1
|
Hai A, Rambabu K, Al Dhaheri AS, Kurup SS, Banat F. Tapping into Palm Sap: Insights into extraction practices, quality profiles, fermentation chemistry, and preservation techniques. Heliyon 2024; 10:e35611. [PMID: 39170275 PMCID: PMC11336882 DOI: 10.1016/j.heliyon.2024.e35611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The quality profile, extraction yield, and fermentation chemistry of palm sap depend on various factors such as extraction technique, weather conditions, and preservation methods. This review aims to provide a detailed overview of palm sap extraction techniques and the methods for its preservation. The compositional analysis of palm sap, including physical and chemical parameters such as sugar content, acidity, and mineral composition, is discussed thoroughly. The role of microorganisms in fermentation and the effects of various influencing factors are also critically examined. Additionally, this review evaluates different preservation methods, including thermal processes, refrigeration, and electrical techniques, highlighting their effectiveness in extending the shelf life of palm sap. The review further explores the emerging impact of nanotechnology on palm sap preservation, offering insights into the latest industry challenges, developments, and future prospects. By presenting these findings, this review aims to enhance the scientific understanding of palm sap and stimulate additional research and innovation in the field, paving the way for improved production practices and product quality.
Collapse
Affiliation(s)
- Abdul Hai
- Department of Chemical and Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, United Arab Emirates
| | - K. Rambabu
- Department of Chemical and Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, United Arab Emirates
| | - Ayesha S. Al Dhaheri
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Shyam S. Kurup
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical and Petroleum Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
2
|
Ábrahám Á, Islam MN, Gazdag Z, Khan SA, Chowdhury S, Kemenesi G, Akter S. Bacterial Metabarcoding of Raw Palm Sap Samples from Bangladesh with Nanopore Sequencing. Foods 2024; 13:1285. [PMID: 38731656 PMCID: PMC11083640 DOI: 10.3390/foods13091285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
The traditional practice of harvesting and processing raw date palm sap is not only culturally significant but also provides an essential nutritional source in South Asia. However, the potential for bacterial or viral contamination from animals and environmental sources during its collection remains a serious and insufficiently studied risk. Implementing improved food safety measures and collection techniques could mitigate the risk of these infections. Additionally, the adoption of advanced food analytical methods offers the potential to identify pathogens and uncover the natural bacterial diversity of these products. The advancement of next-generation sequencing (NGS) technologies, particularly nanopore sequencing, offers a rapid and highly mobile solution. In this study, we employed nanopore sequencing for the bacterial metabarcoding of a set of raw date palm sap samples collected without protective coverage against animals in Bangladesh in 2021. We identified several bacterial species with importance in the natural fermentation of the product and demonstrated the feasibility of this NGS method in the surveillance of raw palm sap products. We revealed two fermentation directions dominated by either Leuconostoc species or Lactococcus species in these products at the first 6 h from harvest, along with opportunistic human pathogens in the background, represented with lower abundance. Plant pathogens, bacteria with the potential for opportunistic human infection and the sequences of the Exiguobacterium genus are also described, and their potential role is discussed. In this study, we demonstrate the potential of mobile laboratory solutions for food safety purposes in low-resource areas.
Collapse
Affiliation(s)
- Ágota Ábrahám
- National Laboratory of Virology, Szentágothai János Research Centre, University of Pécs, 7624 Pécs, Hungary;
| | - Md. Nurul Islam
- Department of Forest and Wildlife Ecology, University of Wisconsin—Madison, Madison, WI 53705, USA;
| | - Zoltán Gazdag
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary;
| | - Shahneaz Ali Khan
- Department of Physiology Biochemistry and Pharmacology, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh;
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Faculty of Veterinary Medicine, One Health Institute, Chattogram 4202, Bangladesh;
| | - Gábor Kemenesi
- National Laboratory of Virology, Szentágothai János Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Institute of Biology, Faculty of Sciences, University of Pécs, 7622 Pécs, Hungary;
| | - Sazeda Akter
- Department of Medicine and Surgery, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh;
| |
Collapse
|
3
|
Faus-Cotino J, Reina G, Pueyo J. Nipah Virus: A Multidimensional Update. Viruses 2024; 16:179. [PMID: 38399954 PMCID: PMC10891541 DOI: 10.3390/v16020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic paramyxovirus to which is attributed numerous high mortality outbreaks in South and South-East Asia; Bangladesh's Nipah belt accounts for the vast majority of human outbreaks, reporting regular viral emergency events. The natural reservoir of NiV is the Pteropus bat species, which covers a wide geographical distribution extending over Asia, Oceania, and Africa. Occasionally, human outbreaks have required the presence of an intermediate amplification mammal host between bat and humans. However, in Bangladesh, the viral transmission occurs directly from bat to human mainly by ingestion of contaminated fresh date palm sap. Human infection manifests as a rapidly progressive encephalitis accounting for extremely high mortality rates. Despite that, no therapeutic agents or vaccines have been approved for human use. An updated review of the main NiV infection determinants and current potential therapeutic and preventive strategies is exposed.
Collapse
Affiliation(s)
| | - Gabriel Reina
- Microbiology Department, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
| | - Javier Pueyo
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain;
- Department of Anesthesia and Intensive Care, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
4
|
Satter SM, Aquib WR, Sultana S, Sharif AR, Nazneen A, Alam MR, Siddika A, Akther Ema F, Chowdhury KIA, Alam AN, Rahman M, Klena JD, Rahman MZ, Banu S, Shirin T, Montgomery JM. Tackling a global epidemic threat: Nipah surveillance in Bangladesh, 2006-2021. PLoS Negl Trop Dis 2023; 17:e0011617. [PMID: 37756301 PMCID: PMC10529576 DOI: 10.1371/journal.pntd.0011617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Human Nipah virus (NiV) infection is an epidemic-prone disease and since the first recognized outbreak in Bangladesh in 2001, human infections have been detected almost every year. Due to its high case fatality rate and public health importance, a hospital-based Nipah sentinel surveillance was established in Bangladesh to promptly detect Nipah cases and respond to outbreaks at the earliest. The surveillance has been ongoing till present. The hospital-based sentinel surveillance was conducted at ten strategically chosen tertiary care hospitals distributed throughout Bangladesh. The surveillance staff ensured that routine screening, enrollment, data, and specimen collection from suspected Nipah cases were conducted daily. The specimens were then processed and transported to the reference laboratory of Institute of Epidemiology, Disease Control and Research (IEDCR) and icddr,b for confirmation of diagnosis through serology and molecular detection. From 2006 to 2021, through this hospital-based surveillance platform, 7,150 individuals were enrolled and tested for Nipah virus. Since 2001, 322 Nipah infections were identified in Bangladesh, 75% of whom were laboratory confirmed cases. Half of the reported cases were primary cases (162/322) having an established history of consuming raw date palm sap (DPS) or tari (fermented date palm sap) and 29% were infected through person-to-person transmission. Since the initiation of surveillance, 68% (218/322) of Nipah cases from Bangladesh have been identified from various parts of the country. Fever, vomiting, headache, fatigue, and increased salivation were the most common symptoms among enrolled Nipah patients. Till 2021, the overall case fatality rate of NiV infection in Bangladesh was 71%. This article emphasizes that the overall epidemiology of Nipah virus infection in Bangladesh has remained consistent throughout the years. This is the only systematic surveillance to detect human NiV infection globally. The findings from this surveillance have contributed to early detection of NiV cases in hospital settings, understanding of Nipah disease epidemiology, and have enabled timely public health interventions for prevention and containment of NiV infection. Although we still have much to learn regarding the transmission dynamics and risk factors of human NiV infection, surveillance has played a significant role in advancing our knowledge in this regard.
Collapse
Affiliation(s)
| | | | - Sharmin Sultana
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Ahmad Raihan Sharif
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | | | | | | | | | | | - Ahmed Nawsher Alam
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | | | - John D. Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| | | | | | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States of America
| |
Collapse
|
5
|
Shanta IS, Luby SP, Hossain K, Heffelfinger JD, Kilpatrick AM, Haider N, Rahman T, Chakma S, Ahmed SSU, Sharker Y, Pulliam JRC, Kennedy ED, Gurley ES. Human Exposure to Bats, Rodents and Monkeys in Bangladesh. ECOHEALTH 2023; 20:53-64. [PMID: 37099204 PMCID: PMC10131556 DOI: 10.1007/s10393-023-01628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 06/11/2023]
Abstract
Bats, rodents and monkeys are reservoirs for emerging zoonotic infections. We sought to describe the frequency of human exposure to these animals and the seasonal and geographic variation of these exposures in Bangladesh. During 2013-2016, we conducted a cross-sectional survey in a nationally representative sample of 10,002 households from 1001 randomly selected communities. We interviewed household members about exposures to bats, rodents and monkeys, including a key human-bat interface-raw date palm sap consumption. Respondents reported observing rodents (90%), bats (52%) and monkeys (2%) in or around their households, although fewer reported direct contact. The presence of monkeys around the household was reported more often in Sylhet division (7%) compared to other divisions. Households in Khulna (17%) and Rajshahi (13%) were more likely to report drinking date palm sap than in other divisions (1.5-5.6%). Date palm sap was mostly consumed during winter with higher frequencies in January (16%) and February (12%) than in other months (0-5.6%). There was a decreasing trend in drinking sap over the three years. Overall, we observed substantial geographic and seasonal patterns in human exposure to animals that could be sources of zoonotic disease. These findings could facilitate targeting emerging zoonoses surveillance, research and prevention efforts to areas and seasons with the highest levels of exposure.
Collapse
Affiliation(s)
- Ireen Sultana Shanta
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh.
| | | | - Kamal Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | | | - Najmul Haider
- The Royal Veterinary College, University of London, London, UK
| | - Taifur Rahman
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Shovon Chakma
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Syed Sayeem Uddin Ahmed
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Yushuf Sharker
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- University of Florida, Gainesville, USA
| | - Juliet R C Pulliam
- South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa
| | - Erin D Kennedy
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emily S Gurley
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| |
Collapse
|
6
|
Uwishema O, Wellington J, Berjaoui C, Muoka KO, Onyeaka CVP, Onyeaka H. A short communication of Nipah virus outbreak in India: An urgent rising concern. Ann Med Surg (Lond) 2022; 82:104599. [PMID: 36268453 PMCID: PMC9577510 DOI: 10.1016/j.amsu.2022.104599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022] Open
|
7
|
Lewis CE, Pickering B. Livestock and Risk Group 4 Pathogens: Researching Zoonotic Threats to Public Health and Agriculture in Maximum Containment. ILAR J 2022; 61:86-102. [PMID: 34864994 PMCID: PMC8759435 DOI: 10.1093/ilar/ilab029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/12/2021] [Accepted: 09/27/2021] [Indexed: 11/17/2022] Open
Abstract
Maximum-containment laboratories are a unique and essential component of the bioeconomy of the United States. These facilities play a critical role in the national infrastructure, supporting research on a select set of especially dangerous pathogens, as well as novel, emerging diseases. Understanding the ecology, biology, and pathology at the human-animal interface of zoonotic spillover events is fundamental to efficient control and elimination of disease. The use of animals as human surrogate models or as target-host models in research is an integral part of unraveling the interrelated components involved in these dynamic systems. These models can prove vitally important in determining both viral- and host-factors associated with virus transmission, providing invaluable information that can be developed into better risk mitigation strategies. In this article, we focus on the use of livestock in maximum-containment, biosafety level-4 agriculture (BSL-4Ag) research involving zoonotic, risk group 4 pathogens and we provide an overview of historical associated research and contributions. Livestock are most commonly used as target-host models in high-consequence, maximum-containment research and are routinely used to establish data to assist in risk assessments. This article highlights the importance of animal use, insights gained, and how this type of research is essential for protecting animal health, food security, and the agriculture economy, as well as human public health in the face of emerging zoonotic pathogens. The utilization of animal models in high-consequence pathogen research and continued expansion to include available species of agricultural importance is essential to deciphering the ecology of emerging and re-emerging infectious diseases, as well as for emergency response and mitigation preparedness.
Collapse
Affiliation(s)
- Charles E Lewis
- Corresponding Author: Dr Charles E. Lewis, DVM, MPH, MS, National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, 1015 Arlington Street, Winnipeg, Manitoba, R3E 3M4, Canada. E-mail:
| | | |
Collapse
|
8
|
Islam A, McKee C, Ghosh PK, Abedin J, Epstein JH, Daszak P, Luby SP, Khan SU, Gurley ES. Seasonality of Date Palm Sap Feeding Behavior by Bats in Bangladesh. ECOHEALTH 2021; 18:359-371. [PMID: 34609649 DOI: 10.1007/s10393-021-01561-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Pteropus bats are the natural reservoir for Nipah virus, and in Bangladesh, it is transmitted to people through consumption of raw or fermented date palm sap. Our objective was to understand seasonal patterns of bat feeding on date palm sap at a location where sap is collected year-round. Seven nights each month over three years, we mounted infrared cameras in four trees to observe bats' feeding behavior at date palm trees harvested for fermented sap production. We described the frequency of bat visits, duration of bat visits, and duration of bat-sap contact by month and by year. We captured 42,873 bat visits during 256 camera-nights of observation, of which 3% were Pteropus and 94% were non-Pteropus bats. Though the frequency of Pteropus bat visits to each tree/night was much lower than non-Pteropus bat visits, Pteropus bats stayed in contact with sap longer than non-Pteropus bats. Frequency of bat visits was higher during winter compared to other seasons, which may arise as a consequence of limited availability of food sources during this period or may be related to seasonal characteristics of the sap. Seasonal alignment of sap consumption by humans and bats may have consequences for viral spillover into humans.
Collapse
Affiliation(s)
- Ausraful Islam
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), IPH Building, Shaheed Tajuddin Ahmed Sarani, Room 302968, Mohakhali, Dhaka, 1212, Bangladesh.
| | - Clifton McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Probir Kumar Ghosh
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), IPH Building, Shaheed Tajuddin Ahmed Sarani, Room 302968, Mohakhali, Dhaka, 1212, Bangladesh
| | - Jaynal Abedin
- Insight Centre for Data Analytics, National University of Ireland Galway, Galway, Ireland
| | | | | | - Stephen P Luby
- Department of Medicine, Division of Infectious Diseases & Geographic Medicine, Stanford University, 300 Pasteur Dr., L-134, Stanford, CA, 94305, USA
| | | | - Emily S Gurley
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), IPH Building, Shaheed Tajuddin Ahmed Sarani, Room 302968, Mohakhali, Dhaka, 1212, Bangladesh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| |
Collapse
|
9
|
Petrovan SO, Aldridge DC, Bartlett H, Bladon AJ, Booth H, Broad S, Broom DM, Burgess ND, Cleaveland S, Cunningham AA, Ferri M, Hinsley A, Hua F, Hughes AC, Jones K, Kelly M, Mayes G, Radakovic M, Ugwu CA, Uddin N, Veríssimo D, Walzer C, White TB, Wood JL, Sutherland WJ. Post COVID-19: a solution scan of options for preventing future zoonotic epidemics. Biol Rev Camb Philos Soc 2021; 96:2694-2715. [PMID: 34231315 PMCID: PMC8444924 DOI: 10.1111/brv.12774] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
The crisis generated by the emergence and pandemic spread of COVID-19 has thrown into the global spotlight the dangers associated with novel diseases, as well as the key role of animals, especially wild animals, as potential sources of pathogens to humans. There is a widespread demand for a new relationship with wild and domestic animals, including suggested bans on hunting, wildlife trade, wet markets or consumption of wild animals. However, such policies risk ignoring essential elements of the problem as well as alienating and increasing hardship for local communities across the world, and might be unachievable at scale. There is thus a need for a more complex package of policy and practical responses. We undertook a solution scan to identify and collate 161 possible options for reducing the risks of further epidemic disease transmission from animals to humans, including potential further SARS-CoV-2 transmission (original or variants). We include all categories of animals in our responses (i.e. wildlife, captive, unmanaged/feral and domestic livestock and pets) and focus on pathogens (especially viruses) that, once transmitted from animals to humans, could acquire epidemic potential through high rates of human-to-human transmission. This excludes measures to prevent well-known zoonotic diseases, such as rabies, that cannot readily transmit between humans. We focused solutions on societal measures, excluding the development of vaccines and other preventive therapeutic medicine and veterinary medicine options that are discussed elsewhere. We derived our solutions through reading the scientific literature, NGO position papers, and industry guidelines, collating our own experiences, and consulting experts in different fields. Herein, we review the major zoonotic transmission pathways and present an extensive list of options. The potential solutions are organised according to the key stages of the trade chain and encompass solutions that can be applied at the local, regional and international scales. This is a set of options targeted at practitioners and policy makers to encourage careful examination of possible courses of action, validating their impact and documenting outcomes.
Collapse
Affiliation(s)
- Silviu O Petrovan
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K.,Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - David C Aldridge
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K.,Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Harriet Bartlett
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K.,Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - Andrew J Bladon
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K.,Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Hollie Booth
- Interdisciplinary Centre for Conservation Science, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
| | - Steven Broad
- TRAFFIC, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - Donald M Broom
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K.,Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - Neil D Burgess
- UNEP-WCMC, 219 Huntington Road, Cambridge, CB3 0DL, U.K.,GLOBE Institute, University of Copenhagen, Oester Voldgade 5-7, Copenhagen, 1350, Denmark
| | - Sarah Cleaveland
- Institute of Biodiversity, College of Medical, Veterinary and Life Sciences, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, U.K
| | | | - Maurizio Ferri
- Italian Society of Preventive Veterinary Medicine (Simevep), Via Nizza 11, Rome, 00198, Italy
| | - Amy Hinsley
- Wildlife Conservation Research Unit, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K
| | - Fangyuan Hua
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, P.R. China
| | - Alice C Hughes
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan, 666303, P.R. China
| | - Kate Jones
- Centre for Biodiversity and Environment Research, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Moira Kelly
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, B-9820, Belgium
| | - George Mayes
- MacArthur Barstow & Gibbs Veterinary Surgeons, 36 Hanbury Road, Droitwich, WR9 8PW, U.K
| | - Milorad Radakovic
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - Chinedu A Ugwu
- Africa Centre of Excellence for Genomics of Infectious Disease, Redeemers' University Ede, Osun State, Nigeria
| | - Nasir Uddin
- Centre for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, Yunnan, 666303, P.R. China
| | - Diogo Veríssimo
- Interdisciplinary Centre for Conservation Science, Department of Zoology, University of Oxford, Oxford, OX1 3SZ, U.K.,Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, 92027, U.S.A
| | - Christian Walzer
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Savoyenstraße 1, Vienna, A-1160, Austria.,Wildlife Conservation Society, 2300 Southern Blvd., Bronx, NY, U.S.A
| | - Thomas B White
- Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| | - James L Wood
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, U.K
| | - William J Sutherland
- BioRISC (Biosecurity Research Initiative at St Catharine's), St Catharine's College, Cambridge, CB2 1RL, U.K.,Department of Zoology, University of Cambridge, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, U.K
| |
Collapse
|
10
|
Ratnadass A, Deguine JP. Crop protection practices and viral zoonotic risks within a One Health framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145172. [PMID: 33610983 DOI: 10.1016/j.scitotenv.2021.145172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Recent viral zoonotic epidemics have been attributed partially to the negative impact of human activities on ecosystem biodiversity. Agricultural activities, particularly conventional crop protection (CP) practices, are a major threat to global biodiversity, ecosystem health and human health. Here we review interactions between CP practices and viral zoonoses (VZs), the first time this has been done. It should be noted that a) VZs stand at the interface between human, animal and ecosystem health; b) some VZs involve arthropod vectors that are affected by CP practices; and c) some crop pests, or their natural enemies are vertebrate reservoirs/carriers of certain VZs, and their contact with humans or domestic animals is affected by CP practices. Our review encompasses examples highlighting interactions between VZs and CP practices, both efficiency improvement-based (i.e. conventional with agrochemical insecticides and rodenticides), substitution-based (i.e. mainly with physical/mechanical or biopesticidal pest control), and redesign-based (i.e. mainly with conservation biological pest control, including some forms of crop-livestock integration). These CP practices mainly target arthropod and vertebrate pests. They also target, to a lesser extent, weeds and plant pathogens. Conventional and some physical/mechanical control methods and some forms of biopesticidal and crop-livestock integration practices were found to have mixed outcomes in terms of VZ risk management. Conversely, practices based on biological control by habitat conservation of arthropod or vertebrate natural enemies, falling within the Agroecological Crop Protection (ACP) framework, result in VZ prevention at various scales (local to global, and short-term to long-term). ACP addresses major global challenges including climate resilience, biodiversity conservation and animal welfare, and helps integrate plant health within the extended "One Health" concept.
Collapse
Affiliation(s)
- Alain Ratnadass
- CIRAD, UPR HortSys, F-97455 Saint-Pierre, Réunion, France; HortSys, Univ Montpellier, CIRAD, Montpellier, France.
| | | |
Collapse
|
11
|
McKee CD, Islam A, Luby SP, Salje H, Hudson PJ, Plowright RK, Gurley ES. The Ecology of Nipah Virus in Bangladesh: A Nexus of Land-Use Change and Opportunistic Feeding Behavior in Bats. Viruses 2021; 13:169. [PMID: 33498685 PMCID: PMC7910977 DOI: 10.3390/v13020169] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Nipah virus is a bat-borne paramyxovirus that produces yearly outbreaks of fatal encephalitis in Bangladesh. Understanding the ecological conditions that lead to spillover from bats to humans can assist in designing effective interventions. To investigate the current and historical processes that drive Nipah spillover in Bangladesh, we analyzed the relationship among spillover events and climatic conditions, the spatial distribution and size of Pteropus medius roosts, and patterns of land-use change in Bangladesh over the last 300 years. We found that 53% of annual variation in winter spillovers is explained by winter temperature, which may affect bat behavior, physiology, and human risk behaviors. We infer from changes in forest cover that a progressive shift in bat roosting behavior occurred over hundreds of years, producing the current system where a majority of P. medius populations are small (median of 150 bats), occupy roost sites for 10 years or more, live in areas of high human population density, and opportunistically feed on cultivated food resources-conditions that promote viral spillover. Without interventions, continuing anthropogenic pressure on bat populations similar to what has occurred in Bangladesh could result in more regular spillovers of other bat viruses, including Hendra and Ebola viruses.
Collapse
Affiliation(s)
- Clifton D. McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Ausraful Islam
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh;
| | - Stephen P. Luby
- Infectious Diseases and Geographic Medicine Division, Stanford University, Stanford, CA 94305, USA;
| | - Henrik Salje
- Department of Genetics, Cambridge University, Cambridge CB2 3EJ, UK;
| | - Peter J. Hudson
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA 16801, USA;
| | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Emily S. Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|
12
|
Sokolow SH, Nova N, Pepin KM, Peel AJ, Pulliam JRC, Manlove K, Cross PC, Becker DJ, Plowright RK, McCallum H, De Leo GA. Ecological interventions to prevent and manage zoonotic pathogen spillover. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180342. [PMID: 31401951 PMCID: PMC6711299 DOI: 10.1098/rstb.2018.0342] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Spillover of a pathogen from a wildlife reservoir into a human or livestock host requires the pathogen to overcome a hierarchical series of barriers. Interventions aimed at one or more of these barriers may be able to prevent the occurrence of spillover. Here, we demonstrate how interventions that target the ecological context in which spillover occurs (i.e. ecological interventions) can complement conventional approaches like vaccination, treatment, disinfection and chemical control. Accelerating spillover owing to environmental change requires effective, affordable, durable and scalable solutions that fully harness the complex processes involved in cross-species pathogen spillover. This article is part of the theme issue ‘Dynamic and integrative approaches to understanding pathogen spillover’.
Collapse
Affiliation(s)
- Susanne H Sokolow
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.,Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA.,Marine Science Institute, University of California, Santa Barbara, CA 93106, USA
| | - Nicole Nova
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Kim M Pepin
- National Wildlife Research Center, USDA-APHIS, Fort Collins, CO 80521, USA
| | - Alison J Peel
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Juliet R C Pulliam
- South African DST-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch 7600, South Africa
| | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT 84321, USA
| | - Paul C Cross
- US Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT 59715, USA
| | - Daniel J Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA.,Department of Biology, Indiana University, Bloomington, IN 47403, USA
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Hamish McCallum
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Giulio A De Leo
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.,Woods Institute for the Environment, Stanford University, Stanford, CA 94305, USA.,Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Sayed A, Bottu A, Qaisar M, Mane MP, Acharya Y. Nipah virus: a narrative review of viral characteristics and epidemiological determinants. Public Health 2019; 173:97-104. [PMID: 31261032 DOI: 10.1016/j.puhe.2019.05.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 02/02/2019] [Accepted: 05/15/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The objectives of this article are to highlight the properties of the Nipah virus (NiV) and discuss its epidemiological determinants. STUDY DESIGN A review of conjectures, epidemiological and clinically related studies, and identification and discussion of preventive approaches is conducted. METHODS A review of the current literature is performed going through online search engines: PubMed and Google Scholar. The search strategy was focused on two main components, first on the NiV ('Nipah' OR 'Nipah Virus') and subsequently on its epidemiology, including determinants and preventive measures ('Epidemiology/determinants' OR 'Epidemiology/prevention'). RESULTS NiV infection is an emerging zoonotic infectious disease causing sporadic outbursts in many developing countries within Asia, Africa, and South America. Pteroid bats are the natural reservoirs, but human-to-human transmission is possible. Clinical course ranges from non-specific influenza-like symptoms to rapidly progressive respiratory and neurologic complications. Vector control has been challenging because of its widely distributed ecological niche. Currently, no definitive treatment protocols are available in humans, but profound breakthrough in vaccine technology and successful equine vaccines has shown the way for the development of NiV vaccine and immunization in the near future. CONCLUSIONS The NiV poses a significant public health risk because of its intricate transmission cycle, unpredictable viral course, murky management protocol, and unavailability of vaccine. Complicated by emergence and subsequent reemergence, prevention and containment are the two most important public health promotion strategies. Early anticipation, intergovernmental preparedness and cooperation, and surveillance of zoonotic infections still remain the key to mitigate the risk.
Collapse
Affiliation(s)
- A Sayed
- Avalon University School of Medicine (AUSOM), Willemstad, Curacao, Netherlands Antilles
| | - A Bottu
- Avalon University School of Medicine (AUSOM), Willemstad, Curacao, Netherlands Antilles
| | - M Qaisar
- Avalon University School of Medicine (AUSOM), Willemstad, Curacao, Netherlands Antilles
| | - M P Mane
- Avalon University School of Medicine (AUSOM), Willemstad, Curacao, Netherlands Antilles
| | - Y Acharya
- Avalon University School of Medicine (AUSOM), Willemstad, Curacao, Netherlands Antilles.
| |
Collapse
|
14
|
Cortes MC, Cauchemez S, Lefrancq N, Luby SP, Jahangir Hossain M, Sazzad HMS, Rahman M, Daszak P, Salje H, Gurley ES. Characterization of the Spatial and Temporal Distribution of Nipah Virus Spillover Events in Bangladesh, 2007-2013. J Infect Dis 2019; 217:1390-1394. [PMID: 29351657 DOI: 10.1093/infdis/jiy015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
Nipah virus is a zoonotic virus harbored by bats and lethal to humans. Bat-to-human spillovers occur every winter in Bangladesh. However, there is significant heterogeneity in the number of spillovers detected by district and year that remains unexplained. We analyzed data from all 57 spillovers during 2007-2013 and found that temperature differences explained 36% of the year-to-year variation in the total number of spillovers each winter and that distance to surveillance hospitals explained 45% of spatial heterogeneity. Interventions to prevent human infections may be most important during colder winters. Further work is needed to understand how dynamics of bat infections explains spillover risk.
Collapse
Affiliation(s)
- Maria C Cortes
- Mathematical Modeling of Infectious Diseases Unit, Paris, France
| | - Simon Cauchemez
- Mathematical Modeling of Infectious Diseases Unit, Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France.,CNRS, Paris, France
| | - Noemie Lefrancq
- Mathematical Modeling of Infectious Diseases Unit, Paris, France
| | | | - M Jahangir Hossain
- icddr,b, Dhaka, Bangladesh.,Medical Research Council Unit, Banjul, Gambia
| | | | - Mahmudur Rahman
- Institute for Epidemiology, Disease Control and Research, Ministry of Health and Family Welfare, Dhaka, Bangladesh
| | | | - Henrik Salje
- Mathematical Modeling of Infectious Diseases Unit, Paris, France.,Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France.,CNRS, Paris, France.,Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Emily S Gurley
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,icddr,b, Dhaka, Bangladesh
| |
Collapse
|
15
|
Ambat AS, Zubair SM, Prasad N, Pundir P, Rajwar E, Patil DS, Mangad P. Nipah virus: A review on epidemiological characteristics and outbreaks to inform public health decision making. J Infect Public Health 2019; 12:634-639. [PMID: 30808593 DOI: 10.1016/j.jiph.2019.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/02/2018] [Accepted: 02/05/2019] [Indexed: 11/25/2022] Open
Abstract
The objectives of this review were to understand the epidemiology and outbreak of NiV infection and to discuss the preventive and control measures across different regions. We searched PubMed and Scopus for relevant articles from January 1999 to July 2018 and identified 927 articles which were screened for titles, abstracts and full texts by two review authors independently. The screening process resulted in 44 articles which were used to extract relevant information. Information on epidemiology of NiV, outbreaks in Malaysia, Singapore, Bangladesh, India and Philippines, including diagnosis, prevention, treatment, vaccines, control, surveillance and economic burden due to NiV were discussed. Interdisciplinary and multi sectoral approach is vital in preventing the emergence of NiV. It is necessary to undertake rigorous research for developing vaccines and medicines to prevent and treat NiV.
Collapse
Affiliation(s)
- Aishwarya S Ambat
- Public Health Evidence South Asia (PHESA), Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Sabah M Zubair
- Public Health Evidence South Asia (PHESA), Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Neha Prasad
- Public Health Evidence South Asia (PHESA), Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Prachi Pundir
- Public Health Evidence South Asia (PHESA), Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Eti Rajwar
- Public Health Evidence South Asia (PHESA), Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Divya S Patil
- Public Health Evidence South Asia (PHESA), Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education (MAHE), Manipal, India.
| | - Praveen Mangad
- Public Health Evidence South Asia (PHESA), Prasanna School of Public Health (PSPH), Manipal Academy of Higher Education (MAHE), Manipal, India
| |
Collapse
|
16
|
Mazzola LT, Kelly-Cirino C. Diagnostics for Nipah virus: a zoonotic pathogen endemic to Southeast Asia. BMJ Glob Health 2019; 4:e001118. [PMID: 30815286 PMCID: PMC6361328 DOI: 10.1136/bmjgh-2018-001118] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 11/29/2022] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that, unlike other priority pathogens identified by WHO, is endemic to Southeast Asia. It is most commonly transmitted through exposure to saliva or excrement from the Pteropus fruit bat, or direct contact with intermediate animal hosts, such as pigs. NiV infection causes severe febrile encephalitic disease and/or respiratory disease; treatment options are limited to supportive care. A number of in-house diagnostic assays for NiV using serological and nucleic acid amplification techniques have been developed for NiV and are used in laboratory settings, including some early multiplex panels for differentiation of NiV infection from other febrile diseases. However, given the often rural and remote nature of NiV outbreak settings, there remains a need for rapid diagnostic tests that can be implemented at the point of care. Additionally, more reliable assays for surveillance of communities and livestock will be vital to achieving a better understanding of the ecology of the fruit bat host and transmission risk to other intermediate hosts, enabling implementation of a ‘One Health’ approach to outbreak prevention and the management of this zoonotic disease. An improved understanding of NiV viral diversity and infection kinetics or dynamics will be central to the development of new diagnostics, and access to clinical specimens must be improved to enable effective validation and external quality assessments. Target product profiles for NiV diagnostics should be refined to take into account these outstanding needs.
Collapse
Affiliation(s)
- Laura T Mazzola
- Foundation for Innovative New Diagnostics (FIND), Emerging Threats Programme, Geneva, Switzerland
| | - Cassandra Kelly-Cirino
- Foundation for Innovative New Diagnostics (FIND), Emerging Threats Programme, Geneva, Switzerland
| |
Collapse
|
17
|
Sun B, Jia L, Liang B, Chen Q, Liu D. Phylogeography, Transmission, and Viral Proteins of Nipah Virus. Virol Sin 2018; 33:385-393. [PMID: 30311101 PMCID: PMC6235768 DOI: 10.1007/s12250-018-0050-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/05/2018] [Indexed: 12/19/2022] Open
Abstract
Nipah virus (NiV), a zoonotic paramyxovirus belonging to the genus Henipavirus, is classified as a Biosafety Level-4 pathogen based on its high pathogenicity in humans and the lack of available vaccines or therapeutics. Since its initial emergence in 1998 in Malaysia, this virus has become a great threat to domestic animals and humans. Sporadic outbreaks and person-to-person transmission over the past two decades have resulted in hundreds of human fatalities. Epidemiological surveys have shown that NiV is distributed in Asia, Africa, and the South Pacific Ocean, and is transmitted by its natural reservoir, Pteropid bats. Numerous efforts have been made to analyze viral protein function and structure to develop feasible strategies for drug design. Increasing surveillance and preventative measures for the viral infectious disease are urgently needed.
Collapse
Affiliation(s)
- Bangyao Sun
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lijia Jia
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bilin Liang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanjiao Chen
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Di Liu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Kessler MK, Becker DJ, Peel AJ, Justice NV, Lunn T, Crowley DE, Jones DN, Eby P, Sánchez CA, Plowright RK. Changing resource landscapes and spillover of henipaviruses. Ann N Y Acad Sci 2018; 1429:78-99. [PMID: 30138535 DOI: 10.1111/nyas.13910] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/11/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022]
Abstract
Old World fruit bats (Chiroptera: Pteropodidae) provide critical pollination and seed dispersal services to forest ecosystems across Africa, Asia, and Australia. In each of these regions, pteropodids have been identified as natural reservoir hosts for henipaviruses. The genus Henipavirus includes Hendra virus and Nipah virus, which regularly spill over from bats to domestic animals and humans in Australia and Asia, and a suite of largely uncharacterized African henipaviruses. Rapid change in fruit bat habitat and associated shifts in their ecology and behavior are well documented, with evidence suggesting that altered diet, roosting habitat, and movement behaviors are increasing spillover risk of bat-borne viruses. We review the ways that changing resource landscapes affect the processes that culminate in cross-species transmission of henipaviruses, from reservoir host density and distribution to within-host immunity and recipient host exposure. We evaluate existing evidence and highlight gaps in knowledge that are limiting our understanding of the ecological drivers of henipavirus spillover. When considering spillover in the context of land-use change, we emphasize that it is especially important to disentangle the effects of habitat loss and resource provisioning on these processes, and to jointly consider changes in resource abundance, quality, and composition.
Collapse
Affiliation(s)
| | - Daniel J Becker
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana.,The Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia
| | - Alison J Peel
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Nathan V Justice
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Tamika Lunn
- The Griffith School of Environment, Griffith University, Nathan, Queensland, Australia
| | - Daniel E Crowley
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Devin N Jones
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Peggy Eby
- The School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Cecilia A Sánchez
- The Center for the Ecology of Infectious Diseases, University of Georgia, Athens, Georgia.,The Odum School of Ecology, University of Georgia, Athens, Georgia
| | - Raina K Plowright
- Department of Ecology, Montana State University, Bozeman, Montana.,Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| |
Collapse
|
19
|
Deka MA, Morshed N. Mapping Disease Transmission Risk of Nipah Virus in South and Southeast Asia. Trop Med Infect Dis 2018; 3:E57. [PMID: 30274453 PMCID: PMC6073609 DOI: 10.3390/tropicalmed3020057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/16/2022] Open
Abstract
Since 1998, Nipah virus (NiV) (genus: Henipavirus; family: Paramyxoviridae), an often-fatal and highly virulent zoonotic pathogen, has caused sporadic outbreak events. Fruit bats from the genus Pteropus are the wildlife reservoirs and have a broad distribution throughout South and Southeast Asia, and East Africa. Understanding the disease biogeography of NiV is critical to comprehending the potential geographic distribution of this dangerous zoonosis. This study implemented the R packages ENMeval and BIOMOD2 as a means of modeling regional disease transmission risk and additionally measured niche similarity between the reservoir Pteropus and the ecological characteristics of outbreak localities with the Schoener's D index and I statistic. Results indicate a relatively high degree of niche overlap between models in geographic and environmental space (D statistic, 0.64; and I statistic, 0.89), and a potential geographic distribution encompassing 19% (2,963,178 km²) of South and Southeast Asia. This study should contribute to current and future efforts to understand the critical ecological contributors and geography of NiV. Furthermore, this study can be used as a geospatial guide to identify areas of high disease transmission risk and to inform national public health surveillance programs.
Collapse
Affiliation(s)
- Mark A Deka
- Department of Geography, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| | - Niaz Morshed
- Department of Geography, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| |
Collapse
|
20
|
Gurley ES, Hegde ST, Hossain K, Sazzad HM, Hossain MJ, Rahman M, Sharker MY, Salje H, Islam MS, Epstein JH, Khan SU, Kilpatrick AM, Daszak P, Luby SP. Convergence of Humans, Bats, Trees, and Culture in Nipah Virus Transmission, Bangladesh. Emerg Infect Dis 2018; 23:1446-1453. [PMID: 28820130 PMCID: PMC5572889 DOI: 10.3201/eid2309.161922] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Preventing emergence of new zoonotic viruses depends on understanding determinants for human risk. Nipah virus (NiV) is a lethal zoonotic pathogen that has spilled over from bats into human populations, with limited person-to-person transmission. We examined ecologic and human behavioral drivers of geographic variation for risk of NiV infection in Bangladesh. We visited 60 villages during 2011–2013 where cases of infection with NiV were identified and 147 control villages. We compared case villages with control villages for most likely drivers for risk of infection, including number of bats, persons, and date palm sap trees, and human date palm sap consumption behavior. Case villages were similar to control villages in many ways, including number of bats, persons, and date palm sap trees, but had a higher proportion of households in which someone drank sap. Reducing human consumption of sap could reduce virus transmission and risk for emergence of a more highly transmissible NiV strain.
Collapse
|
21
|
Arthur RF, Gurley ES, Salje H, Bloomfield LSP, Jones JH. Contact structure, mobility, environmental impact and behaviour: the importance of social forces to infectious disease dynamics and disease ecology. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0454. [PMID: 28289265 DOI: 10.1098/rstb.2016.0454] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2016] [Indexed: 11/12/2022] Open
Abstract
Human factors, including contact structure, movement, impact on the environment and patterns of behaviour, can have significant influence on the emergence of novel infectious diseases and the transmission and amplification of established ones. As anthropogenic climate change alters natural systems and global economic forces drive land-use and land-cover change, it becomes increasingly important to understand both the ecological and social factors that impact infectious disease outcomes for human populations. While the field of disease ecology explicitly studies the ecological aspects of infectious disease transmission, the effects of the social context on zoonotic pathogen spillover and subsequent human-to-human transmission are comparatively neglected in the literature. The social sciences encompass a variety of disciplines and frameworks for understanding infectious diseases; however, here we focus on four primary areas of social systems that quantitatively and qualitatively contribute to infectious diseases as social-ecological systems. These areas are social mixing and structure, space and mobility, geography and environmental impact, and behaviour and behaviour change. Incorporation of these social factors requires empirical studies for parametrization, phenomena characterization and integrated theoretical modelling of social-ecological interactions. The social-ecological system that dictates infectious disease dynamics is a complex system rich in interacting variables with dynamically significant heterogeneous properties. Future discussions about infectious disease spillover and transmission in human populations need to address the social context that affects particular disease systems by identifying and measuring qualitatively important drivers.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Ronan F Arthur
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA 94305, USA
| | - Emily S Gurley
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD 21205, USA.,International Centre for Diarrhoeal Diseases Research, Bangladesh (ICDDR, B), Dhaka, Bangladesh
| | - Henrik Salje
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD 21205, USA.,Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, Paris, France
| | - Laura S P Bloomfield
- Emmett Interdisciplinary Program in Environment and Resources, Stanford University, Stanford, CA 94305, USA.,Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James H Jones
- Department of Earth Systems Science, Johns Hopkins University, Baltimore, MD 21205, USA.,Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
22
|
|
23
|
Nahar N, Paul RC, Sultana R, Sumon SA, Banik KC, Abedin J, Asaduzzaman M, Garcia F, Zimicki S, Rahman M, Gurley ES, Luby SP. A Controlled Trial to Reduce the Risk of Human Nipah Virus Exposure in Bangladesh. ECOHEALTH 2017; 14:501-517. [PMID: 28905152 DOI: 10.1007/s10393-017-1267-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/09/2017] [Accepted: 06/20/2017] [Indexed: 05/11/2023]
Abstract
Human Nipah virus (NiV) infection, often fatal in Bangladesh, is primarily transmitted by drinking raw date palm sap contaminated by Pteropus bats. We assessed the impact of a behavior change communication intervention on reducing consumption of potentially NiV-contaminated raw sap. During the 2012-2014 sap harvesting seasons, we implemented interventions in two areas and compared results with a control area. In one area, we disseminated a "do not drink raw sap" message and, in the other area, encouraged only drinking sap if it had been protected from bat contamination by a barrier ("only safe sap"). Post-intervention, 40% more respondents in both intervention areas reported knowing about a disease contracted through raw sap consumption compared with control. Reported raw sap consumption decreased in all areas. The reductions in the intervention areas were not significantly greater compared to the control. Respondents directly exposed to the "only safe sap" message were more likely to report consuming raw sap from a protected source than those with no exposure (25 vs. 15%, OR 2.0, 95% CI 1.5-2.6, P < 0.001). While the intervention increased knowledge in both intervention areas, the "only safe sap" intervention reduced exposure to potentially NiV-contaminated sap and should be considered for future dissemination.
Collapse
Affiliation(s)
- Nazmun Nahar
- icddr,b, 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh.
- Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - Repon C Paul
- icddr,b, 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Rebeca Sultana
- icddr,b, 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Shariful Amin Sumon
- icddr,b, 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Kajal Chandra Banik
- icddr,b, 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Jaynal Abedin
- icddr,b, 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | | | - Fernando Garcia
- FHI 360, 1825 Connecticut Avenue NW, Washington, DC, 20009, USA
| | - Susan Zimicki
- FHI 360, 1825 Connecticut Avenue NW, Washington, DC, 20009, USA
| | - Mahmudur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Emily S Gurley
- icddr,b, 68, Shaheed Tajuddin Ahmed Sharani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Stephen P Luby
- Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
24
|
Nahar N, Asaduzzaman M, Sultana R, Garcia F, Paul RC, Abedin J, Sazzad HMS, Rahman M, Gurley ES, Luby SP. A large-scale behavior change intervention to prevent Nipah transmission in Bangladesh: components and costs. BMC Res Notes 2017; 10:225. [PMID: 28651646 PMCID: PMC5485710 DOI: 10.1186/s13104-017-2549-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 06/17/2017] [Indexed: 11/28/2022] Open
Abstract
Background Nipah virus infection (NiV) is a bat-borne zoonosis transmitted to humans through consumption of NiV-contaminated raw date palm sap in Bangladesh. The objective of this analysis was to measure the cost of an NiV prevention intervention and estimate the cost of scaling it up to districts where spillover had been identified. Methods We implemented a behavior change communication intervention in two districts, testing different approaches to reduce the risk of NiV transmission using community mobilization, interpersonal communication, posters and TV public service announcements on local television during the 2012–2014 sap harvesting seasons. In one district, we implemented a “no raw sap” approach recommending to stop drinking raw date palm sap. In another district, we implemented an “only safe sap” approach, recommending to stop drinking raw date palm sap but offering the option of drinking safe sap. This is sap covered with a barrier, locally called bana, to interrupt bats’ access during collection. We conducted surveys among randomly selected respondents two months after the intervention to measure the proportion of people reached. We used an activity-based costing method to calculate the cost of the intervention. Results The implementation cost of the “no raw sap” intervention was $30,000 and the “only safe sap” intervention was $55,000. The highest cost was conducting meetings and interpersonal communication efforts. The lowest cost was broadcasting the public service announcements on local TV channels. To scale up a similar intervention in 30 districts where NiV spillover has occurred, would cost between $2.6 and $3.5 million for one season. Placing the posters would cost $96,000 and only broadcasting the public service announcement through local channels in 30 districts would cost $26,000. Conclusions Broadcasting a TV public service announcement is a potential low cost option to advance NiV prevention. It could be supplemented with posters and targeted interpersonal communication, in districts with a high risk of NiV spillover. Electronic supplementary material The online version of this article (doi:10.1186/s13104-017-2549-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nazmun Nahar
- icddr,b, Dhaka, Bangladesh. .,Swiss Tropical and Public Health Institute, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| | | | | | | | | | | | | | - Mahmudur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | | | - Stephen P Luby
- Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
25
|
Thibault PA, Watkinson RE, Moreira-Soto A, Drexler JF, Lee B. Zoonotic Potential of Emerging Paramyxoviruses: Knowns and Unknowns. Adv Virus Res 2017; 98:1-55. [PMID: 28433050 PMCID: PMC5894875 DOI: 10.1016/bs.aivir.2016.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The risk of spillover of enzootic paramyxoviruses and the susceptibility of recipient human and domestic animal populations are defined by a broad collection of ecological and molecular factors that interact in ways that are not yet fully understood. Nipah and Hendra viruses were the first highly lethal zoonotic paramyxoviruses discovered in modern times, but other paramyxoviruses from multiple genera are present in bats and other reservoirs that have unknown potential to spillover into humans. We outline our current understanding of paramyxovirus reservoir hosts and the ecological factors that may drive spillover, and we explore the molecular barriers to spillover that emergent paramyxoviruses may encounter. By outlining what is known about enzootic paramyxovirus receptor usage, mechanisms of innate immune evasion, and other host-specific interactions, we highlight the breadth of unexplored avenues that may be important in understanding paramyxovirus emergence.
Collapse
Affiliation(s)
| | - Ruth E Watkinson
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Jan F Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Benhur Lee
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
26
|
Parveen S, Islam MS, Begum M, Alam MU, Sazzad HMS, Sultana R, Rahman M, Gurley ES, Hossain MJ, Luby SP. It's not only what you say, it's also how you say it: communicating nipah virus prevention messages during an outbreak in Bangladesh. BMC Public Health 2016; 16:726. [PMID: 27495927 PMCID: PMC4974711 DOI: 10.1186/s12889-016-3416-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 06/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During a fatal Nipah virus (NiV) outbreak in Bangladesh, residents rejected biomedical explanations of NiV transmission and treatment and lost trust in the public healthcare system. Field anthropologists developed and communicated a prevention strategy to bridge the gap between the biomedical and local explanation of the outbreak. METHODS We explored residents' beliefs and perceptions about the illness and care-seeking practices and explained prevention messages following an interactive strategy with the aid of photos showed the types of contact that can lead to NiV transmission from bats to humans by drinking raw date palm sap and from person-to-person. RESULTS The residents initially believed that the outbreak was caused by supernatural forces and continued drinking raw date palm sap despite messages from local health authorities to stop. Participants in community meetings stated that the initial messages did not explain that bats were the source of this virus. After our intervention, participants responded that they now understood how NiV could be transmitted and would abstain from raw sap consumption and maintain safer behaviours while caring for patients. CONCLUSIONS During outbreaks, one-way behaviour change communication without meaningful causal explanations is unlikely to be effective. Based on the cultural context, interactive communication strategies in lay language with supporting evidence can make biomedical prevention messages credible in affected communities, even among those who initially invoke supernatural causal explanations.
Collapse
Affiliation(s)
- Shahana Parveen
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- Programme for Emerging Infections, Infectious Diseases Division, icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212 Bangladesh
| | | | - Momtaz Begum
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Mahbub-Ul Alam
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | | | - Rebeca Sultana
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Mahmudur Rahman
- Institute of Epidemiology Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | | | - M. Jahangir Hossain
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- Medical Research Council Unit (UK), Banjul, The Gambia
| | - Stephen P. Luby
- Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- Global Health Protection Division, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia USA
- Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California USA
| |
Collapse
|
27
|
Openshaw JJ, Hegde S, Sazzad HMS, Khan SU, Hossain MJ, Epstein JH, Daszak P, Gurley ES, Luby SP. Bat Hunting and Bat-Human Interactions in Bangladeshi Villages: Implications for Zoonotic Disease Transmission and Bat Conservation. Transbound Emerg Dis 2016; 64:1287-1293. [PMID: 27125493 PMCID: PMC5086320 DOI: 10.1111/tbed.12505] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 01/03/2023]
Abstract
Bats are an important reservoir for emerging zoonotic pathogens. Close human–bat interactions, including the sharing of living spaces and hunting and butchering of bats for food and medicines, may lead to spillover of zoonotic disease into human populations. We used bat exposure and environmental data gathered from 207 Bangladeshi villages to characterize bat exposures and hunting in Bangladesh. Eleven percent of households reported having a bat roost near their homes, 65% reported seeing bats flying over their households at dusk, and 31% reported seeing bats inside their compounds or courtyard areas. Twenty percent of households reported that members had at least daily exposure to bats. Bat hunting occurred in 49% of the villages surveyed and was more likely to occur in households that reported nearby bat roosts (adjusted prevalence ratio [aPR] 2.3, 95% CI 1.1–4.9) and villages located in north‐west (aPR 7.5, 95% CI 2.5–23.0) and south‐west (aPR 6.8, 95% CI 2.1–21.6) regions. Our results suggest high exposure to bats and widespread hunting throughout Bangladesh. This has implications for both zoonotic disease spillover and bat conservation.
Collapse
Affiliation(s)
- J J Openshaw
- Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
| | - S Hegde
- International Centre for Diarrheal Diseases, Bangladesh, Dhaka, Bangladesh
| | - H M S Sazzad
- International Centre for Diarrheal Diseases, Bangladesh, Dhaka, Bangladesh
| | - S U Khan
- International Centre for Diarrheal Diseases, Bangladesh, Dhaka, Bangladesh
| | - M J Hossain
- International Centre for Diarrheal Diseases, Bangladesh, Dhaka, Bangladesh
| | | | - P Daszak
- EcoHealth Alliance, New York, NY, USA
| | - E S Gurley
- International Centre for Diarrheal Diseases, Bangladesh, Dhaka, Bangladesh
| | - S P Luby
- Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA.,International Centre for Diarrheal Diseases, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
28
|
Islam MS, Sazzad HMS, Satter SM, Sultana S, Hossain MJ, Hasan M, Rahman M, Campbell S, Cannon DL, Ströher U, Daszak P, Luby SP, Gurley ES. Nipah Virus Transmission from Bats to Humans Associated with Drinking Traditional Liquor Made from Date Palm Sap, Bangladesh, 2011-2014. Emerg Infect Dis 2016; 22:664-70. [PMID: 26981928 PMCID: PMC4806957 DOI: 10.3201/eid2204.151747] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Nipah virus (NiV) is a paramyxovirus, and Pteropus spp. bats are the natural reservoir. From December 2010 through March 2014, hospital-based encephalitis surveillance in Bangladesh identified 18 clusters of NiV infection. The source of infection for case-patients in 3 clusters in 2 districts was unknown. A team of epidemiologists and anthropologists investigated these 3 clusters comprising 14 case-patients, 8 of whom died. Among the 14 case-patients, 8 drank fermented date palm sap (tari) regularly before their illness, and 6 provided care to a person infected with NiV. The process of preparing date palm trees for tari production was similar to the process of collecting date palm sap for fresh consumption. Bat excreta was reportedly found inside pots used to make tari. These findings suggest that drinking tari is a potential pathway of NiV transmission. Interventions that prevent bat access to date palm sap might prevent tari-associated NiV infection.
Collapse
|
29
|
Brierley L, Vonhof MJ, Olival KJ, Daszak P, Jones KE. Quantifying Global Drivers of Zoonotic Bat Viruses: A Process-Based Perspective. Am Nat 2015; 187:E53-64. [PMID: 26807755 DOI: 10.1086/684391] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Emerging infectious diseases (EIDs), particularly zoonoses, represent a significant threat to global health. Emergence is often driven by anthropogenic activity (e.g., travel, land use change). Although disease emergence frameworks suggest multiple steps from initial zoonotic transmission to human-to-human spread, there have been few attempts to empirically model specific steps. We create a process-based framework to separate out components of individual emergence steps. We focus on early emergence and expand the first step, zoonotic transmission, into processes of generation of pathogen richness, transmission opportunity, and establishment, each with its own hypothesized drivers. Using this structure, we build a spatial empirical model of these drivers, taking bat viruses shared with humans as a case study. We show that drivers of both viral richness (host diversity and climatic variability) and transmission opportunity (human population density, bushmeat hunting, and livestock production) are associated with virus sharing between humans and bats. We also show spatial heterogeneity between the global patterns of these two processes, suggesting that high-priority locations for pathogen discovery and surveillance in wildlife may not necessarily coincide with those for public health intervention. Finally, we offer direction for future studies of zoonotic EIDs by highlighting the importance of the processes underlying their emergence.
Collapse
|
30
|
Nahar N, Paul RC, Sultana R, Gurley ES, Garcia F, Abedin J, Sumon SA, Banik KC, Asaduzzaman M, Rimi NA, Rahman M, Luby SP. Raw Sap Consumption Habits and Its Association with Knowledge of Nipah Virus in Two Endemic Districts in Bangladesh. PLoS One 2015; 10:e0142292. [PMID: 26551202 PMCID: PMC4638332 DOI: 10.1371/journal.pone.0142292] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/19/2015] [Indexed: 11/24/2022] Open
Abstract
Human Nipah virus (NiV) infection in Bangladesh is a fatal disease that can be transmitted from bats to humans who drink contaminated raw date palm sap collected overnight during the cold season. Our study aimed to understand date palm sap consumption habits of rural residents and factors associated with consumption. In November-December 2012 the field team interviewed adult respondents from randomly selected villages from Rajbari and Kushtia Districts in Bangladesh. We calculated the proportion of people who consumed raw sap and had heard about a disease from raw sap consumption. We assessed the factors associated with raw sap consumption by calculating prevalence ratios (PR) adjusted for village level clustering effects. Among the 1,777 respondents interviewed, half (50%) reported drinking raw sap during the previous sap collection season and 37% consumed raw sap at least once per month. Few respondents (5%) heard about NiV. Thirty-seven percent of respondents reported hearing about a disease transmitted through raw sap consumption, inclusive of a 10% who related it with milder illness like diarrhea, vomiting or indigestion rather than NiV. Respondents who harvested date palm trees in their household were more likely to drink sap than those who did not own date palm trees (79% vs. 65% PR 1.2, 95% CI 1.1–1.3, p<0.001). When sap was available, respondents who heard about a disease from raw sap consumption were just as likely to drink it as those who did not hear about a disease (69% vs. 67%, PR 1.0, 95% CI 0.9–1.1, p = 0.512). Respondents’ knowledge of NiV was low. They might not have properly understood the risk of NiV, and were likely to drink sap when it was available. Implementing strategies to increase awareness about the risks of NiV and protect sap from bats might reduce the risk of NiV transmission.
Collapse
Affiliation(s)
- Nazmun Nahar
- ICDDRB, Dhaka, Bangladesh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- * E-mail:
| | | | | | | | - Fernando Garcia
- FHI360, Washington DC Office, Washington, D.C., United States of America
| | | | | | | | | | | | - Mahmudur Rahman
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Stephen P. Luby
- Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, United States of America
| |
Collapse
|
31
|
Rodhain F. [Bats and Viruses: complex relationships]. ACTA ACUST UNITED AC 2015; 108:272-89. [PMID: 26330152 PMCID: PMC7097034 DOI: 10.1007/s13149-015-0448-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 07/28/2015] [Indexed: 12/11/2022]
Abstract
With more than 1 200 species, bats and flying foxes (Order Chiroptera) constitute the most important and diverse order of Mammals after Rodents. Many species of bats are insectivorous while others are frugivorous and few of them are hematophagous. Some of these animals fly during the night, others are crepuscular or diurnal. Some fly long distances during seasonal migrations. Many species are colonial cave-dwelling, living in a rather small home range while others are relatively solitary. However, in spite of the importance of bats for terrestrial biotic communities and ecosystem ecology, the diversity in their biology and lifestyles remain poorly known and underappreciated. More than sixty viruses have been detected or isolated in bats; these animals are therefore involved in the natural cycles of many of them. This is the case, for instance, of rabies virus and other Lyssavirus (Family Rhabdoviridae), Nipah and Hendra viruses (Paramyxoviridae), Ebola and Marburg viruses (Filoviridae), SARS-CoV and MERS-CoV (Coronaviridae). For these zoonotic viruses, a number of bat species are considered as important reservoir hosts, efficient disseminators or even directly responsible of the transmission. Some of these bat-borne viruses cause highly pathogenic diseases while others are of potential significance for humans and domestic or wild animals; so, bats are an important risk in human and animal public health. Moreover, some groups of viruses developed through different phylogenetic mechanisms of coevolution between viruses and bats. The fact that most of these viral infections are asymptomatic in bats has been observed since a long time but the mechanisms of the viral persistence are not clearly understood. The various bioecology of the different bat populations allows exchange of virus between migrating and non-migrating conspecific species. For a better understanding of the role of bats in the circulation of these viral zoonoses, epidemiologists must pay attention to some of their biologic properties which are not fully documented, like their extreme longevity, their diet, the population size and the particular densities observed in species with crowded roosting behavior, the population structure and migrations, the hibernation permitting overwintering of viruses, their particular innate and acquired immune response, probably related at least partially to their ability to fly, allowing persistent virus infections and preventing immunopathological consequences, etc. It is also necessary to get a better knowledge of the interactions between bats and ecologic changes induced by man and to attentively follow bat populations and their viruses through surveillance networks involving human and veterinary physicians, specialists of wild fauna, ecologists, etc. in order to understand the mechanisms of disease emergence, to try to foresee and, perhaps, to prevent viral emergences beforehand. Finally, a more fundamental research about immune mechanisms developed in viral infections is essential to reveal the reasons why Chiroptera are so efficient reservoir hosts. Clearly, a great deal of additional work is needed to document the roles of bats in the natural history of viruses.
Collapse
Affiliation(s)
- F Rodhain
- Professeur honoraire à l'Institut Pasteur, 132, boulevard du Montparnasse, 75014, Paris, France.
| |
Collapse
|
32
|
Voigt CC, Kingston T. Zoonotic Viruses and Conservation of Bats. BATS IN THE ANTHROPOCENE: CONSERVATION OF BATS IN A CHANGING WORLD 2015. [PMCID: PMC7122997 DOI: 10.1007/978-3-319-25220-9_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many of the recently emerging highly virulent zoonotic diseases have a likely bat origin, for example Hendra, Nipah, Ebola and diseases caused by coronaviruses. Presumably because of their long history of coevolution, most of these viruses remain subclinical in bats, but have the potential to cause severe illnesses in domestic and wildlife animals and also humans. Spillovers from bats to humans either happen directly (via contact with infected bats) or indirectly (via intermediate hosts such as domestic or wildlife animals, by consuming food items contaminated by saliva, faeces or urine of bats, or via other environmental sources). Increasing numbers of breakouts of zoonotic viral diseases among humans and livestock have mainly been accounted to human encroachment into natural habitat, as well as agricultural intensification, deforestation and bushmeat consumption. Persecution of bats, including the destruction of their roosts and culling of whole colonies, has led not only to declines of protected bat species, but also to an increase in virus prevalence in some of these populations. Educational efforts are needed in order to prevent future spillovers of bat-borne viruses to humans and livestock, and to further protect bats from unnecessary and counterproductive culling.
Collapse
|
33
|
Evolving epidemiology of Nipah virus infection in Bangladesh: evidence from outbreaks during 2010-2011. Epidemiol Infect 2015; 144:371-80. [PMID: 26122675 DOI: 10.1017/s0950268815001314] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Drinking raw date palm sap is the primary route of Nipah virus (NiV) transmission from bats to people in Bangladesh; subsequent person-to-person transmission is common. During December 2010 to March 2011, we investigated NiV epidemiology by interviewing cases using structured questionnaires, in-depth interviews, and group discussions to collect clinical and exposure histories. We conducted a case-control study to identify risk factors for transmission. We identified 43 cases; 23 were laboratory-confirmed and 20 probable. Thirty-eight (88%) cases died. Drinking raw date palm sap and contact with an infected person were major risk factors; one healthcare worker was infected and for another case transmission apparently occurred through contact with a corpse. In absence of these risk factors, apparent routes of transmission included drinking fermented date palm sap. For the first time, a case was detected in eastern Bangladesh. Identification of new epidemiological characteristics emphasizes the importance of continued NiV surveillance and case investigation.
Collapse
|
34
|
de Wit E, Munster VJ. Animal models of disease shed light on Nipah virus pathogenesis and transmission. J Pathol 2015; 235:196-205. [PMID: 25229234 DOI: 10.1002/path.4444] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 12/27/2022]
Abstract
Nipah virus is an emerging virus infection that causes yearly disease outbreaks with high case fatality rates in Bangladesh. Nipah virus causes encephalitis and systemic vasculitis, sometimes in combination with respiratory disease. Pteropus species fruit bats are the natural reservoir of Nipah virus and zoonotic transmission can occur directly or via an intermediate host; human-to-human transmission occurs regularly. In this review we discuss the current state of knowledge on the pathogenesis and transmission of Nipah virus, focusing on dissemination of the virus through its host, known determinants of pathogenicity and routes of zoonotic and human-to-human transmission. Since data from human cases are sparse, this knowledge is largely based on the results of studies performed in animal models that recapitulate Nipah virus disease in humans.
Collapse
Affiliation(s)
- Emmie de Wit
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | | |
Collapse
|
35
|
Chowdhury S, Khan SU, Crameri G, Epstein JH, Broder CC, Islam A, Peel AJ, Barr J, Daszak P, Wang LF, Luby SP. Serological evidence of henipavirus exposure in cattle, goats and pigs in Bangladesh. PLoS Negl Trop Dis 2014; 8:e3302. [PMID: 25412358 PMCID: PMC4238985 DOI: 10.1371/journal.pntd.0003302] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/29/2014] [Indexed: 11/18/2022] Open
Abstract
Background Nipah virus (NiV) is an emerging disease that causes severe encephalitis and respiratory illness in humans. Pigs were identified as an intermediate host for NiV transmission in Malaysia. In Bangladesh, NiV has caused recognized human outbreaks since 2001 and three outbreak investigations identified an epidemiological association between close contact with sick or dead animals and human illness. Methodology We examined cattle and goats reared around Pteropus bat roosts in human NiV outbreak areas. We also tested pig sera collected under another study focused on Japanese encephalitis. Principal Findings We detected antibodies against NiV glycoprotein in 26 (6.5%) cattle, 17 (4.3%) goats and 138 (44.2%) pigs by a Luminex-based multiplexed microsphere assay; however, these antibodies did not neutralize NiV. Cattle and goats with NiVsG antibodies were more likely to have a history of feeding on fruits partially eaten by bats or birds (PR = 3.1, 95% CI 1.6–5.7) and drinking palmyra palm juice (PR = 3.9, 95% CI 1.5–10.2). Conclusions This difference in test results may be due to the exposure of animals to one or more novel viruses with antigenic similarity to NiV. Further research may identify a novel organism of public health importance. Nipah virus (NiV), is an emerging disease that causes severe encephalitis and respiratory illness in humans. Pigs were identified as an intermediate host for NiV transmission in Malaysia, and in Bangladesh three NiV outbreak investigations since 2001 identified an epidemiological association between close contact with sick or dead animals and human illness. We collected samples from cattle and goats reared around Pteropus bat roosts in human NiV outbreak areas in Bangladesh, and tested pig sera collected for a Japanese encephalitis study. We detected antibodies against NiV glycoprotein in 26 (6.5%) cattle, 17 (4.3%) goats and 138 (44.2%) pigs by a Luminex-based multiplexed microsphere assay, but none were virus neutralizing. There may have been exposure of Luminex positive animals to one or more novel viruses with antigenic similarity to NiV. Further research may identify a novel organism of public health importance.
Collapse
Affiliation(s)
- Sukanta Chowdhury
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr, b), Dhaka, Bangladesh
- * E-mail:
| | - Salah Uddin Khan
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Gary Crameri
- CSIRO Australian Animal Health Laboratory (AAHL), Geelong, Victoria, Australia
| | | | | | - Ausraful Islam
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Alison J. Peel
- Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Jennifer Barr
- CSIRO Australian Animal Health Laboratory (AAHL), Geelong, Victoria, Australia
| | - Peter Daszak
- EcoHealth Alliance, New York, New York, United States of America
| | - Lin-Fa Wang
- CSIRO Australian Animal Health Laboratory (AAHL), Geelong, Victoria, Australia
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore
| | - Stephen P. Luby
- International Centre for Diarrheal Diseases Research, Bangladesh (icddr, b), Dhaka, Bangladesh
- Stanford University, Stanford, California, United States of America
| |
Collapse
|
36
|
Abstract
ABSTRACT Nipah virus is a zoonotic paramyxovirus that has caused outbreaks of human disease with high fatality rates. Important differences in epidemiological features of human disease are associated with Nipah viruses isolated from Malaysia and Bangladesh, with person-to-person transmission a major pathway for infection in Bangladesh. Comparisons of Nipah virus isolates in vitro have demonstrated differences in regulation of innate immunity and replicative ability. In contrast, similarities in infection outcomes and tissue tropism in the ferret model indicate that differences between viral isolates may not be the pivotal determinants of Nipah virus transmission. Consideration and understanding of the social and cultural context within which Nipah virus outbreaks occur may be critical in the development of practical, achievable disease management strategies.
Collapse
Affiliation(s)
- Bronwyn A Clayton
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, East Geelong, Australia
| | - Glenn A Marsh
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, East Geelong, Australia
| |
Collapse
|
37
|
Nahar N, Mondal UK, Hossain MJ, Khan MSU, Sultana R, Gurley ES, Luby SP. Piloting the promotion of bamboo skirt barriers to prevent Nipah virus transmission through date palm sap in Bangladesh. Glob Health Promot 2014; 21:7-15. [PMID: 24755262 DOI: 10.1177/1757975914528249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Drinking raw date palm sap contaminated with infected fruit bat saliva or urine is an important mode of Nipah virus transmission to humans in Bangladesh. Bamboo skirts are an effective way to interrupt bat access to the sap. We conducted a study from November 2008 to March 2009 to explore the effectiveness of higher- and lower-intensity interventions by promoting bamboo skirt preparation and use among sap harvesters (gachhis). We spent 280 person-hours in two villages for the higher-intensity intervention and half that amount of time in two other villages for the lower-intensity intervention. To evaluate the interventions we followed up all gachhis once a month for three months. A high percentage of gachhis (83% in higher-, 65% in lower-intensity interventions) prepared and used a skirt of bamboo or other materials - jute stalk, dhoincha (Sesbania aculeata), or polythene - at least once after intervention. In general, 15% of gachhis consistently used skirts throughout the sap collection season. The intensive nature of this intervention is very expensive for a large-scale programme. Future efforts should focus on developing a low-cost behaviour change intervention and evaluate if it reduces the human exposure to potentially contaminated fresh date palm sap.
Collapse
Affiliation(s)
- Nazmun Nahar
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Utpal Kumar Mondal
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - M Jahangir Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - M Salah Uddin Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rebeca Sultana
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emily S Gurley
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Stephen P Luby
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh Centers for Disease Control and Prevention (CDC), Atlanta, USA
| |
Collapse
|
38
|
Hahn MB, Epstein JH, Gurley ES, Islam MS, Luby SP, Daszak P, Patz JA. Roosting behaviour and habitat selection of Pteropus giganteus reveals potential links to Nipah virus epidemiology. J Appl Ecol 2014; 51:376-387. [PMID: 24778457 PMCID: PMC4000083 DOI: 10.1111/1365-2664.12212] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Flying foxes Pteropus spp. play a key role in forest regeneration as seed dispersers and are also the reservoir of many viruses, including Nipah virus in Bangladesh. Little is known about their habitat requirements, particularly in South Asia. Identifying Pteropus habitat preferences could assist in understanding the risk of zoonotic disease transmission broadly, and in Bangladesh, could help explain the spatial distribution of human Nipah virus cases. 2. We analysed characteristics of Pteropus giganteus roosts and constructed an ecological niche model to identify suitable habitat in Bangladesh. We also assessed the distribution of suitable habitat in relation to the location of human Nipah virus cases. 3. Compared to non-roost trees, P. giganteus roost trees are taller with larger diameters, and are more frequently canopy trees. Colony size was larger in densely forested regions and smaller in flood-affected areas. Roosts were located in areas with lower annual precipitation and higher human population density than non-roost sites. 4. We predicted that 2-17% of Bangladesh's land area is suitable roosting habitat. Nipah virus outbreak villages were 2.6 times more likely to be located in areas predicted as highly suitable habitat for P. giganteus compared to non-outbreak villages. 5. Synthesis and applications. Habitat suitability modelling may help identify previously undocumented Nipah outbreak locations and improve our understanding of Nipah virus ecology by highlighting regions where there is suitable bat habitat but no reported human Nipah virus. Conservation and public health education is a key component of P. giganteus management in Bangladesh due to the general misunderstanding and fear of bats that are a reservoir of Nipah virus. Affiliation between Old World fruit bats (Pteropodidae) and people is common throughout their range, and in order to conserve these keystone bat species and prevent emergence of zoonotic viruses, it is imperative that we continue to improve our understanding of Pteropus resource requirements and routes of virus transmission from bats to people. Results presented here can be utilized to develop land management strategies and conservation policies that simultaneously protect fruit bats and public health.
Collapse
Affiliation(s)
- Micah B. Hahn
- Nelson Institute, SAGE (Center for Sustainability and the Global Environment), Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | | | - Emily S. Gurley
- International Center for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad S. Islam
- Center for Environmental and Geographic Information Services, Dhaka, Bangladesh
| | - Stephen P. Luby
- International Center for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh, Centers for Disease Control and Prevention, Atlanta, Georgia, current: Stanford University, Stanford, California
| | | | - Jonathan A. Patz
- Nelson Institute, SAGE (Center for Sustainability and the Global Environment), Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
39
|
de Wit E, Prescott J, Falzarano D, Bushmaker T, Scott D, Feldmann H, Munster VJ. Foodborne transmission of nipah virus in Syrian hamsters. PLoS Pathog 2014; 10:e1004001. [PMID: 24626480 PMCID: PMC3953481 DOI: 10.1371/journal.ppat.1004001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/01/2014] [Indexed: 11/26/2022] Open
Abstract
Since 2001, outbreaks of Nipah virus have occurred almost every year in Bangladesh with high case-fatality rates. Epidemiological data suggest that in Bangladesh, Nipah virus is transmitted from the natural reservoir, fruit bats, to humans via consumption of date palm sap contaminated by bats, with subsequent human-to-human transmission. To experimentally investigate this epidemiological association between drinking of date palm sap and human cases of Nipah virus infection, we determined the viability of Nipah virus (strain Bangladesh/200401066) in artificial palm sap. At 22°C virus titers remained stable for at least 7 days, thus potentially allowing food-borne transmission. Next, we modeled food-borne Nipah virus infection by supplying Syrian hamsters with artificial palm sap containing Nipah virus. Drinking of 5×108 TCID50 of Nipah virus resulted in neurological disease in 5 out of 8 hamsters, indicating that food-borne transmission of Nipah virus can indeed occur. In comparison, intranasal (i.n.) inoculation with the same dose of Nipah virus resulted in lethal respiratory disease in all animals. In animals infected with Nipah virus via drinking, virus was detected in respiratory tissues rather than in the intestinal tract. Using fluorescently labeled Nipah virus particles, we showed that during drinking, a substantial amount of virus is deposited in the lungs, explaining the replication of Nipah virus in the respiratory tract of these hamsters. Besides the ability of Nipah virus to infect hamsters via the drinking route, Syrian hamsters infected via that route transmitted the virus through direct contact with naïve hamsters in 2 out of 24 transmission pairs. Although these findings do not directly prove that date palm sap contaminated with Nipah virus by bats is the origin of Nipah virus outbreaks in Bangladesh, they provide the first experimental support for this hypothesis. Understanding the Nipah virus transmission cycle is essential for preventing and mitigating future outbreaks. In Bangladesh, outbreaks of Nipah virus occur almost every year, resulting in respiratory and neurological disease with high case-fatality rates. Based on epidemiological data Nipah virus is thought to be transmitted from fruit bats to humans via drinking of date palm sap contaminated by bats that drink from the sap stream or collection vessel during collection. Additionally, human-to-human transmission has been shown to occur. Here, we experimentally modeled the proposed transmission cycle of Nipah virus in Bangladesh in Syrian hamsters. Hamsters that drank artificial palm sap containing high doses of Nipah virus became infected with the virus and developed neurological signs of disease. Virus replication occurred mainly in the respiratory rather than the intestinal tract. Most importantly, hamsters infected with Nipah virus through drinking of contaminated palm sap could transmit the virus to uninfected cage mates. As treatments for Nipah virus are currently unavailable and medical interventions are difficult to implement in rural outbreak areas, our best hope to prevent or intervene in future outbreaks of Nipah virus lies in the potential to block transmission from bats to humans and from human to human. Understanding how Nipah virus is transmitted is essential to achieve this.
Collapse
Affiliation(s)
- Emmie de Wit
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail: (EdW); (VJM)
| | - Joseph Prescott
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Darryl Falzarano
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Trenton Bushmaker
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dana Scott
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vincent J. Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail: (EdW); (VJM)
| |
Collapse
|
40
|
Luby SP. The pandemic potential of Nipah virus. Antiviral Res 2013; 100:38-43. [PMID: 23911335 DOI: 10.1016/j.antiviral.2013.07.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/09/2013] [Accepted: 07/19/2013] [Indexed: 11/30/2022]
Abstract
Nipah virus, a paramyxovirus whose wildlife reservoir is Pteropus bats, was first discovered in a large outbreak of acute encephalitis in Malaysia in 1998 among persons who had contact with sick pigs. Apparently, one or more pigs was infected from bats, and the virus then spread efficiently from pig to pig, then from pigs to people. Nipah virus outbreaks have been recognized nearly every year in Bangladesh since 2001 and occasionally in neighboring India. Outbreaks in Bangladesh and India have been characterized by frequent person-to-person transmission and the death of over 70% of infected people. Characteristics of Nipah virus that increase its risk of becoming a global pandemic include: humans are already susceptible; many strains are capable of limited person-to-person transmission; as an RNA virus, it has an exceptionally high rate of mutation: and that if a human-adapted strain were to infect communities in South Asia, high population densities and global interconnectedness would rapidly spread the infection. Appropriate steps to estimate and manage this risk include studies to explore the molecular and genetic basis of respiratory transmission of henipaviruses, improved surveillance for human infections, support from high-income countries to reduce the risk of person-to-person transmission of infectious agents in low-income health care settings, and consideration of vaccination in communities at ongoing risk of exposure to the secretions and excretions of Pteropus bats.
Collapse
Affiliation(s)
- Stephen P Luby
- Woods Institute of the Environment, Stanford University, Yang and Yamazaki Environment and Energy Building, Room 231, 473 Via Ortega, Stanford, CA 94305, United States.
| |
Collapse
|
41
|
Sazzad HMS, Hossain MJ, Gurley ES, Ameen KMH, Parveen S, Islam MS, Faruque LI, Podder G, Banu SS, Lo MK, Rollin PE, Rota PA, Daszak P, Rahman M, Luby SP. Nipah virus infection outbreak with nosocomial and corpse-to-human transmission, Bangladesh. Emerg Infect Dis 2013; 19:210-7. [PMID: 23347678 PMCID: PMC3559054 DOI: 10.3201/eid1902.120971] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Particularly vulnerable are health care workers who do not use personal protective equipment and persons who do not wash hands after traditional burial practices. Active Nipah virus encephalitis surveillance identified an encephalitis cluster and sporadic cases in Faridpur, Bangladesh, in January 2010. We identified 16 case-patients; 14 of these patients died. For 1 case-patient, the only known exposure was hugging a deceased patient with a probable case, while another case-patient’s exposure involved preparing the same corpse for burial by removing oral secretions and anogenital excreta with a cloth and bare hands. Among 7 persons with confirmed sporadic cases, 6 died, including a physician who had physically examined encephalitis patients without gloves or a mask. Nipah virus–infected patients were more likely than community-based controls to report drinking raw date palm sap and to have had physical contact with an encephalitis patient (29% vs. 4%, matched odds ratio undefined). Efforts to prevent transmission should focus on reducing caregivers’ exposure to infected patients’ bodily secretions during care and traditional burial practices.
Collapse
|
42
|
Wibbelt G, Torrence M. Editorial. Zoonoses Public Health 2013; 60:1. [DOI: 10.1111/zph.12004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Smith I, Wang LF. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr Opin Virol 2013; 3:84-91. [PMID: 23265969 PMCID: PMC7102720 DOI: 10.1016/j.coviro.2012.11.006] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/17/2012] [Accepted: 11/22/2012] [Indexed: 01/09/2023]
Abstract
Bats are being increasingly recognized as an important reservoir of zoonotic viruses of different families, including SARS coronavirus, Nipah virus, Hendra virus and Ebola virus. Several recent studies hypothesized that bats, an ancient group of flying mammals, are the major reservoir of several important RNA virus families from which other mammalian viruses of livestock and humans were derived. Although this hypothesis needs further investigation, the premise that bats carry a large number of viruses is commonly accepted. The question of whether bats have unique biological features making them ideal reservoir hosts has been the subject of several recent reviews. In this review, we will focus on the public health implications of bat derived zoonotic viral disease outbreaks, examine the drivers and risk factors of past disease outbreaks and outline research directions for better control of future disease events.
Collapse
Affiliation(s)
- Ina Smith
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
| | - Lin-Fa Wang
- CSIRO Australian Animal Health Laboratory, Geelong, Victoria 3220, Australia
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
44
|
Hayman DTS, Bowen RA, Cryan PM, McCracken GF, O'Shea TJ, Peel AJ, Gilbert A, Webb CT, Wood JLN. Ecology of zoonotic infectious diseases in bats: current knowledge and future directions. Zoonoses Public Health 2013; 60:2-21. [PMID: 22958281 PMCID: PMC3600532 DOI: 10.1111/zph.12000] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Indexed: 01/05/2023]
Abstract
Bats are hosts to a range of zoonotic and potentially zoonotic pathogens. Human activities that increase exposure to bats will likely increase the opportunity for infections to spill over in the future. Ecological drivers of pathogen spillover and emergence in novel hosts, including humans, involve a complex mixture of processes, and understanding these complexities may aid in predicting spillover. In particular, only once the pathogen and host ecologies are known can the impacts of anthropogenic changes be fully appreciated. Cross-disciplinary approaches are required to understand how host and pathogen ecology interact. Bats differ from other sylvatic disease reservoirs because of their unique and diverse lifestyles, including their ability to fly, often highly gregarious social structures, long lifespans and low fecundity rates. We highlight how these traits may affect infection dynamics and how both host and pathogen traits may interact to affect infection dynamics. We identify key questions relating to the ecology of infectious diseases in bats and propose that a combination of field and laboratory studies are needed to create data-driven mechanistic models to elucidate those aspects of bat ecology that are most critical to the dynamics of emerging bat viruses. If commonalities can be found, then predicting the dynamics of newly emerging diseases may be possible. This modelling approach will be particularly important in scenarios when population surveillance data are unavailable and when it is unclear which aspects of host ecology are driving infection dynamics.
Collapse
Affiliation(s)
- D T S Hayman
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
All seven recognized human cases of Hendra virus (HeV) infection have occurred in Queensland, Australia. Recognized human infections have all resulted from a HeV infected horse that was unusually efficient in transmitting the virus and a person with a high exposure to infectious secretions. In the large outbreak in Malaysia where Nipah virus (NiV) was first identified, most human infections resulted from close contact with NiV infected pigs. Outbreak investigations in Bangladesh have identified drinking raw date palm sap as the most common pathway of NiV transmission from Pteropus bats to people, but person-to-person transmission of NiV has been repeatedly identified in Bangladesh and India. Although henipaviruses are not easily transmitted to people, these newly recognized, high mortality agents warrant continued scientific attention.
Collapse
Affiliation(s)
- Stephen P Luby
- Department of Medicine, Stanford University, CA 94305, USA.
| | | |
Collapse
|
46
|
Abstract
Nipah (NiV) and Hendra (HeV) viruses are the deadliest human pathogens within the Paramyxoviridae family, which include human and animal pathogens of global biomedical importance. NiV and HeV infections cause respiratory and encephalitic illness with high mortality rates in humans. Henipaviruses (HNV) are the only Paramyxoviruses classified as biosafety level 4 (BSL4) pathogens due to their extreme pathogenicity, potential for bioterrorism, and lack of licensed vaccines and therapeutics. HNV use ephrin-B2 and ephrin-B3, highly conserved proteins, as viral entry receptors. This likely accounts for their unusually broad species tropism, and also provides opportunities to study how receptor usage, cellular tropism, and end-organ pathology relates to the pathobiology of HNV infections. The clinical and pathologic manifestations of NiV and HeV virus infections are reviewed in the chapters by Wong et al. and Geisbert et al. in this issue. Here, we will review the biology of the HNV receptors, and how receptor usage relates to HNV cell tropism in vitro and in vivo.
Collapse
Affiliation(s)
- Olivier Pernet
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1489, USA
| | | | | |
Collapse
|
47
|
Bossart KN, Rockx B, Feldmann F, Brining D, Scott D, LaCasse R, Geisbert JB, Feng YR, Chan YP, Hickey AC, Broder CC, Feldmann H, Geisbert TW. A Hendra virus G glycoprotein subunit vaccine protects African green monkeys from Nipah virus challenge. Sci Transl Med 2012; 4:146ra107. [PMID: 22875827 DOI: 10.1126/scitranslmed.3004241] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the 1990s, Hendra virus and Nipah virus (NiV), two closely related and previously unrecognized paramyxoviruses that cause severe disease and death in humans and a variety of animals, were discovered in Australia and Malaysia, respectively. Outbreaks of disease have occurred nearly every year since NiV was first discovered, with case fatality ranging from 10 to 100%. In the African green monkey (AGM), NiV causes a severe lethal respiratory and/or neurological disease that essentially mirrors fatal human disease. Thus, the AGM represents a reliable disease model for vaccine and therapeutic efficacy testing. We show that vaccination of AGMs with a recombinant subunit vaccine based on the henipavirus attachment G glycoprotein affords complete protection against subsequent NiV infection with no evidence of clinical disease, virus replication, or pathology observed in any challenged subjects. Success of the recombinant subunit vaccine in nonhuman primates provides crucial data in supporting its further preclinical development for potential human use.
Collapse
Affiliation(s)
- Katharine N Bossart
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Wildlife are frequently a neglected component of One Health; however, the linkages between the health of wildlife and human, domestic animal, and environmental health are clear. The majority of emerging zoonotic diseases are linked to wildlife, primarily driven by anthropogenic land changes. Despite this risk, wildlife have important links to people as environmental indicators, food security and safety, and through human livelihoods. This chapter will describe these linkages and demonstrate the need to understand these linkages through targeted surveillance and understanding the ecology of wildlife diseases. While the management of wildlife diseases presents a significant challenge, such practices will greatly improve the health of people, domestic animals, wildlife and the environment.
Collapse
|
49
|
A randomized controlled trial of interventions to impede date palm sap contamination by bats to prevent nipah virus transmission in Bangladesh. PLoS One 2012; 7:e42689. [PMID: 22905160 PMCID: PMC3414453 DOI: 10.1371/journal.pone.0042689] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 07/10/2012] [Indexed: 11/18/2022] Open
Abstract
Background Drinking raw date palm sap is a risk factor for human Nipah virus (NiV) infection. Fruit bats, the natural reservoir of NiV, commonly contaminate raw sap with saliva by licking date palm’s sap producing surface. We evaluated four types of physical barriers that may prevent bats from contacting sap. Methods During 2009, we used a crossover design and randomly selected 20 date palm sap producing trees and observed each tree for 2 nights: one night with a bamboo skirt intervention applied and one night without the intervention. During 2010, we selected 120 trees and randomly assigned four types of interventions to 15 trees each: bamboo, dhoincha (local plant), jute stick and polythene skirts covering the shaved part, sap stream, tap and collection pot. We enrolled the remaining 60 trees as controls. We used motion sensor activated infrared cameras to examine bat contact with sap. Results During 2009 bats contacted date palm sap in 85% of observation nights when no intervention was used compared with 35% of nights when the intervention was used [p<0.001]. Bats were able to contact the sap when the skirt did not entirely cover the sap producing surface. Therefore, in 2010 we requested the sap harvesters to use larger skirts. During 2010 bats contacted date palm sap [2% vs. 83%, p<0.001] less frequently in trees protected with skirts compared to control trees. No bats contacted sap in trees with bamboo (p<0.001 compared to control), dhoincha skirt (p<0.001) or polythene covering (p<0.001), but bats did contact sap during one night (7%) with the jute stick skirt (p<0.001). Conclusion Bamboo, dhoincha, jute stick and polythene skirts covering the sap producing areas of a tree effectively prevented bat-sap contact. Community interventions should promote applying these skirts to prevent occasional Nipah spillovers to human.
Collapse
|
50
|
Clayton BA, Wang LF, Marsh GA. Henipaviruses: an updated review focusing on the pteropid reservoir and features of transmission. Zoonoses Public Health 2012; 60:69-83. [PMID: 22709528 DOI: 10.1111/j.1863-2378.2012.01501.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The henipaviruses, Hendra virus and Nipah virus, are pathogens that have emerged from flying foxes in Australia and South-east Asia to infect both livestock and humans, often fatally. Since the emergence of Hendra virus in Australia in 1994 and the identification of Australian flying foxes as hosts to this virus, our appreciation of bats as reservoir hosts of henipaviruses has expanded globally to include much of Asia and areas of Africa. Despite this, little is currently known of the mechanisms by which bats harbour viruses capable of causing such severe disease in other terrestrial mammals. Pteropid bat ecology, henipavirus virology, therapeutic developments and features of henipavirus infection, pathology and disease in humans and other mammals are reviewed elsewhere in detail. This review focuses on bats as reservoir hosts to henipaviruses and features of transmission of Hendra virus and Nipah virus following spillover from these reservoir hosts.
Collapse
Affiliation(s)
- B A Clayton
- CSIRO Livestock Industries, Australian Animal Health Laboratory, Geelong, Vic., Australia
| | | | | |
Collapse
|