, Rai P, Sadananda M, K M DG. Astaxanthin and DHA Supplementation Modulates the Maternal Undernutrition-induced Impairment of Cognitive Behavior and Synaptic Plasticity in Adult Life of Offspring's -Exploring the Molecular Mechanism. Mol Neurobiol 2024; 61:8975-8995. [PMID: 38578356 DOI: 10.1007/s12035-024-04147-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Maternal nutrition was recognized as a significant part of brain growth and maturation in most mammalian species. Timely intervention with suitable nutraceuticals would provide long-term health benefits. We aim to unravel the molecular mechanisms of perinatal undernutrition-induced impairments in cognition and synaptic plasticity, employing animal model based on dietary nutraceutical supplementation. We treated undernourished dams at their gestational, lactational, and at both the time point with Astaxanthin (AsX) and Docosahexaenoic acid (DHA), and their pups were used as experimental animals. We evaluated the cognitive function by subjecting the pups to behavioral tests in their adult life. In addition, we assessed the expression of genes in the hippocampus related to cognitive function and synaptic plasticity. Our results showed downregulation of Brain-derived neurotrophic factor (BDNF), Neurotrophin-3 (NT-3), cAMP response-element-binding protein (CREB), and uncoupling protein-2 (UCP2) gene expression in pups born to undernourished dams in their adult life, which AsX and DHA modulated. Maternal AsX and DHA supplementation ameliorated the undernutrition-induced learning impairment in novel object recognition (NOR) tests and partially baited radial arm maze (RAM) tasks in offspring's. The expressions of Synapsin-1 and PSD-95 decreased in perinatally undernourished groups compared to control and AsX-DHA treated groups at CA1, CA2, CA3, and DG. AsX and DHA supplementation upregulated BDNF, NT-3, CREB, and UCP2 gene expressions in perinatally undernourished rats, which are involved in intracellular signaling cascades like Ras, PI3K, and PLC. The results of our study give new insights into neuronal differentiation, survival, and plasticity, indicating that the perinatal period is the critical time for reversing maternal undernutrition-induced cognitive impairment in offspring's.
Collapse
Affiliation(s)
- Megha Bhat Agni
- Nitte (Deemed to be University), Department of Physiology, KS Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Pramukh Subrahmanya Hegde
- Nitte (Deemed to be University), Department of Physiology, KS Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Praveen Rai
- Nitte (Deemed to be University), Department of Infectious Diseases & Microbial Genomics, Nitte University Centre for Science Education and Research (NUCSER), Mangalore, Karnataka, 575018, India
| | - Monika Sadananda
- Biotechnology Unit, Department of Biosciences, Mangalore University, Mangalagangothri, 574199, Karnataka, India
| | - Damodara Gowda K M
- Nitte (Deemed to be University), Department of Physiology, KS Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
15
|
Faldu KG, Shah JS. Ambroxol Improves Amyloidogenic, NF-κB, and Nrf2 Pathways in a Scopolamine-Induced Cognitive Impairment Rat Model of Alzheimer's Disease. Drug Dev Res 2024; 85:e70017. [PMID: 39533780 DOI: 10.1002/ddr.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/13/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Ambroxol (ABX) is used to manage excessive production of mucus in the respiratory system. The present study sought to assess the neuroprotective potential of ambroxol by influencing the amyloidogenic, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways in a rat model of Alzheimer's disease (AD) induced by scopolamine. The AD pathology was induced by chronic administration of scopolamine. The rats were given scopolamine at a dose of 2 mg/kg via intraperitoneal injection daily for 14 days, followed by treatment (ABX 121.5, 135, and 180 mg/kg orally and 5 mg/kg orally of donepezil) for the next 28 days while continuing to receive daily scopolamine injection. The behavior of the rats was evaluated using Modified Y-Maze and Novel object recognition tasks. Analyses were carried out on AD pathological markers [Amyloid beta peptide 1-40, Amyloid beta peptide 1-42, acetylcholinesterase, beta-secretase 1 (BACE1), total tau, and p-tau], inflammatory markers [NF-κB, tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interferon γ], antioxidant markers (Nrf2 and heme Oxygenase 1 (HO-1)], along with synaptophysin and glial fibrillary acidic protein (GFAP) immunohistochemistry and histopathological assessment of the hippocampus. Our findings indicated that ABX reduced impairment in behavior. Levels of Acetylcholinesterase, BACE1, amyloid beta 1-40, amyloid beta 1-42, total tau, p-tau, NF-κB, IFN-γ, IL-6, and TNF-α decreased significantly. There was a significant increase in the levels of HO-1 and Nrf2. It stopped the neuronal degeneration, raised synaptophysin immunoreactivity, and lowered GFAP immunoreactivity. The current research indicates that ambroxol may possess senomorphic properties by impacting the transcription factors NF-κB and senescence-associated secretory phenotype (SASP). Consequently, it could provide neuroprotection through alterations in the Nrf2 and NF-κB signaling pathways in AD.
Collapse
Affiliation(s)
- Khushboo Govind Faldu
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigna Samir Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
16
|
Bernard K, Mota JA, Wene P, Corenblum MJ, Saez JL, Bartlett MJ, Heien ML, Doyle KP, Polt R, Hay M, Madhavan L, Falk T. The angiotensin (1-7) glycopeptide PNA5 improves cognition in a chronic progressive mouse model of Parkinson's disease through modulation of neuroinflammation. Exp Neurol 2024; 381:114926. [PMID: 39153685 DOI: 10.1016/j.expneurol.2024.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/19/2024]
Abstract
Cognitive decline in Parkinson's Disease (PD) is a prevalent and undertreated aspect of disease. Currently, no therapeutics adequately improve this aspect of disease. It has been previously shown that MAS receptor agonism via the glycosylated Angiotensin (1-7) peptide, PNA5, effectively reduces cognitive decline in models of vascular contributions to cognitive impairment and dementia (VCID). PNA5 has a brain/plasma ratio of 0.255 indicating good brain penetration. The goal of the present study was to determine if (1) systemic administration of PNA5 rescued cognitive decline in a mouse model of PD, and (2) if improvements in cognitive status could be correlated with changes to histopathological or blood plasma-based changes. Mice over-expressing human, wild-type α-synuclein (αSyn) under the Thy1 promoter (Thy1-αSyn mice, "line 61") were used as a model of PD with cognitive decline. Thy1-αSyn mice were treated with a systemic dose of PNA5, or saline (1 mg/kg/day) beginning at 4 months of age and underwent behavioral testing at 6 months, compared to WT. Subsequently, mice brains were analyzed for changes to brain pathology, and blood plasma was examined with a Multiplex Immunoassay for peripheral cytokine changes. Treatment with PNA5 reversed cognitive dysfunction measured by Novel Object Recognition and spontaneous alteration in a Y-maze in Thy1-αSyn mice. PNA5 treatment was specific to cognitive deficits, as fine-motor disturbances were unchanged. Enhanced cognition was associated with decreases in hippocampal inflammation and reductions in circulating levels of Macrophage Induced Protein (MIP-1β). Additionally, neuronal loss was blunted within the CA3 hippocampal region of PNA5-treated αsyn mice. These data reveal that PNA5 treatment reduces cognitive dysfunction in a mouse model of PD. These changes are associated with decreased MIP-1β levels in plasma identifying a candidate biomarker for target engagement. Thus, PNA5 treatment could potentially fill the therapeutic gap for cognitive decline in PD.
Collapse
Affiliation(s)
- Kelsey Bernard
- Physiological Sciences Graduate Program, University of Arizona, Tucson, AZ, United States
| | - Jesus A Mota
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Paige Wene
- Department of Microbiology, University of Arizona, Tucson, AZ, United States
| | - Mandi J Corenblum
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | - Juben L Saez
- Department of Neurology, University of Arizona, Tucson, AZ, United States
| | | | - M Leandro Heien
- Department of Chemistry & Biochemistry, Tucson, AZ, United States
| | - Kristian P Doyle
- Department of Neurology, University of Arizona, Tucson, AZ, United States; Department of Immunobiology, University of Arizona, Tucson, AZ, United States
| | - Robin Polt
- Department of Chemistry & Biochemistry, Tucson, AZ, United States; BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - Meredith Hay
- Department of Physiology, University of Arizona, Tucson, AZ, United States; Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, United States
| | - Lalitha Madhavan
- Physiological Sciences Graduate Program, University of Arizona, Tucson, AZ, United States; Department of Neurology, University of Arizona, Tucson, AZ, United States; BIO5 Institute, University of Arizona, Tucson, AZ, United States; Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, United States.
| | - Torsten Falk
- Physiological Sciences Graduate Program, University of Arizona, Tucson, AZ, United States; Department of Neurology, University of Arizona, Tucson, AZ, United States; Department of Pharmacology, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
17
|
Barron JJ, Mroz NM, Taloma SE, Dahlgren MW, Ortiz-Carpena JF, Keefe MG, Escoubas CC, Dorman LC, Vainchtein ID, Chiaranunt P, Kotas ME, Nowakowski TJ, Bender KJ, Molofsky AB, Molofsky AV. Group 2 innate lymphoid cells promote inhibitory synapse development and social behavior. Science 2024; 386:eadi1025. [PMID: 39480923 DOI: 10.1126/science.adi1025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 02/22/2024] [Accepted: 09/02/2024] [Indexed: 11/02/2024]
Abstract
The innate immune system shapes brain development and is implicated in neurodevelopmental diseases. It is critical to define the relevant immune cells and signals and their impact on brain circuits. In this work, we found that group 2 innate lymphoid cells (ILC2s) and their cytokine interleukin-13 (IL-13) signaled directly to inhibitory interneurons to increase inhibitory synapse density in the developing mouse brain. ILC2s expanded and produced IL-13 in the developing brain meninges. Loss of ILC2s or IL-13 signaling to interneurons decreased inhibitory, but not excitatory, cortical synapses. Conversely, ILC2s and IL-13 were sufficient to increase inhibitory synapses. Loss of this signaling pathway led to selective impairments in social interaction. These data define a type 2 neuroimmune circuit in early life that shapes inhibitory synapse development and behavior.
Collapse
Affiliation(s)
- Jerika J Barron
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nicholas M Mroz
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sunrae E Taloma
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Madelene W Dahlgren
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
- Lung Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jorge F Ortiz-Carpena
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matthew G Keefe
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Caroline C Escoubas
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Leah C Dorman
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ilia D Vainchtein
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pailin Chiaranunt
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Maya E Kotas
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomasz J Nowakowski
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin J Bender
- Kavli Institute for Fundamental Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ari B Molofsky
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna V Molofsky
- Department of Psychiatry and Behavioral Sciences-Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Kavli Institute for Fundamental Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
18
|
Baram TZ, Birnie MT. Enduring memory consequences of early-life stress / adversity: Structural, synaptic, molecular and epigenetic mechanisms. Neurobiol Stress 2024; 33:100669. [PMID: 39309367 PMCID: PMC11415888 DOI: 10.1016/j.ynstr.2024.100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/13/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Adverse early life experiences are strongly associated with reduced cognitive function throughout life. The link is strong in many human studies, but these do not enable assigning causality, and the limited access to the live human brain can impede establishing the mechanisms by which early-life adversity (ELA) may induce cognitive problems. In experimental models, artificially imposed chronic ELA/stress results in deficits in hippocampus dependent memory as well as increased vulnerability to the deleterious effects of adult stress on memory. This causal relation of ELA and life-long memory impairments provides a framework to probe the mechanisms by which ELA may lead to human cognitive problems. Here we focus on the consequences of a one-week exposure to adversity during early postnatal life in the rodent, the spectrum of the ensuing memory deficits, and the mechanisms responsible. We highlight molecular, cellular and circuit mechanisms using convergent trans-disciplinary approaches aiming to enable translation of the discoveries in experimental models to the clinic.
Collapse
Affiliation(s)
- Tallie Z. Baram
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
- Department of Neurology, University of California-Irvine, Irvine, CA, USA
| | - Matthew T. Birnie
- Department of Pediatrics, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
19
|
Compagno MK, Silver CR, Cox-Holmes A, Basso KB, Bishop C, Bernstein AM, Carley A, Cazorla J, Claydon J, Crane A, Crespi C, Curley E, Dolezel T, Franck E, Heiden K, Huffstetler CM, Loeven AM, May CA, Maykut N, Narvarez A, Pacheco FA, Turner O, Fadool DA. Maternal ingestion of cannabidiol (CBD) in mice leads to sex-dependent changes in memory, anxiety, and metabolism in the adult offspring, and causes a decrease in survival to weaning age. Pharmacol Biochem Behav 2024:173902. [PMID: 39481653 DOI: 10.1016/j.pbb.2024.173902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/30/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
RATIONALE The consequences of perinatal cannabidiol (CBD) exposure are severely understudied, but are important, given its widespread use and believed safety as a natural supplement. OBJECTIVE The objective of this study was to test the health, metabolic, and behavioral consequences of perinatal CBD exposure on dams and their offspring raised to adult. METHODS Primiparous female C57BL/6 J mice were orally administered 100 mg/kg CBD in strawberry jam to expose offspring during gestation, lactation, or both using a cross-fostering design. Adult offspring were metabolically profiled using indirect calorimetry and intraperitoneal glucose tolerance testing. Adults were behaviorally phenotyped, video recorded, and mouse position tracked using DeepLabCut. RESULTS CBD was detected in maternal plasma using LC-MS 10-min post consumption (34.2 ± 1.7 ng/ul) and peaked within 30 min (371.0 ± 34.0 ng/ul). Fetal exposure to CBD significantly decreased survival of the pups, and decreased male postnatal development, but did not alter litter size, maternal body weight or pup birth weight. We observed many sex-dependent effects of perinatal CBD exposure. Exposure to CBD during gestation and lactation increased meal size, caloric intake, and respiratory exchange ratio for adult male offspring, while exposure during lactation decreased fasting glucose, but had no effect on clearance. Adult female offspring exposed to CBD during lactation showed increased drink size. Perinatal CBD exposure increased obsessive compulsive- and decreased anxiety-like behaviors (marble burying, light-dark box, elevated-plus maze) in female mice, decreased long-term object memory in male mice, and had no effect on attention tasks for either sex. CONCLUSIONS We conclude that orally-administered CBD during pregnancy affects behavior and metabolism in a sex-dependent manner, and mice are differentially sensitive to exposure during gestation vs. lactation, or both. Because long-term changes are observed following perinatal exposure to the drug, and exposure significantly decreases survival to weaning, more research during development is warranted.
Collapse
Affiliation(s)
| | - Claudia Rose Silver
- Interdisciplinary Medical Sciences, Florida State University, Tallahassee, FL 32306, USA.
| | - Alexis Cox-Holmes
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Caroline Bishop
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | | | - Aidan Carley
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Joshua Cazorla
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Jenna Claydon
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Ashleigh Crane
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Chloe Crespi
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Emma Curley
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Tyla Dolezel
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - Ezabelle Franck
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - Katie Heiden
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | | | - Ashley M Loeven
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Camilla Ann May
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Nicholas Maykut
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Alejandro Narvarez
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - Franklin A Pacheco
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Olivia Turner
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | - Debra Ann Fadool
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA; Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA; Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
20
|
Liu S, Zhang Q, Zhao F, Deng F, Wang Y. Regulating effect of Qifu Yin on intestinal microbiota in mice with memory impairment induced by scopolamine hydrobromide. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118445. [PMID: 38851472 DOI: 10.1016/j.jep.2024.118445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qifu Yin (QFY) originates from "Jingyue Quanshu · Volume 51 · New Fang Bazhen · Buzhen" a work by Zhang Jingyue, a distinguished Chinese medical practitioner from the Ming Dynasty. QFY is composed of Ginseng Radix et Rhizoma, Rehmanniae Radix Praeparata, Angelicae Sinensis Radix, Atractylodis Macrocephalae Rhizoma, Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle, Ziziphi Spinosae Semen, and Polygalae Radix. QFY is frequently employed to address memory loss and cognitive impairment stemming from vascular dementia, Alzheimer's disease (AD), and related conditions. Our findings indicate that QFY can mitigate nerve cell damage. Moreover, the study explores the impact of QFY on the calcium ion pathway and sphingolipid metabolism in mice with myocardial infarction, presenting a novel perspective on QFY's mechanism in ameliorating myocardial infarction through lipidomics. While this research provides an experimental foundation for the clinical application of QFY, a comprehensive and in-depth analysis of its improvement mechanism remains imperative. AIM OF THE STUDY To clarify the regulatory mechanism of QFY on intestinal microecology in mice with memory impairment (MI). MATERIAL AND METHODS The memory impairment mouse model was established by intraperitoneal injection of scopolamine hydrobromide. Kunming (KM) mice were randomly divided into blank group, Ginkgo tablet group (0.276 g/kg), QFY high, medium and low dose groups (17.2 g/kg, 8.6 g/kg, 4.3 g/kg). The effect on memory ability was evaluated by open field and step-down behavioral experiments. The morphological changes of nerve cells in the hippocampus of mice were observed by pathological method. The contents of superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT) and glutathione peroxidase (GSH-Px) in the brain tissue of mice were detected. The expression levels of CREB, Brain-Derived Neurotrophic Factor (BDNF) and Recombinant Amyloid Precursor Protein (APP) in the hippocampus of mice were determined using immunohistochemistry. The expression of N-methyl-D-aspartate receptor (NMDAR) and cAMP response element binding protein (CREB) related factors in the serum of mice was analyzed by ELISA. The levels of apoptosis signal-regulating kinase-1 (ASK1) and c-Jun N-terminal kinase (JNK) mRNA in the hippocampus were detected by quantitative real-time fluorescence polymerase chain reaction (qPCR). The intestinal feces of mice were collected, and the 16 S rDNA technology was used to detect the changes in intestinal microbiota microecological structure of feces in each group. RESULTS Behavioral experiments showed that the high-dose QFY group exhibited a significant increase in exercise time (P<0.05) and a decrease in diagonal time (P<0.05) compared to the model group. The medium-dose group of QFY showed a reduction in diagonal time (P<0.05). Additionally, the latency time significantly increased in the medium and high-dose groups of QFY (P<0.01). The number of errors in the low, medium and high dose groups was significantly decreased (P<0.05, P<0.01, P<0.01). The nerve cells in the CA1 and CA3 regions of QFY-treated mice demonstrated close arrangement and clear structure. Furthermore, the content of SOD significantly increased (P<0.01) and the content of MDA significantly decreased (P<0.05) in the low and high-dose QFY groups. The content of CAT in the medium-dose group significantly increased (P < 0.05). Immunohistochemical analysis showed a significant reduction in the number of APP expression particles in the CA1 and CA3 regions of all QFY groups. Moreover, BDNF expression significantly increased in the medium and high-dose groups, while CREB expression significantly increased in the low and medium-dose groups of QFY within the CA1 and CA3 regions. Serum analysis revealed significant increases in CREB content in the low, medium, and high dose groups of QFY (P<0.01, P<0.05, P<0.05), and decreases in NMDAR content across all QFY dose groups (P<0.01). PCR analysis showed a significant decrease in the contents of ASK1 and JNK in the medium-dose group (P<0.01). Microecological analysis of intestinal microbiota demonstrated a significant restoration trend in the relative abundance of Fusobacteria, Planctomycetes, and Verrucomicrobia (P<0.01 or P<0.05) at the phylum level in the QFY groups. At the genus level, Akkermansia, Paramuribaculum, Herminiimonas, Erysipelatoclostridium and other genera in the QFY groups showed a significant trend of relative abundance restoration (P<0.01 or P<0.05). CONCLUSION QFY can improve the memory of MI animals induced by scopolamine hydrobromide by restoring the homeostasis of intestinal microbiota and regulating related indexes in serum and brain tissue.
Collapse
Affiliation(s)
- Shiqi Liu
- School of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Qingling Zhang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.
| | - Fuxia Zhao
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| | - Fanying Deng
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| | - Yan Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| |
Collapse
|
21
|
Chatterjee K, Pal A, Padhy DS, Saha R, Chatterjee A, Bharadwaj M, Sarkar B, Mazumder PM, Banerjee S. Vitamin K2 Ameliorates Diabetes-Associated Cognitive Decline by Reducing Oxidative Stress and Neuroinflammation. J Neuroimmune Pharmacol 2024; 19:56. [PMID: 39466454 DOI: 10.1007/s11481-024-10156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
Diabetes, a chronic metabolic disease, affects approximately 422 million people and leads to 1.5 million deaths every year, It is found that 45% of individuals with diabetes eventually develop cognitive impairment. Here we study effects of Vitamin K2 on diabetes-associated cognitive decline (DACD) and its underlying mechanism. Diabetes was induced in adult Swiss albino mice with high-fat diet and a low dose (35 mg/kg) of streptozotocin and measured by fasting glucose and HbA1c levels. After one week of development of diabetes, one group of animals received Vitamin K2 (100 µg/kg) via oral gavage for 21 days. Then different behavioural studies, including the elevated plus maze, Morris water maze, passive avoidance test and novel object recognition test were performed followed by biochemical tests including AchE, different oxidative stress parameters (SOD, GSH, MDA, catalase, SIRT1, NRF2), inflammatory markers (TNFα, IL1β, MCP1, NFκB), apoptosis marker (Caspase 3). Hippocampal neuronal density was measured using histopathology. Vitamin K2 treatment in diabetic animals led to reduced fasting glucose and HbA1c, It could partially reverse DACD as shown by behavioural studies. Vitamin K2 adminstration reduced corticohippocampal AchE level and neuroinflammation (TNFα, IL1β, MCP1, NFκB, SIRT1). It reduced oxidative stress by increasing antioxidant enzymes (SOD, GSH, catalase), transcription factor NRF2 while reducing caspase 3. This eventually increased CA1 and CA3 neuronal density in diabetic animals. Vitamin K2 partially reverses DACD by increasing ACh while reducing the oxidative stress via Nrf2/ARE pathway and neuroinflammation, thus protecting the hippocampal neurons from diabetes associated damage.
Collapse
Affiliation(s)
- Kaberi Chatterjee
- Department of Pharmaceutical Technology, Birla Institute of Technology, Mesra, India
| | - Anubroto Pal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Dibya Sundar Padhy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Rajdeep Saha
- Department of Pharmaceutical Technology, Birla Institute of Technology, Mesra, India
| | - Amrita Chatterjee
- Department of Pharmaceutical Technology, Birla Institute of Technology, Mesra, India
| | - Monika Bharadwaj
- Department of Pharmaceutical Technology, Birla Institute of Technology, Mesra, India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Technology, Birla Institute of Technology, Mesra, India
| | - Papiya Mitra Mazumder
- Department of Pharmaceutical Technology, Birla Institute of Technology, Mesra, India.
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Kolkata, India.
| |
Collapse
|
22
|
Solem MA, Pelzel R, Rozema NB, Brown TG, Reid E, Mansky RH, Gomez-Pastor R. Enhanced Hippocampal Spare Capacity in Q175DN Mice Despite Elevated mHTT Aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618355. [PMID: 39464002 PMCID: PMC11507687 DOI: 10.1101/2024.10.14.618355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Background Huntington's disease (HD) is a neurodegenerative disease resulting in devastating motor, cognitive, and psychiatric deficits. The striatum is a brain region that controls movement and some forms of cognition and is most significantly impacted in HD. However, despite well-documented deficits in learning and memory in HD, knowledge of the potential implication of other brain regions such as the hippocampus remains limited. Objective Here, we study the comparative impact of enhanced mHTT aggregation and neuropathology in the striatum and hippocampus of two HD mouse models. Methods We utilized the zQ175 as a control HD mouse model and the Q175DN mice lacking the PGK-Neomycin cassette generated in house. We performed a comparative characterization of the neuropathology between zQ175 and Q175DN mice in the striatum and the hippocampus by assessing HTT aggregation, neuronal and glial pathology, chaperone expression, and synaptic density. Results We showed that Q175DN mice presented enhanced mHTT aggregation in both striatum and hippocampus compared to zQ175. Striatal neurons showed a greater susceptibility to enhanced accumulation of mHTT than hippocampal neurons in Q175DN despite high levels of mHTT in both regions. Contrary to the pathology seen in the striatum, Q175DN hippocampus presented enhanced spare capacity showing increased synaptic density, decreased Iba1+ microglia density and enhanced HSF1 levels in specific subregions of the hippocampus compared to zQ175. Conclusions Q175DN mice are a valuable tool to understand the fundamental susceptibility differences to mHTT toxicity between striatal neurons and other neuronal subtypes. Furthermore, our findings also suggest that cognitive deficits observed in HD animals might arise from either striatum dysfunction or other regions involved in cognitive processes but not from hippocampal degeneration.
Collapse
Affiliation(s)
- Melissa A Solem
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ross Pelzel
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Nicholas B. Rozema
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Taylor G. Brown
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Emma Reid
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Rachel H. Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - R Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
23
|
Pudełko-Malik N, Drulis-Fajdasz D, Pruss Ł, Mielko-Niziałek KA, Rakus D, Gizak A, Młynarz P. A single dose of glycogen phosphorylase inhibitor improves cognitive functions of aged mice and affects the concentrations of metabolites in the brain. Sci Rep 2024; 14:24123. [PMID: 39406810 PMCID: PMC11480434 DOI: 10.1038/s41598-024-74861-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Inhibition of glycogen phosphorylase (Pyg) - a regulatory enzyme of glycogen phosphorolysis - influences memory formation in rodents. We have previously shown that 2-week intraperitoneal administration of a Pyg inhibitor BAY U6751 stimulated the "rejuvenation" of the hippocampal proteome and dendritic spines morphology and improved cognitive skills of old mice. Given the tedious nature of daily intraperitoneal drug administration, in this study we investigated whether a single dose of BAY U6751 could induce enduring behavioral effects. Obtained results support the efficacy of such treatment in significantly improving the cognitive performance of 20-22-month-old mice. Metabolomic analysis of alterations observed in the hippocampus, cerebellum, and cortex reveal that the inhibition of glycogen phosphorolysis impacts not only glucose metabolism but also various other metabolic processes.
Collapse
Affiliation(s)
- Natalia Pudełko-Malik
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland
| | - Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Sienkiewicza 21, Wroclaw, 50- 335, Poland
| | - Łukasz Pruss
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland
- Ardigen, Kraków, 30-394, Poland
| | - Karolina Anna Mielko-Niziałek
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Sienkiewicza 21, Wroclaw, 50- 335, Poland
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Sienkiewicza 21, Wroclaw, 50- 335, Poland.
| | - Piotr Młynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, Wroclaw, 50-370, Poland.
| |
Collapse
|
24
|
Wang X, Yang J, Zhang X, Cai J, Zhang J, Cai C, Zhuo Y, Fang S, Xu X, Wang H, Liu P, Zhou S, Wang W, Hu Y, Fang J. An endophenotype network strategy uncovers YangXue QingNao Wan suppresses Aβ deposition, improves mitochondrial dysfunction and glucose metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156158. [PMID: 39447228 DOI: 10.1016/j.phymed.2024.156158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD), an escalating global health issue, lacks effective treatments due to its complex pathogenesis. YangXue QingNao Wan (YXQNW) is a China Food and Drug Administration (CFDA)- approved TCM formula that has been repurposed in clinical Phase II for the treatment of AD. Identifying YXQNW's active ingredients and their mechanisms is crucial for developing effective AD treatments. PURPOSE This study aims to elucidate the anti-AD effects of YXQNW and to explore its potential therapeutic mechanisms employing an endophenotype network strategy. METHODS Herein we present an endophenotype network strategy that combines active ingredient identification in rat serum, network proximity prediction, metabolomics, and in vivo experimental validation in two animal models. Specially, utilizing UPLC-Q-TOF-MS/MS, active ingredients are identified in YXQNW to build a drug-target network. We applied network proximity to identify potential AD pathological mechanisms of YXQNW via integration of drug-target network, AD endophenotype gene sets, and human protein interactome, and validated related mechanisms in two animal models. In a d-galactose-induced senescent rat model, YXQNW was administered at varying doses for cognitive and neuronal assessments through behavioral tests, Nissl staining, and transmission electron microscopy (TEM). Metabolomic analysis with LC-MS revealed YXQNW's influence on brain metabolites, suggesting therapeutic pathways. Levels of key proteins and biochemicals were measured by WB and ELISA, providing insights into YXQNW's neuroprotective mechanisms. In addition, 5×FAD model mice were used and administered YXQNW by gavage for 14 days at two doses. Amyloid-β levels, transporter expression, and cerebral blood flow have been detected by MRI and biochemical assays. RESULTS The network proximity analysis showed that the effect of YXQNW on AD was highly correlated with amyloid β, synaptic function, glucose metabolism and mitochondrial function. The results of metabolomics combined with in vivo experimental validation suggest that YXQNW has the potential to ameliorate glucose transport abnormalities in the brain by upregulating the expression of GLUT1 and GLUT3, while further enhancing glucose metabolism through increased O-GlcNAcylation and mitigating mitochondrial dysfunction via the AMPK/Sirt1 pathway, thereby improving d-galactose-induced cognitive deficits in rats. Additionally, YXQNW treatment significantly decreased Aβ1-42 levels and enhanced cerebral blood flow (CBF) in the hippocampus of 5×FAD mice. while mechanistic findings indicated that YXQNW treatment increased the expression of ABCB1, an Aβ transporter, in 5×FAD model mice to promote the clearance of Aβ from the brain and alleviate AD-like symptoms. CONCLUSIONS This study reveals that YXQNW may mitigate AD by inhibiting Aβ deposition and ameliorating mitochondrial dysfunction and glucose metabolism, thus offering a promising therapeutic approach for AD.
Collapse
Affiliation(s)
- Xue Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinna Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China
| | - Xiaolian Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinyong Cai
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Jieqi Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chuipu Cai
- Division of Data Intelligence, Department of Computer Science, Shantou University, Shantou 515063, China
| | - Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shuhuan Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xinxin Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130, China
| | - Hui Wang
- Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Peng Liu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Shuiping Zhou
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tasly Pharmaceutical Group Co., Ltd., Tianjin, 300410, China
| | - Wenjia Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China
| | - Yunhui Hu
- State Key Laboratory of Chinese Medicine Modernization, Tianjin, 300193, China; Tianjin Tasly Digital Intelligence Chinese Medicine Development Co., Ltd, China.
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
25
|
Swift NA, Yang Q, Jester HM, Zhou X, Manuel A, Kemp BE, Steinberg GR, Ma T. Suppression of neuronal AMPKβ2 isoform impairs recognition memory and synaptic plasticity. Neurobiol Dis 2024; 201:106664. [PMID: 39278510 PMCID: PMC11539201 DOI: 10.1016/j.nbd.2024.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024] Open
Abstract
AMP-activated protein kinase (AMPK) is an αβγ heterotrimer protein kinase that functions as a molecular sensor to maintain energy homeostasis. Accumulating evidence suggests a role of AMPK signaling in the regulation of synaptic plasticity and cognitive function; however, isoform-specific roles of AMPK in the central nervous system (CNS) remain elusive. Regulation of the AMPK activities has focused on the manipulation of the α or γ subunit. Meanwhile, accumulating evidence indicates that the β subunit is critical for sensing nutrients such as fatty acids and glycogen to control AMPK activity. Here, we generated transgenic mice with conditional suppression of either AMPKβ1 or β2 in neurons and characterized potential isoform-specific roles of AMPKβ in cognitive function and underlying mechanisms. We found that AMPKβ2 (but not β1) suppression resulted in impaired recognition memory, reduced hippocampal synaptic plasticity, and altered structure of hippocampal postsynaptic densities and dendritic spines. Our study implicates a role for the AMPKβ2 isoform in the regulation of synaptic and cognitive function.
Collapse
Affiliation(s)
- Nathaniel A Swift
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Qian Yang
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Hannah M Jester
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Xueyan Zhou
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Adam Manuel
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, Parkville, VIC 3010, Australia; Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne 3000, VIC, Australia
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Tao Ma
- Department of Internal Medicine, Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA; Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| |
Collapse
|
26
|
Bello-Medina PC, Díaz-Muñoz M, Martín del Campo ST, Pacheco-Moisés FP, Flores Miguel C, Cobián Cervantes R, García Solano PB, Navarro-Meza M. A maternal low-protein diet results in sex-specific differences in synaptophysin expression and milk fatty acid profiles in neonatal rats. J Nutr Sci 2024; 13:e64. [PMID: 39469193 PMCID: PMC11514622 DOI: 10.1017/jns.2024.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 10/30/2024] Open
Abstract
The developmental origins of health and disease hypothesis have highlighted the link between early life environment and long-term health outcomes in offspring. For example, maternal protein restriction during pregnancy and lactation can result in adverse metabolic and cognitive outcomes in offspring postnatal. Hence, in the present study, we assess whether an isocaloric low-protein diet (ILPD) affects the fatty acid profile in breast milk, the hippocampal synaptophysin (Syn) ratio, and the oxidative stress markers in the neonatal stage of male and female offspring. The aim of this work was to assess the effect of an ILPD on the fatty acid profile in breast milk, quantified the hippocampal synaptophysin (Syn) ratio and oxidative stress markers in neonatal stage of male and female offspring. Female Wistar rats were fed with either a control diet or an ILPD during gestation to day 10 of lactation. Oxidative stress markers were assessed in serum and liver. All quantifications were done at postnatal day 10. The results showed: ILPD led to decreases of 38.5% and 17.4% in breast milk volume and polyunsaturated fatty acids content. Significant decreases of hippocampal Syn ratio in male offspring (decreases of 98% in hippocampal CA1 pyramidal and CA1 oriens, 83%, stratum pyramidal in CA3, 80%, stratum lucidum in CA3, and 81% stratum oriens in CA3). Male offspring showed an increase in pro-oxidant status in serum and liver. Thus, the data suggest that male offspring are more vulnerable than females to an ILPD during gestation and lactation.
Collapse
Affiliation(s)
- Paola C. Bello-Medina
- Facultad de Ciencias, Universidad del Tolima, Altos de Santa Helena, Ibagué, Tolima, Colombia
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Sandra Teresita Martín del Campo
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Querétaro, México
- Food Engineering and Statistical Independent Consultant, Querétaro, México
| | | | - Claudia Flores Miguel
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Raquel Cobián Cervantes
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Perla Belén García Solano
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
| | - Mónica Navarro-Meza
- Laboratorio Clínica de Memoria y Neuronutrición, Departamento de Promoción, Preservación y Desarrollo de la Salud, Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán, Jalisco, México
- Departamento de Ciencias Clínicas, División de Ciencias de Salud, Centro Universitario del Sur, Ciudad Guzmán, Jalisco, México
| |
Collapse
|
27
|
Díaz L, Cortes C, Ugarte A, Trujillo A, Eguibar JR. Differences in memory performance: The effects of sex and reproductive experience on object recognition memory in high- and low-yawning Sprague‒Dawley rats. Physiol Behav 2024; 288:114713. [PMID: 39396667 DOI: 10.1016/j.physbeh.2024.114713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
The novel object recognition (NOR) test is an efficient way to measure nonspatial memory in rodents. The NOR performance of female and male rats is sexually dimorphic because memory performance is better in the former than in the latter. In females, maternal experience enhances spatial memory. We used the NOR test to evaluate short- and long-term recognition memory in both sexes in the high- and low-yawning sublines of rats (HY and LY, respectively), which were generated via a strict inbreeding process from the Sprague‒Dawley (SD) strain for more than ninety generations. Additionally, we evaluated the effect of maternal experience using nulliparous, primiparous, biparous, and multiparous HY, LY and SD dams. Our results revealed that LY rats presented less thigmotaxis, with lower central square crosses and more vertical exploration in the open-field arena, suggesting that they experienced anxiety. Additionally, LY males performed significantly better than LY females in short- and long-term NOR memory, and LY males performed significantly better than SD rats did. Among females, two maternal experiences negatively affected short-term memory in the LY and HY sublines with respect to primiparous dams, and HY dams had better memory performance in the NOR test than did SD dams. Our findings suggest that the yawning sublines are suitable for studying the neurobiological basis of different memory processes under different endocrine conditions in highly inbred groups of rats.
Collapse
Affiliation(s)
- Lilia Díaz
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla
| | - Carmen Cortes
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla
| | - Araceli Ugarte
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla
| | | | - Jose R Eguibar
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla; Instituto Dirección General de Internacionalización, Benemérita Universidad Autónoma de Puebla.
| |
Collapse
|
28
|
Nemets VV, Vinogradova EP, Zavialov V, Grinevich VP, Budygin EA, Gainetdinov RR. Accumbal Dopamine Responses Are Distinct between Female Rats with Active and Passive Coping Strategies. Biomolecules 2024; 14:1280. [PMID: 39456212 PMCID: PMC11505701 DOI: 10.3390/biom14101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
There is a gap in existing knowledge of stress-triggered neurochemical and behavioral adaptations in females. This study was designed to explore the short-term consequences of a single social defeat (SD) on accumbal dopamine (DA) dynamics and related behaviors in female Wistar rats. During the SD procedure, rats demonstrated different stress-handling strategies, which were defined as active and passive coping. The "active" subjects expressed a significantly higher level of activity directed toward handling stress experience, while the "passive" ones showed an escalated freezing pattern. Remarkably, these opposite behavioral manifestations were negatively correlated. Twenty-four hours following the SD exposure, decreased immobility latency in the Porsolt test and cognitive augmentation in the new object recognition evaluation were evident, along with an increase in electrically evoked mesolimbic DA release in passive coping rats. Rats exhibiting an active pattern of responses showed insignificant changes in immobility and cognitive performance as well as in evoked mesolimbic DA response. Furthermore, the dynamics of the decline and recovery of DA efflux under the depletion protocol were significantly altered in the passive but not active female rats. Taken together, these data suggest that female rats with a passive coping strategy are more susceptible to developing behavioral and neurochemical alterations within 24 h after stress exposure. This observation may represent both maladaptive and protective responses of an organism on a short timescale.
Collapse
Affiliation(s)
- Vsevolod V. Nemets
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| | - Ekaterina P. Vinogradova
- Department of High Neuros Activity, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Vladislav Zavialov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| | - Vladimir P. Grinevich
- Department of Neurobiology, Sirius University of Science and Technology, 354340 Sirius, Russia; (V.P.G.); (E.A.B.)
| | - Evgeny A. Budygin
- Department of Neurobiology, Sirius University of Science and Technology, 354340 Sirius, Russia; (V.P.G.); (E.A.B.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| |
Collapse
|
29
|
Lim XR, Abd-Alhaseeb MM, Ippolito M, Koide M, Senatore AJ, Plante C, Hariharan A, Weir N, Longden TA, Laprade KA, Stafford JM, Ziemens D, Schwaninger M, Wenzel J, Postnov DD, Harraz OF. Endothelial Piezo1 channel mediates mechano-feedback control of brain blood flow. Nat Commun 2024; 15:8686. [PMID: 39375369 PMCID: PMC11458797 DOI: 10.1038/s41467-024-52969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Hyperemia in response to neural activity is essential for brain health. A hyperemic response delivers O2 and nutrients, clears metabolic waste, and concomitantly exposes cerebrovascular endothelial cells to hemodynamic forces. While neurovascular research has primarily centered on the front end of hyperemia-neuronal activity-to-vascular response-the mechanical consequences of hyperemia have gone largely unexplored. Piezo1 is an endothelial mechanosensor that senses hyperemia-associated forces. Using genetic mouse models and pharmacologic approaches to manipulate endothelial Piezo1 function, we evaluated its role in blood flow control and whether it impacts cognition. We provide evidence of a built-in brake system that sculpts hyperemia, and specifically show that Piezo1 activation triggers a mechano-feedback system that promotes blood flow recovery to baseline. Further, genetic Piezo1 modification led to deficits in complementary memory tasks. Collectively, our findings establish a role for endothelial Piezo1 in cerebral blood flow regulation and a role in its behavioral sequelae.
Collapse
Affiliation(s)
- Xin Rui Lim
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Mohammad M Abd-Alhaseeb
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Michael Ippolito
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Masayo Koide
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Amanda J Senatore
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Curtis Plante
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Nick Weir
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA
- Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Kathryn A Laprade
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - James M Stafford
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Dorothea Ziemens
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Jan Wenzel
- Institute of Experimental and Clinical Pharmacology and Toxicology, Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Dmitry D Postnov
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, 8200, Denmark
| | - Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
- Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
30
|
Mao Y, Meng Y, Zou K, Qin N, Wang Y, Yan J, Chen P, Cheng Y, Shi W, Zhou C, Chen H, Sheng J, Liu X, Pan J, Huang H. Advanced paternal age exacerbates neuroinflammation in offspring via m6A modification-mediated intergenerational inheritance. J Neuroinflammation 2024; 21:249. [PMID: 39367406 PMCID: PMC11453047 DOI: 10.1186/s12974-024-03248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND The trend of postponing childbearing age is prevalent worldwide. Advanced paternal age (APA) is associated with adverse pregnancy outcomes and offspring health. However, the underlying mechanism by which paternal aging affects the risk of offspring neuropsychiatric disorders is unclear. Our study aims to explore the behavioral phenotypes and the pathologic epigenetic alterations of APA offspring inherited from aging sperm. METHODS Behavioral tests, ELISA assay, immunofluorescence and western blotting were performed on offspring mice. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA immunoprecipitation sequencing (RIP-seq) were used to investigate the modified N6-methyladenosine (m6A) profiles of paternal sperm and offspring hippocampus. Intervention of gene expression by lentivirus and adeno-associated virus in both vivo and vitro examined the potential therapeutic targets of intergenerational inherited neuroinflammation. RESULTS In our study, APA offspring exhibit cognitive impairment and autism-like behavior. An increase in neuroinflammation in APA offspring is associated with microglial overactivation, which manifests as abnormal morphology and augmented engulfment. MeRIP-seq of F0 sperm and F1 hippocampus reveal that Nr4a2 is hypermethylated with decreased expression in APA offspring involving in synaptic plasticity and microglial function. In addition, Ythdc1, an m6A reader protein, is markedly elevated in aging sperm and remains elevated in adult hippocampus of APA group. Enhanced Ythdc1 recognizes and suppresses the hypermethylated Nr4a2, thereby contributing to the abnormal phenotype in offspring. The overexpression of Ythdc1 triggers microglial activation in vitro and its suppression in the hippocampus of APA progeny alleviates behavioral aberrations and attenuates neuroinflammation. CONCLUSION Our study provides additional evidence of the abnormal behavioral phenotypes of APA offspring and reveals potential epigenetic inheritance signatures and targeted genes for future research.
Collapse
Affiliation(s)
- Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, (No. 2019RU056), Shanghai, China
| | - Yicong Meng
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kexin Zou
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ningxin Qin
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yinyu Wang
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Yan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - PinJia Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Yi Cheng
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Weihui Shi
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Chengliang Zhou
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huixi Chen
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianzhong Sheng
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China
| | - Xinmei Liu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, (No. 2019RU056), Shanghai, China.
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, (No. 2019RU056), Shanghai, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, 200011, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Shanghai Key Laboratory of Reproduction and Development, Shanghai, China.
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences, (No. 2019RU056), Shanghai, China.
| |
Collapse
|
31
|
Fonseca-Gomes J, Costa-Coelho T, Ferreira-Manso M, Inteiro-Oliveira S, Vaz SH, Alemãn-Serrano N, Atalaia-Barbacena H, Ribeiro-Rodrigues L, Ramalho RM, Pinto R, Vicente Miranda H, Tanqueiro SR, de Almeida-Borlido C, Ramalho MJ, Miranda-Lourenço C, Belo RF, Ferreira CB, Neves V, Rombo DM, Viais R, Martins IC, Jerónimo-Santos A, Caetano A, Manso N, Mäkinen P, Marttinen M, Takalo M, Bremang M, Pike I, Haapasalo A, Loureiro JA, Pereira MC, Santos NC, Outeiro TF, Castanho MARB, Fernandes A, Hiltunen M, Duarte CB, Castrén E, de Mendonça A, Sebastião AM, Rodrigues TM, Diógenes MJ. A small TAT-TrkB peptide prevents BDNF receptor cleavage and restores synaptic physiology in Alzheimer's disease. Mol Ther 2024; 32:3372-3401. [PMID: 39205389 PMCID: PMC11489560 DOI: 10.1016/j.ymthe.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
In Alzheimer's disease (AD), amyloid β (Aβ)-triggered cleavage of TrkB-FL impairs brain-derived neurotrophic factor (BDNF) signaling, thereby compromising neuronal survival, differentiation, and synaptic transmission and plasticity. Using cerebrospinal fluid and postmortem human brain samples, we show that TrkB-FL cleavage occurs from the early stages of the disease and increases as a function of pathology severity. To explore the therapeutic potential of this disease mechanism, we designed small TAT-fused peptides and screened their ability to prevent TrkB-FL receptor cleavage. Among these, a TAT-TrkB peptide with a lysine-lysine linker prevented TrkB-FL cleavage both in vitro and in vivo and rescued synaptic deficits induced by oligomeric Aβ in hippocampal slices. Furthermore, this TAT-TrkB peptide improved the cognitive performance, ameliorated synaptic plasticity deficits and prevented Tau pathology progression in vivo in the 5XFAD mouse model of AD. No evidence of liver or kidney toxicity was found. We provide proof-of-concept evidence for the efficacy and safety of this therapeutic strategy and anticipate that this TAT-TrkB peptide has the potential to be a disease-modifying drug that can prevent and/or reverse cognitive deficits in patients with AD.
Collapse
Affiliation(s)
- João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Tiago Costa-Coelho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mafalda Ferreira-Manso
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Sara Inteiro-Oliveira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Sandra H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Nuno Alemãn-Serrano
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Henrique Atalaia-Barbacena
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Leonor Ribeiro-Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Rita M Ramalho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Rui Pinto
- Laboratory of Systems Integration Pharmacology, Clinical, and Regulatory Science, Research Institute for Medicines (iMED.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; Dr. Joaquim Chaves Laboratório de Análises Clínicas, 2790-224 Carnaxide, Portugal
| | - Hugo Vicente Miranda
- iNOVA4Health, NOVA Medical School, NMS, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Carolina de Almeida-Borlido
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Maria João Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Catarina Miranda-Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Rita F Belo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Catarina B Ferreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Vera Neves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Diogo M Rombo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ricardo Viais
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - André Jerónimo-Santos
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - António Caetano
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Nuno Manso
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Petra Mäkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Mikael Marttinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; Structural and Computational Biology, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Mari Takalo
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Michael Bremang
- Proteome Sciences, Coveham House, Downside Bridge Road, KT11 3EP Cobham, UK
| | - Ian Pike
- Proteome Sciences, Coveham House, Downside Bridge Road, KT11 3EP Cobham, UK
| | - Annakaisa Haapasalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Joana A Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology, and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany; Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mikko Hiltunen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Eero Castrén
- Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Alexandre de Mendonça
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Tiago M Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal.
| |
Collapse
|
32
|
Panagaki T, Janickova L, Petrovic D, Zuhra K, Ditrói T, Jurányi EP, Bremer O, Ascenção K, Philipp TM, Nagy P, Filipovic MR, Szabo C. Neurobehavioral dysfunction in a mouse model of Down syndrome: upregulation of cystathionine β-synthase, H 2S overproduction, altered protein persulfidation, synaptic dysfunction, endoplasmic reticulum stress, and autophagy. GeroScience 2024; 46:4275-4314. [PMID: 38558215 PMCID: PMC11336008 DOI: 10.1007/s11357-024-01146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Down syndrome (DS) is a genetic condition where the person is born with an extra chromosome 21. DS is associated with accelerated aging; people with DS are prone to age-related neurological conditions including an early-onset Alzheimer's disease. Using the Dp(17)3Yey/ + mice, which overexpresses a portion of mouse chromosome 17, which encodes for the transsulfuration enzyme cystathionine β-synthase (CBS), we investigated the functional role of the CBS/hydrogen sulfide (H2S) pathway in the pathogenesis of neurobehavioral dysfunction in DS. The data demonstrate that CBS is higher in the brain of the DS mice than in the brain of wild-type mice, with primary localization in astrocytes. DS mice exhibited impaired recognition memory and spatial learning, loss of synaptosomal function, endoplasmic reticulum stress, and autophagy. Treatment of mice with aminooxyacetate, a prototypical CBS inhibitor, improved neurobehavioral function, reduced the degree of reactive gliosis in the DS brain, increased the ability of the synaptosomes to generate ATP, and reduced endoplasmic reticulum stress. H2S levels in the brain of DS mice were higher than in wild-type mice, but, unexpectedly, protein persulfidation was decreased. Many of the above alterations were more pronounced in the female DS mice. There was a significant dysregulation of metabolism in the brain of DS mice, which affected amino acid, carbohydrate, lipid, endocannabinoid, and nucleotide metabolites; some of these alterations were reversed by treatment of the mice with the CBS inhibitor. Thus, the CBS/H2S pathway contributes to the pathogenesis of neurological dysfunction in DS in the current animal model.
Collapse
Affiliation(s)
- Theodora Panagaki
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Lucia Janickova
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Dunja Petrovic
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V., Dortmund, Germany
| | - Karim Zuhra
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Eszter P Jurányi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Doctoral School of Semmelweis University, Semmelweis University, Budapest, Hungary
| | - Olivier Bremer
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Kelly Ascenção
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Thilo M Philipp
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
- Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology Research Group, University of Veterinary Medicine, Budapest, Hungary
- Chemistry Institute, University of Debrecen, Debrecen, Hungary
| | - Milos R Filipovic
- Leibniz-Institut Für Analytische Wissenschaften-ISAS-E.V., Dortmund, Germany
| | - Csaba Szabo
- Chair of Pharmacology, Section of Science and Medicine, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
33
|
Bifaroni RMS, Binotti GD, Bruneri KP, Tavares MEA, Ueda RMR, Rossi RC, Teixeira GR, Corrêa CR, Nai GA. Neurotoxic effects associated with chronic inhalation and oral exposure to glyphosate-based herbicide IN adult rats. Toxicol Res (Camb) 2024; 13:tfae148. [PMID: 39319340 PMCID: PMC11417962 DOI: 10.1093/toxres/tfae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
The use of glyphosate-based herbicides (GBHs) for agricultural production has increased substantially around the world, as have their residues in the environment. Its effects on the central nervous system and neurotoxicity pathways are still not fully understood. The aim of this study was to evaluate the neurotoxic effect of chronic exposure to a GBH in adult rats. Sixty adult male albino Wistar rats were allocated into 6 groups, 2 control groups, and four GBH exposure groups (n = 10/group). The animals were exposed to two concentrations of GBH, orally and by inhalation: 2.99 × 10-3 grams of active ingredient per hectare (g.a.i./ha) and 7.48 × 10-3 g.a.i./ha. The animals were exposed for six months. Behavioral studies were performed. Brain tissue was collected for histopathological, immunohistochemical, and oxidative stress analyses. Animals exposed by inhalation to GBH spent more time in the central area of the open field test, whereas animals exposed to a high oral concentration of GBH spent less time in the open arms in the elevated plus-maze test. Tissue hyperemia occurred only in animals exposed to high concentrations of GBH. There was a greater thickness of the cerebral cortex and an increase in the expression of the BCL-2 in the animals exposed by inhalation to GBH. There was no difference in the doses of malonaldehyde and protein carbonylation between exposed and unexposed groups. The exposure to GBH caused increased levels of anxiety, regardless of the route, high concentrations caused hyperemia and inhalation exposure cause increased cortex thickness and increased BCl-2 expression.
Collapse
Affiliation(s)
- Renata M S Bifaroni
- Animal Science – Master’s Degree and Doctoral Program, Universidade do Oeste Paulista (UNOESTE), Campus II Rodovia Raposo Tavares, km 572 - Bairro Limoeiro CEP 19067-175, Presidente Prudente, SP, Brazil
- Department of Pharmacology, Universidade do Oeste Paulista (UNOESTE), Bloco B - Campus I - Rua José Bongiovani, 700, 19050-680, Presidente Prudente, SP, Brazil
- Medical College, Universidade do Oeste Paulista (UNOESTE), Bloco H - Campus I - Rua José Bongiovani, 700, 19050-680, Presidente Prudente, SP, Brazil
| | - Giovanna D Binotti
- Medical College, Universidade do Oeste Paulista (UNOESTE), Bloco H - Campus I - Rua José Bongiovani, 700, 19050-680, Presidente Prudente, SP, Brazil
| | - Karen P Bruneri
- Medical College, Universidade do Oeste Paulista (UNOESTE), Bloco H - Campus I - Rua José Bongiovani, 700, 19050-680, Presidente Prudente, SP, Brazil
| | - Maria Eduarda A Tavares
- Department of Physical Education, Faculdade de Ciências e Tecnologia, São Paulo State University (UNESP), Rua Roberto Símonsen, 305 - Centro Educacional, 19060-900, Presidente Prudente, São Paulo, Brazil
| | - Rose Meire R Ueda
- Faculty of Psychology, Universidade do Oeste Paulista (UNOESTE), Campus II Rodovia Raposo Tavares, km 572 - Bairro Limoeiro CEP 19067-175, Presidente Prudente, São Paulo, Brazil
| | - Renata C Rossi
- Medical College, Universidade do Oeste Paulista (UNOESTE), Bloco H - Campus I - Rua José Bongiovani, 700, 19050-680, Presidente Prudente, SP, Brazil
- Environment and Regional Development - Master's Degree Program, Universidade do Oeste Paulista (UNOESTE), Campus II Rodovia Raposo Tavares, km 572 - Bairro Limoeiro CEP 19067-175, Presidente Prudente, SP, Brazil
| | - Giovana R Teixeira
- Department of Physical Education, Faculdade de Ciências e Tecnologia, São Paulo State University (UNESP), Rua Roberto Símonsen, 305 - Centro Educacional, 19060-900, Presidente Prudente, São Paulo, Brazil
| | - Camila Renata Corrêa
- Botucatu Medical School, Department of Pathology and Experimental Research Unit (UNIPEX), São Paulo State University (UNESP), Av. Prof. Mário Rubens Guimarães Montenegro, s/n - Campus de Botucatu - 18618-687, Botucatu, SP, Brazil
| | - Gisele Alborghetti Nai
- Animal Science – Master’s Degree and Doctoral Program, Universidade do Oeste Paulista (UNOESTE), Campus II Rodovia Raposo Tavares, km 572 - Bairro Limoeiro CEP 19067-175, Presidente Prudente, SP, Brazil
- Medical College, Universidade do Oeste Paulista (UNOESTE), Bloco H - Campus I - Rua José Bongiovani, 700, 19050-680, Presidente Prudente, SP, Brazil
- Department of Pathology, Universidade do Oeste Paulista (UNOESTE), Boloc D - Campus I - Rua José Bongiovani, 700, 19050-680, Presidente Prudente, SP, Brazil
| |
Collapse
|
34
|
He MT, Shin YS, Kim HY, Cho EJ. Carthamus tinctorius seeds- Taraxacum coreanum combination attenuates scopolamine-induced memory deficit through regulation of inflammatory response and cholinergic function. Nutr Res Pract 2024; 18:647-662. [PMID: 39398878 PMCID: PMC11464282 DOI: 10.4162/nrp.2024.18.5.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND/OBJECTIVES There is growing interest in herbal medicines for managing age-related diseases, such as Alzheimer's and Parkinson's. Safflower seeds (Carthamus tinctorius L. seeds, CTS) and dandelions (Taraxacum coreanum, TC) are widely used to treat bone- or inflammation-related diseases in Oriental countries. This study investigated the protective effect of the CTS-TC combination on scopolamine (Sco)-induced memory deficits through inflammatory response and cholinergic function. Moreover, marker components such as serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid in the CTS-TC combination were analyzed for their potential benefits on memory function. MATERIALS/METHODS Water extracts of CTS, TC, and the CTS-TC combination at various ratios (4:1, 1:1, and 1:4) (100 mg/kg) were orally administered to mice for 14 days. Sco (1 mg/kg) was intraperitoneally injected into the mice before each behavioral test. T-maze and novel object recognition tests were conducted to monitor behavioral changes after the treatment. Western blotting was performed to detect protein expression. In addition, the presence of 5 biomarkers, serotonin, N-(p-coumaroyl) serotonin, N-feruloylserotonin, chlorogenic acid, and chicoric acid, was analyzed using high-performance liquid chromatography (HPLC). RESULTS Behavioral tests showed that the CTS-TC combination enhanced memory function in Sco-injected mice. Inflammation-related proteins (inducible nitric oxide synthase, cyclooxygenase-2, and glial fibrillary acidic protein) were downregulated after treatment with the CTS-TC combination. The acetylcholinesterase protein expression was also downregulated. HPLC analysis revealed that N-feruloylserotonin and chicoric acid were the predominant components, followed by N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin. CONCLUSION These findings suggest that the CTS-TC combination protects against Sco-induced memory deficits by inhibiting inflammatory responses and cholinergic dysfunction. N-feruloylserotonin and chicoric acid, along with N-(p-coumaroyl) serotonin, chlorogenic acid, and serotonin, might be biomarkers for the CTS-TC combination, and their effects on memory protection warrant further study.
Collapse
Affiliation(s)
- Mei Tong He
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Yu-Su Shin
- Department of Ginseng and Medicinal Herb, National Institute of Horticulture Herbal Science, Rural Development Administration, Eumseong 27709, Korea
| | - Hyun Young Kim
- Department of Food Science and Nutrition, Gyeongsang National University, Jinju 52725, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Korea
- BK21 FOUR Program: Precision Nutrition Program for Future Global Leaders, Pusan National University, Busan 46241, Korea
| |
Collapse
|
35
|
Hanie MH, Mohammad Reza A, Mansoureh S, Fatemeh SB, Ali S. Exploring the impact of melatonin and omega-3, individually and in combination, on cognitive function, histological changes, and oxidant-antioxidant balance in male rats with dorsal CA1 hippocampal lesions. Brain Res 2024; 1840:149046. [PMID: 38821333 DOI: 10.1016/j.brainres.2024.149046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND AND OBJECTIVE Damage to the hippocampus leads to increased anxiety, memory problems, and learning disabilities. Melatonin (MLT), a hormone secreted by the pineal gland, serves as an antioxidant and provides defense against nerve damage. Omega-3 (ω3) is known for improving brain function. This study aims to examine the impact of melatonin and omega-3, both individually and in combination, on cognitive function, histological changes, and the balance between oxidants and antioxidants in male rats with injuries to the dorsal CA1 hippocampus. MATERIAL AND METHODS Five rat groups (n = 8) were examined. The sham group was given normal saline via intraperitoneal (ip) and gavage routes. After a local lesion in the hippocampus, the lesion group underwent the same treatment. The MLT group was given melatonin (10 mg/kg, ip), the ω3 group was provided with omega-3 (0.8 g/kg, gavage), and the MLT + ω3 group received both treatments. Injections were administered every other day for 10 days. On the 11th day, behavioral assessments were conducted, and then pyramidal cells were quantified using image analysis software. Serum samples were assessed for levels of oxidants and antioxidants. RESULTS The results from the open field test indicated a significant increase in distance moved in the Lesion + MLT + ω3 group compared to the lesion group (P < 0.05). Performance in the novel object recognition test showed improvement in the ω3 and MLT + ω3 treated groups compared to the lesion group (P < 0.05). Additionally, social interaction duration notably increased in the ω3, MLT, and MLT + ω3 treated groups compared to the lesion group. The number of degenerated cells in the CA1, CA2, and CA3 areas of the lesion group significantly increased compared to the sham group, but melatonin and omega-3 notably reduced this number (P < 0.05). The serum levels of the antioxidant enzymes,include superoxide dismutase, glutathione peroxidase, and catalase in the lesion group notably changed compared to the sham group, but omega-3 effectively restored them to control levels. CONCLUSION According to increase in distance moved, memory function, learning and social interactions of the animal in the behavioral results and the reduction of degenerate cells in the histological results, it can be said that these effects may be part of the neuroprotective effects of melatonin and omega-3. The increase in levels of antioxidant enzymes, particularly omega-3, indicates their promise as therapeutic agents for reducing oxidative stress-induced damage in neurological disorders.
Collapse
Affiliation(s)
- Mahmoudi Hashemi Hanie
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Afarinesh Mohammad Reza
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Sabzalizadeh Mansoureh
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sheikh Bahaei Fatemeh
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shamsara Ali
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
36
|
Lin HY, Feng YH, Kao TJ, Chen HC, Chen GY, Ko CY, Hsu TI. Exploring neuron-specific steroid synthesis and DHEAS therapy in Alzheimer's disease. J Steroid Biochem Mol Biol 2024; 243:106585. [PMID: 39019196 DOI: 10.1016/j.jsbmb.2024.106585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/22/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory loss. Recent studies have suggested a potential role for steroid synthesis in AD pathology. This study investigated the co-localization of steroidogenic enzymes in neuronal cells, changes in enzyme expression in an AD mouse model, and steroid expressions in human AD samples. Additionally, we conducted a steroidomic metabolomics analysis and evaluated the effects of dehydroepiandrosterone sulfate (DHEAS) treatment in an AD mouse model. Immunofluorescence analysis revealed significant co-localization of cytochrome P450 family 17 subfamily A member 1 (CYP17A1) and steroidogenic acute regulatory protein (StAR) proteins with α-synuclein in presynaptic neurons, suggesting active steroid synthesis in these cells. Conversely, such co-localization was absent in astrocytes. In the AD mouse model, a marked decrease in the expression of steroidogenic enzymes (Cyp11a1, Cyp17a1, Star) was observed, especially in areas with amyloid beta plaque accumulation. Human AD and MS brain tissues showed similar reductions in StAR and CYP17A1 expressions. Steroidomic analysis indicated a downregulation of key steroids in the serum of AD patients. DHEAS treatment in AD mice resulted in improved cognitive function and reduced Aβ accumulation. Our findings indicate a neuron-specific pathway for steroid synthesis, potentially playing a crucial role in AD pathology. The reduction in steroidogenic enzymes and key steroids in AD models and human samples suggests that impaired steroid synthesis is a feature of neurodegenerative diseases. The therapeutic potential of targeting steroid synthesis pathways, as indicated by the positive effects of DHEAS treatment, warrants further investigation.
Collapse
Affiliation(s)
- Hong-Yi Lin
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan
| | | | - Tzu-Jen Kao
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Research Center for Neuroscience, Taipei Medical University, Taipei 110, Taiwan
| | - Hsien-Chung Chen
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan; Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Guan-Yuan Chen
- Graduate Institute of Forensic Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiung-Yuan Ko
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan; Institute of Biomedical Sciences, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environment Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Research Center for Neuroscience, Taipei Medical University, Taipei 110, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei 110, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
37
|
Garcia SJ, Mike EV, Zhang J, Cuda CM, Putterman C. Lipocalin-2 drives neuropsychiatric and cutaneous disease in MRL/lpr mice. Front Immunol 2024; 15:1466868. [PMID: 39399497 PMCID: PMC11466786 DOI: 10.3389/fimmu.2024.1466868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Approximately 20-40% of patients with systemic lupus erythematosus (SLE) experience neuropsychiatric SLE (NPSLE), which often manifests as cognitive dysfunction and depression. Currently, there are no approved treatments for NPSLE because its underlying mechanisms are unclear. Identifying relevant mediators and understanding their contribution to pathogenesis are crucial for developing targeted treatment options. Lipocalin 2 (LCN2) is a multifunctional acute-phase protein that plays important roles in immune cell differentiation, migration, and function. LCN2 has been implicated in models of neuroinflammatory disease. Methods We generated an LCN2-deficient MRL/lpr mouse to evaluate the effects of LCN2 on this classic NPSLE model. To evaluate the effects of LCN2 deficiency on behavior, the mice underwent a battery of behavioral tests evaluating depression, memory, and anxiety. Flow cytometry was used to quantify immune cell populations in the brain, blood, and secondary lymphoid organs. Cutaneous disease was quantified by scoring lesional skin, and skin infiltrates were quantified through immunofluorescent staining. Systemic disease was evaluated through measuring anti-nuclear antibodies by ELISA. Results In this study, we found that LCN2 deficiency significantly attenuates neuropsychiatric and cutaneous disease in MRL/lpr lupus prone mice, likely by decreasing local infiltration of immune cells into the brain and skin and reducing astrocyte activation in the hippocampus. Anti-nuclear antibodies and kidney disease were not affected by LCN2. Discussion As there was no effect on systemic disease, our results suggest that the inflammatory effects of LCN2 were localized to the skin and brain in this model. This study further establishes LCN2 as a potential target to ameliorate organ injury in SLE, including neuropsychiatric and cutaneous disease.
Collapse
Affiliation(s)
- Sayra J. Garcia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Elise V. Mike
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carla M. Cuda
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Chaim Putterman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Azrieli Faculty of Medicine, Bar Ilan University, Zefat, Israel
| |
Collapse
|
38
|
Dudhabhate BB, Awathale SN, Choudhary AG, Subhedar NK, Kokare DM. Deep brain stimulation targeted at lateral hypothalamus-medial forebrain bundle reverses depressive-like symptoms and related cognitive deficits in rat: Role of serotoninergic system. Neuroscience 2024; 556:96-113. [PMID: 39103042 DOI: 10.1016/j.neuroscience.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
The aim of the study is to understand the rationale behind the application of deep brain stimulation (DBS) in the treatment of depression. Male Wistar rats, rendered depressive with chronic unpredictable mild stress (CUMS) were implanted with electrode in the lateral hypothalamus-medial forebrain bundle (LH-MFB) and subjected to deep brain stimulation (DBS) for 4 h each day for 14 days. DBS rats, as well as controls, were screened for a range of parameters indicative of depressive state. Symptomatic features noticed in CUMS rats like the memory deficit, anhedonia, reduction in body weight and 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in mPFC and elevated plasma corticosterone were reversed in rats subjected to DBS. DBS arrested CUMS induced degeneration of 5-HT cells in interfascicular region of dorsal raphe nucleus (DRif) and fibers in LH-MFB and induced dendritic proliferation in mPFC neurons. MFB is known to serve as a major conduit for the DRif-mPFC serotoninergic pathway. While the density of serotonin fibers in the LH-MFB circuit was reduced in CUMS, it was upregulated in DBS-treated rats. Furthermore, microinjection of 5-HT1A receptor antagonist, WAY100635 into mPFC countered the positive effects of DBS like the antidepressant and memory-enhancing action. In this background, we suggest that DBS at LH-MFB may exercise positive effect in depressive rats via upregulation of the serotoninergic system. While these data drawn from the experiments on rat provide meaningful clues, we suggest that further studies aimed at understanding the usefulness of DBS at LH-MFB in humans may be rewarding.
Collapse
Affiliation(s)
- Biru B Dudhabhate
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Sanjay N Awathale
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424 001, Maharashtra, India
| | - Amit G Choudhary
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India
| | - Nishikant K Subhedar
- Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pune 411 008, India
| | - Dadasaheb M Kokare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440 033, India.
| |
Collapse
|
39
|
Gangal H, Iannucci J, Huang Y, Chen R, Purvines W, Davis WT, Rivera A, Johnson G, Xie X, Mukherjee S, Vierkant V, Mims K, O'Neill K, Wang X, Shapiro LA, Wang J. Traumatic Brain Injury Exacerbates Alcohol Consumption and Neuroinflammation with Decline in Cognition and Cholinergic Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614247. [PMID: 39386515 PMCID: PMC11463482 DOI: 10.1101/2024.09.21.614247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Traumatic brain injury (TBI) is a global health challenge, responsible for 30% of injury-related deaths and significantly contributing to disability. Annually, over 50 million TBIs occur worldwide, with most adult patients at emergency departments showing alcohol in their system. TBI is also a known risk factor for alcohol abuse, yet its interaction with alcohol consumption remains poorly understood. In this study, we demonstrate that the fluid percussion injury (FPI) model of TBI in mice significantly increases alcohol consumption and impairs cognitive function. At cellular levels, FPI markedly reduced the number and activity of striatal cholinergic interneurons (CINs) while increasing microglial cells. Notably, depleting microglial cells provided neuroprotection, mitigating cholinergic loss and enhancing cholinergic activity. These findings suggest that TBI may promote alcohol consumption and impair cognitive abilities through microglia activation and consequently reduced cholinergic function. Our research provides critical insights into the mechanisms linking TBI with increased alcohol use and cognitive deficits, potentially guiding future therapeutic strategies.
Collapse
|
40
|
Ewens AN, Pilski A, Hastings SD, Krook-Magnuson C, Graves SM, Krook-Magnuson E, Thayer SA. Levetiracetam Prevents Neurophysiological Changes and Preserves Cognitive Function in the Human Immunodeficiency Virus (HIV)-1 Transactivator of Transcription Transgenic Mouse Model of HIV-Associated Neurocognitive Disorder. J Pharmacol Exp Ther 2024; 391:104-118. [PMID: 39060163 PMCID: PMC11413936 DOI: 10.1124/jpet.124.002272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND) affects nearly half of the 39 million people living with HIV. HAND symptoms range from subclinical cognitive impairment to dementia; the mechanisms that underlie HAND remain unclear and there is no treatment. The HIV protein transactivator of transcription (TAT) is thought to contribute to HAND because it persists in the central nervous system and elicits neurotoxicity in animal models. Network hyperexcitability is associated with accelerated cognitive decline in neurodegenerative disorders. Here we show that the antiepileptic drug levetiracetam (LEV) attenuated aberrant excitatory synaptic transmission, protected synaptic plasticity, reduced seizure susceptibility, and preserved cognition in inducible TAT (iTAT) transgenic male mice. iTAT mice had an increased frequency of spontaneous excitatory postsynaptic currents in hippocampal slice recordings and impaired long-term potentiation, a form of synaptic plasticity that underlies learning and memory. Two-week administration of LEV by osmotic minipump prevented both impairments. Kainic acid administered to iTAT mice induced a higher maximum behavioral seizure score, longer seizure duration, and shorter latency to first seizure, consistent with a lower seizure threshold. LEV treatment prevented these in vivo signs of hyperexcitability. Lastly, in the Barnes maze, iTAT mice required more time to reach the goal, committed more errors, and received lower cognitive scores relative to iTAT mice treated with LEV. Thus, TAT expression drives functional deficits, suggesting a causative role in HAND. As LEV not only prevented aberrant synaptic activity in iTAT mice but also prevented cognitive dysfunction, it may provide a promising pharmacological approach to the treatment of HAND. SIGNIFICANCE STATEMENT: Approximately half of people living with human immunodeficiency virus (HIV) also suffer from HIV-associated neurocognitive disorder (HAND), for which there is no treatment. The HIV protein transactivator of transcription (TAT) causes toxicity that is thought to contribute to HAND. Here, the antiepileptic drug levetiracetam (LEV) prevented synaptic and cognitive impairments in a TAT-expressing mouse. LEV is widely used to treat seizures and is well-tolerated in humans, including those with HIV. This study supports further investigation of LEV-mediated neuroprotection in HAND.
Collapse
Affiliation(s)
- Ashley N Ewens
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Alexander Pilski
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Shayne D Hastings
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Chris Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Steven M Graves
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Esther Krook-Magnuson
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota (A.N.E., A.P., S.M.G., S.A.T.); and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota (S.D.H., C.K.-M., E.K.-M.)
| |
Collapse
|
41
|
Malek R, Sałat K, Totoson P, Karcz T, Refouvelet B, Skrzypczak-Wiercioch A, Maj M, Simakov A, Martin H, Siwek A, Szałaj N, Godyń J, Panek D, Więckowska A, Jozwiak K, Demougeot C, Kieć-Kononowicz K, Chabchoub F, Iriepa I, Marco-Contelles J, Ismaili L. Discovery of New Highly Potent Histamine H 3 Receptor Antagonists, Calcium Channel Blockers, and Acetylcholinesterase Inhibitors. ACS Chem Neurosci 2024; 15:3363-3383. [PMID: 39208251 DOI: 10.1021/acschemneuro.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
At present, one of the most promising strategies to tackle the complex challenges posed by Alzheimer's disease (AD) involves the development of novel multitarget-directed ligands (MTDLs). To this end, we designed and synthesized nine new MTDLs using a straightforward and cost-efficient one-pot Biginelli three-component reaction. Among these newly developed compounds, one particular small molecule, named 3e has emerged as a promising MTDL. This compound effectively targets critical biological factors associated with AD, including the simultaneous inhibition of cholinesterases (ChEs), selective antagonism of H3 receptors, and blocking voltage-gated calcium channels. Additionally, compound 3e exhibited remarkable neuroprotective activity against H2O2 and Aβ1-40, and effectively restored cognitive function in AD mice treated with scopolamine in the novel object recognition task, confirming that this compound could provide a novel and innovative therapeutic approach for the effective treatment of AD.
Collapse
Affiliation(s)
- Rim Malek
- Université de Franche-Comté, INSERM, UMR 1322 LINC, F-25000 Besançon, France
- Laboratory of Applied Chemistry: Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, B. P 802, Sfax 3000, Tunisia
| | - Kinga Sałat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków 30-688, Poland
| | - Perle Totoson
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Bernard Refouvelet
- Université de Franche-Comté, INSERM, UMR 1322 LINC, F-25000 Besançon, France
| | - Anna Skrzypczak-Wiercioch
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, 24/28 Mickiewicz St., Kraków 30-059, Poland
| | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, Lublin 20-093, Poland
| | - Alexey Simakov
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Helene Martin
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Natalia Szałaj
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Krzysztof Jozwiak
- Department of Biopharmacy, Medical University of Lublin, ul. W. Chodzki 4a, Lublin 20-093, Poland
| | - Celine Demougeot
- Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland
| | - Fakher Chabchoub
- Laboratory of Applied Chemistry: Heterocycles, Lipids and Polymers, Faculty of Sciences of Sfax, University of Sfax, B. P 802, Sfax 3000, Tunisia
| | - Isabel Iriepa
- Universidad de Alcalá. Departamento de Química Orgánica y Química Inorgánica, Alcalá de Henares, Madrid 28805, Spain
- Instituto de Investigación Química Andrés M. del Río (IQAR), Universidad de Alcalá, Alcalá de Henares, Madrid 28805, Spain, Grupo DISCOBAC, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM)
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry (IQOG, CSIC), C/ Juan de la Cierva 3, Madrid 28006, Spain
- CIBER, ISCIII, Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid 28006, Spain
| | - Lhassane Ismaili
- Université de Franche-Comté, INSERM, UMR 1322 LINC, F-25000 Besançon, France
| |
Collapse
|
42
|
Basir HS, Mirazi N, Komaki A, Ramezani M, Hosseini A. Cacao Ameliorates Amyloid Beta-Induced Cognitive and Non-Cognitive Disturbances. Neurosci Insights 2024; 19:26331055241280638. [PMID: 39314637 PMCID: PMC11418343 DOI: 10.1177/26331055241280638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Background Alzheimer's disease (AD) is a progressive neurological disorder characterized by a wide range of cognitive and non-cognitive impairments. The present study was designed to investigate the potential effects of cacao on cognitive and non-cognitive performance and to identify the role of oxidative stress in an AD animal model induced by unilateral intracerebroventricular (U-ICV) injection of amyloid beta1-42 (Aβ1-42). Methods Oral administration of cacao (0.5 g/kg/day) was performed for 60 consecutive days. Following 60 days, the open-field (OF) test, elevated plus-maze (EPM) test, novel object recognition (NOR) test, Barnes maze (BM) test, and Morris water maze (MWM) test were used to evaluate locomotor activity, anxiety-like behavior, recognition memory, and spatial memory, respectively. Total oxidant status (TOS) and total antioxidant capacity (TAC) in plasma were also examined. Furthermore, the number of healthy cells in the hippocampus's dentate gyrus (DG), CA1, and CA3 regions were identified using hematoxylin and eosin staining. Results The results indicated that the injection of Aβ1-42 in rats led to recognition memory and spatial memory impairments, as well as increased anxiety. This was accompanied by decreased total antioxidant capacity (TAC), increased total oxidative stress (TOS), and increased neuronal death. Conversely, cacao treatment in AD rats improved memory function, reduced anxiety, modulated oxidative stress balance, and decreased neuronal death. Conclusion The findings suggest that cacao's ability to improve the balance between oxidants and antioxidants and prevent neuronal loss may be the mechanism underlying its beneficial effect against AD-related cognitive and non-cognitive impairments.
Collapse
Affiliation(s)
- Hamid Shokati Basir
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Naser Mirazi
- Department of Biology, Faculty of Basic Science, Bu-Ali Sina University, Hamedan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Ramezani
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
43
|
Renda B, Leri F. The anxiogenic drug yohimbine is a reinforcer in male and female rats. Neuropsychopharmacology 2024:10.1038/s41386-024-01985-1. [PMID: 39289489 DOI: 10.1038/s41386-024-01985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
The indole alkaloid yohimbine is an anxiogenic drug that activates stress-responsive systems in the brain. However, because yohimbine also elicits approach behaviors, this study employed male and female Sprague-Dawley rats to explore its potential reinforcing effects. Thus, it was first determined if intravenous (IV) infusions of yohimbine (0.25 mg/kg/infusion) could maintain lever pressing, whether intake could be modulated by dose/infusion, and if lever pressing would persist in the absence of yohimbine or yohimbine-paired cues. Next, to assess yohimbine's effect on memory consolidation, 0.3, 1.25 or 3 mg/kg yohimbine was administered post-training using an object recognition memory task. Finally, place conditioning assessed whether doses of yohimbine that elevate blood serum corticosterone levels (1.25 or 3 mg/kg) could elicit a conditioned place preference. It was found that both sexes acquired yohimbine IV self-administration, that intake was modulated by dose/infusion, and that lever pressing persisted during extinction and in the absence of the yohimbine-paired cue. As well, post-training injections of 1.25 mg/kg yohimbine enhanced consolidation of object memory, and 1.25 and 3 mg/kg elevated corticosterone levels and elicited a place preference in both sexes. Finally, in behavioral tests of psychomotor functions, acute yohimbine increased lever pressing for a visual cue and elevated locomotor activity. These findings reveal a profile of yohimbine's behavioral effects that is consistent with that of psychostimulant reinforcing drugs.
Collapse
Affiliation(s)
- Briana Renda
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
- Department of Psychology, University of Toronto, Scarborough, ON, Canada.
| |
Collapse
|
44
|
Zhu D, Zhang J, Ma X, Hu M, Gao F, Hashem JB, Lyu J, Wei J, Cui Y, Qiu S, Chen C. Overabundant endocannabinoids in neurons are detrimental to cognitive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613513. [PMID: 39345517 PMCID: PMC11430108 DOI: 10.1101/2024.09.17.613513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
2-Arachidonoylglycerol (2-AG) is the most prevalent endocannabinoid involved in maintaining brain homeostasis. Previous studies have demonstrated that inactivating monoacylglycerol lipase (MAGL), the primary enzyme responsible for degrading 2-AG in the brain, alleviates neuropathology and prevents synaptic and cognitive decline in animal models of neurodegenerative diseases. However, we show that selectively inhibiting 2-AG metabolism in neurons impairs cognitive function in mice. This cognitive impairment appears to result from decreased expression of synaptic proteins and synapse numbers, impaired long-term synaptic plasticity and cortical circuit functional connectivity, and diminished neurogenesis. Interestingly, the synaptic and cognitive deficits induced by neuronal MAGL inactivation can be counterbalanced by inhibiting astrocytic 2-AG metabolism. Transcriptomic analyses reveal that inhibiting neuronal 2-AG degradation leads to widespread changes in expression of genes associated with synaptic function. These findings suggest that crosstalk in 2-AG signaling between astrocytes and neurons is crucial for maintaining synaptic and cognitive functions and that excessive 2-AG in neurons alone is detrimental to cognitive function.
Collapse
Affiliation(s)
- Dexiao Zhu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jian Zhang
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Xiaokuang Ma
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Mei Hu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Fei Gao
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jack B. Hashem
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jianlu Lyu
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| | - Jing Wei
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Yuehua Cui
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Shenfeng Qiu
- Departments of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Chu Chen
- Department of Cellular and Integrative Physiology, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, 78229
| |
Collapse
|
45
|
Félix J, Díaz-Del Cerro E, Garrido A, De La Fuente M. Characterization of a natural model of adult mice with different rate of aging. Mech Ageing Dev 2024; 222:111991. [PMID: 39278278 DOI: 10.1016/j.mad.2024.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Aging is a heterogeneous process, so individuals of the same age may be aging at a different rate. A natural model of premature aging in mice have been proposed based on the poor response to the T-maze. Those that take longer to cross the intersection are known as Prematurely Aging Mice (PAM), while those that show an exceptional response are known as Exceptional non-PAM (E-NPAM), being the rest non-PAM (NPAM). Although many aspects of PAM and E-NPAM have been described, some aspects of their brain aging have not been studied. Similarly, it is known that PAM, NPAM and E-NPAM show a different rate of aging and longevity, but the differences between these three groups in behavior, immune function and oxidative-inflammatory state are unknown. The present study aims to deepen the study of brain aging in PAM and E-NPAM, and to study the differences in behavior, immunity, and oxidative-inflammatory state of peritoneal leukocytes between PAM, NPAM and E-NPAM. Results show deteriorated brains in PAM. Moreover, NPAM show an oxidative state similar to E-NPAM, an anxiety similar to PAM, and an intermediate immunity and lifespan between PAM and E-NPAM. In conclusion, immune function seems to be more associated with the longevity achieved.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| | - Antonio Garrido
- Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain; Department of Biosciences, School of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, Madrid, Spain.
| | - Mónica De La Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| |
Collapse
|
46
|
Christensen A, McGill CJ, Qian W, Pike CJ. Effects of obesogenic diet and 17β-estradiol in female mice with APOE 3/3, 3/4, and 4/4 genotypes. Front Aging Neurosci 2024; 16:1415072. [PMID: 39347015 PMCID: PMC11427389 DOI: 10.3389/fnagi.2024.1415072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
The main genetic risk factor for Alzheimer's disease (AD) is the apolipoprotein E ε4 allele (APOE4). AD risk associated with APOE4 disproportionately affects women. Furthermore, human and rodent studies indicate that the cognitive deficits associated with APOE4 are greater in females. One modifiable AD risk factor is obesity during middle age. Given that approximately two-thirds of US adults are overweight, it is important to understand how obesity affects AD risk, how it interacts with APOE4, and the extent to which its detrimental effects can be mitigated with therapeutics. One intervention study for women is estrogen-based hormone therapy, which can exert numerous health benefits when administered in early middle age. No experimental studies have examined the interactions among APOE4, obesity, and hormone therapy in aging females. To begin to explore these issues, we considered how obesity outcomes are affected by treatment with estradiol at the onset of middle age in female mice with human APOE3 and APOE4. Furthermore, to explore how gene dosage affects outcomes, we compared mice homozygous for APOE3 (3/3) and homozygous (4/4) or hemizygous (3/4) for APOE4. Mice were examined over a 4-month period that spans the transition into reproductive senescence, a normal age-related change that models many aspects of human perimenopause. Beginning at 5 months of age, mice were maintained on a control diet (10% fat) or high-fat diet (HFD; 60% fat). After 8 weeks, by which time obesity was present in all HFD groups, mice were implanted with an estradiol or vehicle capsule that was maintained for the final 8 weeks. Animals were assessed on a range of metabolic and neural measures. Overall, APOE4 was associated with poorer metabolic function and cognitive performance. However, an obesogenic diet induced relatively greater impairments in metabolic function and cognitive performance in APOE3/3 mice. Estradiol treatment improved metabolic and cognitive outcomes across all HFD groups, with APOE4/4 generally exhibiting the greatest benefit. APOE3/4 mice were intermediate to the homozygous genotypes on many measures but also exhibited unique profiles. Together, these findings highlight the importance of the APOE genotype as a modulator of the risks associated with obesity and the beneficial outcomes of estradiol.
Collapse
Affiliation(s)
| | | | | | - Christian J. Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
47
|
Yu YH, Kim GW, Lee YR, Park DK, Song B, Kim DS. Effects of Sildenafil on Cognitive Function Recovery and Neuronal Cell Death Protection after Transient Global Cerebral Ischemia in Gerbils. Biomedicines 2024; 12:2077. [PMID: 39335590 PMCID: PMC11429064 DOI: 10.3390/biomedicines12092077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Cerebral ischemic stroke is a major cause of death worldwide due to brain cell death resulting from ischemia-reperfusion injury. However, effective treatment approaches for patients with ischemic stroke are still lacking in clinical practice. This study investigated the potential neuroprotective effects of sildenafil, a phosphodiesterase-5 inhibitor, in a gerbil model of global brain ischemia. We investigated the effects of sildenafil on the expression of glial fibrillary acidic protein and aquaporin-4, which are markers related to astrocyte activation and water homeostasis, respectively. Immunofluorescence analysis showed that the number of cells co-expressing these markers, which was elevated in the ischemia-induced group, was significantly reduced in the sildenafil-treated groups. This suggests that sildenafil may have a potential mitigating effect on astrocyte activation induced by ischemia. Additionally, we performed various behavioral tests, including the open-field test, novel object recognition, Barnes maze, Y-maze, and passive avoidance tests, to evaluate sildenafil's effect on cognitive function impaired by ischemia. Overall, the results suggest that sildenafil may serve as a neuroprotective agent, potentially alleviating delayed neuronal cell death and improving cognitive function impaired by ischemia.
Collapse
Affiliation(s)
- Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Gun Woo Kim
- Research Supporting Center for Medical Science, College of Medicine, Dong-A, Busan 49201, Republic of Korea
| | - Yu Ran Lee
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Dae-Kyoon Park
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Beomjong Song
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Republic of Korea
| |
Collapse
|
48
|
Chen Z, Lu N, Li X, Liu Q, Li Y, Li X, Yu X, Zhao H, Liu C, Tang X, Wang X, Huang W. The Effect of a Caffeine and Nicotine Combination on Nicotine Withdrawal Syndrome in Mice. Nutrients 2024; 16:3048. [PMID: 39339647 PMCID: PMC11435009 DOI: 10.3390/nu16183048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Nicotine dependence is an important cause of excessive exposure to tobacco combustion compounds in most smokers. Nicotine replacement therapy is the main method to treat nicotine dependence, but it still has its shortcomings, such as the inability to mitigate withdrawal effects and limited applicability. It has been hypothesized that a combination of low-dose nicotine and caffeine could achieve the same psychological stimulation effect as a high dose of nicotine without causing nicotine withdrawal effects. To establish a model of nicotine dependence, male C57BL/6J mice were subcutaneously injected four times a day with nicotine (2 mg/kg) for 15 days and fed with water containing nicotine at the same time. They were randomly divided into four groups. After 24 h of withdrawal, different groups were injected with saline, nicotine (0.25 mg/kg or 0.1 mg/kg), or nicotine (0.1 mg/kg) and caffeine (20 mg/kg). Behavioral and physiological changes were evaluated by an assessment of physical signs, open field tests, elevated plus maze experiments, forced swimming tests, hot plate tests, and new-object-recognition tests. The changes in dopamine release in the prefrontal cortex (PFC) and ventral tegmental area (VTA) in the midbrain were analyzed using ELISA. The results showed that a combination of caffeine and nicotine could effectively relieve nicotine withdrawal syndrome, increase movement ability and pain thresholds, reduce anxiety and depression, enhance memory and cognitive ability, and increase the level of dopamine release in the PFC and VTA. Thus, caffeine combined with nicotine has potential as a stable and effective treatment option to help humans with smoking cessation.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Naiyan Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Sports and Health Research Institute, Jiangnan University, Wuxi 214122, China
| | - Xu Li
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qingrun Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiyue Li
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China
| | - Ximiao Yu
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China
| | - Haotian Zhao
- Sports and Health Research Institute, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xun Wang
- Department of Pulmonary and Critical Care Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214126, China
| | - Weisun Huang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| |
Collapse
|
49
|
Chen YY, Chang CJ, Liang YW, Tseng HY, Li SJ, Chang CW, Wu YT, Shao HH, Chen PC, Lai ML, Deng WC, Hsu R, Lo YC. Utilizing diffusion tensor imaging as an image biomarker in exploring the therapeutic efficacy of forniceal deep brain stimulation in a mice model of Alzheimer's disease. J Neural Eng 2024; 21:056003. [PMID: 39230033 DOI: 10.1088/1741-2552/ad7322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Objective.With prolonged life expectancy, the incidence of memory deficits, especially in Alzheimer's disease (AD), has increased. Although multiple treatments have been evaluated, no promising treatment has been found to date. Deep brain stimulation (DBS) of the fornix area was explored as a possible treatment because the fornix is intimately connected to memory-related areas that are vulnerable in AD; however, a proper imaging biomarker for assessing the therapeutic efficiency of forniceal DBS in AD has not been established.Approach.This study assessed the efficacy and safety of DBS by estimating the optimal intersection volume between the volume of tissue activated and the fornix. Utilizing a gold-electroplating process, the microelectrode's surface area on the neural probe was increased, enhancing charge transfer performance within potential water window limits. Bilateral fornix implantation was conducted in triple-transgenic AD mice (3 × Tg-AD) and wild-type mice (strain: B6129SF1/J), with forniceal DBS administered exclusively to 3 × Tg-AD mice in the DBS-on group. Behavioral tasks, diffusion tensor imaging (DTI), and immunohistochemistry (IHC) were performed in all mice to assess the therapeutic efficacy of forniceal DBS.Main results.The results illustrated that memory deficits and increased anxiety-like behavior in 3 × Tg-AD mice were rescued by forniceal DBS. Furthermore, forniceal DBS positively altered DTI indices, such as increasing fractional anisotropy (FA) and decreasing mean diffusivity (MD), together with reducing microglial cell and astrocyte counts, suggesting a potential causal relationship between revised FA/MD and reduced cell counts in the anterior cingulate cortex, hippocampus, fornix, amygdala, and entorhinal cortex of 3 × Tg-AD mice following forniceal DBS.Significance.The efficacy of forniceal DBS in AD can be indicated by alterations in DTI-based biomarkers reflecting the decreased activation of glial cells, suggesting reduced neural inflammation as evidenced by improvements in memory and anxiety-like behavior.
Collapse
Affiliation(s)
- You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Chih-Ju Chang
- Department of Neurosurgery, Cathay General Hospital, No. 280, Sec. 4, Renai Rd., Taipei 10629, Taiwan, Republic of China
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., New Taipei City 242062, Taiwan, Republic of China
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Hsin-Yi Tseng
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Yen-Ting Wu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Huai-Hsuan Shao
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, No.155, Sec.2, Linong St., Taipei 11221, Taiwan, Republic of China
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Ming-Liang Lai
- Graduate Institute of Intellectual Property, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Rd., Taipei 10608, Taiwan, Republic of China
| | - Wen-Chun Deng
- Departments of Neurosurgery, Keelung Chang Gung Memorial Hospital, Chang Gung University, No.222, Maijin Rd., Keelung 20400, Taiwan, Republic of China
| | - RuSiou Hsu
- Department of Ophthalmology, Stanford University, 1651 Page Mill Rd., Palo Alto, CA 94304, United States of America
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, 12F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., New Taipei City 23564, Taiwan, Republic of China
| |
Collapse
|
50
|
He X, Peng Y, Huang S, Xiao Z, Li G, Zuo Z, Zhang L, Shuai X, Zheng H, Hu X. Blood Brain Barrier-Crossing Delivery of Felodipine Nanodrug Ameliorates Anxiety-Like Behavior and Cognitive Impairment in Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401731. [PMID: 38981028 PMCID: PMC11425895 DOI: 10.1002/advs.202401731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/29/2024] [Indexed: 07/11/2024]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder leading to cognitive decline. Excessive cytosolic calcium (Ca2+) accumulation plays a critical role in the pathogenesis of AD since it activates the NOD-like receptor family, pyrin domain containing 3 (NLRP3), switches the endoplasmic reticulum (ER) unfolded protein response (UPR) toward proapoptotic signaling and promotes Aβ seeding. Herein, a liposomal nanodrug (felodipine@LND) is developed incorporating a calcium channel antagonist felodipine for Alzheimer's disease treatment through a low-intensity pulse ultrasound (LIPUS) irradiation-assisted blood brain barrier (BBB)-crossing drug delivery. The multifunctional felodipine@LND is effectively delivered to diseased brain through applying a LIPUS irradiation to the skull, which resulted in a series of positive effects against AD. Markedly, the nanodrug treatment switched the ER UPR toward antioxidant signaling, prevented the surface translocation of ER calreticulin (CALR) in microglia, and inhibited the NLRP3 activation and Aβ seeding. In addition, it promoted the degradation of damaged mitochondria via mitophagy, thereby inhibiting the neuronal apoptosis. Therefore, the anxiety-like behavior and cognitive impairment of 5xFAD mice with AD is significantly ameliorated, which manifested the potential of LIPUS - assisted BBB-crossing delivery of felodipine@LND to serve as a paradigm for AD therapy based on the well-recognized clinically available felodipine.
Collapse
Affiliation(s)
- Xiaofei He
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Yuan Peng
- Department of Rehabilitation MedicineGuangzhou First People's HospitalGuangzhou510180China
| | - Sicong Huang
- School of Materials Science and Engineering Sun Yat‐sen UniversityGuangzhou510275China
| | - Zecong Xiao
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Ge Li
- Guangdong Provincial Key Laboratory of Laboratory AnimalsGuangdong Laboratory Animals Monitoring Institute11 Fengxin RoadGuangzhouGuangdong510663China
| | - Zejie Zuo
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Liying Zhang
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Xintao Shuai
- Nanomedicine Research CenterThe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhou510630China
| | - Haiqing Zheng
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| | - Xiquan Hu
- Department of Rehabilitation MedicineThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhouGuangdong510630China
| |
Collapse
|