1
|
Venkatraman J, Abrams MZ, Sherman D, Ortiz-Paparoni M, Bercaw JR, MacDonald RE, Kait J, Dimbath E, Pang D, Gray A, Luck JF, Bass CR, Bir CA. Accuracy of Instrumented Mouthguards During Direct Jaw Impacts Seen in Boxing. Ann Biomed Eng 2024; 52:3219-3227. [PMID: 39028399 DOI: 10.1007/s10439-024-03586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Measuring head kinematics data is important to understand and develop methods and standards to mitigate head injuries in contact sports. Instrumented mouthguards (iMGs) have been developed to address coupling issues with previous sensors. Although validated with anthropomorphic test devices (ATDs), there is limited post-mortem human subjects (PMHS) data which provides more accurate soft tissue responses. This study evaluated two iMGs (Prevent Biometrics (PRE) and Diversified Technical Systems (DTS) in response to direct jaw impacts. METHODS Three unembalmed male cadaver heads were properly fitted with two different boil-and-bite iMGs and impacted with hook (4 m/s) and uppercut (3 m/s) punches. A reference sensor (REF) was rigidly attached to the base of the skull, impact kinematics were transformed to the head center of gravity and linear and angular kinematic data were compared to the iMGs including Peak Linear Acceleration, Peak Angular Acceleration, Peak Angular Velocity, Head Injury Criterion (HIC), HIC duration, and Brain Injury Criterion. RESULTS Compared to the REF sensor, the PRE iMG underpredicted most of the kinematic data with slopes of the validation regression line between 0.72 and 1.04 and the DTS overpredicted all the kinematic data with slopes of the regression line between 1.4 and 8.7. CONCLUSION While the PRE iMG was closer to the REF sensor compared to the DTS iMG, the results did not support the previous findings reported with use of ATDs. Hence, our study highlights the benefits of using PMHS for validating the accuracy of iMGs since they closely mimic the human body compared to any ATD's mandible.
Collapse
Affiliation(s)
- Jay Venkatraman
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA.
| | - Mitchell Z Abrams
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Donald Sherman
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | | | | | - Robert E MacDonald
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Jason Kait
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Elizabeth Dimbath
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Derek Pang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Alexandra Gray
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jason F Luck
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Cameron R Bass
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Cynthia A Bir
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
2
|
Allan D, Tooby J, Starling L, Tucker R, Falvey ÉC, Salmon DM, Brown J, Hudson S, Stokes KA, Jones B, Kemp SPT, O'Halloran P, Cross M, Tierney G. Player and match characteristics associated with head acceleration events in elite-level men's and women's rugby union matches. BMJ Open Sport Exerc Med 2024; 10:e001954. [PMID: 39381414 PMCID: PMC11459297 DOI: 10.1136/bmjsem-2024-001954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Objective To examine the likelihood of head acceleration events (HAEs) as a function of previously identified risk factors: match time, player status (starter or substitute) and pitch location in elite-level men's and women's rugby union matches. Methods Instrumented mouthguard data were collected from 179 and 107 players in the men's and women's games and synchronised to video-coded match footage. Head peak resultant linear acceleration (PLA) and peak resultant angular acceleration were extracted from each HAE. Field location was determined for HAEs linked to a tackle, carry or ruck. HAE incidence was calculated per player hour across PLA recording thresholds with 95% CIs estimated. Propensity was calculated as the percentage of contact events that caused HAEs across PLA recording thresholds, with a 95% CI estimated. Significance was assessed by non-overlapping 95% CIs. Results 29 099 and 6277 HAEs were collected from 1214 and 577 player-matches in the men's and women's games. No significant differences in match quarter HAE incidence or propensity were found. Substitutes had higher HAE incidence than starters at lower PLA recording thresholds for men but similar HAE propensity. HAEs were more likely to occur in field locations with high contact event occurrence. Conclusion Strategies to reduce HAE incidence need not consider match time or status as a substitute or starter as HAE rates are similar throughout matches, without differences in propensity between starters and substitutes. HAE incidence is proportional to contact frequency, and strategies that reduce either frequency or propensity for contact to cause head contact may be explored.
Collapse
Affiliation(s)
- David Allan
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Belfast, UK
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK
| | - James Tooby
- Carnegie Applied Rugby Research (CARR) centre, Leeds Beckett University, Leeds, UK
| | - Lindsay Starling
- World Rugby Limited, Dublin, Ireland
- UK Collaborating Centre on Injury and Illness Prevention in Sport (UKCCIIS), University of Bath, Bath, UK
| | - Ross Tucker
- World Rugby Limited, Dublin, Ireland
- Institute of Sport and Exercise Medicine, University of Stellenbosch, Stellenbosch, South Africa
| | - Éanna C Falvey
- World Rugby Limited, Dublin, Ireland
- School of Medicine & Health, University College Cork, Cork, Ireland
| | | | - James Brown
- Carnegie Applied Rugby Research (CARR) centre, Leeds Beckett University, Leeds, UK
- Department of Exercise, Sport and Lifestyle Medicine, Stellenbosch University, Cape Town, South Africa
- Division of Physiological Sciences and Health through Physical Activity, Lifestyle and Sport Research Centre, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sam Hudson
- UK Collaborating Centre on Injury and Illness Prevention in Sport (UKCCIIS), University of Bath, Bath, UK
| | - Keith A Stokes
- UK Collaborating Centre on Injury and Illness Prevention in Sport (UKCCIIS), University of Bath, Bath, UK
- Rugby Football Union, Twickenham, UK
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) centre, Leeds Beckett University, Leeds, UK
- Division of Physiological Sciences and Health through Physical Activity, Lifestyle and Sport Research Centre, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Premiership Rugby, London, UK
- England Performance Unit, Rugby Football League, Manchester, UK
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Brisbane, QLD, Australia
| | - Simon P T Kemp
- Rugby Football Union, Twickenham, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Patrick O'Halloran
- Sport and Exercise Medicine Service, University Hospitals Birmingham, Birmingham, UK
- Marker Diagnostics UK Ltd, Birmingham, UK
| | - Matt Cross
- Carnegie Applied Rugby Research (CARR) centre, Leeds Beckett University, Leeds, UK
- Premiership Rugby, London, UK
| | - Gregory Tierney
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Belfast, UK
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK
| |
Collapse
|
3
|
Bartsch A, Rooks TF. Head Impacts in the Top 1% by Peak Linear Acceleration and/or Work Cause Immediate Concussion Signs and 'Check Engine' Responses in Military Service Members and Civilian Athletes. Ann Biomed Eng 2024; 52:2780-2793. [PMID: 37926788 DOI: 10.1007/s10439-023-03393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/21/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE Historically, head impact monitoring sensors have suffered from single impact measurement errors, leading to their data described by clinical experts as 'clinically irrelevant.' The purpose of this study was to use an accurate impact monitoring mouthguard system and (1) define head impact distributions for military service members and civilians and (2) determine if there was a dose-response relationship between accurately measured head impact magnitudes versus observations of concussion signs. METHODS A laboratory-calibrated commercial impact monitoring mouthguard system, along with video and hardware to confirm the sensor was on the teeth during impacts, was used to acquire 54,602 head acceleration events (HAE) in 973 military and civilian subjects over 3,449 subject days. RESULTS There were 17,551 head impacts (32% of HAE) measured with peak linear acceleration (PLA) > 10 g and 37,051 low-g events (68% of HAE) in the range of activities of daily living < 10 g PLA. The median of all HAE and of all head impacts was 8 g/15 g PLA and 1 J/4 J Work, respectively. The top 1% of head impacts were above 47 g and 32 J, respectively. There were fifty-six (56) head impacts where at least one clinical indicator of a concussion sign was observed. All the clinical indicator impacts were in the top 1% by magnitude of PLA, Work, or both. The median magnitude of these 'check engine' impacts was 58 g and 48 J. This median magnitude was substantially larger than the median of all HAE as well as the median of all head impacts. CONCLUSION This study shows a correlation between single head impacts in the top 1% by peak linear acceleration and/or Work and clinical indicators of concussion signs in civilians and military service members.
Collapse
Affiliation(s)
- Adam Bartsch
- Prevent Biometrics, 4600 West 77th, Minneapolis, MN, 55435, USA.
| | - Tyler F Rooks
- US Army Aeromedical Research Laboratory, Fort Rucker, AL, USA
| |
Collapse
|
4
|
Clansey AC, Bondi D, Kenny R, Luke D, Masood Z, Gao Y, Elez M, Ji S, Rauscher A, van Donkelaar P, Wu LC. On-field Head Acceleration Exposure Measurements Using Instrumented Mouthguards: Multi-stage Screening to Optimize Data Quality. Ann Biomed Eng 2024; 52:2666-2677. [PMID: 39097541 DOI: 10.1007/s10439-024-03592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Instrumented mouthguards (iMGs) are widely applied to measure head acceleration event (HAE) exposure in sports. Despite laboratory validation, on-field factors including potential sensor skull-decoupling and spurious recordings limit data accuracy. Video analysis can provide complementary information to verify sensor data but lacks quantitative kinematics reference information and suffers from subjectivity. The purpose of this study was to develop a rigorous multi-stage screening procedure, combining iMG and video as independent measurements, aimed at improving the quality of on-field HAE exposure measurements. We deployed iMGs and gathered video recordings in a complete university men's ice hockey varsity season. We developed a four-stage process that involves independent video and sensor data collection (Stage I), general screening (Stage II), cross verification (Stage III), and coupling verification (Stage IV). Stage I yielded 24,596 iMG acceleration events (AEs) and 17,098 potential video HAEs from all games. Approximately 2.5% of iMG AEs were categorized as cross-verified and coupled iMG HAEs after Stage IV, and less than 1/5 of confirmed or probable video HAEs were cross-verified with iMG data during stage III. From Stage I to IV, we observed lower peak kinematics (median peak linear acceleration from 36.0 to 10.9 g; median peak angular acceleration from 3922 to 942 rad/s2) and reduced high-frequency signals, indicative of potential reduction in kinematic noise. Our study proposes a rigorous process for on-field data screening and provides quantitative evidence of data quality improvements using this process. Ensuring data quality is critical in further investigation of potential brain injury risk using HAE exposure data.
Collapse
Affiliation(s)
- Adam C Clansey
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Bondi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Rebecca Kenny
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - David Luke
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Zaryan Masood
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Yuan Gao
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Marko Elez
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Songbai Ji
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Alexander Rauscher
- Department of Paediatrics, University of British Columbia, Vancouver, BC, Canada
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, BC, Canada
| | - Lyndia C Wu
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada.
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Gellner RA, Begonia MT, Wood M, Rockwell L, Geiman T, Jung C, Rowson S. Instrumented Mouthguard Decoupling Affects Measured Head Kinematic Accuracy. Ann Biomed Eng 2024; 52:2854-2871. [PMID: 38955890 PMCID: PMC11402849 DOI: 10.1007/s10439-024-03550-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
Many recent studies have used boil-and-bite style instrumented mouthguards to measure head kinematics during impact in sports. Instrumented mouthguards promise greater accuracy than their predecessors because of their superior ability to couple directly to the skull. These mouthguards have been validated in the lab and on the field, but little is known about the effects of decoupling during impact. Decoupling can occur for various reasons, such as poor initial fit, wear-and-tear, or excessive impact forces. To understand how decoupling influences measured kinematic error, we fit a boil-and-bite instrumented mouthguard to a 3D-printed dentition mounted to a National Operating Committee on Standards for Athletic Equipment (NOCSAE) headform. We also instrumented the headform with linear accelerometers and angular rate sensors at its center of gravity (CG). We performed a series of pendulum impact tests, varying impactor face and impact direction. We measured linear acceleration and angular velocity, and we calculated angular acceleration from the mouthguard and the headform CG. We created decoupling conditions by varying the gap between the lower jaw and the bottom face of the mouthguard. We tested three gap conditions: 0 mm (control), 1.6 mm, and 4.8 mm. Mouthguard measurements were transformed to the CG and compared to the reference measurements. We found that gap condition, impact duration, and impact direction significantly influenced mouthguard measurement error. Error was higher for larger gaps and in frontal (front and front boss) conditions. Higher errors were also found in padded conditions, but the mouthguards did not collect all rigid impacts due to inherent limitations. We present characteristic decoupling time history curves for each kinematic measurement. Exemplary frequency spectra indicating characteristic decoupling frequencies are also described. Researchers using boil-and-bite instrumented mouthguards should be aware of their limitations when interpreting results and should seek to address decoupling through advanced post-processing techniques when possible.
Collapse
Affiliation(s)
- Ryan A Gellner
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA.
| | - Mark T Begonia
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
| | - Matthew Wood
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
| | - Lewis Rockwell
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
| | - Taylor Geiman
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
| | - Caitlyn Jung
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
| | - Steve Rowson
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
| |
Collapse
|
6
|
Holcomb TD, Marks ME, Pritchard NS, Miller LE, Rowson S, Bullock GS, Urban JE, Stitzel JD. On-Field Evaluation of Mouthpiece-and-Helmet-Mounted Sensor Data from Head Kinematics in Football. Ann Biomed Eng 2024; 52:2655-2665. [PMID: 39058402 PMCID: PMC11402845 DOI: 10.1007/s10439-024-03583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Wearable sensors are used to measure head impact exposure in sports. The Head Impact Telemetry (HIT) System is a helmet-mounted system that has been commonly utilized to measure head impacts in American football. Advancements in sensor technology have fueled the development of alternative sensor methods such as instrumented mouthguards. The objective of this study was to compare peak magnitude measured from high school football athletes dually instrumented with the HIT System and a mouthpiece-based sensor system. METHODS Data was collected at all contact practices and competitions over a single season of spring football. Recorded events were observed and identified on video and paired using event timestamps. Paired events were further stratified by removing mouthpiece events with peak resultant linear acceleration below 10 g and events with contact to the facemask or body of athletes. RESULTS A total of 133 paired events were analyzed in the results. There was a median difference (mouthpiece subtracted from HIT System) in peak resultant linear and rotational acceleration for concurrently measured events of 7.3 g and 189 rad/s2. Greater magnitude events resulted in larger kinematic differences between sensors and a Bland Altman analysis found a mean bias of 8.8 g and 104 rad/s2, respectively. CONCLUSION If the mouthpiece-based sensor is considered close to truth, the results of this study are consistent with previous HIT System validation studies indicating low error on average but high scatter across individual events. Future researchers should be mindful of sensor limitations when comparing results collected using varying sensor technologies.
Collapse
Affiliation(s)
- Ty D Holcomb
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 Patterson Avenue, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| | - Madison E Marks
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 Patterson Avenue, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| | - N Stewart Pritchard
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 Patterson Avenue, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| | - Logan E Miller
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 Patterson Avenue, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| | - Steve Rowson
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| | - Garrett S Bullock
- Department of Orthopedic Surgery and Rehabilitation, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jillian E Urban
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 Patterson Avenue, Suite 530, Winston-Salem, NC, 27101, USA.
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA.
| | - Joel D Stitzel
- Department of Biomedical Engineering, Wake Forest School of Medicine, 575 Patterson Avenue, Suite 530, Winston-Salem, NC, 27101, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem, NC, USA
| |
Collapse
|
7
|
Abrams MZ, Venkatraman J, Sherman D, Ortiz-Paparoni M, Bercaw JR, MacDonald RE, Kait J, Dimbath ED, Pang DY, Gray A, Luck JF, Bir CA, Bass CR. Biofidelity and Limitations of Instrumented Mouthguard Systems for Assessment of Rigid Body Head Kinematics. Ann Biomed Eng 2024; 52:2872-2883. [PMID: 38910203 DOI: 10.1007/s10439-024-03563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Instrumented mouthguard systems (iMGs) are commonly used to study rigid body head kinematics across a variety of athletic environments. Previous work has found good fidelity for iMGs rigidly fixed to anthropomorphic test device (ATD) headforms when compared to reference systems, but few validation studies have focused on iMG performance in human cadaver heads. Here, we examine the performance of two boil-and-bite style iMGs in helmeted cadaver heads. Three unembalmed human cadaver heads were fitted with two instrumented boil-and-bite mouthguards [Prevent Biometrics and Diversified Technical Systems (DTS)] per manufacturer instructions. Reference sensors were rigidly fixed to each specimen. Specimens were fitted with a Riddell SpeedFlex American football helmet and impacted with a rigid impactor at three velocities and locations. All impact kinematics were compared at the head center of gravity. The Prevent iMG performed comparably to the reference system up to ~ 60 g in linear acceleration, but overall had poor correlation (CCC = 0.39). Prevent iMG angular velocity and BrIC generally well correlated with the reference, while underestimating HIC and overestimating HIC duration. The DTS iMG consistently overestimated the reference across all measures, with linear acceleration error ranging from 10 to 66%, and angular acceleration errors greater than 300%. Neither iMG demonstrated consistent agreement with the reference system. While iMG validation efforts have utilized ATD testing, this study highlights the need for cadaver testing and validation of devices intended for use in-vivo, particularly when considering realistic (non-idealized) sensor-skull coupling, when accounting for interactions with the mandible and when subject-specific anatomy may affect device performance.
Collapse
Affiliation(s)
- Mitchell Z Abrams
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA.
| | - Jay Venkatraman
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Donald Sherman
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Maria Ortiz-Paparoni
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
| | - Jefferson R Bercaw
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
| | - Robert E MacDonald
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Jason Kait
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
| | - Elizabeth D Dimbath
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
| | - Derek Y Pang
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
| | - Alexandra Gray
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
| | - Jason F Luck
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
| | - Cynthia A Bir
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Cameron R Bass
- Department of Biomedical Engineering, Duke University, 101 Science Dr, 1427 FCIEMAS Bldg - Box 90281, Durham, NC, 27708, USA
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| |
Collapse
|
8
|
Allan D, Tooby J, Starling L, Tucker R, Falvey É, Salmon D, Brown J, Hudson S, Stokes K, Jones B, Kemp S, O'Halloran P, Cross M, Tierney G. The Incidence and Propensity of Head Acceleration Events in a Season of Men's and Women's English Elite-Level Club Rugby Union Matches. Sports Med 2024; 54:2685-2696. [PMID: 38922555 PMCID: PMC11467118 DOI: 10.1007/s40279-024-02064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVES To describe and compare the incidence and propensity of head acceleration events (HAEs) using instrumented mouthguards (iMG) by playing position in a season of English elite-level men's and women's rugby union matches. METHODS iMG data were collected for 255 men and 133 women from 1,865 and 807 player-matches, respectively, and synchronised to video-coded match footage. Head peak resultant linear acceleration (PLA) and peak resultant angular acceleration (PAA) were extracted from each HAE. Mean incidence and propensity values were calculated across different recording thresholds for forwards and backs in addition to positional groups (front row, second row, back row, half backs, centres, back three) with 95% confidence intervals (CI) estimated. Significance was determined based on 95% CI not overlapping across recording thresholds. RESULTS For both men and women, HAE incidence was twice as high for forwards than backs across the majority of recording thresholds. HAE incidence and propensity were significantly lower in the women's game compared to the men's game. Back-row and front-row players had the highest incidence across all HAE thresholds for men's forwards, while women's forward positional groups and men's and women's back positional groups were similar. Tackles and carries exhibited a greater propensity to result in HAE for forward positional groups and the back three in the men's game, and back row in the women's game. CONCLUSION These data offer valuable benchmark and comparative data for future research, HAE mitigation strategies, and management of HAE exposure in elite rugby players. Positional-specific differences in HAE incidence and propensity should be considered in future mitigation strategies.
Collapse
Affiliation(s)
- David Allan
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Belfast, UK.
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK.
| | - James Tooby
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Lindsay Starling
- World Rugby, 8-10 Pembroke St., Dublin, Ireland
- UK Collaborating Centre on Injury and Illness Prevention in Sport (UKCCIIS), University of Bath, Bath, UK
| | - Ross Tucker
- World Rugby, 8-10 Pembroke St., Dublin, Ireland
- Institute of Sport and Exercise Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Éanna Falvey
- World Rugby, 8-10 Pembroke St., Dublin, Ireland
- School of Medicine and Health, University College Cork, Cork, Ireland
| | | | - James Brown
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Institute of Sport and Exercise Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Sam Hudson
- UK Collaborating Centre on Injury and Illness Prevention in Sport (UKCCIIS), University of Bath, Bath, UK
| | - Keith Stokes
- UK Collaborating Centre on Injury and Illness Prevention in Sport (UKCCIIS), University of Bath, Bath, UK
- Rugby Football Union, Twickenham, UK
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Premiership Rugby, London, UK
- England Performance Unit, Rugby Football League, Manchester, UK
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Brisbane, QLD, Australia
- Division of Physiological Sciences and Health Through Physical Activity, Lifestyle and Sport Research Centre, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Simon Kemp
- Rugby Football Union, Twickenham, UK
- London School of Hygiene and Tropical Medicine, London, UK
| | - Patrick O'Halloran
- Sport and Exercise Medicine Service, University Hospitals Birmingham, Birmingham, UK
- Marker Diagnostics UK Ltd, Birmingham, UK
| | - Matt Cross
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Premiership Rugby, London, UK
| | - Gregory Tierney
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Belfast, UK
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK
| |
Collapse
|
9
|
Patton DA, Huber CM, Jain D, Kleiven S, Zhou Z, Master CL, Arbogast KB. Head Impact Kinematics and Brain Tissue Strains in High School Lacrosse. Ann Biomed Eng 2024; 52:2844-2853. [PMID: 38649514 DOI: 10.1007/s10439-024-03513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Male lacrosse and female lacrosse have differences in history, rules, and equipment. There is current debate regarding the need for enhanced protective headwear in female lacrosse like that worn by male lacrosse players. To inform this discussion, 17 high school lacrosse players (6 female and 11 male) wore the Stanford Instrumented Mouthguard during 26 competitive games over the 2021 season. Time-windowing and video review were used to remove false-positive recordings and verify head acceleration events (HAEs). The HAE rate in high school female lacrosse (0.21 per athlete exposure and 0.24 per player hour) was approximately 35% lower than the HAE rate in high school male lacrosse (0.33 per athlete exposure and 0.36 per player hour). Previously collected kinematics data from the 2019 high school male and female lacrosse season were combined with the newly collected 2021 kinematics data, which were used to drive a finite element head model and simulate 42 HAEs. Peak linear acceleration (PLA), peak angular velocity (PAV), and 95th percentile maximum principal strain (MPS95) of brain tissue were compared between HAEs in high school female and male lacrosse. Median values for peak kinematics and MPS95 of HAEs in high school female lacrosse (PLA, 22.3 g; PAV, 10.4 rad/s; MPS95, 0.05) were lower than for high school male lacrosse (PLA, 24.2 g; PAV, 15.4 rad/s; MPS95, 0.07), but the differences were not statistically significant. Quantifying a lower HAE rate in high school female lacrosse compared to high school male lacrosse, but similar HAE magnitudes, provides insight into the debate regarding helmets in female lacrosse. However, due to the small sample size, additional video-verified data from instrumented mouthguards are required.
Collapse
Affiliation(s)
- Declan A Patton
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA.
| | - Colin M Huber
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Divya Jain
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Svein Kleiven
- Division of Neuronic Engineering, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Zhou Zhou
- Division of Neuronic Engineering, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Christina L Master
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Sports Medicine and Performance Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristy B Arbogast
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Roberts Pediatric Research Building, 2716 South Street, 13th Floor, Philadelphia, PA, 19146, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Smith CR, Onate JA, Edwards NA, Hagen JA, Kolba C, Paur S, Walters J, Caccese JB. Characterizing Head Acceleration Events in Law Enforcement Cadets During Subject Control Technique Training. Ann Biomed Eng 2024; 52:2768-2779. [PMID: 37847420 PMCID: PMC11402850 DOI: 10.1007/s10439-023-03382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Law enforcement cadets (LECs) complete weeks of subject control technique training. Similar sport-related combat training has been shown to expose participants to head acceleration events (HAEs) that have potential to result in short- and long-term impairments. The purpose of this study was to describe the number and magnitude of HAEs in LECs throughout their training. 37 LECs (7 females; age = 30.6 ± 8.8 years; BMI = 30.0 ± 6.0) were recruited from a law enforcement organization. Participants wore instrumented mouthguards, which recorded all HAEs exceeding a resultant 5 g threshold for training sessions with the potential for HAEs. Participants completed three defensive tactics (DT) training sessions, a DT skill assessment (DTA), and three boxing sessions. Outcome measures included the number of HAEs, peak linear acceleration (PLA), and peak rotational velocity (PRV). There were 2758 true-positive HAEs recorded across the duration of the study. Boxing sessions accounted for 63.7% of all true-positive HAEs, while DT accounted for 31.4% and DTA accounted for 4.9%. Boxing sessions resulted in a higher number of HAEs per session (F2,28 = 48.588, p < 0.001, ηp2 = 0.776), and higher median PLA (F2,28 = 8.609, p = 0.001, ηp2 = 0.381) and median PRV (F2,28 = 11.297, p < 0.001, ηp2 = 0.447) than DT and DTA. The LECs experience a high number of HAEs, particularly during boxing sessions. Although this training is necessary for job duties, HAE monitoring may lead to modifications in training structure to improve participant safety and enhance recovery.
Collapse
Affiliation(s)
- Carly R Smith
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA
| | - James A Onate
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
- Human Performance Collaborative, The Ohio State University, Columbus, OH, USA
| | - Nathan A Edwards
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA
- Human Performance Collaborative, The Ohio State University, Columbus, OH, USA
| | - Joshua A Hagen
- Human Performance Collaborative, The Ohio State University, Columbus, OH, USA
| | - Chris Kolba
- Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Scott Paur
- Franklin County Sheriff's Office, Columbus, OH, USA
| | | | - Jaclyn B Caccese
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
11
|
Bouvette V, Petit Y, De Beaumont L, Guay S, Vinet SA, Wagnac E. American Football On-Field Head Impact Kinematics: Influence of Acceleration Signal Characteristics on Peak Maximal Principal Strain. Ann Biomed Eng 2024; 52:2134-2150. [PMID: 38758459 DOI: 10.1007/s10439-024-03514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/28/2024] [Indexed: 05/18/2024]
Abstract
Recorded head kinematics from head-impact measurement devices (HIMd) are pivotal for evaluating brain stress and strain through head finite element models (hFEM). The variability in kinematic recording windows across HIMd presents challenges as they yield inconsistent hFEM responses. Despite establishing an ideal recording window for maximum principal strain (MPS) in brain tissue, uncertainties persist about the impact characteristics influencing vulnerability when this window is shortened. This study aimed to scrutinize factors within impact kinematics affecting the reliability of different recording windows on whole-brain peak MPS using a validated hFEM. Utilizing 53 on-field head impacts recorded via an instrumented mouthguard during a Canadian varsity football game, 10 recording windows were investigated with varying pre- and post-impact-trigger durations. Tukey pair-wise comparisons revealed no statistically significant differences in MPS responses for the different recording windows. However, specific impacts showed marked variability up to 40%. It was found, through correlation analyses, that impacts with lower peak linear acceleration exhibited greater response variability across different pre-trigger durations. Signal shape, analyzed through spectral analysis, influenced the time required for MPS development, resulting in specific impacts requiring a prolonged post-trigger duration. This study adds to the existing consensus on standardizing HIMd acquisition time windows and sheds light on impact characteristics leading to peak MPS variation across different head impact kinematic recording windows. Considering impact characteristics in research assessments is crucial, as certain impacts, affected by recording duration, may lead to significant errors in peak MPS responses during cumulative longitudinal exposure assessments.
Collapse
Affiliation(s)
- Véronique Bouvette
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada.
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada.
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada.
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France.
| | - Y Petit
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France
| | - L De Beaumont
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Surgery, Université de Montréal, Montreal, Canada
| | - S Guay
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - S A Vinet
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - E Wagnac
- Department of Mechanical Engineering, École de technologie supérieure, 1100 Notre-Dame Street West, Montreal, QC, H3C 1K3, Canada
- Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de-Montréal, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Montreal, Canada
- International Laboratory on Spine Imaging and Biomechanics, Marseille, France
| |
Collapse
|
12
|
Woodward J, Tooby J, Tucker R, Falvey ÉC, Salmon DM, Starling L, Tierney G. Instrumented mouthguards in elite-level men's and women's rugby union: characterising tackle-based head acceleration events. BMJ Open Sport Exerc Med 2024; 10:e002013. [PMID: 39104376 PMCID: PMC11298745 DOI: 10.1136/bmjsem-2024-002013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
Objectives To examine the propensity of tackle height and the number of tacklers that result in head acceleration events (HAEs) in elite-level male and female rugby tackles. Methods Instrumented mouthguard data were collected from women (n=67) and men (n=72) elite-level rugby players from five elite and three international teams. Peak linear acceleration and peak angular acceleration were extracted from HAEs. Propensities for HAEs at a range of thresholds were calculated as the proportion of tackles/carries that resulted in an HAE exceeding a given magnitude for coded tackle height (low, medium, high) and number of tacklers. Propensity ratios with 95% CIs were calculated for tackle heights and number of tacklers. Results High tackles had a 32.7 (95% CI=6.89 to 155.02) and 41.2 (95% CI=9.22 to 184.58) propensity ratio to cause ball carrier HAEs>30 g compared with medium tackles for men and women, respectively. Low tackles had a 2.6 (95% CI=1.91 to 3.42) and 5.3 (95% CI=3.28 to 8.53) propensity ratio to cause tackler HAEs>30 g compared with medium tackles for men and women, respectively. In men, multiple tacklers had a higher propensity ratio (6.1; 95% CI=3.71 to 9.93) than singular tacklers to cause ball carrier HAEs>30 g but a lower propensity ratio (0.4; 95% CI=0.29 to 0.56) to cause tackler HAEs>30 g. No significant differences were observed in female tacklers or carriers for singular or multiple tacklers. Conclusion To limit HAE exposure, rule changes and coaching interventions that promote tacklers aiming for the torso (medium tackle) could be explored, along with changes to multiple tackler events in the male game.
Collapse
Affiliation(s)
| | - James Tooby
- Carnegie Applied Rugby Research (CARR) centre, Leeds Beckett University, Leeds, UK
| | - Ross Tucker
- Institute of Sport and Exercise Medicine, University of Stellenbosch, Stellenbosch, South Africa
| | - Éanna C Falvey
- World Rugby Limited, Dublin, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Danielle M Salmon
- World Rugby Limited, Dublin, Ireland
- Auckland University of Technology, Auckland, New Zealand
| | | | | |
Collapse
|
13
|
Tooby J, Till K, Gardner A, Stokes K, Tierney G, Weaving D, Rowson S, Ghajari M, Emery C, Bussey MD, Jones B. When to Pull the Trigger: Conceptual Considerations for Approximating Head Acceleration Events Using Instrumented Mouthguards. Sports Med 2024; 54:1361-1369. [PMID: 38460080 PMCID: PMC11239719 DOI: 10.1007/s40279-024-02012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2024] [Indexed: 03/11/2024]
Abstract
Head acceleration events (HAEs) are acceleration responses of the head following external short-duration collisions. The potential risk of brain injury from a single high-magnitude HAE or repeated occurrences makes them a significant concern in sport. Instrumented mouthguards (iMGs) can approximate HAEs. The distinction between sensor acceleration events, the iMG datum for approximating HAEs and HAEs themselves, which have been defined as the in vivo event, is made to highlight limitations of approximating HAEs using iMGs. This article explores the technical limitations of iMGs that constrain the approximation of HAEs and discusses important conceptual considerations for stakeholders interpreting iMG data. The approximation of HAEs by sensor acceleration events is constrained by false positives and false negatives. False positives occur when a sensor acceleration event is recorded despite no (in vivo) HAE occurring, while false negatives occur when a sensor acceleration event is not recorded after an (in vivo) HAE has occurred. Various mechanisms contribute to false positives and false negatives. Video verification and post-processing algorithms offer effective means for eradicating most false positives, but mitigation for false negatives is less comprehensive. Consequently, current iMG research is likely to underestimate HAE exposures, especially at lower magnitudes. Future research should aim to mitigate false negatives, while current iMG datasets should be interpreted with consideration for false negatives when inferring athlete HAE exposure.
Collapse
Affiliation(s)
- James Tooby
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK.
| | - Kevin Till
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Leeds Rhinos Rugby League Club, Leeds, UK
| | - Andrew Gardner
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Keith Stokes
- Centre for Health and Injury and Illness Prevention in Sport, University of Bath, Bath, UK
- Medical Services, Rugby Football Union, Twickenham, UK
| | - Gregory Tierney
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Sport and Exercise Sciences Research Institute, School of Sport, Ulster University, Belfast, UK
| | - Daniel Weaving
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Steve Rowson
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
- Leeds Beckett University, Leeds, UK
| | - Mazdak Ghajari
- Dyson School of Design Engineering, Imperial College London, London, UK
| | - Carolyn Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Departments of Pediatrics and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Melanie Dawn Bussey
- School of Physical Education Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Division of Physiological Sciences, Department of Human Biology, Faculty of Health Sciences, University of Cape Town and Sports Science Institute of South Africa, Cape Town, South Africa
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Brisbane, QLD, Australia
- Rugby Football League, England Performance Unit, Red Hall, Leeds, UK
- Premiership Rugby, London, UK
| |
Collapse
|
14
|
McPherson AL, Anderson T, Finnoff JT, Adams WM. Head Kinematics and Injury Analysis in Elite Bobsleigh Athletes Throughout a World Cup Tour. J Athl Train 2024; 59:584-593. [PMID: 37648215 PMCID: PMC11220765 DOI: 10.4085/1062-6050-0014.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
CONTEXT The neurocognitive health effects of repetitive head impacts have been examined in many sports. However, characterizations of head impacts for sliding-sport athletes are lacking. OBJECTIVE To describe head impact kinematics and injury epidemiology in elite athletes during the 2021-2022 Bobsleigh World Cup season. DESIGN Cross-sectional study. SETTING On-track training and competitions during the Bobsleigh World Cup season. PATIENTS OR OTHER PARTICIPANTS Twelve elite bobsleigh athletes (3 pilots [1 female], 9 push athletes [5 females]; age = 30 ± 5 years; female height and weight = 173 ± 8 cm and 75 ± 5 kg, respectively; male height and weight = 183 ± 5 cm and 101 ± 5 kg, respectively). MAIN OUTCOME MEASURE(S) Athletes wore an accelerometer-enabled mouthguard to quantify 6-degrees-of-freedom head impact kinematics. Isometric absolute and relative neck strength, number of head acceleration events (HAEs), workload (J), peak linear velocity (m·s-1), peak angular velocity (rad·s-1), peak linear acceleration (g), and peak angular acceleration (rad·s-2) were derived from mouthguard manufacturer algorithms. Linear mixed-effect models tested the effects of sex (male versus female), setting (training versus competition), and position (pilot versus push athlete) on the kinematic variables. RESULTS A total of 1900 HAEs were recorded over 48 training and 53 competition days. No differences were found between the number of HAEs per run per athlete by sex (incidence rate ratio [IRR] = 0.82, P = .741), setting (IRR = 0.94, P = .325), or position (IRR = 1.64, P = .463). No sex differences were observed for workload (mean ± SD: males = 3.3 ± 2.2 J, females = 3.1 ± 1.9 J; P = .646), peak linear velocity (males = 1.1 ± 0.3 m·s-1, females = 1.1 ± 0.3 m·s-1; P = .706), peak angular velocity (males = 4.2 ± 2.1 rad·s-1, females = 4.7 ± 2.5 rad·s-1; P = .220), peak linear acceleration (male = 12.4 ± 3.9g, females = 11.9 ± 3.5g; P = .772), or peak angular acceleration (males = 610 ± 353 rad·s-2, females = 680 ± 423 rad·s-2; P = .547). Also, no effects of setting or position on any kinematic variables were seen. Male athletes had greater peak neck strength than female athletes for all neck movements, aside from right-side flexion (P = .085), but no sex differences were noted in relative neck strength. CONCLUSIONS We provide a foundational understanding of the repetitive HAEs that occur in bobsleigh athletes. Future authors should determine the effects of repetitive head impacts on neurocognitive function and mental health.
Collapse
Affiliation(s)
- April L. McPherson
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs
| | - Travis Anderson
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs
| | - Jonathan T. Finnoff
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs
- Department of Physical Medicine and Rehabilitation, University of Colorado School of Medicine, Denver
| | - William M. Adams
- Department of Sports Medicine, United States Olympic & Paralympic Committee, Colorado Springs
- United States Coalition for the Prevention of Illness and Injury in Sport, Colorado Springs
- Department of Kinesiology, University of North Carolina-Greensboro
- School of Sport, Exercise and Health Sciences, Loughborough University, National Centre for Sport and Exercise Medicine (NCSEM), UK
| |
Collapse
|
15
|
Roe G, Sawczuk T, Owen C, Tooby J, Starling L, Gilthorpe MS, Falvey É, Hendricks S, Rasmussen K, Readhead C, Salmon D, Stokes K, Tucker R, Jones B. Head Acceleration Events During Tackle, Ball-Carry, and Ruck Events in Professional Southern Hemisphere Men's Rugby Union Matches: A Study Using Instrumented Mouthguards. Scand J Med Sci Sports 2024; 34:e14676. [PMID: 38867444 DOI: 10.1111/sms.14676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVES Describe head acceleration events (HAEs) experienced by professional male rugby union players during tackle, ball-carry, and ruck events using instrumented mouthguards (iMGs). DESIGN Prospective observational cohort. METHODS Players competing in the 2023 Currie Cup (141 players) and Super Rugby (66 players) seasons wore iMGs. The iMG-recorded peak linear acceleration (PLA) and peak angular acceleration (PAA) were used as in vivo HAE approximations and linked to contact-event data captured using video analysis. Using the maximum PLA and PAA per contact event (HAEmax), ordinal mixed-effects regression models estimated the probabilities of HAEmax magnitude ranges occurring, while accounting for the multilevel data structure. RESULTS As HAEmax magnitude increased the probability of occurrence decreased. The probability of a HAEmax ≥15g was 0.461 (0.435-0.488) (approximately 1 in every 2) and ≥45g was 0.031 (0.025-0.037) (1 in every 32) during ball carries. The probability of a HAEmax >15g was 0.381 (0.360-0.404) (1 in every 3) and >45g 0.019 (0.015-0.023) (1 in every 53) during tackles. The probability of higher magnitude HAEmax occurring was greatest during ball carries, followed by tackles, defensive rucks and attacking rucks, with some ruck types having similar profiles to tackles and ball carries. No clear differences between positions were observed. CONCLUSION Higher magnitude HAEmax were relatively infrequent in professional men's rugby union players. Contact events appear different, but no differences were found between positions. The occurrence of HAEmax was associated with roles players performed within contact events, not their actual playing position. Defending rucks may warrant greater consideration in injury prevention research.
Collapse
Affiliation(s)
- Gregory Roe
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Thomas Sawczuk
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Cameron Owen
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- England Performance Unit, Rugby Football League, Manchester, UK
| | - James Tooby
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Lindsay Starling
- World Rugby, Dublin, Ireland
- Centre for Health and Injury and Illness Prevention in Sport, University of Bath, Bath, UK
- UK Collaborating Centre on Injury and Illness Prevention in Sport (UKCCIIS), University of Bath, Bath, UK
| | | | - Éanna Falvey
- World Rugby, Dublin, Ireland
- School of Medicine & Health, University College Cork, Cork, Ireland
| | - Sharief Hendricks
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Division of Physiological Sciences and Health through Physical Activity, Department of Human Biology, Faculty of Health Sciences, Lifestyle and Sport Research Centre, University of Cape Town, Cape Town, South Africa
| | - Karen Rasmussen
- New Zealand Rugby Union, People Safety & Wellbeing, Wellington, New Zealand
| | - Clint Readhead
- Division of Physiological Sciences and Health through Physical Activity, Department of Human Biology, Faculty of Health Sciences, Lifestyle and Sport Research Centre, University of Cape Town, Cape Town, South Africa
- South Africa Rugby Union, Cape Town, South Africa
| | | | - Keith Stokes
- Centre for Health and Injury and Illness Prevention in Sport, University of Bath, Bath, UK
- UK Collaborating Centre on Injury and Illness Prevention in Sport (UKCCIIS), University of Bath, Bath, UK
- Rugby Football Union, Twickenham, UK
| | - Ross Tucker
- World Rugby, Dublin, Ireland
- Department of Exercise, Institute of Sport and Exercise Medicine (ISEM), University of Stellenbosch, Stellenbosch, South Africa
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- England Performance Unit, Rugby Football League, Manchester, UK
- Division of Physiological Sciences and Health through Physical Activity, Department of Human Biology, Faculty of Health Sciences, Lifestyle and Sport Research Centre, University of Cape Town, Cape Town, South Africa
- Premiership Rugby, London, UK
- Faculty of Health Sciences, School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Tooby J, Woodward J, Tucker R, Jones B, Falvey É, Salmon D, Bussey MD, Starling L, Tierney G. Instrumented Mouthguards in Elite-Level Men's and Women's Rugby Union: The Incidence and Propensity of Head Acceleration Events in Matches. Sports Med 2024; 54:1327-1338. [PMID: 37906425 PMCID: PMC11127838 DOI: 10.1007/s40279-023-01953-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVES The aim of this study was to examine head acceleration event (HAE) propensity and incidence during elite-level men's and women's rugby union matches. METHODS Instrumented mouthguards (iMGs) were fitted in 92 male and 72 female players from nine elite-level clubs and three international teams. Data were collected during 406 player matches (239 male, 167 female) using iMGs and video analysis. Incidence was calculated as the number of HAEs per player hour and propensity as the proportion of contact events resulting in an HAE at a range of linear and angular thresholds. RESULTS HAE incidence above 10 g was 22.7 and 13.2 per hour in men's forwards and backs and 11.8 and 7.2 per hour in women's forwards and backs, respectively. Propensity varied by contact event, with 35.6% and 35.4% of men's tackles and carries and 23.1% and 19.6% of women's tackles and carries producing HAEs above 1.0 krad/s2. Tackles produced significantly more HAEs than carries, and incidence was greater in forwards compared with backs for both sexes and in men compared with women. Women's forwards were 1.6 times more likely to experience a medium-magnitude HAE from a carry than women's backs. Propensity was similar from tackles and carries, and between positional groups, while significantly higher in men than women. The initial collision stage of the tackle had a higher propensity than other stages. CONCLUSION This study quantifies HAE exposures in elite rugby union players using iMGs. Most contact events in rugby union resulted in lower-magnitude HAEs, while higher-magnitude HAEs were comparatively rare. An HAE above 40 g occurred once every 60-100 min in men and 200-300 min in women. Future research on mechanisms for HAEs may inform strategies aimed at reducing HAEs.
Collapse
Affiliation(s)
- James Tooby
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - James Woodward
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK
| | - Ross Tucker
- Department of Sport Science, Institute of Sport and Exercise Medicine, University of Stellenbosch, Stellenbosch, South Africa
- World Rugby, 8-10 Pembroke St., Dublin, Ireland
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Division of Physiological Sciences and Health Through Physical Activity, Department of Human Biology, Faculty of Health Sciences, Lifestyle and Sport Research Centre, University of Cape Town, Cape Town, South Africa
- England Performance Unit, Rugby Football League, Manchester, UK
- Premiership Rugby, London, UK
- Faculty of Health Sciences, School of Behavioural and Health Sciences, Australian Catholic University, Brisbane, QLD, Australia
| | - Éanna Falvey
- World Rugby, 8-10 Pembroke St., Dublin, Ireland
- School of Medicine & Health, University College Cork, Cork, Ireland
| | - Danielle Salmon
- World Rugby, 8-10 Pembroke St., Dublin, Ireland
- New Zealand Rugby, Auckland, New Zealand
| | - Melanie Dawn Bussey
- School of Physical Education Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | | | - Gregory Tierney
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK.
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK.
| |
Collapse
|
17
|
Gellner R, Begonia M, Rowson S. Choosing Optimal Cutoff Frequencies for Filtering Linear Acceleration and Angular Velocity Signals Associated with Head Impacts Measured by Instrumented Mouthguards. Ann Biomed Eng 2024; 52:1415-1424. [PMID: 38403749 PMCID: PMC10995032 DOI: 10.1007/s10439-024-03466-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Head impact sensors worn in the mouth are popular because they couple directly to the teeth and provide six-degree-of-freedom head measurements. Mouthpiece signal filters have conventionally used cutoff frequencies lower than recommended practices (Society of Automotive Engineers, SAE J211-1) to eliminate extraneous noise when measuring with live subjects. However, there is little information about the effects of filter choice on the accuracy of signals measured by instrumented mouthpieces. Lack of standardization in head impact measurement device post-processing techniques can result in data that are not comparable across studies or device brands. This study sought optimal filter cutoff frequencies for six-degree-of-freedom measurements made at the teeth using instrumented mouthguards. We collected linear acceleration and angular velocity signals at the head center of gravity (CG) using laboratory-grade instrumentation. We also collected and filtered similar six-degree-of-freedom measurements from an instrumented mouthguard using 24 cutoff frequencies, from 25 to 600 Hz. We transformed the measurements to linear acceleration at the center of gravity of the head (CG) using all kinematic variables at the teeth, optimizing linear and angular mouthguard cutoff frequencies with one equation. We calculated the percent error in transformed peak resultant linear acceleration and minimized the mean and standard deviation in error. The optimal cutoff frequencies were 175 Hz for linear acceleration and 250 Hz for angular velocity. Rigid impacts (3-5 ms duration) had higher optimal cutoff frequencies (175 Hz linear acceleration, 275 Hz angular velocity) than padded impacts (10-12 ms duration; 100 Hz linear acceleration, 175 Hz angular velocity), and all impacts together (3-12 ms duration; 175 Hz linear acceleration, 250 Hz angular velocity). Instrumented mouthpiece manufacturers and researchers using these devices should consider these optimal filter cutoff frequencies to minimize measurement error. Sport-specific filter criteria for teeth-based sensors may be warranted to account for the difference in optimal cutoff frequency combination by impact duration.
Collapse
Affiliation(s)
- Ryan Gellner
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA.
| | - Mark Begonia
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
| | - Steve Rowson
- Virginia Tech (Biomedical Engineering and Mechanics), Blacksburg, VA, USA
| |
Collapse
|
18
|
Zhang C, Bartels L, Clansey A, Kloiber J, Bondi D, van Donkelaar P, Wu L, Rauscher A, Ji S. A computational pipeline towards large-scale and multiscale modeling of traumatic axonal injury. Comput Biol Med 2024; 171:108109. [PMID: 38364663 DOI: 10.1016/j.compbiomed.2024.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/18/2024]
Abstract
Contemporary biomechanical modeling of traumatic brain injury (TBI) focuses on either the global brain as an organ or a representative tiny section of a single axon. In addition, while it is common for a global brain model to employ real-world impacts as input, axonal injury models have largely been limited to inputs of either tension or compression with assumed peak strain and strain rate. These major gaps between global and microscale modeling preclude a systematic and mechanistic investigation of how tissue strain from impact leads to downstream axonal damage throughout the white matter. In this study, a unique subject-specific multimodality dataset from a male ice-hockey player sustaining a diagnosed concussion is used to establish an efficient and scalable computational pipeline. It is then employed to derive voxelized brain deformation, maximum principal strains and white matter fiber strains, and finally, to produce diverse fiber strain profiles of various shapes in temporal history necessary for the development and application of a deep learning axonal injury model in the future. The pipeline employs a structured, voxelized representation of brain deformation with adjustable spatial resolution independent of model mesh resolution. The method can be easily extended to other head impacts or individuals. The framework established in this work is critical for enabling large-scale (i.e., across the entire white matter region, head impacts, and individuals) and multiscale (i.e., from organ to cell length scales) modeling for the investigation of traumatic axonal injury (TAI) triggering mechanisms. Ultimately, these efforts could enhance the assessment of concussion risks and design of protective headgear. Therefore, this work contributes to improved strategies for concussion detection, mitigation, and prevention.
Collapse
Affiliation(s)
- Chaokai Zhang
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Lara Bartels
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Adam Clansey
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Julian Kloiber
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Bondi
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Paul van Donkelaar
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Lyndia Wu
- Department of Mechanical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Rauscher
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Songbai Ji
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA; Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
19
|
Le Flao E, Lenetsky S, Siegmund GP, Borotkanics R. Capturing Head Impacts in Boxing: A Video-Based Comparison of Three Wearable Sensors. Ann Biomed Eng 2024; 52:270-281. [PMID: 37728812 DOI: 10.1007/s10439-023-03369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Wearable sensors are used to quantify head impacts in athletes, but recent work has shown that the number of events recorded may not be accurate. This study aimed to compare the number of head acceleration events recorded by three wearable sensors during boxing and assess how impact type and location affect the triggering of acceleration events. Seven boxers were equipped with an instrumented mouthguard, a skin patch, and a headgear patch. Contacts to participants' heads were identified via three video cameras over 115 sparring rounds. The resulting 5168 video-identified events were used as reference to quantify the sensitivity, specificity, and positive predictive value (PPV) of the sensors. The mouthguard, skin patch, and headgear patch recorded 695, 1579, and 1690 events, respectively, yielding sensitivities of 35%, 86%, and 78%, respectively, and specificities of 90%, 76%, and 75%, respectively. The mouthguard, skin patch, and headgear patch yielded 693, 1571, and 1681 true-positive events, respectively, leading to PPVs for head impacts over 96%. All three sensors were more likely to be triggered by punches landing near the sensor and cleanly on the head, although the mouthguard's sensitivity to impact location varied less than the patches. While the use of head impact sensors for assessing injury risks remains uncertain, this study provides valuable insights into the capabilities and limitations of these sensors in capturing video-verified head impact events.
Collapse
Affiliation(s)
- Enora Le Flao
- Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand.
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Seth Lenetsky
- Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
- Canadian Sport Institute Pacific, Victoria, BC, Canada
| | - Gunter P Siegmund
- MEA Forensic Engineers & Scientists, Laguna Hills, CA, USA
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Robert Borotkanics
- Faculty of Health and Environmental Science, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
20
|
Bussey MD, Salmon D, Romanchuk J, Nanai B, Davidson P, Tucker R, Falvey E. Head Acceleration Events in Male Community Rugby Players: An Observational Cohort Study across Four Playing Grades, from Under-13 to Senior Men. Sports Med 2024; 54:517-530. [PMID: 37676621 PMCID: PMC10933157 DOI: 10.1007/s40279-023-01923-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVES The aim of this study was to examine the cumulative head acceleration event (HAE) exposure in male rugby players from the Under-13 (U13) to senior club level over 4 weeks of matches and training during the 2021 community rugby season. METHODS This prospective, observational cohort study involved 328 male rugby players. Players were representative of four playing grades: U13 (N = 60, age 12.5 ± 0.6 years), U15 (N = 100, age 14.8 ± 0.9 years), U19 (N = 78, age 16.9 ± 0.7 years) and Premier senior men (N = 97, age 22.5 ± 3.1 years). HAE exposure was tracked across 48 matches and 113 training sessions. HAEs were recorded using boil-and-bite instrumented mouthguards (iMGs). The study assessed the incidence and prevalence of HAEs by ages, playing positions, and session types (match or training). RESULTS For all age grades, weekly match HAE incidence was highest at lower magnitudes (10-29 g). Proportionally, younger players experienced higher weekly incidence rates during training. The U19 players had 1.36 times the risk of high-magnitude (> 30 g) events during matches, while the U13 players had the lowest risk compared with all other grades. Tackles and rucks accounted for the largest HAE burden during matches, with forwards having 1.67 times the risk of > 30 g HAEs in rucks compared with backs. CONCLUSIONS This study provides novel data on head accelerations during rugby matches and training. The findings have important implications for identifying populations at greatest risk of high cumulative and acute head acceleration. Findings may guide training load management and teaching of skill execution in high-risk activities, particularly for younger players who may be exposed to proportionally more contact during training and for older players during matches.
Collapse
Affiliation(s)
- Melanie D Bussey
- School of Physical Education, Sports and Exercise Sciences, University of Otago, Dunedin, New Zealand.
| | | | - Janelle Romanchuk
- School of Physical Education, Sports and Exercise Sciences, University of Otago, Dunedin, New Zealand
- New Zealand Rugby, Wellington, New Zealand
| | - Bridie Nanai
- School of Physical Education, Sports and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Peter Davidson
- School of Physical Education, Sports and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Ross Tucker
- Institute of Sport and Exercise Medicine, University of Stellenbosch, Stellenbosch, South Africa
- World Rugby, Dublin, Ireland
| | - Eanna Falvey
- World Rugby, Dublin, Ireland
- School of Medicine & Health, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Tierney G, Rowson S, Gellner R, Allan D, Iqbal S, Biglarbeigi P, Tooby J, Woodward J, Payam AF. Head Exposure to Acceleration Database in Sport (HEADSport): a kinematic signal processing method to enable instrumented mouthguard (iMG) field-based inter-study comparisons. BMJ Open Sport Exerc Med 2024; 10:e001758. [PMID: 38304714 PMCID: PMC10831454 DOI: 10.1136/bmjsem-2023-001758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Objective Instrumented mouthguard (iMG) systems use different signal processing approaches limiting field-based inter-study comparisons, especially when artefacts are present in the signal. The objective of this study was to assess the frequency content and characteristics of head kinematic signals from head impact reconstruction laboratory and field-based environments to develop an artefact attenuation filtering method (HEADSport filter method). Methods Laboratory impacts (n=72) on a test-dummy headform ranging from 25 to 150 g were conducted and 126 rugby union players were equipped with iMGs for 209 player-matches. Power spectral density (PSD) characteristics of the laboratory impacts and on-field head acceleration events (HAEs) (n=5694) such as the 95th percentile cumulative sum PSD frequency were used to develop the HEADSport method. The HEADSport filter method was compared with two other common filtering approaches (Butterworth-200Hz and CFC180 filter) through signal-to-noise ratio (SNR) and mixed linear effects models for laboratory and on-field events, respectively. Results The HEADSport filter method produced marginally higher SNR than the Butterworth-200Hz and CFC180 filter and on-field peak linear acceleration (PLA) and peak angular acceleration (PAA) values within the magnitude range tested in the laboratory. Median PLA and PAA (and outlier values) were higher for the CFC180 filter than the Butterworth-200Hz and HEADSport filter method (p<0.01). Conclusion The HEADSport filter method could enable iMG field-based inter-study comparisons and is openly available at https://github.com/GTBiomech/HEADSport-Filter-Method.
Collapse
Affiliation(s)
- Gregory Tierney
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Belfast, UK
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK
| | - Steven Rowson
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Ryan Gellner
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - David Allan
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Belfast, UK
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK
| | - Sadaf Iqbal
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK
| | | | - James Tooby
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - James Woodward
- Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK
| | - Amir Farokh Payam
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), Ulster University, Belfast, UK
| |
Collapse
|
22
|
Luke D, Kenny R, Bondi D, Clansey AC, Wu LC. On-field instrumented mouthguard coupling. J Biomech 2024; 162:111889. [PMID: 38071791 DOI: 10.1016/j.jbiomech.2023.111889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 01/16/2024]
Abstract
Instrumented mouthguard (iMG) sensors have been developed to measure sports head acceleration events (HAE) in brain injury research. Laboratory validation studies show that effective coupling of iMGs with the human skull is crucial for accurate head kinematics measurements. However, iMG-skull coupling has not been investigated in on-field sports settings. The objective of this study was to assess on-field iMG coupling using infrared proximity sensing and to investigate coupling effects on kinematics signal characteristics. Forty-two university-level men's ice hockey (n = 21) and women's rugby (n = 21) athletes participated in the study, wearing iMGs during 6-7 month in-season periods. Proximity data classified video-verified HAE recordings into four main iMG coupling categories: coupled (on-teeth), decoupling (on-teeth to off-teeth), recoupling (off-teeth to on-teeth) and decoupled (off-teeth). Poorly-coupled HAEs showed significantly higher peak angular acceleration amplitudes and greater signal power in medium-high frequency bands compared with well-coupled HAEs, indicating potential iMG movements independent of the skull. Further, even video-verified true positives included poorly-coupled HAEs, and iMG coupling patterns varied between the men's hockey and women's rugby teams. Our findings show the potential of using proximity sensing in iMGs to identify poorly-coupled HAEs. Utilizing this data screening process in conjunction with video review may mitigate a key source of sensor noise and enhance the overall quality of on-field sports HAE datasets.
Collapse
Affiliation(s)
- David Luke
- School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada; Department of Mechanical Engineering, The University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC V6T 1Z4, Canada
| | - Rebecca Kenny
- Department of Mechanical Engineering, The University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Bondi
- Department of Mechanical Engineering, The University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC V6T 1Z4, Canada
| | - Adam C Clansey
- Department of Mechanical Engineering, The University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC V6T 1Z4, Canada
| | - Lyndia C Wu
- School of Biomedical Engineering, The University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 2B9, Canada; Department of Mechanical Engineering, The University of British Columbia, 6250 Applied Science Ln Room 2054, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
23
|
Field B, Waddington G, McKune A, Goecke R, Gardner AJ. Validation of an instrumented mouthguard in rugby union-a pilot study comparing impact sensor technology to video analysis. Front Sports Act Living 2023; 5:1230202. [PMID: 38053522 PMCID: PMC10694248 DOI: 10.3389/fspor.2023.1230202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/25/2023] [Indexed: 12/07/2023] Open
Abstract
Background To better understand the biomechanical profile of direct head impacts and the game scenarios in which they occur in Rugby Union, there is a need for an on-field validation of a new instrumented mouthguard (IMG) against the reference standard. This study considers the potential of a combined biomechanical (IMG) and video analysis approach to direct head impact recognition, both of which in isolation have limitations. The aim of this study is to assess the relationship between an instrumented mouthguard and video analysis in detection of direct head impacts in rugby union. Design Pilot Study - Observational Cohort design. Methods The instrumented mouthguard was worn by ten (3 backs, 7 forwards) professional Rugby Union players during the 2020-21 Gallagher Premiership (UK) season. Game-day video was synchronized with timestamped head acceleration events captured from the instrumented mouthguard. Direct Head Impacts were recorded in a 2 × 2 contingency table to determine sensitivity. Impact characteristics were also collected for all verified head impacts to further the understanding of head biomechanics during the game. Results There were 2018 contact events that were reviewed using video analysis. Of those 655 were categorized as direct head impacts which also correlated with a head acceleration event captured by the IMG. Sensitivity analysis showed an overall sensitivity of 93.6% and a positive predictive value (PPV of 92.4%). When false positives were excluded due to ball out of play, mouthguard removal or handling after a scoring situation or stoppage, PPV was improved (98.3%). Most verified head impacts occurred in and around the ruck contest (31.2%) followed by impacts to the primary tackler (28.4%). Conclusion This pilot validation study demonstrates that this IMG provides a highly accurate measurement device that could be used to complement video verification in the recognition of on-field direct head impacts. The frequency and magnitude of direct head impacts derived from specific game scenarios has been described and allows for greater recognition of high-risk situations. Further studies with larger sample sizes and in different populations of Rugby Union players are required to develop our understanding of head impact and enable strategies for injury mitigation.
Collapse
Affiliation(s)
- Byron Field
- Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Gordon Waddington
- Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Canberra, ACT, Australia
| | - Andrew McKune
- Research Institute for Sport and Exercise, Faculty of Health, University of Canberra, Canberra, ACT, Australia
- Discipline of Biokinetics, Exercise, and Leisure Sciences, School of Health Sciences, University of KwaZulu Natal, Durban, South Africa
| | - Roland Goecke
- Research Institute for Sport and Exercise, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Andrew J. Gardner
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
24
|
Fetchko TJ, Hart GJ, Aderman MJ, Ross JD, Malvasi SR, Roach MH, Cameron KL, Rooks TF. Measurement of Head Kinematics Using Instrumented Mouthguards During Introductory Boxing Courses in U.S. Military Academy Cadets. Mil Med 2023; 188:584-589. [PMID: 37948285 DOI: 10.1093/milmed/usad249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/02/2023] [Accepted: 06/27/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Use of wearable impact sensor devices to quantitatively measure head impact exposure remains largely unstudied in military-style martial arts training and combat sports, particularly at the beginner levels. The baseline frequency and severity of head impact exposure during introductory military-style martial arts trainings, such as combatives training, is valuable information for developing future programs of instruction and exposure monitoring programs. The purpose of this study was to describe head impact exposures experienced during introductory combatives training (a boxing course) at U.S. Military Academy. METHODS This study used instrumented mouthguards to measure head impact exposure in U.S. Military Academy cadets during a compulsory boxing course. Summary exposures from a preliminary dataset are presented. RESULTS Twenty-two male subjects (19.9 ± 1.1 years, 86.6 ± 11.7 kg) participated in 205 analyzed player-bouts (full contact sparring sessions) with 809 video verified impacts (average 3.9 impacts per player-bout). The mean peak linear acceleration was 16.5 ±7.1 G, with a maximum of 70.8 G. There was a right-skewed distribution, with 640/809 (79.1%) events falling between 10 and 20 G. The mean peak angular acceleration was 1.52 ± 0.96 krad/s2, with a maximum of 8.85 krad/s2. CONCLUSIONS Compared to other high-risk sports at Service Academies, head impacts from beginner boxing were of similar magnitude to those reported for Service Academy football and slightly lower than those reported for Service Academy rugby. Based on these preliminary data, the risk profile for introductory military-style martial arts training, such as boxing or combatives, may be similar to other contact sports like football and rugby, but further research is required to confirm these findings and understand the effects of the exposures in a shorter duration.
Collapse
Affiliation(s)
- Travis J Fetchko
- Injury Biomechanics and Protection Group, United States Army Aeromedical Research Laboratory, Fort Novosel, AL 36362, USA
- Department of Orthopaedic Research, Keller Army Community Hospital, West Point, NY 10996, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37831, USA
| | - Gerald J Hart
- Department of Physical Education, United States Military Academy, West Point, NY 10996, USA
| | - Michael J Aderman
- Department of Orthopaedic Research, Keller Army Community Hospital, West Point, NY 10996, USA
| | - Jeremy D Ross
- Department of Orthopaedic Research, Keller Army Community Hospital, West Point, NY 10996, USA
| | - Steven R Malvasi
- Department of Orthopaedic Research, Keller Army Community Hospital, West Point, NY 10996, USA
| | - Megan H Roach
- Department of Orthopaedic Research, Keller Army Community Hospital, West Point, NY 10996, USA
| | - Kenneth L Cameron
- Department of Orthopaedic Research, Keller Army Community Hospital, West Point, NY 10996, USA
| | - Tyler F Rooks
- Injury Biomechanics and Protection Group, United States Army Aeromedical Research Laboratory, Fort Novosel, AL 36362, USA
| |
Collapse
|
25
|
Le RK, Lempke LB, Anderson MN, Johnson RS, Schmidt JD, Lynall RC. Quantifying head impact biomechanical differences between commonly employed cleaning levels: a critical research interpretation consideration. Brain Inj 2023; 37:1173-1178. [PMID: 37166252 DOI: 10.1080/02699052.2023.2211351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/11/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
INTRODUCTION Wearable accelerometry devices quantify on-field frequency and severity of head impacts to further improve sport safety. Commonly employed post-data collection cleaning techniques may affect these outcomes. OBJECTIVE Our purpose was to compare game impact rates and magnitudes between three different cleaning levels (Level-1: impacts recorded within start and end times, Level-2: impacts during pauses/breaks removed, Level-3: video verified) for male youth tackle football. METHODS Participants (n = 23, age = 10.9 ± 0.3 yrs, height = 150.0 ± 8.3 cm, mass = 41.6 ± 8.4 kg) wore Triax SIM-G sensors throughout Fall 2019. Impact rates, ratios (IRRs), and 95% confidence intervals (95%CI) were used to compare levels. Random-effects general linear models were used to compare peak linear acceleration (PLA;g) and angular velocity (PAV;rads/s). RESULTS Level-1 resulted in higher impact rates (4.57; 95%CI = 4.14-5.05) compared to Level-2 (3.09; 95%CI = 2.80-3.42; IRR = 1.48; 95%CI = 1.34-1.63) and Level-3 datasets (2.56; 95%CI = 2.30-2.85; IRR = 1.78; 95%CI = 1.60-1.98). Level-2 had higher impact rates compared to Level-3 (1.21; 95%CI = 1.08-1.35). Level-1 resulted in higher PAV than Level-2 and Level-3 (p < 0.001) datasets. PLA did not differ across datasets (p = 0.296). CONCLUSIONS Head impact data should be filtered of pauses/breaks, and does not substantially differ outcome estimates compared to time-intensive video verification.
Collapse
Affiliation(s)
- Rachel K Le
- Department of Exercise Science, Mercer University, Macon, Georgia, USA
- Department of Kinesiology, Concussion Research Laboratory, University of Georgia, Athens, Georgia, USA
| | - Landon B Lempke
- Michigan Concussion Center, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Melissa N Anderson
- Department of Kinesiology & Applied Physiology, Concussion Research Laboratory, University of Delaware, Newark, Delaware, USA
| | - Rachel S Johnson
- Department of Kinesiology, Center for Orthopaedic & Biomechanics Research, Boise State University, Boise, Idaho, USA
- Applied Research Division, St. Luke's Health System, Boise, Idaho, USA
| | - Julianne D Schmidt
- Department of Kinesiology, Concussion Research Laboratory, University of Georgia, Athens, Georgia, USA
| | - Robert C Lynall
- Department of Kinesiology, Concussion Research Laboratory, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
26
|
Jones CM, Austin K, Augustus SN, Nicholas KJ, Yu X, Baker C, Chan EYK, Loosemore M, Ghajari M. An Instrumented Mouthguard for Real-Time Measurement of Head Kinematics under a Large Range of Sport Specific Accelerations. SENSORS (BASEL, SWITZERLAND) 2023; 23:7068. [PMID: 37631606 PMCID: PMC10457941 DOI: 10.3390/s23167068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Head impacts in sports can produce brain injuries. The accurate quantification of head kinematics through instrumented mouthguards (iMG) can help identify underlying brain motion during injurious impacts. The aim of the current study is to assess the validity of an iMG across a large range of linear and rotational accelerations to allow for on-field head impact monitoring. METHODS Drop tests of an instrumented helmeted anthropometric testing device (ATD) were performed across a range of impact magnitudes and locations, with iMG measures collected concurrently. ATD and iMG kinematics were also fed forward to high-fidelity brain models to predict maximal principal strain. RESULTS The impacts produced a wide range of head kinematics (16-171 g, 1330-10,164 rad/s2 and 11.3-41.5 rad/s) and durations (6-18 ms), representing impacts in rugby and boxing. Comparison of the peak values across ATD and iMG indicated high levels of agreement, with a total concordance correlation coefficient of 0.97 for peak impact kinematics and 0.97 for predicted brain strain. We also found good agreement between iMG and ATD measured time-series kinematic data, with the highest normalized root mean squared error for rotational velocity (5.47 ± 2.61%) and the lowest for rotational acceleration (1.24 ± 0.86%). Our results confirm that the iMG can reliably measure laboratory-based head kinematics under a large range of accelerations and is suitable for future on-field validity assessments.
Collapse
Affiliation(s)
- Chris M. Jones
- Sports and Wellbeing Analytics, Swansea SA7 0AJ, UK; (K.A.)
- Institute of Sport and Exercise Health (ISEH), Division Surgery Interventional Science, University College London, London W1T 7HA, UK
| | - Kieran Austin
- Sports and Wellbeing Analytics, Swansea SA7 0AJ, UK; (K.A.)
- Institute of Sport, Nursing and Allied Health, University of Chichester, Chichester PO19 6PE, UK
| | - Simon N. Augustus
- Department of Applied and Human Sciences, Kingston University London, London KT1 2EE, UK
| | | | - Xiancheng Yu
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (X.Y.)
| | - Claire Baker
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (X.Y.)
| | - Emily Yik Kwan Chan
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (X.Y.)
| | - Mike Loosemore
- Institute of Sport and Exercise Health (ISEH), Division Surgery Interventional Science, University College London, London W1T 7HA, UK
- English Institute of Sport, Manchester M11 3BS, UK
| | - Mazdak Ghajari
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; (X.Y.)
| |
Collapse
|
27
|
Patton DA, Huber CM, Fedonni D, Margulies SS, Master CL, Arbogast KB. Quantifying head impact exposure, mechanisms and kinematics using instrumented mouthguards in female high school lacrosse. Res Sports Med 2023; 31:772-786. [PMID: 35195503 PMCID: PMC9921769 DOI: 10.1080/15438627.2022.2042294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
Current debate exists regarding the need for protective headwear in female lacrosse. To inform this issue, the current study quantified head impact exposure, mechanisms and kinematics in female lacrosse using instrumented mouthguards. A female high school varsity lacrosse team of 17 players wore the Stanford Instrumented Mouthguard (MiG) during 14 competitive games. Video footage was reviewed to remove false-positive recordings and verify head impacts, which resulted in a rate of 0.32 head impacts per athlete-exposure. Of the 31 video-confirmed head impacts, 54.8% were identified as stick contacts, 38.7% were player contacts and 6.5% were falls. Stick contacts had the greatest peak head kinematics. The most common impact site was the side of the head (35.5%), followed by the face/jaw (25.8%), forehead (6.5%), and crown (6.5%). Impacts to the face/jaw region of the head had significantly (p < 0.05) greater peak kinematics compared to other regions of the head, which may have resulted from the interaction of the impacting surface, or the lower jaw, and the sensor. The current study provides initial data regarding the frequency, magnitude and site of impacts sustained in female high school lacrosse. A larger sample size of high quality head impact data in female lacrosse is required to confirm these findings.
Collapse
Affiliation(s)
- Declan A Patton
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Colin M Huber
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniele Fedonni
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Christina L Master
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Sports Medicine and Performance Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kristy B Arbogast
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
28
|
Kercher KA, Steinfeldt JA, Rettke DJ, Zuidema TR, Walker MJ, Martinez Kercher VM, Silveyra P, Seo DC, Macy JT, Hulvershorn LA, Kawata K. Association Between Head Impact Exposure, Psychological Needs, and Indicators of Mental Health Among U.S. High School Tackle Football Players. J Adolesc Health 2023; 72:502-509. [PMID: 36610880 PMCID: PMC10033334 DOI: 10.1016/j.jadohealth.2022.11.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Age of first exposure to tackle football and head impact kinematics have been used to examine the effect of head impacts on mental health outcomes. These measures coupled with retrospective and cross-sectional designs have contributed to conflicting results. The purpose of this study was to identify the effect of one season of head impact exposure, age of first exposure to football, and psychological need satisfaction on acute mental health outcomes in adolescent football players. METHODS This prospective single-season cohort study used sensor-installed mouthguards to collect head impact exposure along with surveys to assess age of first exposure to football, psychological satisfaction, depressive symptoms, anxiety symptoms, and thriving from football players at four high schools (n = 91). Linear regression was used to test the association of head impact exposure, age of first exposure, and psychological satisfaction with acute mental health outcomes. RESULTS A total of 9,428 impacts were recorded with a mean of 102 ± 113 impacts/player. Cumulative head impact exposure and age of first exposure were not associated with acute mental health outcomes at postseason or change scores from preseason to postseason. Greater psychological satisfaction was associated with fewer depressive symptoms (β = -0.035, SE = 0.008, p = < .001), fewer anxiety symptoms (β = -0.021, SE = 0.008, p = .010), and greater thriving scores (β = 0.278, SE = 0.040, p = < .001) at postseason. DISCUSSION This study does not support the premise that greater single-season head impact exposure or earlier age of first exposure to tackle football is associated with worse acute mental health indicators over the course of a single season in adolescent football players.
Collapse
Affiliation(s)
- Kyle A Kercher
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Jesse A Steinfeldt
- Department of Counseling and Educational Psychology, School of Education, Indiana University, Bloomington, Indiana
| | - Devin J Rettke
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Taylor R Zuidema
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Miata J Walker
- Department of Counseling and Educational Psychology, School of Education, Indiana University, Bloomington, Indiana
| | - Vanessa M Martinez Kercher
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Dong-Chul Seo
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Jonathan T Macy
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Leslie A Hulvershorn
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana
| | - Keisuke Kawata
- Department of Kinesiology, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana; Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, Indiana; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
29
|
Arbogast KB, Funk JR, Solomon G, Crandall J. Measuring Head Acceleration Like a CHAMP. J Athl Train 2023; 58:283-284. [PMID: 36521167 PMCID: PMC11215641 DOI: 10.4085/1062-6050-0516.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Affiliation(s)
- Kristy B. Arbogast
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | | | - Gary Solomon
- Player Health and Safety Department, National Football League, New York, NY
| | | |
Collapse
|
30
|
Schmidt JD, Johnson RS, Lempke LB, Anderson M, Le RK, Lynall RC. Youth Tackle Football Head-Impact Estimation by Players and Parents: Is the Perception the Reality? J Athl Train 2023; 58:285-292. [PMID: 35475900 PMCID: PMC11215644 DOI: 10.4085/1062-6050-0560.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CONTEXT With growing concerns surrounding exposure to head impacts in youth tackle football, players and parents must understand the exposure level when assenting and consenting to participate. OBJECTIVE To determine whether youth football players and parents could estimate on-field head-impact frequency, severity, and location. DESIGN Prospective cohort study. SETTING Football field. PATIENTS OR OTHER PARTICIPANTS We administered a 10-question head-impact estimation tool to parents (n = 23; mean age = 36.5 years [95% CI = 31.7, 37.3 years]) and players (n = 16 boys; mean age = 11.1 years [95% CI = 10.3, 11.8 years]). MAIN OUTCOME MEASURE(S) Player on-field head-impact exposure was captured using the Triax SIM-G system. We determined the accuracy between player and parent estimates relative to on-field head-impact exposures using κ and weighted κ values. RESULTS Youth tackle football players and parents did not accurately estimate on-field head-impact frequency (κ range = -0.09 to 0.40), severity (κ range = -0.05 to 0.34), or location (κ range = -0.30 to 0.13). Players and parents overestimated head-impact frequency in practices but underestimated the frequency in games. Both groups overestimated head-impact severity, particularly in games. Most players and parents underestimated the number of head impacts to the top of the head, particularly during practices. CONCLUSIONS Underestimations of head-impact frequency in games and to the top of the head suggest that informed consent processes aimed at educating players and parents should be improved. Overestimations of head-impact frequency in practices and severity may explain declining rates of youth tackle football participation.
Collapse
Affiliation(s)
- Julianne D. Schmidt
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens
| | - Rachel S. Johnson
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens
| | - Landon B. Lempke
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens
| | - Melissa Anderson
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens
| | - Rachel Khinh Le
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens
| | - Robert C. Lynall
- UGA Concussion Research Laboratory, Department of Kinesiology, University of Georgia, Athens
| |
Collapse
|
31
|
Pavlovic N, Clermont C, Cairns J, Williamson RA, Emery CA, Stefanyshyn D. Differences in head impact biomechanics between playing positions in Canadian high school football players. J Sports Sci 2023; 40:2697-2703. [PMID: 36862832 DOI: 10.1080/02640414.2023.2184824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The objective of this study was to compare head impact magnitudes and time between impacts among positions in Canadian high-school football. Thirty nine players from two high-school football teams were recruited and assigned a position profile: Profile 1 (quarterback, receiver, defensive back, kicker), Profile 2 (linebacker, running back), and Profile 3 (linemen). Players wore instrumented mouthguards to measure peak magnitudes of linear and angular acceleration and velocity for each head impact throughout the season. A principal component analysis reduced the dimensionality of biomechanical variables, resulting in one principal component (PC1) score assigned to every impact. Time between impacts was calculated by subtracting the timestamps of subsequent head impacts within a session. Significant differences in PC1 scores and time between impacts occurred between playing position profiles (ps<0.001). Post-hoc comparisons determined that PC1 was greatest in Profile 2, followed by Profiles 1 and 3. Time between impacts was lowest in Profile 3, followed by Profiles 2 and 1. This study delivers a new method of reducing the multidimensionality of head impact magnitudes and suggests different Canadian high-school football playing positions experience different head impact magnitudes and frequencies, which is important for monitoring concussion and repetitive head impact exposure.
Collapse
Affiliation(s)
- Nina Pavlovic
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Christian Clermont
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Joshua Cairns
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Rylen A Williamson
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Carolyn A Emery
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Darren Stefanyshyn
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
32
|
Powell DRL, Petrie FJ, Docherty PD, Arora H, Williams EMP. Development of a Head Acceleration Event Classification Algorithm for Female Rugby Union. Ann Biomed Eng 2023; 51:1322-1330. [PMID: 36757631 PMCID: PMC10172216 DOI: 10.1007/s10439-023-03138-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/25/2022] [Indexed: 02/10/2023]
Abstract
Instrumented mouthguards have been used to detect head accelerations and record kinematic data in numerous sports. Each recording requires validation through time-consuming video verification. Classification algorithms have been posed to automatically categorise head acceleration events and spurious events. However, classification algorithms must be designed and/or validated for each combination of sport, sex and mouthguard system. This study provides the first algorithm to classify head acceleration data from exclusively female rugby union players. Mouthguards instrumented with kinematic sensors were given to 25 participants for six competitive rugby union matches in an inter-university league. Across all instrumented players, 214 impacts were recorded from 460 match-minutes. Matches were video recorded to enable retrospective labelling of genuine and spurious events. Four machine learning algorithms were trained on five matches to predict these labels, then tested on the sixth match. Of the four classifiers, the support vector machine achieved the best results, with area under the receiver operator curve (AUROC) and area under the precision recall curve (AUPRC) scores of 0.92 and 0.85 respectively, on the test data. These findings represent an important development for head impact telemetry in female sport, contributing to the safer participation and improving the reliability of head impact data collection within female contact sport.
Collapse
Affiliation(s)
- David R L Powell
- ZCCE, Faculty of Science and Engineering, Swansea University, Wales, UK.,Applied Sports, Technology, Exercise and Medicine Research Centre (A-STEM), Swansea University, Wales, UK
| | - Freja J Petrie
- Applied Sports, Technology, Exercise and Medicine Research Centre (A-STEM), Swansea University, Wales, UK
| | - Paul D Docherty
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand.,Institute for Technical Medicine (ITeM), Furtwangen University, Villingen Schwenningen, Germany
| | - Hari Arora
- ZCCE, Faculty of Science and Engineering, Swansea University, Wales, UK
| | - Elisabeth M P Williams
- Applied Sports, Technology, Exercise and Medicine Research Centre (A-STEM), Swansea University, Wales, UK.
| |
Collapse
|
33
|
de Almeida e Bueno L, Kwong MT, Bergmann JHM. Performance of Oral Cavity Sensors: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:588. [PMID: 36679385 PMCID: PMC9862524 DOI: 10.3390/s23020588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 05/31/2023]
Abstract
Technological advancements are enabling new applications within biomedical engineering. As a connection point between the outer environment and the human system, the oral cavity offers unique opportunities for sensing technologies. This paper systematically reviews the performance of measurement systems tested in the human oral cavity. Performance was defined by metrics related to accuracy and agreement estimation. A comprehensive search identifying human studies that reported on the accuracy or agreement of intraoral sensors found 85 research papers. Most of the literature (62%) was in dentistry, followed by neurology (21%), and physical medicine and rehabilitation (12%). The remaining papers were on internal medicine, obstetrics, and aerospace medicine. Most of the studies applied force or pressure sensors (32%), while optical and image sensors were applied most widely across fields. The main challenges for future adoption include the lack of large human trials, the maturity of emerging technologies (e.g., biochemical sensors), and the absence of standardization of evaluation in specific fields. New research should aim to employ robust performance metrics to evaluate their systems and incorporate real-world evidence as part of the evaluation process. Oral cavity sensors offer the potential for applications in healthcare and wellbeing, but for many technologies, more research is needed.
Collapse
Affiliation(s)
| | - Man Ting Kwong
- Guy’s and St. Thomas’ NHS Foundation Trust, St. Thomas’ Hospital, Westminster Bridge Rd., London SE1 7EH, UK
| | | |
Collapse
|
34
|
Rowson B, Duma SM. A Review of Head Injury Metrics Used in Automotive Safety and Sports Protective Equipment. J Biomech Eng 2022; 144:1140295. [PMID: 35445266 DOI: 10.1115/1.4054379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/08/2022]
Abstract
Despite advances in the understanding of human tolerances to brain injury, injury metrics used in automotive safety and protective equipment standards have changed little since they were first implemented nearly a half-century ago. Although numerous metrics have been proposed as improvements over the ones currently used, evaluating the predictive capability of these metrics is challenging. The purpose of this review is to summarize existing head injury metrics that have been proposed for both severe head injuries, such as skull fractures and traumatic brain injuries (TBI), and mild traumatic brain injuries (mTBI) including concussions. Metrics have been developed based on head kinematics or intracranial parameters such as brain tissue stress and strain. Kinematic metrics are either based on translational motion, rotational motion, or a combination of the two. Tissue-based metrics are based on finite element model simulations or in vitro experiments. This review concludes with a discussion of the limitations of current metrics and how improvements can be made in the future.
Collapse
Affiliation(s)
- Bethany Rowson
- Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, 437 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061
| | - Stefan M Duma
- Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, 410H Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061
| |
Collapse
|
35
|
Kercher KA, Steinfeldt JA, Macy JT, Seo DC, Kawata K. Drill Intensity and Head Impact Exposure in Adolescent Football. Pediatrics 2022; 150:189733. [PMID: 36226553 PMCID: PMC9675985 DOI: 10.1542/peds.2022-057725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The objective of this study was to examine head-impact exposure by intensity level and position group, and to test the hypothesis that there would be an increase in cumulative head-impact exposure between drill intensities after controlling for duration in each level with air recording the lowest frequency and magnitude and live recording the highest: air < bags < control < thud < live. METHODS We conducted a prospective, multisite study in 1 season with players from 3 high school football teams (n = 74). Each player wore a sensor-installed mouthguard, which monitored head-impact frequency, peak linear acceleration (PLA), and peak rotational acceleration (PRA). Practice drills and games were categorized by level of contact. RESULTS A total of 7312 impacts were recorded with a median of 67 (interquartile range:128) impacts per player. After controlling for duration, increases in head-impact outcomes by level of contact were observed (air < bags = control < thud = live). Live drills had higher cumulative head-impact frequency (45.4 ± 53.0 hits) and magnitude (PLA: 766.3 ± 932.9 g; PRA: 48.9 ± 61.3 kilorad/s2) per player than other levels (P < .0001). In comparison, air drills had the lowest cumulative frequency (4.2 ± 6.9 hits) and magnitude (PLA: 68.0 ± 121.6 g; PRA: 6.4 ± 13.2 kilorad/s2). CONCLUSIONS These data support the levels-of-contact system as a practical approach to limiting head-impact exposure in tackle football. Our findings are clinically important, because data have begun to suggest the relationship between chronic head-impact exposure and decline in brain health. Since head-impact exposure was influenced by levels of contact, regulation of the duration of certain drill intensities (eg, thud, live) may associate with reduced head-impact exposure in high school football.
Collapse
Affiliation(s)
- Kyle A. Kercher
- Department of Kinesiology, Indiana University, Bloomington, Indiana
| | - Jesse A. Steinfeldt
- Department of Counseling and Educational Psychology School of Education, Indiana University, Bloomington, Indiana
| | - Jonathan T. Macy
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Dong-Chul Seo
- Department of Applied Health Science, School of Public Health-Bloomington, Indiana University, Bloomington, Indiana
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University, Bloomington, Indiana,Program in Neuroscience, College of Arts and Sciences, Indiana University, Bloomington, Indiana
| |
Collapse
|
36
|
Consensus Head Acceleration Measurement Practices (CHAMP): Study Design and Statistical Analysis. Ann Biomed Eng 2022; 50:1346-1355. [PMID: 36253602 PMCID: PMC9652215 DOI: 10.1007/s10439-022-03101-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022]
Abstract
Head impact measurement devices enable opportunities to collect impact data directly from humans to study topics like concussion biomechanics, head impact exposure and its effects, and concussion risk reduction techniques in sports when paired with other relevant data. With recent advances in head impact measurement devices and cost-effective price points, more and more investigators are using them to study brain health questions. However, as the field's literature grows, the variance in study quality is apparent. This brief paper aims to provide a high-level set of key considerations for the design and analysis of head impact measurement studies that can help avoid flaws introduced by sampling biases, false data, missing data, and confounding factors. We discuss key points through four overarching themes: study design, operational management, data quality, and data analysis.
Collapse
|
37
|
Bussey MD, Davidson P, Salmon D, Romanchuk J, Tong D, Sole G. Influence of the frame of reference on head acceleration events recorded by instrumented mouthguards in community rugby players. BMJ Open Sport Exerc Med 2022; 8:e001365. [PMID: 36249488 PMCID: PMC9557771 DOI: 10.1136/bmjsem-2022-001365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 11/04/2022] Open
Abstract
Objectives To highlight the need for standardisation in the communication of head impact telemetry from instrumented mouthguards (iMG). The purpose of this study is to examine how the frame of reference for reporting head acceleration events (HAE) may affect the interpretation of head impacts recorded from iMGs in community rugby players. Methods An analytical investigation of 825 video verified HAEs recorded from male community players during 5 rugby match exposures. HAEs were captured with an iMG, known to be reliable and valid for this purpose. The linear and angular head acceleration at the centre of mass (head_CG) was calculated from filtered iMG accelerometer and gyroscope data, and the location of impact was estimated. The iMG and head_CG data were examined for systematic bias, geometric differences and the degree of concordance. Finally, mixed model analyses were fitted to assess the differences in peak resultant acceleration (PLA) by impact locations and directions of head motion while controlling for intra-athlete correlations. Results The degree of concordance between the iMG versus head_CG measures varied by impact location. The mixed model confirmed differences in the PLA by location (F(8,819) = 16.55, p<0.001) and by direction of head motion (F(5,417) = 7.78, p<0.001). Conclusion The head acceleration reported at the iMG is not proportional to measurements that have been transformed to the head_CG. Depending on the impact location and direction of head motion, the acceleration measured at the iMG may overestimate, underestimate or miss entirely the PLA with respect to the head_CG. We recommend standardising the reporting of iMG data within the head_CG frame of reference.
Collapse
Affiliation(s)
- Melanie Dawn Bussey
- School of Physical Education Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | - Peter Davidson
- School of Physical Education Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand
| | | | - Janelle Romanchuk
- School of Physical Education Sport and Exercise Sciences, University of Otago, Dunedin, New Zealand,New Zealand Rugby, Dunedin, New Zealand
| | - Darryl Tong
- Department of Oral Diagnostic and Surgical Sciences, University of Otago, Dunedin, New Zealand
| | - Gisela Sole
- School of Physiotherapy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
38
|
Consensus Head Acceleration Measurement Practices (CHAMP): Laboratory Validation of Wearable Head Kinematic Devices. Ann Biomed Eng 2022; 50:1356-1371. [PMID: 36104642 PMCID: PMC9652295 DOI: 10.1007/s10439-022-03066-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022]
Abstract
Wearable devices are increasingly used to measure real-world head impacts and study brain injury mechanisms. These devices must undergo validation testing to ensure they provide reliable and accurate information for head impact sensing, and controlled laboratory testing should be the first step of validation. Past validation studies have applied varying methodologies, and some devices have been deployed for on-field use without validation. This paper presents best practices recommendations for validating wearable head kinematic devices in the laboratory, with the goal of standardizing validation test methods and data reporting. Key considerations, recommended approaches, and specific considerations were developed for four main aspects of laboratory validation, including surrogate selection, test conditions, data collection, and data analysis. Recommendations were generated by a group with expertise in head kinematic sensing and laboratory validation methods and reviewed by a larger group to achieve consensus on best practices. We recommend that these best practices are followed by manufacturers, users, and reviewers to conduct and/or review laboratory validation of wearable devices, which is a minimum initial step prior to on-field validation and deployment. We anticipate that the best practices recommendations will lead to more rigorous validation of wearable head kinematic devices and higher accuracy in head impact data, which can subsequently advance brain injury research and management.
Collapse
|
39
|
Kuo C, Patton D, Rooks T, Tierney G, McIntosh A, Lynall R, Esquivel A, Daniel R, Kaminski T, Mihalik J, Dau N, Urban J. On-Field Deployment and Validation for Wearable Devices. Ann Biomed Eng 2022; 50:1372-1388. [PMID: 35960418 DOI: 10.1007/s10439-022-03001-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 11/01/2022]
Abstract
Wearable sensors are an important tool in the study of head acceleration events and head impact injuries in sporting and military activities. Recent advances in sensor technology have improved our understanding of head kinematics during on-field activities; however, proper utilization and interpretation of data from wearable devices requires careful implementation of best practices. The objective of this paper is to summarize minimum requirements and best practices for on-field deployment of wearable devices for the measurement of head acceleration events in vivo to ensure data evaluated are representative of real events and limitations are accurately defined. Best practices covered in this document include the definition of a verified head acceleration event, data windowing, video verification, advanced post-processing techniques, and on-field logistics, as determined through review of the literature and expert opinion. Careful use of best practices, with accurate acknowledgement of limitations, will allow research teams to ensure data evaluated is representative of real events, will improve the robustness of head acceleration event exposure studies, and generally improve the quality and validity of research into head impact injuries.
Collapse
Affiliation(s)
- Calvin Kuo
- The University of British Columbia, Vancouver, Canada
| | - Declan Patton
- Children's Hospital of Philadelphia, Philadelphia, USA
| | - Tyler Rooks
- United States Army Aeromedical Research Laboratory, Fort Rucker, USA
| | | | - Andrew McIntosh
- McIntosh Consultancy and Research, Sydney, Australia.,Monash University Accident Research Centre Monash University, Melbourne, Australia.,School of Engineering Edith Cowan University, Perth, Australia
| | | | | | - Ray Daniel
- United States Army Aeromedical Research Laboratory, Fort Rucker, USA
| | | | - Jason Mihalik
- University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Nate Dau
- Biocore, LLC, Charlottesville, USA
| | - Jillian Urban
- Wake Forest University School of Medicine, 575 Patterson Ave, Suite 530, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
40
|
Seifert J, Shah AS, Harezlak J, Rowson S, Mihalik JP, Riggen L, Duma S, Brooks A, Cameron KL, Giza CC, Goldman J, Guskiewicz KM, Houston MN, Jackson JC, McGinty G, Pasquina P, Broglio SP, McAllister TW, McCrea MA, Stemper BD. Time Delta Head Impact Frequency: An Analysis on Head Impact Exposure in the Lead Up to a Concussion: Findings from the NCAA-DOD Care Consortium. Ann Biomed Eng 2022; 50:1473-1487. [PMID: 35933459 PMCID: PMC9652163 DOI: 10.1007/s10439-022-03032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Sport-related concussions can result from a single high magnitude impact that generates concussive symptoms, repeated subconcussive head impacts aggregating to generate concussive symptoms, or a combined effect from the two mechanisms. The array of symptoms produced by these mechanisms may be clinically interpreted as a sport-related concussion. It was hypothesized that head impact exposure resulting in concussion is influenced by severity, total number, and frequency of subconcussive head impacts. The influence of total number and magnitude of impacts was previously explored, but frequency was investigated to a lesser degree. In this analysis, head impact frequency was investigated over a new metric called ‘time delta’, the time difference from the first recorded head impact of the day until the concussive impact. Four exposure metrics were analyzed over the time delta to determine whether frequency of head impact exposure was greater for athletes on their concussion date relative to other dates of contact participation. Those metrics included head impact frequency, head impact accrual rate, risk weighted exposure (RWE), and RWE accrual rate. Athletes experienced an elevated median number of impacts, RWE, and RWE accrual rate over the time delta on their concussion date compared to non-injury sessions. This finding suggests elevated frequency of head impact exposure on the concussion date compared to other dates that may precipitate the onset of concussion.
Collapse
Affiliation(s)
- Jack Seifert
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Labs, Clement J. Zablocki Veterans Affairs Medical Center, Research 151, 5000 W. National Ave., Milwaukee, WI, 53295, USA
| | - Alok S Shah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Labs, Clement J. Zablocki Veterans Affairs Medical Center, Research 151, 5000 W. National Ave., Milwaukee, WI, 53295, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Steven Rowson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Jason P Mihalik
- Matthew Gfeller Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Larry Riggen
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Stefan Duma
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Alison Brooks
- Department of Orthopedics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Kenneth L Cameron
- John A. Feagin Jr. Sports Medicine Fellowship, Keller Army Hospital, United States Military Academy, West Point, NY, USA
| | - Christopher C Giza
- Departments of Neurosurgery and Pediatrics, UCLA Steve Tisch BrainSPORT Program, David Geffem School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Joshua Goldman
- Departments of Neurosurgery and Pediatrics, UCLA Steve Tisch BrainSPORT Program, David Geffem School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kevin M Guskiewicz
- Matthew Gfeller Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Megan N Houston
- John A. Feagin Jr. Sports Medicine Fellowship, Keller Army Hospital, United States Military Academy, West Point, NY, USA
| | - Jonathan C Jackson
- Department of Sports Medicine, United States Air Force Academy, Colorado Springs, CO, USA
| | - Gerald McGinty
- Department of Sports Medicine, United States Air Force Academy, Colorado Springs, CO, USA
| | - Paul Pasquina
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Labs, Clement J. Zablocki Veterans Affairs Medical Center, Research 151, 5000 W. National Ave., Milwaukee, WI, 53295, USA
| | - Brian D Stemper
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA. .,Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA. .,Neuroscience Research Labs, Clement J. Zablocki Veterans Affairs Medical Center, Research 151, 5000 W. National Ave., Milwaukee, WI, 53295, USA.
| |
Collapse
|
41
|
Jones B, Tooby J, Weaving D, Till K, Owen C, Begonia M, Stokes KA, Rowson S, Phillips G, Hendricks S, Falvey ÉC, Al-Dawoud M, Tierney G. Ready for impact? A validity and feasibility study of instrumented mouthguards (iMGs). Br J Sports Med 2022; 56:bjsports-2022-105523. [PMID: 35879022 DOI: 10.1136/bjsports-2022-105523] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Assess the validity and feasibility of current instrumented mouthguards (iMGs) and associated systems. METHODS Phase I; four iMG systems (Biocore-Football Research Inc (FRI), HitIQ, ORB, Prevent) were compared against dummy headform laboratory criterion standards (25, 50, 75, 100 g). Phase II; four iMG systems were evaluated for on-field validity of iMG-triggered events against video-verification to determine true-positives, false-positives and false-negatives (20±9 player matches per iMG). Phase III; four iMG systems were evaluated by 18 rugby players, for perceptions of fit, comfort and function. Phase IV; three iMG systems (Biocore-FRI, HitIQ, Prevent) were evaluated for practical feasibility (System Usability Scale (SUS)) by four practitioners. RESULTS Phase I; total concordance correlation coefficients were 0.986, 0.965, 0.525 and 0.984 for Biocore-FRI, HitIQ, ORB and Prevent. Phase II; different on-field kinematics were observed between iMGs. Positive predictive values were 0.98, 0.90, 0.53 and 0.94 for Biocore-FRI, HitIQ, ORB and Prevent. Sensitivity values were 0.51, 0.40, 0.71 and 0.75 for Biocore-FRI, HitIQ, ORB and Prevent. Phase III; player perceptions of fit, comfort and function were 77%, 6/10, 55% for Biocore-FRI, 88%, 8/10, 61% for HitIQ, 65%, 5/10, 43% for ORB and 85%, 8/10, 67% for Prevent. Phase IV; SUS (preparation-management) was 51.3-50.6/100, 71.3-78.8/100 and 83.8-80.0/100 for Biocore-FRI, HitIQ and Prevent. CONCLUSION This study shows differences between current iMG systems exist. Sporting organisations can use these findings when evaluating which iMG system is most appropriate to monitor head acceleration events in athletes, supporting player welfare initiatives related to concussion and head acceleration exposure.
Collapse
Affiliation(s)
- Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK
- England Performance Unit, Rugby Football League, Manchester, UK
- Leeds Rhinos, Leeds, UK
- Human Biology, University of Cape Town, Division of Exercise and Sports Medicine, Cape Town, South Africa
- School of Science and Technology, University of New England, Armidale, New South Wales, Australia
| | - James Tooby
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK
| | - Dan Weaving
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK
| | - Kevin Till
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK
- Leeds Rhinos, Leeds, UK
| | - Cameron Owen
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK
- England Performance Unit, Rugby Football League, Manchester, UK
| | - Mark Begonia
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Keith A Stokes
- Department for Health, University of Bath, Bath, UK
- Rugby Football Union, Twickenham, UK
| | - Steven Rowson
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, USA
| | - Gemma Phillips
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK
- England Performance Unit, Rugby Football League, Manchester, UK
- Hull Kingston Rovers, Hull, UK
| | - Sharief Hendricks
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK
- Human Biology, University of Cape Town, Division of Exercise and Sports Medicine, Cape Town, South Africa
| | - Éanna Cian Falvey
- World Rugby, World Rugby, Dublin, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Marwan Al-Dawoud
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK
| | | |
Collapse
|
42
|
2022 Athanasiou Student and Post-Doc Awards. Ann Biomed Eng 2022. [PMID: 35727466 DOI: 10.1007/s10439-022-02995-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
43
|
Rowson B. 2021 Athanasiou Student and Post-Doc Awards. Ann Biomed Eng 2022; 50:235-236. [DOI: 10.1007/s10439-022-02916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/01/2022] [Indexed: 11/01/2022]
|
44
|
Tooby J, Weaving D, Al-Dawoud M, Tierney G. Quantification of Head Acceleration Events in Rugby League: An Instrumented Mouthguard and Video Analysis Pilot Study. SENSORS (BASEL, SWITZERLAND) 2022; 22:584. [PMID: 35062545 PMCID: PMC8781372 DOI: 10.3390/s22020584] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 05/31/2023]
Abstract
Instrumented mouthguards (iMG) were used to collect head acceleration events (HAE) in men's professional rugby league matches. Peak linear acceleration (PLA), peak angular acceleration (PAA) and peak change in angular velocity (ΔPAV) were collected using custom-fit iMG set with a 5 g single iMG-axis recording threshold. iMG were fitted to ten male Super League players for thirty-one player matches. Video analysis was conducted on HAE to identify the contact event; impacted player; tackle stage and head loading type. A total of 1622 video-verified HAE were recorded. Approximately three-quarters of HAE (75.7%) occurred below 10 g. Most (98.2%) HAE occurred during tackles (59.3% to tackler; 40.7% to ball carrier) and the initial collision stage of the tackle (43.9%). The initial collision stage resulted in significantly greater PAA and ΔPAV than secondary contact and play the ball tackle stages (p < 0.001). Indirect HAE accounted for 29.8% of HAE and resulted in significantly greater ΔPAV (p < 0.001) than direct HAE, but significantly lower PLA (p < 0.001). Almost all HAE were sustained in the tackle, with the majority occurring during the initial collision stage, making it an area of focus for the development of player protection strategies for both ball carriers and tacklers. League-wide and community-level implementation of iMG could enable a greater understanding of head acceleration exposure between playing positions, cohorts, and levels of play.
Collapse
Affiliation(s)
- James Tooby
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds LS1 3HE, UK; (D.W.); (G.T.)
| | - Dan Weaving
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds LS1 3HE, UK; (D.W.); (G.T.)
- Leeds Rhinos Rugby League Club, Leeds LS5 3BW, UK;
| | | | - Gregory Tierney
- Carnegie Applied Rugby Research (CARR) Centre, Carnegie School of Sport, Leeds Beckett University, Leeds LS1 3HE, UK; (D.W.); (G.T.)
- Sport and Exercise Sciences Research Institute, School of Sport, Faculty of Life and Health Sciences, Ulster University, Belfast BT15 1ED, UK
| |
Collapse
|
45
|
Tierney G. Concussion biomechanics, head acceleration exposure and brain injury criteria in sport: a review. Sports Biomech 2021:1-29. [PMID: 34939531 DOI: 10.1080/14763141.2021.2016929] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/05/2021] [Indexed: 10/19/2022]
Abstract
There are mounting concerns surrounding the risk of neurodegenerative diseases and complications associated with concussion incidence and repetitive head acceleration events (HAE) in sport. The aim of this review is to provide an overview of concussion biomechanics, head acceleration exposure and brain injury criteria in sport. Rotational head motion appears to be the primary contributor to brain injury risk due to the unique mechanical properties of the brain and its location within the body. There is a growing evidence base of different biomechanical brain injury mechanisms, including those involving repetitive HAE. Historically, many studies on concussion biomechanics, head acceleration exposure and brain injury criteria in sport have been limited by validity of the biomechanical approaches undertaken. Biomechanical approaches such as instrumented mouthguards and subject-specific finite element (FE) brain models provide a unique opportunity to develop greater brain injury criteria and aid in on-field athlete removal. Implementing these approaches on a large-scale can gain insight into potential risk factors within sports and certain athletes/cohorts who sustain a greater number and/or severity of HAE throughout their playing career. These findings could play a key role in the development of concussion prevention strategies and techniques that mitigate the severity of HAE in sport.
Collapse
Affiliation(s)
- Gregory Tierney
- Sport and Exercise Sciences Research Institute, School of Sport, Faculty of Life and Health Sciences, Ulster University, Belfast, UK
| |
Collapse
|
46
|
Goodin P, Gardner AJ, Dokani N, Nizette B, Ahmadizadeh S, Edwards S, Iverson GL. Development of a Machine-Learning-Based Classifier for the Identification of Head and Body Impacts in Elite Level Australian Rules Football Players. Front Sports Act Living 2021; 3:725245. [PMID: 34870193 PMCID: PMC8640084 DOI: 10.3389/fspor.2021.725245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/13/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Exposure to thousands of head and body impacts during a career in contact and collision sports may contribute to current or later life issues related to brain health. Wearable technology enables the measurement of impact exposure. The validation of impact detection is required for accurate exposure monitoring. In this study, we present a method of automatic identification (classification) of head and body impacts using an instrumented mouthguard, video-verified impacts, and machine-learning algorithms. Methods: Time series data were collected via the Nexus A9 mouthguard from 60 elite level men (mean age = 26.33; SD = 3.79) and four women (mean age = 25.50; SD = 5.91) from the Australian Rules Football players from eight clubs, participating in 119 games during the 2020 season. Ground truth data labeling on the captures used in this machine learning study was performed through the analysis of game footage by two expert video reviewers using SportCode and Catapult Vision. The visual labeling process occurred independently of the mouthguard time series data. True positive captures (captures where the reviewer directly observed contact between the mouthguard wearer and another player, the ball, or the ground) were defined as hits. Spectral and convolutional kernel based features were extracted from time series data. Performances of untuned classification algorithms from scikit-learn in addition to XGBoost were assessed to select the best performing baseline method for tuning. Results: Based on performance, XGBoost was selected as the classifier algorithm for tuning. A total of 13,712 video verified captures were collected and used to train and validate the classifier. True positive detection ranged from 94.67% in the Test set to 100% in the hold out set. True negatives ranged from 95.65 to 96.83% in the test and rest sets, respectively. Discussion and conclusion: This study suggests the potential for high performing impact classification models to be used for Australian Rules Football and highlights the importance of frequencies <150 Hz for the identification of these impacts.
Collapse
Affiliation(s)
- Peter Goodin
- School of Medicine, The University of Melbourne, Parkville, VIC, Australia.,HitIQ Ltd., South Melbourne, VIC, Australia
| | - Andrew J Gardner
- Priority Research Centre for Stroke and Brain Injury, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter New England Local Health District Sports Concussion Clinic Research Program, Calvary Mater Hospital, Waratah, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | | | | | | | - Suzi Edwards
- Priority Research Centre for Stroke and Brain Injury, School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia.,Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, NSW, Australia
| | - Grant L Iverson
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States.,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, United States.,Spaulding Research Institute, Charlestown, MA, United States.,Sports Concussion Program, MassGeneral Hospital for Children, Boston, MA, United States.,Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Charlestown, MA, United States
| |
Collapse
|
47
|
Wang T, Kenny R, Wu LC. Head Impact Sensor Triggering Bias Introduced by Linear Acceleration Thresholding. Ann Biomed Eng 2021; 49:3189-3199. [PMID: 34622314 DOI: 10.1007/s10439-021-02868-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022]
Abstract
Contact sports players frequently sustain head impacts, most of which are mild impacts exhibiting 10-30 g peak head center-of-gravity (CG) linear acceleration. Wearable head impact sensors are commonly used to measure exposure and typically detect impacts using a linear acceleration threshold. However, linear acceleration across the head can substantially vary during 6-degree-of-freedom motion, leading to triggering biases that depend on sensor location and impact condition. We conducted an analytical investigation with impact characteristics extracted from on-field American football and soccer data. We assumed typical mouthguard sensor locations and evaluated whether simulated multi-directional impacts would trigger recording based on per-axis or resultant acceleration thresholding. Across 1387 impact directions, a 10g peak CG linear acceleration impact would trigger at only 24.7% and 31.8% of directions based on a 10 g per-axis and resultant acceleration threshold, respectively. Anterior impact locations had lower trigger rates and even a 30 g impact would not trigger recording in some directions. Such triggering biases also varied by sensor location and linear-rotational head kinematics coupling. Our results show that linear acceleration-based impact triggering could lead to considerable bias in head impact exposure measurements. We propose a set of recommendations to consider for sensor manufacturers and researchers to mitigate this potential exposure measurement bias.
Collapse
Affiliation(s)
- Timothy Wang
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
| | - Rebecca Kenny
- Faculty of Medicine, The University of British Columbia, 2194 Health Sciences Mall, Vancouver, BC, Canada
| | - Lyndia C Wu
- Department of Mechanical Engineering, The University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
48
|
Head Impact Research Using Inertial Sensors in Sport: A Systematic Review of Methods, Demographics, and Factors Contributing to Exposure. Sports Med 2021; 52:481-504. [PMID: 34677820 DOI: 10.1007/s40279-021-01574-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The number and magnitude of head impacts have been assessed in-vivo using inertial sensors to characterise the exposure in various sports and to help understand their potential relationship to concussion. OBJECTIVES We aimed to provide a comprehensive review of the field of in-vivo sensor acceleration event research in sports via the summary of data collection and processing methods, population demographics and factors contributing to an athlete's exposure to sensor acceleration events. METHODS The systematic search resulted in 185 cohort or cross-sectional studies that recorded sensor acceleration events in-vivo during sport participation. RESULTS Approximately 5800 participants were studied in 20 sports using 18 devices that included instrumented helmets, headbands, skin patches, mouthguards and earplugs. Female and youth participants were under-represented and ambiguous results were reported for these populations. The number and magnitude of sensor acceleration events were affected by a variety of contributing factors, suggesting sport-specific analyses are needed. For collision sports, being male, being older, and playing in a game (as opposed to a practice), all contributed to being exposed to more sensor acceleration events. DISCUSSION Several issues were identified across the various sensor technologies, and efforts should focus on harmonising research methods and improving the accuracy of kinematic measurements and impact classification. While the research is more mature for high-school and collegiate male American football players, it is still in its early stages in many other sports and for female and youth populations. The information reported in the summarised work has improved our understanding of the exposure to sport-related head impacts and has enabled the development of prevention strategies, such as rule changes. CONCLUSIONS Head impact research can help improve our understanding of the acute and chronic effects of head impacts on neurological impairments and brain injury. The field is still growing in many sports, but technological improvements and standardisation of processes are needed.
Collapse
|
49
|
Tierney G, Weaving D, Tooby J, Al-Dawoud M, Hendricks S, Phillips G, Stokes KA, Till K, Jones B. Quantifying head acceleration exposure via instrumented mouthguards (iMG): a validity and feasibility study protocol to inform iMG suitability for the TaCKLE project. BMJ Open Sport Exerc Med 2021; 7:e001125. [PMID: 34603742 PMCID: PMC8438841 DOI: 10.1136/bmjsem-2021-001125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/04/2022] Open
Abstract
Instrumented mouthguards (iMGs) have the potential to quantify head acceleration exposures in sport. The Rugby Football League is looking to deploy iMGs to quantify head acceleration exposures as part of the Tackle and Contact Kinematics, Loads and Exposure (TaCKLE) project. iMGs and associated software platforms are novel, thus limited validation studies exist. The aim of this paper is to describe the methods that will determine the validity (ie, laboratory validation of kinematic measures and on-field validity) and feasibility (ie, player comfort and wearability and practitioner considerations) of available iMGs for quantifying head acceleration events in rugby league. Phase 1 will determine the reliability and validity of iMG kinematic measures (peak linear acceleration, peak rotational velocity, peak rotational acceleration), based on laboratory criterion standards. Players will have three-dimensional dental scans and be provided with available iMGs for phase 2 and phase 3. Phase 2 will determine the on-field validity of iMGs (ie, identifying true positive head acceleration events during a match). Phase 3 will evaluate player perceptions of fit (too loose, too tight, bulky, small/thin, held mouth open, held teeth apart, pain in jaw muscles, uneven bite), comfort (on lips, gum, tongue, teeth) and function (speech, swallowing, dry mouth). Phase 4 will evaluate the practical feasibility of iMGs, as determined by practitioners using the system usability scale (preparing iMG system and managing iMG data). The outcome will provide a systematic and robust assessment of a range of iMGs, which will help inform the suitability of each iMG system for the TaCKLE project.
Collapse
Affiliation(s)
- Gregory Tierney
- Sport and Exercise Science Research Institute, Ulster University, Belfast, UK.,Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK
| | - Daniel Weaving
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK.,Leeds Rhinos Rugby League Club, Leeds, UK
| | - James Tooby
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK
| | - Marwan Al-Dawoud
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK.,Leeds Rhinos Rugby League Club, Leeds, UK
| | - Sharief Hendricks
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK.,Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Rondebosch, South Africa
| | - Gemma Phillips
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK.,England Performance Unit, Rugby Football League, Leeds, UK
| | - Keith A Stokes
- Department for Health, University of Bath, Bath, UK.,Rugby Football Union, Twickenham, UK
| | - Kevin Till
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK.,Leeds Rhinos Rugby League Club, Leeds, UK
| | - Ben Jones
- Carnegie Applied Rugby Research (CARR) Centre, Leeds Beckett University, Leeds, UK.,Leeds Rhinos Rugby League Club, Leeds, UK.,Division of Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, Rondebosch, South Africa.,England Performance Unit, Rugby Football League, Leeds, UK.,School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
50
|
Rowson B, Duma SM. Special Issue on Concussions in Sports. Ann Biomed Eng 2021; 49:2673-2676. [PMID: 34435277 DOI: 10.1007/s10439-021-02847-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023]
Affiliation(s)
- Bethany Rowson
- Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA, USA.
| | - Stefan M Duma
- Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|