1
|
Hou L, Hu K, Huang F, Pan Z, Jia X, Liu W, Yao X, Yang Z, Tang P, Li J. Advances in immobilized microbial technology and its application to wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2024; 413:131518. [PMID: 39321941 DOI: 10.1016/j.biortech.2024.131518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The use of immobilized microbial technology in wastewater treatment has drawn extensive attention due to its advantages of high colony density, rapid reaction speed, and good stability. Immobilization carriers are the core of immobilization technology. This review summarizes the types of immobilization carriers and their advantages and disadvantages, focusing on the potential for utilizing novel immobilization carriers (composite carriers, nanomaterials, metal-organic frameworks (MOFs), and biochar materials) in wastewater applications. The basic principles and technical advantages and disadvantages of novel immobilization methods (layer-by-layer self-assembly (LBL) and electrostatic spinning) are then summarized. Additionally, the research progress and application characteristics of immobilized anaerobic ammonia oxidizing (Anammox) and aerobic denitrifying (AD) bacteria for enhanced wastewater nitrogen removal are discussed. Finally, the current challenges of immobilized microbial technology are discussed, and its future development trends are summarized and prospected. This review provides guidance and theoretical support for the practical engineering application of immobilized microbial technology.
Collapse
Affiliation(s)
- Liangang Hou
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Kaiyao Hu
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China.
| | - Feng Huang
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Zhengwei Pan
- China Construction First Group Construction & Development Co. LTD, Beijing 100102, China
| | - Xiang Jia
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Wanqi Liu
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Xingrong Yao
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Zongyi Yang
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Peng Tang
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory of Deep Treatment and Resource Utilization Technology of Municipal Wastewater, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Šketa B, Galman JL, Turner NJ, Žnidaršič-Plazl P. Immobilization of His 6-tagged amine transaminases in microreactors using functionalized nonwoven nanofiber membranes. N Biotechnol 2024; 83:46-55. [PMID: 38960020 DOI: 10.1016/j.nbt.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Process intensification is crucial for industrial implementation of biocatalysis and can be achieved by continuous process operation in miniaturized reactors with efficiently immobilized biocatalysts, enabling their long-term use. Due to their extremely large surface-to-volume ratio, nanomaterials are promising supports for enzyme immobilization. In this work, different functionalized nanofibrous nonwoven membranes were embedded in a two-plate microreactor to enable immobilization of hexahistidine (His6)-tagged amine transaminases (ATAs) in flow. A membrane coated with Cu2+ ions gave the best results regarding His6-tagged ATAs immobilization among the membranes tested yielding an immobilization yield of up to 95.3 % for the purified N-His6-ATA-wt enzyme. Moreover, an efficient one-step enzyme immobilization process from overproduced enzyme in Escherichia coli cell lysate was developed and yielded enzyme loads up to 1088 U mL-1. High enzyme loads resulted in up to 80 % yields of acetophenone produced from 40 mM (S)-α-methylbenzylamine in less than 4 min using a continuously operated microreactor. Up to 81 % of the initial activity was maintained in a 5-day continuous microreactor operation with immobilized His6-tagged ATA constructs. The highest turnover number within the indicated time was 7.23·106, which indicates that this immobilization approach using advanced material and reactor system is highly relevant for industrial implementation.
Collapse
Affiliation(s)
- Borut Šketa
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; Chair of Micro Process Engineering and Technology - COMPETE, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - James L Galman
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Nicholas J Turner
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Polona Žnidaršič-Plazl
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia; Chair of Micro Process Engineering and Technology - COMPETE, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Contato AG, Vici AC, Pinheiro VE, de Oliveira TB, Ortolan GG, de Freitas EN, Buckeridge MS, Polizeli MDLTDM. Thermothelomyces thermophilus cultivated with residues from the fruit pulp industry: enzyme immobilization on ionic supports of a crude cocktail with enhanced production of lichenase. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01208-6. [PMID: 39441457 DOI: 10.1007/s12223-024-01208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
β-Glucans comprise a group of β-D-glucose polysaccharides (glucans) that occur naturally in the cell walls of bacteria, fungi, and cereals. Its degradation is catalyzed by β-glucanases, enzymes that catalyze the breakdown of β-glucan into cello-oligosaccharides and glucose. These enzymes are classified as endo-glucanases, exo-glucanases, and glucosidases according to their mechanism of action, being the lichenases (β-1,3;1,4-glucanases, EC 3.2.1.73) one of them. Hence, we aimed to enhance lichenase production by Thermothelomyces thermophilus through the application of response surface methodology, using tamarind (Tamarindus indica) and jatoba (Hymenaea courbaril) seeds as carbon sources. The crude extract was immobilized, with a focus on improving lichenase activity, using various ionic supports, including MANAE (monoamine-N-aminoethyl), DEAE (diethylaminoethyl)-cellulose, CM (carboxymethyl)-cellulose, and PEI (polyethyleneimine)-agarose. Regarding lichenase, the optimal conditions yielding the highest activity were determined as 1.5% tamarind seeds, cultivation at 50 °C under static conditions for 72 h. Moreover, transitioning from Erlenmeyer flasks to a bioreactor proved pivotal, resulting in a 2.21-fold increase in activity. Biochemical characterization revealed an optimum temperature of 50 °C and pH of 6.5. However, sustained stability at varying pH and temperature levels was challenging, underscoring the necessity of immobilizing lichenase on ionic supports. Notably, CM-cellulose emerged as the most effective immobilization medium, exhibiting an activity of 1.01 U/g of the derivative (enzyme plus support), marking a substantial enhancement. This study marks the first lichenase immobilization on these chemical supports in existing literature.
Collapse
Affiliation(s)
- Alex Graça Contato
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Ana Claudia Vici
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Elisa Pinheiro
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tássio Brito de Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Systematics and Ecology, Federal University of Paraiba, João Pessoa, Paraiba, Brazil
| | - Guilherme Guimarães Ortolan
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Emanuelle Neiverth de Freitas
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Maria de Lourdes Teixeira de Moraes Polizeli
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Voros A, Halmagyi TG, Saringer S, Hornok V, Szilagyi I. Papain functionalized Prussian blue nanozyme colloids of triple enzymatic function. Chem Commun (Camb) 2024. [PMID: 39431451 DOI: 10.1039/d4cc04599h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Prussian blue nanozymes were surface engineered with papain enzyme to develop processable nanoparticle dispersions with antioxidant and hydrolytic activities for biocatalytic applications. Enzyme coating improved the colloidal stability of the nanozymes and the obtained papain-Prussian blue hybrid showed remarkable peroxidase (vmax = 8.82 × 10-9 M s-1, KM = 12.3 mM), superoxide dismutase (IC50 = 14.6 ppm) and protease-like (41.2 U L-1) activities.
Collapse
Affiliation(s)
- Attila Voros
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 1 Rerrich Bela ter, 6720 Szeged, Hungary.
| | - Tibor G Halmagyi
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 1 Rerrich Bela ter, 6720 Szeged, Hungary.
| | - Szilard Saringer
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 1 Rerrich Bela ter, 6720 Szeged, Hungary.
| | - Viktoria Hornok
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 1 Rerrich Bela ter, 6720 Szeged, Hungary.
| | - Istvan Szilagyi
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Centre of Excellence, University of Szeged, 1 Rerrich Bela ter, 6720 Szeged, Hungary.
| |
Collapse
|
5
|
Wysokowski M, Chmielewska Z, Sandomierski M, Zdarta J, Jesionowski T. Chitin membrane for efficient laccase immobilization and synergistic removal of 17α-ethynylestradiol from water-based solutions. Int J Biol Macromol 2024; 282:136599. [PMID: 39426765 DOI: 10.1016/j.ijbiomac.2024.136599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
A unique chitin-laccase membrane was fabricated as an environmentally friendly biocatalytic platform, utilizing 1-butyl-3-methylimidazolium acetate as the solvent for chitin. Observations using scanning electron microscopy showed that the chitin-laccase membrane possessed a uniform and densely packed structure. Based on the presence of FT-IR signals at 1020 cm-1 and changes in the intensity of signals at 1540 cm-1 and 1645 cm-1, the effectiveness of laccase immobilization was confirmed. FT-IR mapping revealed that the enzyme is evenly distributed on the surface of the membrane. The catalytic activity of the native enzyme and laccase immobilized using the membrane was determined based on a model reaction, and the retention of high activity was confirmed using real solutions. Laccase immobilized using the chitinous membrane retained over 60 % of its initial activity after 30 days of storage at 4 °C. By contrast, the free enzyme retained <40 % of its initial activity. Moreover, the activity of chitin-laccase system remained at 85 % after 5 cycles. This novel chitin-laccase combination was tested in the 17α-ethynylestradiol (EE2) removal from water-based solutions. It was found that EE2 underwent synergistic degradation through concurrent adsorption and biocatalytic transformation, with enzymatic conversion as the dominant mechanism.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland.
| | - Zuzanna Chmielewska
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Mariusz Sandomierski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| | - Jakub Zdarta
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland.
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
| |
Collapse
|
6
|
Sabahi Mohammadi N, Sowti Khiabani M, Ghanbarzadeh B, Rezaei Mokarram R, Tizchang S. Dispersion of halloysite nanotube/lipase nanohybrids as nanofillers into polyvinyl alcohol-sodium alginate cryogel: Characterization and bio-catalytic activity analysis. Int J Biol Macromol 2024; 281:136529. [PMID: 39401624 DOI: 10.1016/j.ijbiomac.2024.136529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
The purpose of this study is to formulate and characterize the cryogels containing halloysite nanotube (HNT)/lipase nanohybrid (NH-cryogel) in comparison to pure cryogels as well as cryogels containing lipase (lipase-cryogel). The cryogels were synthesized using polyvinyl alcohol (PVA) and sodium alginate (SA). The products are tested to explore the influence of the HNT/lipase nanohybride (NH) as nanofillers on the cryogel properties using methods such as swelling degree, water uptake measurement, TGA, XRD, FESEM and FTIR. Additionally, the effects of cryogels on the stability and biocatalytic activities of lipase and NH, were studied and compared to the free lipase to evaluate their potential applications as enzyme carriers. The addition of nanofillers into the cryogel improved is thermal stability. The results implied that NH-cryogel had better enzyme activity than lipase-cryogel and free lipase at different temperatures and pH values. The NH-cryogel residual activity was 85.5 % after ten cycles of reuse while lipase-cryogel showed lower residual activity (60.3 %). Furthermore, the NH-cryogel retained 81.1 % of its residual activity while this was 51.0 % for lipase-cryogel after thirty days of storage. Therefore, the presented results in this study provide a pathway to show that produced nano-composite cryogels could be useful substances for food and pharmaceutical industries applications.
Collapse
Affiliation(s)
- Najmeh Sabahi Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus Mersin, Turkey
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Samira Tizchang
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| |
Collapse
|
7
|
Kanzaki Y, Minami R, Ota K, Adachi J, Hori Y, Ohtani R, Le Ouay B, Ohba M. Enhancing Performances of Enzyme/Metal-Organic Polyhedra Composites by Mixed-Protein Co-Immobilization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54423-54434. [PMID: 39315760 DOI: 10.1021/acsami.4c10146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Protein immobilization using water-soluble ionic metal-organic polyhedra (MOPs) acting as porous spacers has recently been demonstrated as a potent strategy for the preparation of biocatalysts. In this article, we describe a mixed-protein approach to achieve biocomposites with adjustable enzyme contents and excellent immobilization efficiencies, in a systematic and well-controlled manner. Self-assembly of either cationic or anionic MOPs with bovine serum albumin or egg white lysozyme combined with enzymes (alkaline phosphatase, laccase or cytochrome c) led to solid-state catalysts with a high retention of enzyme activity. Furthermore, for all these systems, the dilution of enzymes within the solid-state composite led to noticeably improved catalytic performances, with both higher specific activity and affinity for substrate.
Collapse
Affiliation(s)
- Yuri Kanzaki
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryosuke Minami
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Koshiro Ota
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Junya Adachi
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuichiro Hori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryo Ohtani
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Benjamin Le Ouay
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Masaaki Ohba
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Jankowska K, Su Z, Zdarta J, Skiadas IV, Woodley JM, Pinelo M. High performance removal of chlorophenols from an aqueous solution using an enzymatic membrane bioreactor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124348. [PMID: 38936790 DOI: 10.1016/j.envpol.2024.124348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/29/2024]
Abstract
Organochlorides and particularly chlorophenols are environmental pollutants that deserve special attention. Enzymatic membrane bioreactors may be alternatives for efficiently removing such hazardous organochlorides from aqueous solutions. We propose here a novel enzymatic membrane bioreactor comprising an ultrafiltration membrane GR81PP, electrospun fibers made of cellulose acetate, and laccase immobilized using an incubation and a fouling approach. Configurations of this biosystem exhibiting the highest catalytic activity were selected for removal of 2-chlorophenol and 4-chlorophenol from aqueous solution in an enzymatic membrane bioreactor under various process conditions. The highest removal of chlorophenols, at 88% and 74% for 2-chlorophenol and 4-chlorophenol, respectively, occurred at pH 5 and 30 °C in the GR81PP/cellulose acetate/laccase biosystem with enzyme immobilized by the fouling method. Furthermore, the GR81PP/cellulose acetate/laccase biosystem with enzyme immobilized by the fouling method exhibited significant reusability and storage stability compared with the biosystem with laccase immobilized by the incubation method. The mechanism of enzyme immobilization is based on pore blocking and cake-layer formation, while the mechanism of chlorophenols removal was identified as a synergistic combination of membrane separation and enzymatic conversion. The importance of the conducted research is due to efficient removal of hazardous organochlorides using a novel enzymatic membrane bioreactor. The study demonstrates the biosystem's high catalytic activity, reusability, and stability, offering a promising solution for environmental pollution control.
Collapse
Affiliation(s)
- Katarzyna Jankowska
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 227, DK-2800, Kongens Lyngby, Denmark
| | - Ziran Su
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 227, DK-2800, Kongens Lyngby, Denmark
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Ioannis V Skiadas
- Pilot Plant, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228A, DK-2800, Kongens Lyngby, Denmark
| | - John M Woodley
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 227, DK-2800, Kongens Lyngby, Denmark
| | - Manuel Pinelo
- Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 227, DK-2800, Kongens Lyngby, Denmark.
| |
Collapse
|
9
|
Deiana L, Avella A, Rafi AA, Mincheva R, De Winter J, Lo Re G, Córdova A. In Situ Enzymatic Polymerization of Ethylene Brassylate Mediated by Artificial Plant Cell Walls in Reactive Extrusion. ACS APPLIED POLYMER MATERIALS 2024; 6:10414-10422. [PMID: 39296488 PMCID: PMC11406489 DOI: 10.1021/acsapm.4c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/21/2024]
Abstract
Herein, we describe a solvent-free bioinspired approach for the polymerization of ethylene brassylate. Artificial plant cell walls (APCWs) with an integrated enzyme were fabricated by self-assembly, using microcrystalline cellulose as the main structural component. The resulting APCW catalysts were tested in bulk reactions and reactive extrusion, leading to high monomer conversion and a molar mass of around 4 kDa. In addition, we discovered that APCW catalyzes the formation of large ethylene brassylate macrocycles. The enzymatic stability and efficiency of the APCW were investigated by recycling the catalyst both in bulk and reactive extrusion. The obtained poly(ethylene brassylate) was applied as a biobased and biodegradable hydrophobic paper coating.
Collapse
Affiliation(s)
- Luca Deiana
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, Sundsvall 85179, Sweden
| | - Angelica Avella
- Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2a, Gothenburg 41258, Sweden
| | - Abdolrahim A Rafi
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, Sundsvall 85179, Sweden
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), 7000 Mons, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs), University of Mons (UMONS), 7000 Mons, Belgium
| | - Giada Lo Re
- Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2a, Gothenburg 41258, Sweden
| | - Armando Córdova
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, Sundsvall 85179, Sweden
| |
Collapse
|
10
|
Xu L, Liu H, Wang X, Li Q, Xu S, Sun C, Suo H. Encapsulation of Immobilized β-Glucosidase with Calcium Metal-Organic Frameworks for Enhanced Stability in Hydrolysis of Cellobiose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18727-18735. [PMID: 39159299 DOI: 10.1021/acs.langmuir.4c02436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
β-Glucosidase (β-G) holds promising applications in various fields, such as biomass energy, food, pharmaceuticals, and environmental protection, yet its industrial application is still limited by issues of stability and recycling. Herein, we first immobilized β-G onto the surface of magnetic chitosan nanoparticles (MCS/β-G) through adsorption methods. Subsequently, utilizing the metal-organic framework (MOF), CaBDC, which possesses good stability under acidic conditions, we encapsulated MCS/β-G. The resulting biocatalyst (MCS/β-G@CaBDC) exhibited excellent activity and recyclability. MCS/β-G@CaBDC can convert 91.5% of cellobiose to glucose in 60 min and maintained 81.9% activity after 10 cycles. The apparent Km value of MCS/β-G@CaBDC was 0.148 mM, lower than free β-G (0.166 mM) and MCS/β-G (0.173 mM). The CaBDC layer increased the mass transfer resistance of the reaction but also triggered structural rearrangement of β-G during the encapsulation process. This resulted in the β-sheet content rising to 68.4%, which, in turn, contributed to enhancing the rigidity of β-G. Moreover, the saturated magnetic strength of this biocatalyst could reach 37.3 emu/g, facilitating its magnetic recovery. The biocatalyst prepared in this study exhibits promising application prospects, and the immobilization method can provide valuable insights into the field of enzyme immobilization.
Collapse
Affiliation(s)
- Lili Xu
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Huanruo Liu
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Xiaohan Wang
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Qi Li
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Suli Xu
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Caizheng Sun
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| | - Hongbo Suo
- State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, People's Republic of China
| |
Collapse
|
11
|
Jeon HW, Lee JS, Lee CH, Kim D, Lee HS, Hwang ET. Hyperactivation of crosslinked lipases in elastic hydroxyapatite microgel and their properties. J Biol Eng 2024; 18:46. [PMID: 39223667 PMCID: PMC11370140 DOI: 10.1186/s13036-024-00440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Effective enzyme stabilization through immobilization is essential for the functional usage of enzymatic reactions. We propose a new method for synthesizing elastic hydroxyapatite microgel (E-HAp-M) materials and immobilizing lipase using this mesoporous mineral via the ship-in-a-bottle-neck strategy. The physicochemical parameters of E-HAp-M were thoroughly studied, revealing that E-HAp-M provides efficient space for enzyme immobilization. As a model enzyme, lipase (LP) was entrapped and then cross-linked enzyme structure, preventing leaching from mesopores, resulting in highly active and stable LP/E-HAp-M composites. By comparing LP activity under different temperature and pH conditions, it was observed that the cross-linked LP exhibited improved thermal stability and pH resistance compared to the free enzyme. In addition, they demonstrated a 156% increase in catalytic activity compared with free LP in hydrolysis reactions at room temperature. The immobilized LP maintained 45% of its initial activity after 10 cycles of recycling and remained stable for over 160 days. This report presents the first demonstration of a stabilized cross-linked LP in E-HAp-M, suggesting its potential application in enzyme-catalyzed processes within biocatalysis technology.
Collapse
Affiliation(s)
- Hyo Won Jeon
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Jun Seop Lee
- Center for Convergence Bioceramic Materials, Korea, Institute of Ceramic Engineering & Technology, Cheongju-Si, Chungcheongbuk-Do, Republic of Korea
| | - Chan Hee Lee
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Dain Kim
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Hye Sun Lee
- Center for Convergence Bioceramic Materials, Korea, Institute of Ceramic Engineering & Technology, Cheongju-Si, Chungcheongbuk-Do, Republic of Korea.
| | - Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea.
| |
Collapse
|
12
|
Albayati SH, Nezhad NG, Taki AG, Rahman RNZRA. Efficient and easible biocatalysts: Strategies for enzyme improvement. A review. Int J Biol Macromol 2024; 276:133978. [PMID: 39038570 DOI: 10.1016/j.ijbiomac.2024.133978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Owing to the environmental friendliness and vast advantages that enzymes offer in the biotechnology and industry fields, biocatalysts are a prolific investigation field. However, the low catalytic activity, stability, and specific selectivity of the enzyme limit the range of the reaction enzymes involved in. A comprehensive understanding of the protein structure and dynamics in terms of molecular details enables us to tackle these limitations effectively and enhance the catalytic activity by enzyme engineering or modifying the supports and solvents. Along with different strategies including computational, enzyme engineering based on DNA recombination, enzyme immobilization, additives, chemical modification, and physicochemical modification approaches can be promising for the wide spread of industrial enzyme usage. This is attributed to the successful application of biocatalysts in industrial and synthetic processes requires a system that exhibits stability, activity, and reusability in a continuous flow process, thereby reducing the production cost. The main goal of this review is to display relevant approaches for improving enzyme characteristics to overcome their industrial application.
Collapse
Affiliation(s)
- Samah Hashim Albayati
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anmar Ghanim Taki
- Department of Radiology Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
13
|
Abdalbagemohammedabdalsadeg S, Xiao BL, Ma XX, Li YY, Wei JS, Moosavi-Movahedi AA, Yousefi R, Hong J. Catalase immobilization: Current knowledge, key insights, applications, and future prospects - A review. Int J Biol Macromol 2024; 276:133941. [PMID: 39032907 DOI: 10.1016/j.ijbiomac.2024.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Catalase (CAT), a ubiquitous enzyme in all oxygen-exposed organisms, effectively decomposes hydrogen peroxide (H2O2), a harmful by-product, into water and oxygen, mitigating oxidative stress and cellular damage, safeguarding cellular organelles and tissues. Therefore, CAT plays a crucial role in maintaining cellular homeostasis and function. Owing to its pivotal role, CAT has garnered considerable interest. However, many challenges arise when used, especially in multiple practical processes. "Immobilization", a widely-used technique, can help improve enzyme properties. CAT immobilization offers numerous advantages, including enhanced stability, reusability, and facilitated downstream processing. This review presents a comprehensive overview of CAT immobilization. It starts with discussing various immobilization mechanisms, support materials, advantages, drawbacks, and factors influencing the performance of immobilized CAT. Moreover, the review explores the application of the immobilized CAT in various industries and its prospects, highlighting its essential role in diverse fields and stimulating further research and investigation. Furthermore, the review highlights some of the world's leading companies in the field of the CAT industry and their substantial potential for economic contribution. This review aims to serve as a discerning, source of information for researchers seeking a comprehensive cutting-edge overview of this rapidly evolving field and have been overwhelmed by the size of publications.
Collapse
Affiliation(s)
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Xin-Xin Ma
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Yang-Yang Li
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | - Jian-She Wei
- School of Life Sciences, Henan University, 475000 Kaifeng, China
| | | | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, 1417614418 Tehran, Iran
| | - Jun Hong
- School of Life Sciences, Henan University, 475000 Kaifeng, China.
| |
Collapse
|
14
|
Shishparenok AN, Furman VV, Dobryakova NV, Zhdanov DD. Protein Immobilization on Bacterial Cellulose for Biomedical Application. Polymers (Basel) 2024; 16:2468. [PMID: 39274101 PMCID: PMC11397966 DOI: 10.3390/polym16172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
New carriers for protein immobilization are objects of interest in various fields of biomedicine. Immobilization is a technique used to stabilize and provide physical support for biological micro- and macromolecules and whole cells. Special efforts have been made to develop new materials for protein immobilization that are non-toxic to both the body and the environment, inexpensive, readily available, and easy to modify. Currently, biodegradable and non-toxic polymers, including cellulose, are widely used for protein immobilization. Bacterial cellulose (BC) is a natural polymer with excellent biocompatibility, purity, high porosity, high water uptake capacity, non-immunogenicity, and ease of production and modification. BC is composed of glucose units and does not contain lignin or hemicellulose, which is an advantage allowing the avoidance of the chemical purification step before use. Recently, BC-protein composites have been developed as wound dressings, tissue engineering scaffolds, three-dimensional (3D) cell culture systems, drug delivery systems, and enzyme immobilization matrices. Proteins or peptides are often added to polymeric scaffolds to improve their biocompatibility and biological, physical-chemical, and mechanical properties. To broaden BC applications, various ex situ and in situ modifications of native BC are used to improve its properties for a specific application. In vivo studies showed that several BC-protein composites exhibited excellent biocompatibility, demonstrated prolonged treatment time, and increased the survival of animals. Today, there are several patents and commercial BC-based composites for wounds and vascular grafts. Therefore, further research on BC-protein composites has great prospects. This review focuses on the major advances in protein immobilization on BC for biomedical applications.
Collapse
Affiliation(s)
| | - Vitalina V Furman
- The Center for Chemical Engineering, ITMO University, 197101 Saint Petersburg, Russia
| | | | - Dmitry D Zhdanov
- Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., 119121 Moscow, Russia
- Department of Biochemistry, People's Friendship University of Russia Named after Patrice Lumumba (RUDN University), Miklukho-Maklaya St. 6, 117198 Moscow, Russia
| |
Collapse
|
15
|
Abdelhamid MAA, Khalifa HO, Yoon HJ, Ki MR, Pack SP. Microbial Immobilized Enzyme Biocatalysts for Multipollutant Mitigation: Harnessing Nature's Toolkit for Environmental Sustainability. Int J Mol Sci 2024; 25:8616. [PMID: 39201301 PMCID: PMC11355015 DOI: 10.3390/ijms25168616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
The ever-increasing presence of micropollutants necessitates the development of environmentally friendly bioremediation strategies. Inspired by the remarkable versatility and potent catalytic activities of microbial enzymes, researchers are exploring their application as biocatalysts for innovative environmental cleanup solutions. Microbial enzymes offer remarkable substrate specificity, biodegradability, and the capacity to degrade a wide array of pollutants, positioning them as powerful tools for bioremediation. However, practical applications are often hindered by limitations in enzyme stability and reusability. Enzyme immobilization techniques have emerged as transformative strategies, enhancing enzyme stability and reusability by anchoring them onto inert or activated supports. These improvements lead to more efficient pollutant degradation and cost-effective bioremediation processes. This review delves into the diverse immobilization methods, showcasing their success in degrading various environmental pollutants, including pharmaceuticals, dyes, pesticides, microplastics, and industrial chemicals. By highlighting the transformative potential of microbial immobilized enzyme biocatalysts, this review underscores their significance in achieving a cleaner and more sustainable future through the mitigation of micropollutant contamination. Additionally, future research directions in areas such as enzyme engineering and machine learning hold immense promise for further broadening the capabilities and optimizing the applications of immobilized enzymes in environmental cleanup.
Collapse
Affiliation(s)
- Mohamed A. A. Abdelhamid
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Department of Botany and Microbiology, Faculty of Science, Minia University, Minia 61519, Egypt
- Faculty of Education and Art, Sohar University, Sohar 311, Oman
| | - Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates;
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Hyo Jik Yoon
- Institute of Natural Science, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea;
| | - Mi-Ran Ki
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
- Institute of Industrial Technology, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea; (M.A.A.A.); (M.-R.K.)
| |
Collapse
|
16
|
Atiroğlu V, Atiroğlu A, Atiroğlu A, Al-Hajri AS, Özacar M. Green immobilization: Enhancing enzyme stability and reusability on eco-friendly support. Food Chem 2024; 448:138978. [PMID: 38522291 DOI: 10.1016/j.foodchem.2024.138978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
In the current years of heightened focus on green chemistry and sustainable materials, this study delves into the untapped potential of hyaluronic acid (HA), chitin, and chitosan-prominent polysaccharides for groundbreaking applications. The primary aim is to effectively immobilize catalase enzymes onto matrices composed of chitosan, chitin, HA/chitin, and HA/chitosan. The rigorous investigation covers a spectrum of structural enhancements encompassing pH and temperature stability, thermal resilience, half-life extension, storage durability, reusability, and comprehensive FTIR analyses of the catalase immobilization. Notably, catalase activity demonstrated remarkable resilience on HA/chitin and HA/chitosan matrices, maintaining 73.80% and 79.55% efficacy even after 25 cycles. The introduction of covalent cross-linking between catalase and HA/chitin or HA/chitosan, facilitated by a cross-linking agent, significantly amplified stability and recycling efficiency. Consequently, the immobilized catalase showcases substantial promise across a spectrum of industrial applications, spanning from food and detergent production to bioremediation and diverse commercial processes. This underscores its pivotal role as a versatile and invaluable innovation in the realm of sustainable technologies.
Collapse
Affiliation(s)
- Vesen Atiroğlu
- Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54050, Sakarya, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, EnzymeTechnology, Nan &Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R & D Group), 54050, Sakarya, Turkey.
| | - Atheer Atiroğlu
- Sakarya University, Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), 54050, Sakarya, Turkey; Sakarya University, Biomaterials, Energy, Photocatalysis, EnzymeTechnology, Nan &Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R & D Group), 54050, Sakarya, Turkey
| | - Ahmed Atiroğlu
- Sakarya University, Faculty of Medicine, 54290, Sakarya, Turkey
| | | | - Mahmut Özacar
- Sakarya University, Biomaterials, Energy, Photocatalysis, EnzymeTechnology, Nan &Advanced Materials, Additive Manufacturing, Environmental Applications, and Sustainability Research & Development Group (BIOENAMS R & D Group), 54050, Sakarya, Turkey; Sakarya University, Faculty of Science, Department of Chemistry, 54050, Sakarya, Turkey
| |
Collapse
|
17
|
Spanou A, Liakouli NC, Fiotaki C, Pavlidis IV. Comparative Study of Immobilized Biolipasa-R for Second Generation Biodiesel Production from an Acid Oil. Chembiochem 2024:e202400514. [PMID: 39004943 DOI: 10.1002/cbic.202400514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
The primary objective of this work is to develop a sustainable biocatalytic transesterification process for low-grade oils, aligning with EU green technology requirements for the shift to second generation biodiesel. Thus, we investigated the immobilization and subsequent application of the lipase Biolipasa-R on transesterification processes to produce fatty acid methyl esters (FAMEs) from both a sunflower oil and an acid oil which is a bioproduct of the biodiesel industry. The lipase was immobilized on biomaterials, such as diatomaceous earth, with a yield of 60 %, and commercial carriers such as methacrylic resins with a yield of 100 %. The enzyme demonstrated superior activity when immobilized on diatomaceous earth, particularly in reactions involving the acid oil, outperforming the benchmark enzyme Novozym® 435 (95.1 % and 35 % conversion respectively). This work highlights the potential of Biolipasa-R as a cost-effective and efficient biocatalyst for biodiesel production and emphasizes the environmental benefits of utilizing industrial byproducts and eco-friendly immobilization techniques. The findings suggest that Biolipasa-R is a promising candidate for industrial applications in biodiesel production, offering a sustainable solution for waste management and energy generation.
Collapse
Affiliation(s)
- Androniki Spanou
- Department of Chemistry, University of Crete, Voutes University Campus, 70013, Heraklion, Greece
| | - Nektaria C Liakouli
- Department of Chemistry, University of Crete, Voutes University Campus, 70013, Heraklion, Greece
| | - Christina Fiotaki
- Department of Chemistry, University of Crete, Voutes University Campus, 70013, Heraklion, Greece
| | - Ioannis V Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, 70013, Heraklion, Greece
| |
Collapse
|
18
|
Yarman A, Waffo AFT, Katz S, Bernitzky C, Kovács N, Borrero P, Frielingsdorf S, Supala E, Dragelj J, Kurbanoglu S, Neumann B, Lenz O, Mroginski MA, Gyurcsányi RE, Wollenberger U, Scheller FW, Caserta G, Zebger I. A Strep-Tag Imprinted Polymer Platform for Heterogenous Bio(electro)catalysis. Angew Chem Int Ed Engl 2024:e202408979. [PMID: 38979660 DOI: 10.1002/anie.202408979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
Molecularly imprinted polymers (MIPs) are artificial receptors equipped with selective recognition sites for target molecules. One of the most promising strategies for protein MIPs relies on the exploitation of short surface-exposed protein fragments, termed epitopes, as templates to imprint binding sites in a polymer scaffold for a desired protein. However, the lack of high-resolution structural data of flexible surface-exposed regions challenges the selection of suitable epitopes. Here, we addressed this drawback by developing a polyscopoletin-based MIP that recognizes recombinant proteins via imprinting of the widely used Strep-tag II affinity peptide (Strep-MIP). Electrochemistry, surface-sensitive IR spectroscopy, and molecular dynamics simulations were employed to ensure an utmost control of the Strep-MIP electrosynthesis. The functionality of this novel platform was verified with two Strep-tagged enzymes: an O2-tolerant [NiFe]-hydrogenase, and an alkaline phosphatase. The enzymes preserved their biocatalytic activities after multiple utilization confirming the efficiency of Strep-MIP as a general biocompatible platform to confine recombinant proteins for exploitation in biotechnology.
Collapse
Affiliation(s)
- Aysu Yarman
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
- Molecular Biotechnology, Faculty of Science, Turkish-German University, Sahinkaya Cad. No. 86, Beykoz, Istanbul, 34820, Türkiye
| | - Armel F T Waffo
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Cornelius Bernitzky
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Norbert Kovács
- BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Paloma Borrero
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Stefan Frielingsdorf
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Eszter Supala
- BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Jovan Dragelj
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Sevinc Kurbanoglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Yenimahalle, Ankara, 06560, Turkey
| | - Bettina Neumann
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Róbert E Gyurcsányi
- BME Lendület Chemical Nanosensors Research Group, Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
- HUN-REN-BME Computation Driven Chemistry Research Group, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111, Budapest, Hungary
| | - Ulla Wollenberger
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Frieder W Scheller
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476, Potsdam
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, PC 14 Straße des 17. Juni 135, 10623, Berlin, Germany
| |
Collapse
|
19
|
Chalella Mazzocato M, Jacquier JC. Recent Advances and Perspectives on Food-Grade Immobilisation Systems for Enzymes. Foods 2024; 13:2127. [PMID: 38998633 PMCID: PMC11241248 DOI: 10.3390/foods13132127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
The use of enzyme immobilisation is becoming increasingly popular in beverage processing, as this method offers significant advantages, such as enhanced enzyme performance and expanded applications, while allowing for easy process termination via simple filtration. This literature review analysed approximately 120 articles, published on the Web of Science between 2000 and 2023, focused on enzyme immobilisation systems for beverage processing applications. The impact of immobilisation on enzymatic activity, including the effects on the chemical and kinetic properties, recyclability, and feasibility in continuous processes, was evaluated. Applications of these systems to beverage production, such as wine, beer, fruit juices, milk, and plant-based beverages, were examined. The immobilisation process effectively enhanced the pH and thermal stability but caused negative impacts on the kinetic properties by reducing the maximum velocity and Michaelis-Menten constant. However, it allowed for multiple reuses and facilitated continuous flow processes. The encapsulation also allowed for easy process control by simplifying the removal of the enzymes from the beverages via simple filtration, negating the need for expensive heat treatments, which could result in product quality losses.
Collapse
Affiliation(s)
- Marcella Chalella Mazzocato
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin (UCD), Belfield, D04 V1W8 Dublin, Ireland
| | - Jean-Christophe Jacquier
- School of Agriculture and Food Science, Institute of Food and Health, University College Dublin (UCD), Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
20
|
Wu J, Gao D, Wang L, Du X, Zhang Z, Liang H. Bioremediation of 2,4,6-trichlorophenol by extracellular enzymes of white rot fungi immobilized with sodium alginate/hydroxyapatite/chitosan microspheres. ENVIRONMENTAL RESEARCH 2024; 252:118937. [PMID: 38621627 DOI: 10.1016/j.envres.2024.118937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Hydroxyapatite, a calcium phosphate biomass material known for its excellent biocompatibility, holds promising applications in water, soil, and air treatment. Sodium alginate/hydroxyapatite/chitosan (SA-HA-CS) microspheres were synthesized by cross-linking sodium alginate with calcium chloride. These microspheres were carriers for immobilizing extracellular crude enzymes from white rot fungi through adsorption, facilitating the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) in water and soil. At 50 °C, the immobilized enzyme retained 87.2% of its maximum activity, while the free enzyme activity dropped to 68.86%. Furthermore, the immobilized enzyme maintained 68.09% of its maximum activity at pH 7, surpassing the 51.16% observed for the free enzyme. Under optimal conditions (pH 5, 24 h), the immobilized enzymes demonstrated a remarkable 94.7% removal rate for 160 mg/L 2,4,6-TCP, outperforming the 62.1% achieved by free crude enzymes. The degradation of 2,4,6-TCP by immobilized and free enzymes adhered to quasi-first-order degradation kinetics. Based on LC-MS, the plausible biodegradation mechanism and reaction pathway of 2,4,6-TCP were proposed, with the primary degradation product identified as 1,2,4-trihydroxybenzene. The immobilized enzyme effectively removed 72.9% of 2,4,6-TCP from the soil within 24 h. The degradation efficiency of the immobilized enzyme varied among different soil types, exhibiting a negative correlation with soil organic matter content. These findings offer valuable insights for advancing the application of immobilized extracellular crude enzymes in 2,4,6-TCP remediation.
Collapse
Affiliation(s)
- Jing Wu
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Litao Wang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xuran Du
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zhou Zhang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
21
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Tavano O, Abellanas-Perez P, de Andrades D, Santiz-Gómez JA, Berenguer-Murcia Á, Fernandez-Lafuente R. A review on the immobilization of bromelain. Int J Biol Macromol 2024; 273:133089. [PMID: 38878936 DOI: 10.1016/j.ijbiomac.2024.133089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
This review shows the endeavors performed to prepare immobilized formulations of bromelain extract, usually from pineapple, and their use in diverse applications. This extract has a potent proteolytic component that is based on thiol proteases, which differ depending on the location on the fruit. Stem and fruit are the areas where higher activity is found. The edible origin of this enzyme is one of the features that determines the applications of the immobilized bromelain to a more significant degree. The enzyme has been immobilized on a wide diversity of supports via different strategies (covalent bonds, ion exchange), and also forming ex novo solids (nanoflowers, CLEAs, trapping in alginate beads, etc.). The use of preexisting nanoparticles as immobilization supports is relevant, as this facilitates one of the main applications of the immobilized enzyme, in therapeutic applications (as wound dressing and healing components, antibacterial or anticancer, mucus mobility control, etc.). A curiosity is the immobilization of this enzyme on spores of probiotic microorganisms via adsorption, in order to have a perfect in vivo compatibility. Other outstanding applications of the immobilized enzyme are in the stabilization of wine versus haze during storage, mainly when immobilized on chitosan. Curiously, the immobilized bromelain has been scarcely applied in the production of bioactive peptides.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Daniel Castañeda-Valbuena
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - José Alfredo Santiz-Gómez
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | | |
Collapse
|
22
|
da Cruz LF, Polizeli AG, Enzweiler H, Paulino AT. Stabilization of β-D-galactosidase in solution containing chitosan-based membrane: Central composite rotatable design. Int J Biol Macromol 2024; 273:132992. [PMID: 38857718 DOI: 10.1016/j.ijbiomac.2024.132992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/01/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
β-D-galactosidase is a hydrolase enzyme capable of hydrolyzing lactose in milk-based foods. Its free form can be inactivated in solution during the production of low-dosage lactose foods. Then, it is important to study strategies for avoiding the free enzyme inactivation with the aim of circumventing this problem. The stabilization of β-D-galactosidase in aqueous solution after interactions with chitosan/eucalyptus sawdust composite membrane proved to be a potential strategy when optimized by central composite rotatable (CCR) design. In this case, the best experimental conditions for β-D-galactosidase partitioning and stability in an aqueous medium containing the chitosan-based composite membrane reinforced with eucalyptus sawdust were i) enzyme/buffer solution ratio of 0.0057, ii) pH 5.6, iii) membrane mass of 50 mg, and iv) temperature lower than 37 °C. Significance was found for the linear enzyme/buffer solution ratio, linear temperature, and quadratic pH (p < 0.05) in the interval between 0 and 60 min of study. In the interval between 60 and 120 min, there was significance (p < 0.12) for linear temperature, the temperature-enzyme/buffer solution ratio interaction and the interaction between linear pH and linear enzyme/buffer solution ratio. The Pareto charts and response surfaces clearly showed all the effects of the experimental variables on the stabilization of β-D-galactosidase in solution after interactions with the chitosan composite membrane. In this case, industrial food reactors covered with chitosan/eucalyptus sawdust composite membrane could be a strategy for the hydrolysis of lactose during milk-producing processes.
Collapse
Affiliation(s)
- Larissa Fernandes da Cruz
- Santa Catarina State University, Postgraduate Program in Food Science and Technology, Br 282, Km 574, Linha Santa Terezinha, 89870-000 Pinhalzinho, SC, Brazil
| | - Amanda Gentil Polizeli
- Santa Catarina State University, Postgraduate Program in Food Science and Technology, Br 282, Km 574, Linha Santa Terezinha, 89870-000 Pinhalzinho, SC, Brazil
| | - Heveline Enzweiler
- Santa Catarina State University, Department of Food and Chemical Engineering, Br 282, Km 574, Linha Santa Terezinha, 89870-000 Pinhalzinho, SC, Brazil
| | - Alexandre Tadeu Paulino
- Santa Catarina State University, Postgraduate Program in Food Science and Technology, Br 282, Km 574, Linha Santa Terezinha, 89870-000 Pinhalzinho, SC, Brazil; Santa Catarina State University, Department of Chemistry, Rua Paulo Malschitzki, 200, Zona Industrial Norte, 89219-710 Joinville, SC, Brazil.
| |
Collapse
|
23
|
Hajili E, Sugawara A, Uyama H. Application of Hierarchically Porous Chitosan Monolith for Enzyme Immobilization. Biomacromolecules 2024; 25:3486-3498. [PMID: 38718188 DOI: 10.1021/acs.biomac.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Enzyme immobilization is a crucial technique for improving the stability of enzymes. Compared with free enzymes, immobilized enzymes offer several advantages in industrial applications. Efficient enzyme immobilization requires a technique that integrates the advantages of physical absorption and covalent binding while addressing the limitations of conventional support materials. This study offers a practical approach for immobilizing α-amylase on a hierarchically porous chitosan (CS) monolith. An optimized CS monolith was fabricated using chemically modified chitin by thermally induced phase separation. By combining physical adsorption and covalent bonding, this technique leverages the amino and hydroxy groups present in CS to facilitate effective enzyme binding and stability. α-Amylase immobilized on the CS monolith demonstrated excellent stability, reusability, and increased activity compared to its soluble counterpart across various pH levels and temperatures. In addition, the CS monolith exhibited a significant potential to immobilize other enzymes, namely, lipase and catalase. Immobilized lipase and catalase exhibited higher loading capacities and enhanced activities than their soluble forms. This versatility highlights the broad applicability of CS monoliths as support materials for various enzymatic processes. This study provides guidelines for fabricating hierarchical porous monolith structures that can provide efficient enzyme utilization in flow systems and potentially enhance the cost-effectiveness of enzymes in industrial applications.
Collapse
Affiliation(s)
- Emil Hajili
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akihide Sugawara
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Uyama
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
24
|
Araújo EV, Carneiro SV, Neto DMA, Freire TM, Costa VM, Freire RM, Fechine LMUD, Clemente CS, Denardin JC, Dos Santos JCS, Santos-Oliveira R, Rocha JS, Fechine PBA. Advances in surface design and biomedical applications of magnetic nanoparticles. Adv Colloid Interface Sci 2024; 328:103166. [PMID: 38728773 DOI: 10.1016/j.cis.2024.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/13/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Despite significant efforts by scientists in the development of advanced nanotechnology materials for smart diagnosis devices and drug delivery systems, the success of clinical trials remains largely elusive. In order to address this biomedical challenge, magnetic nanoparticles (MNPs) have gained attention as a promising candidate due to their theranostic properties, which allow the simultaneous treatment and diagnosis of a disease. Moreover, MNPs have advantageous characteristics such as a larger surface area, high surface-to-volume ratio, enhanced mobility, mass transference and, more notably, easy manipulation under external magnetic fields. Besides, certain magnetic particle types based on the magnetite (Fe3O4) phase have already been FDA-approved, demonstrating biocompatible and low toxicity. Typically, surface modification and/or functional group conjugation are required to prevent oxidation and particle aggregation. A wide range of inorganic and organic molecules have been utilized to coat the surface of MNPs, including surfactants, antibodies, synthetic and natural polymers, silica, metals, and various other substances. Furthermore, various strategies have been developed for the synthesis and surface functionalization of MNPs to enhance their colloidal stability, biocompatibility, good response to an external magnetic field, etc. Both uncoated MNPs and those coated with inorganic and organic compounds exhibit versatility, making them suitable for a range of applications such as drug delivery systems (DDS), magnetic hyperthermia, fluorescent biological labels, biodetection and magnetic resonance imaging (MRI). Thus, this review provides an update of recently published MNPs works, providing a current discussion regarding their strategies of synthesis and surface modifications, biomedical applications, and perspectives.
Collapse
Affiliation(s)
- E V Araújo
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - S V Carneiro
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - D M A Neto
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - T M Freire
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - V M Costa
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - R M Freire
- Universidad Central de Chile, Santiago 8330601, Chile.
| | - L M U D Fechine
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| | - C S Clemente
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE 60440-900, Brazil.
| | - J C Denardin
- Physics Department and CEDENNA, University of Santiago of Chile (USACH), Santiago 9170124, Chile.
| | - J C S Dos Santos
- Engineering and Sustainable Development Institute, International Afro-Brazilian Lusophone Integration University, Campus das Auroras, Redenção 62790970, CE, Brazil; Chemical Engineering Department, Federal University of Ceará, Campus do Pici, Bloco 709, Fortaleza 60455760, CE, Brazil.
| | - R Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, R. Helio de Almeida, 75, Rio de Janeiro 21941906, RJ, Brazil; Zona Oeste State University, Laboratory of Nanoradiopharmacy, Av Manuel Caldeira de Alvarenga, 1203, Campo Grande 23070200, RJ, Brazil.
| | - Janaina S Rocha
- Industrial Technology and Quality Center of Ceará, R. Prof. Rômulo Proença, s/n - Pici, 60440-552 Fortaleza, CE, Brazil.
| | - P B A Fechine
- Advanced Chemistry Materials Group (GQMat)- Analytical Chemistry and Physical Chemistry Department, Federal Unversity of Ceará, - UFC, Campus do Pici, CP 12100, 60451-970 Fortaleza, CE, Brazil.
| |
Collapse
|
25
|
Hussain A, Parveen F, Saxena A, Ashfaque M. A review of nanotechnology in enzyme cascade to address challenges in pre-treating biomass. Int J Biol Macromol 2024; 270:132466. [PMID: 38761904 DOI: 10.1016/j.ijbiomac.2024.132466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Nanotechnology has become a revolutionary technique for improving the preliminary treatment of lignocellulosic biomass in the production of biofuels. Traditional methods of pre-treatment have encountered difficulties in effectively degrading the intricate lignocellulosic composition, thereby impeding the conversion of biomass into fermentable sugars. Nanotechnology has enabled the development of enzyme cascade processes that present a potential solution for addressing the limitations. The focus of this review article is to delve into the utilization of nanotechnology in the pretreatment of lignocellulosic biomass through enzyme cascade processes. The review commences with an analysis of the composition and structure of lignocellulosic biomass, followed by a discussion on the drawbacks associated with conventional pre-treatment techniques. The subsequent analysis explores the importance of efficient pre-treatment methods in the context of biofuel production. We thoroughly investigate the utilization of nanotechnology in the pre-treatment of enzyme cascades across three distinct sections. Nanomaterials for enzyme immobilization, enhanced enzyme stability and activity through nanotechnology, and nanocarriers for controlled enzyme delivery. Moreover, the techniques used to analyse nanomaterials and the interactions between enzymes and nanomaterials are introduced. This review emphasizes the significance of comprehending the mechanisms underlying the synergy between nanotechnology and enzymes establishing sustainable and environmentally friendly nanotechnology applications.
Collapse
Affiliation(s)
- Akhtar Hussain
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Fouziya Parveen
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Ayush Saxena
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Mohammad Ashfaque
- Lignocellulose & Biofuel Laboratory, Department of Biosciences, Integral University, Lucknow 226026, Uttar Pradesh, India.
| |
Collapse
|
26
|
Wang Z, Wang R, Geng Z, Luo X, Jia J, Pang S, Fan X, Bilal M, Cui J. Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts. Crit Rev Biotechnol 2024; 44:674-697. [PMID: 37032548 DOI: 10.1080/07388551.2023.2189548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 04/11/2023]
Abstract
Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.
Collapse
Affiliation(s)
- Zichen Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Ruirui Wang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Zixin Geng
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Xiuyan Luo
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Jiahui Jia
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Saizhao Pang
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| | - Xianwei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guang Xi University, Nanning, China
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Poznan, Poland
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin Economic and Technological Development Area (TEDA), Tianjin, China
| |
Collapse
|
27
|
Califano D, Schoevaart R, Barnard KE, Callaghan C, Mattia D, Edler KJ. Diaminated Cellulose Beads as a Sustainable Support for Industrially Relevant Lipases. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:7703-7712. [PMID: 38783841 PMCID: PMC11110057 DOI: 10.1021/acssuschemeng.3c07849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Environmentally persistent polystyrene or polyacrylic beads are used as supports in enzyme large-scale bioprocesses, including conversion glucose isomerization for high-fructose corn syrup production, hydrolysis of lactose, and synthesis of active pharmaceutical ingredients. In this paper, we report the development of a novel sustainable and scalable method to produce diaminated cellulose beads (DAB) as highly efficient alternative supports for industrially relevant lipases. Regenerated cellulose beads were grafted with diaminated aliphatic hydrocarbons via periodate oxidation and reductive amination. The oxidation step indicated that aldehyde content can be easily tuned through the reaction time and concentration of reactants. Reductive amination of dialdehyde cellulose was more efficient as the length of the diaminated hydrocarbon compound increased. Morphological analysis of DAB showed that cellulose chemical grafting enabled the preservation of the bead shape and internal structure upon freeze-drying. Enzymatic degradability studies demonstrated that chemical functionalization did not undermine enzyme cellulose hydrolysis. The addition of aminated moieties on cellulose dramatically increased absorption efficiency for all industrially relevant lipases used, reaching 100% for Thermomyces lanuginosus lipase (TLL). Storage and recyclability experiments demonstrated that enzymes were retained and recyclable for at least nine cycles, although the activity gradually declined after each cycle. Medium chain triacylglycerol hydrolysis in a SpinChem reactor using TLL immobilized on 1,6 DAB exhibited higher activity compared to acrylic beads (588 vs 459 U/g) suggesting that biodegradable cellulose-based materials could be a valid and attractive alternative to plastics carriers.
Collapse
Affiliation(s)
| | - Rob Schoevaart
- ChiralVision, 44 Hoog-Harnasch, 2635 DL Den Hoorn, The Netherlands
| | | | - Ciarán Callaghan
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Davide Mattia
- Department
of Chemical Engineering, University of Bath, Bath BA27AY, U.K.
| | - Karen J. Edler
- Department
of Chemistry, University of Bath, Bath BA27AY, U.K.
| |
Collapse
|
28
|
Han Y, Jiang H, Huang C, Wu X, Ouyang Y, Chen H, Lan D, Wang Y, Zheng B, Xia J. Enzymatic interfacial conversion of acylglycerols in Pickering emulsions stabilized by hydrogel microparticles. J Colloid Interface Sci 2024; 661:228-236. [PMID: 38301461 DOI: 10.1016/j.jcis.2024.01.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
HYPOTHESIS A critical challenge in the enzymatic conversion of acylglycerols is the limited exposure of the enzyme dissolved in the aqueous solution to the hydrophobic substrate in the oil phase. Positioning the enzyme in a microenvironment with balanced hydrophobicity and hydrophilicity in Pickering emulsion will facilitate the acylglycerol-catalyzing reactions at the interface between the oil and liquid phases. EXPERIMENTS In this work, to overcome the challenge of biphasic catalysis, we report a method to immobilize enzymes in polyethylene glycol (PEG)-based hydrogel microparticles (HMPs) at the interface between the oil and water phases in Pickering emulsion to promote the enzymatic conversion of acylglycerols. FINDINGS 3 wt% of HMPs can stabilize the oil-in-water Pickering emulsion for at least 14 days and increase the viscosity of emulsions. Lipase-HMP conjugates showed significantly higher hydrolytic activity in Pickering emulsion; HMP-immobilized lipase SMG1 showed an activity about three times that of free lipase SMG1. Co-immobilization of a lipase and a fatty acid photodecarboxylase from Chlorella variabilis (CvFAP) in Pickering emulsion enables light-driven cascade conversion of triacylglycerols to hydrocarbons, transforming waste oil to renewable biofuels in a green and sustainable approach. HMPs stabilize the Pickering emulsion and promote interfacial biocatalysis in converting acylglycerols to renewable biofuels.
Collapse
Affiliation(s)
- Yongxu Han
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hao Jiang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Chen Huang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xue Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yinghan Ouyang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hongfei Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bo Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
29
|
Santos MPF, de Souza Junior EC, Villadóniga C, Vallés D, Castro-Sowinski S, Bonomo RCF, Veloso CM. Proteases: Importance, Immobilization Protocols, Potential of Activated Carbon as Support, and the Importance of Modifying Supports for Immobilization. BIOTECH 2024; 13:13. [PMID: 38804295 PMCID: PMC11130871 DOI: 10.3390/biotech13020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Although enzymes have been used for thousands of years, their application in industrial processes has gained importance since the 20th century due to technological and scientific advances in several areas, including biochemistry [...].
Collapse
Affiliation(s)
- Mateus Pereira Flores Santos
- Programa de Pós-Graduação em Biologia e Biotecnologia de Microrganismos (PPGBBM), Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado, km 16, Ilhéus 45662-900, Bahia, Brazil;
| | - Evaldo Cardozo de Souza Junior
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| | - Carolina Villadóniga
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Diego Vallés
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Susana Castro-Sowinski
- Laboratório de Biocatalisadores e suas Aplicações, Instituto de Química Biológica, Faculdade de Ciências, Universidade da República, Iguá 4225, Montevideo 11400, Uruguay; (C.V.); (D.V.); (S.C.-S.)
| | - Renata Cristina Ferreira Bonomo
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| | - Cristiane Martins Veloso
- Laboratório de Engenharia de Processos, Universidade Estadual do Sudoeste da Bahia (UESB), BR 415, km 04, s/n, Itapetinga 45700-000, Bahia, Brazil; (E.C.d.S.J.); (C.M.V.)
| |
Collapse
|
30
|
Yamaguchi H, Miyazaki M. Bioremediation of Hazardous Pollutants Using Enzyme-Immobilized Reactors. Molecules 2024; 29:2021. [PMID: 38731512 PMCID: PMC11085290 DOI: 10.3390/molecules29092021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Bioremediation uses the degradation abilities of microorganisms and other organisms to remove harmful pollutants that pollute the natural environment, helping return it to a natural state that is free of harmful substances. Organism-derived enzymes can degrade and eliminate a variety of pollutants and transform them into non-toxic forms; as such, they are expected to be used in bioremediation. However, since enzymes are proteins, the low operational stability and catalytic efficiency of free enzyme-based degradation systems need improvement. Enzyme immobilization methods are often used to overcome these challenges. Several enzyme immobilization methods have been applied to improve operational stability and reduce remediation costs. Herein, we review recent advancements in immobilized enzymes for bioremediation and summarize the methods for preparing immobilized enzymes for use as catalysts and in pollutant degradation systems. Additionally, the advantages, limitations, and future perspectives of immobilized enzymes in bioremediation are discussed.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Department of Food and Life Science, School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
- Graduate School of Agriculture, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
- Graduate School of Bioscience, Tokai University, 871-12 Sugido, Mashiki, Kamimashiki, Kumamoto 861-2205, Japan
| | - Masaya Miyazaki
- HaKaL Inc., Kurume Research Park, 1488-4 Aikawa, Kurume, Fukuoka 839-0864, Japan;
| |
Collapse
|
31
|
Jing W, Hou F, Wu X, Zheng M, Zheng Y, Lu F, Liu F. A Critical Review on Immobilized Sucrose Isomerase and Cells for Producing Isomaltulose. Foods 2024; 13:1228. [PMID: 38672899 PMCID: PMC11048954 DOI: 10.3390/foods13081228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/07/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Isomaltulose is a novel sweetener and is considered healthier than the common sugars, such as sucrose or glucose. It has been internationally recognized as a safe food product and holds vast potential in pharmaceutical and food industries. Sucrose isomerase is commonly used to produce isomaltulose from the substrate sucrose in vitro and in vivo. However, free cells/enzymes were often mixed with the product, making recycling difficult and leading to a significant increase in production costs. Immobilized cells/enzymes have the following advantages including easy separation from products, high stability, and reusability, which can significantly reduce production costs. They are more suitable than free ones for industrial production. Recently, immobilized cells/enzymes have been encapsulated using composite materials to enhance their mechanical strength and reusability and reduce leakage. This review summarizes the advancements made in immobilized cells/enzymes for isomaltulose production in terms of refining traditional approaches and innovating in materials and methods. Moreover, innovations in immobilized enzyme methods include cross-linked enzyme aggregates, nanoflowers, inclusion bodies, and directed affinity immobilization. Material innovations involve nanomaterials, graphene oxide, and so on. These innovations circumvent challenges like the utilization of toxic cross-linking agents and enzyme leakage encountered in traditional methods, thus contributing to enhanced enzyme stability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; (W.J.); (F.H.); (X.W.); (M.Z.); (Y.Z.); (F.L.)
| |
Collapse
|
32
|
Brachi M, El Housseini W, Beaver K, Jadhav R, Dantanarayana A, Boucher DG, Minteer SD. Advanced Electroanalysis for Electrosynthesis. ACS ORGANIC & INORGANIC AU 2024; 4:141-187. [PMID: 38585515 PMCID: PMC10995937 DOI: 10.1021/acsorginorgau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 04/09/2024]
Abstract
Electrosynthesis is a popular, environmentally friendly substitute for conventional organic methods. It involves using charge transfer to stimulate chemical reactions through the application of a potential or current between two electrodes. In addition to electrode materials and the type of reactor employed, the strategies for controlling potential and current have an impact on the yields, product distribution, and reaction mechanism. In this Review, recent advances related to electroanalysis applied in electrosynthesis were discussed. The first part of this study acts as a guide that emphasizes the foundations of electrosynthesis. These essentials include instrumentation, electrode selection, cell design, and electrosynthesis methodologies. Then, advances in electroanalytical techniques applied in organic, enzymatic, and microbial electrosynthesis are illustrated with specific cases studied in recent literature. To conclude, a discussion of future possibilities that intend to advance the academic and industrial areas is presented.
Collapse
Affiliation(s)
- Monica Brachi
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Wassim El Housseini
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Kevin Beaver
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Rohit Jadhav
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Ashwini Dantanarayana
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Dylan G. Boucher
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
33
|
Zhang X, Xie Y, Huang D, Zhang X, Tang X, Chen L, Luo SZ, Lou J, He C. Rapid and Mechanically Robust Immobilization of Proteins on Silica Studied at the Single-Molecule Level by Force Spectroscopy and Verified at the Macroscopic Level. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16962-16972. [PMID: 38520330 DOI: 10.1021/acsami.3c18699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Typical methods for stable immobilization of proteins often involve time-consuming surface modification of silicon-based materials to enable specific binding, while the nonspecific adsorption method is faster but usually unstable. Herein, we fused a silica-binding protein, Si-tag, to target proteins so that the target proteins could attach directly to silica substrates in a single step, markedly streamlining the immobilization process. The adhesion force between the Si-tag and glass substrates was determined to be approximately 400-600 pN at the single-molecule level by atomic force microscopy, which is greater than the unfolding force of most proteins. The adhesion force of the Si-tag exhibits a slight increase when pulled from the C-terminus compared to that from the N-terminus. Furthermore, the Si-tag's adhesion force on a glass surface is marginally higher than that on a silicon nitride probe. The binding properties of the Si-tag are not obviously affected by environmental factors, including pH, salt concentration, and temperature. In addition, the macroscopic adhesion force between the Si-tag-coated hydrogel and glass substrates was ∼40 times higher than that of unmodified hydrogels. Therefore, the Si-tag, with its strong silica substrate binding ability, provides a useful tool as an excellent fusion tag for the rapid and mechanically robust immobilization of proteins on silica and for the surface coating of silica-binding materials.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yayan Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Sino Biological Inc., Building 9, Jing Dongbei Technology Park, No.18 Kechuang 10th St, BDA, Beijing 100176, China
| | - Duo Huang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaozhong Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyu Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Sino Biological Inc., Building 9, Jing Dongbei Technology Park, No.18 Kechuang 10th St, BDA, Beijing 100176, China
| | - Long Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shi-Zhong Luo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jizhong Lou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Sino Biological Inc., Building 9, Jing Dongbei Technology Park, No.18 Kechuang 10th St, BDA, Beijing 100176, China
| |
Collapse
|
34
|
Lu H, Ni SQ. Review on sterilization techniques, and the application potential of phage lyase and lyase immobilization in fighting drug-resistant bacteria. J Mater Chem B 2024; 12:3317-3335. [PMID: 38380677 DOI: 10.1039/d3tb02366d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Many human health problems and property losses caused by pathogenic contamination cannot be underestimated. Bactericidal techniques have been extensively studied to address this issue of public health and economy. Bacterial resistance develops as a result of the extensive use of single or multiple but persistent usage of sterilizing drugs, and the emergence of super-resistant bacteria brings new challenges. Therefore, it is crucial to control pathogen contamination by applying innovative and effective sterilization techniques. As organisms that exist in nature and can specifically kill bacteria, phages have become the focus as an alternative to antibacterial agents. Furthermore, phage-encoded lyases are proteins that play important roles in phage sterilization. The in vitro sterilization of phage lyase has been developed as a novel biosterilization technique to reduce bacterial resistance and is more environmentally friendly than conventional sterilization treatments. For the shortcomings of enzyme applications, this review discusses the enzyme immobilization methods and the application potential of immobilized lyases for sterilization. Although some techniques provide effective solutions, immobilized lyase sterilization technology has been proven to be a more effective innovation for efficient pathogen killing and reducing bacterial resistance. We hope that this review can provide new insights for the development of sterilization techniques.
Collapse
Affiliation(s)
- Han Lu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
35
|
de Andrades D, Abellanas P, Carballares D, Alcantara AR, Polizeli MDLTDM, Rocha-Martin J, Fernandez-Lafuente R. Adsorption features of reduced aminated supports modified with glutaraldehyde: Understanding the heterofunctional features of these supports. Int J Biol Macromol 2024; 263:130403. [PMID: 38417754 DOI: 10.1016/j.ijbiomac.2024.130403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Immobilization of enzymes on aminated supports using the glutaraldehyde chemistry may involve three different interactions, cationic, hydrophobic, and covalent interactions. To try to understand the impact this heterofunctionality, we study the physical adsorption of the beta-galactosidase from Aspergillus niger, on aminated supports (MANAE) and aminated supports with one (MANAE-GLU) or two molecules of glutaraldehyde (MANAE-GLU-GLU). To eliminate the chemical reactivity of the glutaraldehyde, the supports were reduced using sodium borohydride. After enzyme adsorption, the release of the enzyme from the supports using different NaCl concentrations, Triton X100, ionic detergents (SDS and CTAB), or different temperatures (4 °C to 55 °C) was studied. Using MANAE support, at 0.3 M NaCl almost all the immobilized enzyme was released. Using MANAE-GLU, 0.3 M, and 0.6 M NaCl similar results were obtained. However, incubation at 1 M or 2 M NaCl, many enzyme molecules were not released from the support. For the MANAE-GLU-GLU support, none of the tested concentrations of NaCl was sufficient to release all enzyme bound to the support. Only using high temperatures, 0.6 M NaCl, and 1 % CTAB or SDS, could the totality of the proteins be released from the support. The results shown in this paper confirm the heterofunctional character of aminated supports modified with glutaraldehyde.
Collapse
Affiliation(s)
- Diandra de Andrades
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Pedro Abellanas
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain
| | - Diego Carballares
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., Madrid 28040, Spain
| | - Andres R Alcantara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n, Madrid 28040, Spain
| | | | - Javier Rocha-Martin
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, José Antonio Novais 12, Madrid 28040, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain.
| |
Collapse
|
36
|
Melo RLF, Freire TM, Valério RBR, Neto FS, de Castro Bizerra V, Fernandes BCC, de Sousa Junior PG, da Fonseca AM, Soares JM, Fechine PBA, Dos Santos JCS. Enhancing biocatalyst performance through immobilization of lipase (Eversa® Transform 2.0) on hybrid amine-epoxy core-shell magnetic nanoparticles. Int J Biol Macromol 2024; 264:130730. [PMID: 38462111 DOI: 10.1016/j.ijbiomac.2024.130730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Magnetic nanoparticles were functionalized with polyethylenimine (PEI) and activated with epoxy. This support was used to immobilize Lipase (Eversa® Transform 2.0) (EVS), optimization using the Taguchi method. XRF, SEM, TEM, XRD, FTIR, TGA, and VSM performed the characterizations. The optimal conditions were immobilization yield (I.Y.) of 95.04 ± 0.79 %, time of 15 h, ionic load of 95 mM, protein load of 5 mg/g, and temperature of 25 °C. The maximum loading capacity was 25 mg/g, and its stability in 60 days of storage showed a negligible loss of only 9.53 % of its activity. The biocatalyst demonstrated better stability at varying temperatures than free EVS, maintaining 28 % of its activity at 70 °C. It was feasible to esterify free fatty acids (FFA) from babassu oil with the best reaction of 97.91 % and ten cycles having an efficiency above 50 %. The esterification of produced biolubricant was confirmed by NMR, and it displayed kinematic viscosity and density of 6.052 mm2/s and 0.832 g/cm3, respectively, at 40 °C. The in-silico study showed a binding affinity of -5.8 kcal/mol between EVS and oleic acid, suggesting a stable substrate-lipase combination suitable for esterification.
Collapse
Affiliation(s)
- Rafael Leandro Fernandes Melo
- Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60440-554, Brazil; Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Tiago Melo Freire
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Roberta Bussons Rodrigues Valério
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - Francisco Simão Neto
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60455-760, Brazil
| | - Viviane de Castro Bizerra
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil
| | - Bruno Caio Chaves Fernandes
- Departamento de Agronomia e Ciência Vegetais, Universidade Federal Rural do Semi-Árido, Campus Mossoró, Mossoró, RN CEP 59625-900, Brazil
| | - Paulo Gonçalves de Sousa Junior
- Departamento de Química Orgânica e Inorgânica, Centro de Ciências, Universidade Federal do Ceará, Campus Pici, Fortaleza, CE CEP 60455760, Brazil
| | - Aluísio Marques da Fonseca
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil
| | - João Maria Soares
- Departamento de Física, Universidade do Estado do Rio Grande do Norte, Campus Mossoró, Mossoró, RN CEP 59610-090, Brazil
| | - Pierre Basílio Almeida Fechine
- Grupo de Química de Materiais Avançados (GQMat), Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE CEP 60451-970, Brazil
| | - José Cleiton Sousa Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção, CE CEP 62790-970, Brazil.
| |
Collapse
|
37
|
Chahar D, Jha I, Arumugam J, Venkatesu P. Impact of Choline Hydroxide-Supported Magnetic Nanoparticles on Peroxidase Activity and Conformational Stability of Cytochrome c. ACS APPLIED BIO MATERIALS 2024; 7:1135-1145. [PMID: 38262058 DOI: 10.1021/acsabm.3c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Nanotechnology has advanced significantly; however, little is known about the potential implications on human health-related issues, particularly blood carrying enzymes. Ionic liquids are also well-recognized for maintaining the structure and activity of enzymes. In this regard, we delineate a facile synthetic approach of preparation of Fe3O4 nanoparticles (NPs) as well as choline hydroxide [CH][OH] ionic liquid (IL)-supported Fe3O4 NPs (Fe3O4-CHOH). This approach of combining magnetic nanoparticles (MNPs) with IL results in distinctive properties, which may offer enormous utility in the field of biomedical research due to the effortless separation of MNPs by an external magnetic field. Detailed characterization of MNPs including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) was carried out. The biomolecular interactions of Fe3O4 and Fe3O4-CHOH NPs with cytochrome c (Cyt c) were studied in detail using various spectroscopic and microscopic techniques. From spectroscopic studies, it can be concluded that the secondary structure of Cyt c is more stable in the presence of Fe3O4-CHOH NPs than Fe3O4 NPs. The binding constant of Cyt c in the presence of MNPs was also calculated using the Benesi-Hildebrand equation. Furthermore, dynamic light scattering (DLS), ζ-potential, and microscopic studies were performed to study the interaction of Cyt c with MNPs. These studies provided evidence favoring the formation of bionanoconjugates of Cyt c with MNPs. Moreover, the enzymatic activity of Cyt c increases in the presence of both MNPs. The peroxidase activity of Cyt c in MNPs explicitly elucidates that the enzyme is preserved for a long time in the presence of Fe3O4-CHOH NPs. Later on, TEM and field emission scanning electron microscopy (FESEM) were also performed to gather more information regarding the morphology of Cyt c in the presence of MNPs.
Collapse
Affiliation(s)
- Deepak Chahar
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Indrani Jha
- Department of Chemistry, Hansraj College, University of Delhi, Delhi 110007, India
| | - Jayamani Arumugam
- Department of Chemistry, University of Delhi, Delhi 110 007, India
- Department of Sciences Program Chemistry, Manav Rachna University, Faridabad 121004, India
| | | |
Collapse
|
38
|
Swathy K, Vivekanandhan P, Yuvaraj A, Sarayut P, Kim JS, Krutmuang P. Biodegradation of pesticide in agricultural soil employing entomopathogenic fungi: Current state of the art and future perspectives. Heliyon 2024; 10:e23406. [PMID: 38187317 PMCID: PMC10770572 DOI: 10.1016/j.heliyon.2023.e23406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Pesticides play a pivotal role in agriculture for the effective production of various crops. The indiscriminate use of pesticides results in the significant bioaccumulation of pesticide residues in vegetables. This situation is beyond the control of consumers and poses a serious health issue for human beings. Occupational exposure to pesticides may occur for farmers, agricultural workers, and industrial producers of pesticides. This occupational exposure primarily causes food and water contamination that gets into humans and environmental pollution. Depending on the toxicity of pesticides, the causes and effects differ in the environment and in human health. The number of criteria used and the method of implementation employed to assess the effect of pesticides on humans and the environment have been increasing, as they may provide characterization of pesticides that are already on the market as well as those that are on the way. The biological control of pests has been increasing nowadays to combat all these effects caused by synthetic pesticides. Myco-biocontrol has received great attention in research because it has no negative impact on humans, the environment, or non-target species. Entomopathogenic fungi are microbes that have the ability to kill insect pests. Fungi also make enzymes like the lytic enzymes, esterase, oxidoreductase, and cytochrome P450, which react with chemical residues in the field and break them down into nontoxic substances. In this review, the authors looked at how entomopathogenic fungi break down insecticides in the environment and how their enzymes break down insecticides on farms.
Collapse
Affiliation(s)
- Kannan Swathy
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Perumal Vivekanandhan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of General Pathology at Saveetha Dental College and Hospitals in the Saveetha Institute of Medical & Technical Sciences at Saveetha University in Chennai, Tamil Nadu, 600077, India
| | | | - Pittarate Sarayut
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jae Su Kim
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, South Korea
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
39
|
Bilal M, Singh AK, Iqbal HMN, Zdarta J, Chrobok A, Jesionowski T. Enzyme-linked carbon nanotubes as biocatalytic tools to degrade and mitigate environmental pollutants. ENVIRONMENTAL RESEARCH 2024; 241:117579. [PMID: 37944691 DOI: 10.1016/j.envres.2023.117579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
A wide array of organic compounds have been recognized as pollutants of high concern due to their controlled or uncontrolled presence in environmental matrices. The persistent prevalence of diverse organic pollutants, including pharmaceutical compounds, phenolic compounds, synthetic dyes, and other hazardous substances, necessitates robust measures for their practical and sustainable removal from water bodies. Several bioremediation and biodegradation methods have been invented and deployed, with a wide range of materials well-suited for diverse environments. Enzyme-linked carbon-based materials have been considered efficient biocatalytic platforms for the remediation of complex organic pollutants, mostly showing over 80% removal efficiency of micropollutants. The advantages of enzyme-linked carbon nanotubes (CNTs) in enzyme immobilization and improved catalytic potential may thus be advantageous for environmental research considering the current need for pollutant removal. This review outlines the perspective of current remediation approaches and highlights the advantageous features of enzyme-linked CNTs in the removal of pollutants, emphasizing their reusability and stability aspects. Furthermore, different applications of enzyme-linked CNTs in environmental research with concluding remarks and future outlooks have been highlighted. Enzyme-linked CNTs serve as a robust biocatalytic platform for the sustainability agenda with the aim of keeping the environment clean and safe from a variety of organic pollutants.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland; Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12 Str., 80-233, Gdansk, Poland; Advanced Materials Center, Gdansk University of Technology, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| | - Anil Kumar Singh
- Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey, 64849, Mexico
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Anna Chrobok
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
40
|
Alvarado-Ramírez L, Machorro-García G, López-Legarrea A, Trejo-Ayala D, Rostro-Alanis MDJ, Sánchez-Sánchez M, Blanco RM, Rodríguez-Rodríguez J, Parra-Saldívar R. Metal-organic frameworks for enzyme immobilization and nanozymes: A laccase-focused review. Biotechnol Adv 2024; 70:108299. [PMID: 38072099 DOI: 10.1016/j.biotechadv.2023.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Laccases are natural catalysts with remarkable catalytic activity. However, their application is limited by their lack of stability. Metal-organic frameworks (MOFs) have emerged as a promising alternative for enzyme immobilization. Enzymes can be immobilized in MOFs via two approaches: postsynthetic immobilization and in situ immobilization. In postsynthetic immobilization, an enzyme is embedded after MOF formation by covalent interactions or adsorption. In contrast, in in situ immobilization, a MOF is formed in the presence of an enzyme. Additionally, MOFs have exhibited intrinsic enzyme-like activity. These materials, known as nanozymes when they have the ability to replace enzymes in certain catalytic processes, have multiple key advantages, such as low cost, easy preparation, and large surface areas. This review presents a general overview of the most recent advances in both enzyme@MOF biocatalysts and MOF-based nanozymes in different applications, with a focus on laccase, which is one of the most widely investigated enzymes with excellent industrial potential.
Collapse
Affiliation(s)
| | | | - Andrea López-Legarrea
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Dulce Trejo-Ayala
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | | | - Manuel Sánchez-Sánchez
- Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas (CSIC). C/ Marie Curie, 2, Madrid 28049, Spain.
| | - Rosa M Blanco
- Instituto de Catálisis y Petroleoquímica (ICP), Consejo Superior de Investigaciones Científicas (CSIC). C/ Marie Curie, 2, Madrid 28049, Spain.
| | | | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico.
| |
Collapse
|
41
|
Morales AH, Hero JS, Ledesma AE, Martínez MA, Navarro MC, Gómez MI, Romero CM. Tuning surface interactions on MgFe 2O 4 nanoparticles to induce interfacial hyperactivation in Candida rugosa lipase immobilization. Int J Biol Macromol 2023; 253:126615. [PMID: 37652323 DOI: 10.1016/j.ijbiomac.2023.126615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipase adsorption on solid supports can be mediated by a precise balance of electrostatic and hydrophobic interactions. A suitable fine-tuning could allow the immobilized enzyme to display high catalytic activity. The objective of this work was to investigate how pH and ionic strength fluctuations affected protein-support interactions during immobilization via physical adsorption of a Candida rugosa lipase (CRL) on MgFe2O5. The highest amount of immobilized protein (IP) was measured at pH 4, and an ionic strength of 90 mM. However, these immobilization conditions did not register the highest hydrolytic activity (HA) in the biocatalyst (CRLa@MgFe2O4), finding the best values also at acidic pH but with a slight shift towards higher values of ionic strength around 110 mM. These findings were confirmed when the adsorption isotherms were examined under different immobilization conditions so that the maximum measurements of IP did not coincide with that of HA. Furthermore, when the recovered activity was examined, a strong interfacial hyperactivation of the lipase was detected towards acidic pH and highly charged surrounding environments. Spectroscopic studies, as well as in silico molecular docking analyses, revealed a considerable involvement of surface hydrophobic protein-carrier interactions, with aromatic aminoacids, especially phenylalanine residues, playing an important role. In light of these findings, this study significantly contributes to the body of knowledge and a better understanding of the factors that influence the lipase immobilization process on magnetic inorganic oxide nanoparticle surfaces.
Collapse
Affiliation(s)
- Andrés H Morales
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina.
| | - Johan S Hero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina
| | - Ana E Ledesma
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE- CONICET), Universidad Nacional de Santiago del Estero, RN 9, km 1125, (4206) Santiago del Estero, Argentina; Universidad Nacional de Santiago del Estero, Facultad de Ciencias Exactas y Tecnologías, Departamento Académico de Química, Av. Belgrano Sur 1912, 4200, Santiago del Estero, Argentina
| | - M Alejandra Martínez
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina; Facultad de Ciencias Exactas yTecnología, UNT. Av. Independencia 1800, San Miguel de Tucumán 4000, Argentina
| | - María C Navarro
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina
| | - María I Gómez
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, T4001 MVB Tucumán, Argentina; Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000IL, San Miguel de Tucumán, Argentina.
| |
Collapse
|
42
|
Xu C, Tong S, Sun L, Gu X. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review. Carbohydr Polym 2023; 321:121319. [PMID: 37739542 DOI: 10.1016/j.carbpol.2023.121319] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/24/2023]
Abstract
Cellulase-mediated lignocellulosic biorefinery plays a crucial role in the production of high-value biofuels and chemicals, with enzymatic hydrolysis being an essential component. The advent of cellulase immobilization has revolutionized this process, significantly enhancing the efficiency, stability, and reusability of cellulase enzymes. This review offers a thorough analysis of the fundamental principles underlying immobilization, encompassing various immobilization approaches such as physical adsorption, covalent binding, entrapment, and cross-linking. Furthermore, it explores a diverse range of carrier materials, including inorganic, organic, and hybrid/composite materials. The review also focuses on emerging approaches like multi-enzyme co-immobilization, oriented immobilization, immobilized enzyme microreactors, and enzyme engineering for immobilization. Additionally, it delves into novel carrier technologies like 3D printing carriers, stimuli-responsive carriers, artificial cellulosomes, and biomimetic carriers. Moreover, the review addresses recent obstacles in cellulase immobilization, including molecular-level immobilization mechanism, diffusion limitations, loss of cellulase activity, cellulase leaching, and considerations of cost-effectiveness and scalability. The knowledge derived from this review is anticipated to catalyze the evolution of more efficient and sustainable biocatalytic systems for lignocellulosic biomass conversion, representing the current state-of-the-art in cellulase immobilization techniques.
Collapse
Affiliation(s)
- Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Shanshan Tong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Liqun Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
43
|
He H, Li L, Wu Y, Zhao D, Liu J, Zhou J. Simulation insights into the lipase adsorption on zeolitic imidazolate framework-8. Colloids Surf B Biointerfaces 2023; 231:113540. [PMID: 37708590 DOI: 10.1016/j.colsurfb.2023.113540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
Zeolitic imidazolate frameworks (ZIFs) have recently emerged as immobilization matrices for biomolecules, most notably enzymes. Understanding the key factors that dominate the enzyme's catalytic activity on/in ZIFs is crucial for the development of new immobilization matrices. In this work, a combination of the parallel tempering Monte Carlo simulation and all-atom molecular dynamics simulation is performed to study the orientation and conformation of the Candida rugose lipase (CRL) adsorbed on oppositely charged and neutral ZIF-8 (i.e., ZIF-8-COOH, ZIF-8-NH2, and ZIF-8-neutral) surfaces. The results show that CRL could adsorb on all ZIF-8 surfaces, with an ordered orientation obtained on charged ZIF-8 surfaces. ZIF-8-NH2 is a good candidate for CRL immobilization since it can maximize the catalytic activity of CRL. The native conformation of CRL is well preserved on all three surfaces due to the partially water-containing surface of ZIF-8. The results could provide theoretical support for the application of porous materials in enzyme immobilization.
Collapse
Affiliation(s)
- Haokang He
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Lin Li
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Yongsheng Wu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Daohui Zhao
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430205, PR China
| | - Jie Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
44
|
Pedro KCNR, da Silva JVV, Cipolatti EP, Manoel EA, Campisano ISP, Henriques CA, Langone MAP. Adsorption of lipases on porous silica-based materials for esterification in a solvent-free system. 3 Biotech 2023; 13:380. [PMID: 37900269 PMCID: PMC10600090 DOI: 10.1007/s13205-023-03801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
This study deals with lipase immobilization on micro- and mesoporous silica-based materials. The effects of the type of support (silica MCM-41, zeolite HZSM-5 (SAR 25), zeolite HZSM-5 (SAR 280), and the silica-aluminas Siral 10, Siral 20, and Siral 40) were investigated on the immobilization of lipase B from Candida antarctica (CALB) and lipase from Rhizomucor miehei (RML). The supports that allowed the highest immobilization efficiencies for the CALB were Siral 40 (91.4%), HZSM-5 (SAR 280) (90.6%), and MCM-41 (89.4%). Siral 20 allowed the highest immobilization efficiency for RML (97.6%), followed by HZSM-5 (SAR 25) (77.1%) and HZSM-5 (SAR 280) (62.7%). The effect of protein concentration on lipase immobilization was investigated, and the results adjusted well on the Langmuir isotherm model (R2 > 0.9). The maximum protein adsorption capacity of the support determined by the Langmuir model was equal to 10.64 and 20.97 mgprotein gsupport-1 for CALB and RML, respectively. The effects of pH (pH 7.0 and pH 11.0) and phosphate buffer solution concentration (5 and 100 mmol L-1) were also investigated on lipase immobilization. The immobilization efficiency for both lipases was similar for the different pH values. The use of 100 mmol L-1 phosphate buffer decreased the lipase immobilization efficiency. The biocatalysts (CALB-Siral 40 and RML-Siral 20) were tested in the ethyl oleate synthesis. The conversion of 61.7% was obtained at 60 °C in the reaction catalyzed by CALB-Siral 40. Both heterogeneous biocatalysts showed increased thermal stability compared with their free form. Finally, the reuse of the biocatalysts was studied. CALB-Siral 40 and RML-Siral 20 maintained about 30% of the initial conversion after 3 batches of ethyl oleate synthesis. Silica-aluminas (Siral 20 and 40) proved to be a support that allowed a high efficiency of immobilization of lipases and activity for esterification reaction.
Collapse
Affiliation(s)
- Kelly C N R Pedro
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - João V V da Silva
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - Eliane P Cipolatti
- Departamento de Engenharia Química, Instituto de Tecnologia, Universidade Federal Rural Do Rio de Janeiro, Rodovia BR 465, Km 07- Zona Rural, 23890-000 Seropédica, RJ Brasil
| | - Evelin A Manoel
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro (UFRJ), 21941-170 Rio de Janeiro, RJ Brasil
| | - Ivone S P Campisano
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - Cristiane A Henriques
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
| | - Marta A P Langone
- Departamento de Química Analítica, Instituto de Química, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ Brasil
- Instituto Federal de Educação, Ciência e Tecnologia Do Rio de Janeiro, Rua Senador Furtado, 121, 20260-100 Rio de Janeiro, RJ Brasil
| |
Collapse
|
45
|
Rouhani M, Valizadeh V, Bakhshandeh H, Hosseinzadeh SA, Molasalehi S, Atyabi SM, Norouzian D. Improved anti-biofilm activity and long-lasting effects of novel serratiopeptidase immobilized on cellulose nanofibers. Appl Microbiol Biotechnol 2023; 107:6487-6496. [PMID: 37672071 DOI: 10.1007/s00253-023-12734-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023]
Abstract
Today, enzymatic treatment is a progressive field in combating biofilm producing pathogens. In this regard, serratiopeptidase, a medicinally important metalloprotease, has been recently highlighted as an enzyme with proved anti-biofilm activity. In the present study, in order to increase the long-lasting effects of the enzyme, serratiopeptidase and the novel engineered forms with enhanced anti-biofilm activity were immobilized on the surface of cellulose nanofibers (CNFs) as a natural polymer with eminent properties. For this, recombinant serratiopeptidases including the native and previously designed enzymes were produced, purified and conjugated to the CNF by chemical and physical methods. Immobilization was confirmed using different scanning and microscopic methods. The enzyme activity was assessed using casein hydrolysis test. Enzyme release analysis was performed using dialysis tube method. Anti-biofilm activity of free and immobilized enzymes has been examined on Staphylococcus aureus and Pseudomonas aeruginosa strains. Finally, cytotoxicity of enzyme-conjugated CNFs was performed by MTT assay. The casein hydrolysis results confirmed fixation of all recombinant enzymes on CNFs by chemical method; however, inadequate fixation of these enzymes was found using cold atmospheric plasma (CAP). The AFM, FTIR, and SEM analysis confirmed appropriate conjugation of enzymes on the surface of CNFs. Immobilization of enzymes on CNFs improved the anti-biofilm activity of serratiopeptidase enzymes. Interestingly, the novel engineered serratiopeptidase (T344 [8-339ss]) exhibited the highest anti-biofilm activity in both conjugated and non-conjugated forms. In conclusion, incorporation of serratiopeptidases into CNFs improves their anti-biofilm activities without baring any cytotoxicity. KEY POINTS: • Enzymes were successfully immobilized on cellulose nanofibers using chemical method. • Immobilization of enzymes on CNFs improved their anti-biofilm activity. • T344 [8-339ss] exhibited the highest anti-biofilm activity in both conjugated and non-conjugated forms.
Collapse
Affiliation(s)
- Maryam Rouhani
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Vahideh Valizadeh
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Haleh Bakhshandeh
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
- QC Department, Osve Pharmaceutical Co., Tehran, Iran
| | - Sara Ali Hosseinzadeh
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Molasalehi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mohammad Atyabi
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Norouzian
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
46
|
Holyavka MG, Goncharova SS, Redko YA, Lavlinskaya MS, Sorokin AV, Artyukhov VG. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys Rev 2023; 15:1127-1158. [PMID: 37975005 PMCID: PMC10643816 DOI: 10.1007/s12551-023-01146-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023] Open
Abstract
In today's world, there is a wide array of materials engineered at the nano- and microscale, with numerous applications attributed to these innovations. This review aims to provide a concise overview of how nano- and micromaterials are utilized for enzyme immobilization. Enzymes act as eco-friendly biocatalysts extensively used in various industries and medicine. However, their widespread adoption faces challenges due to factors such as enzyme instability under different conditions, resulting in reduced effectiveness, high costs, and limited reusability. To address these issues, researchers have explored immobilization techniques using nano- and microscale materials as a potential solution. Such techniques offer the promise of enhancing enzyme stability against varying temperatures, solvents, pH levels, pollutants, and impurities. Consequently, enzyme immobilization remains a subject of great interest within both the scientific community and the industrial sector. As of now, the primary goal of enzyme immobilization is not solely limited to enabling reusability and stability. It has been demonstrated as a powerful tool to enhance various enzyme properties and improve biocatalyst performance and characteristics. The integration of nano- and microscale materials into biomedical devices is seamless, given the similarity in size to most biological systems. Common materials employed in developing these nanotechnology products include synthetic polymers, carbon-based nanomaterials, magnetic micro- and nanoparticles, metal and metal oxide nanoparticles, metal-organic frameworks, nano-sized mesoporous hydrogen-bonded organic frameworks, protein-based nano-delivery systems, lipid-based nano- and micromaterials, and polysaccharide-based nanoparticles.
Collapse
Affiliation(s)
- M. G. Holyavka
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | | - Y. A. Redko
- Voronezh State University, Voronezh, 394018 Russia
| | - M. S. Lavlinskaya
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | - A. V. Sorokin
- Voronezh State University, Voronezh, 394018 Russia
- Sevastopol State University, Sevastopol, 299053 Russia
| | | |
Collapse
|
47
|
Liang W, Flint K, Yao Y, Wu J, Wang L, Doonan C, Huang J. Enhanced Bioactivity of Enzyme/MOF Biocomposite via Host Framework Engineering. J Am Chem Soc 2023; 145:20365-20374. [PMID: 37671920 DOI: 10.1021/jacs.3c05488] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
This study reports the successful development of a sustainable synthesis protocol for a phase-pure metal azolate framework (MAF-6) and its application in enzyme immobilization. An esterase@MAF-6 biocomposite was synthesized, and its catalytic performance was compared with that of esterase@ZIF-8 and esterase@ZIF-90 in transesterification reactions. Esterase@MAF-6, with its large pore aperture, showed superior enzymatic performance compared to esterase@ZIF-8 and esterase@ZIF-90 in catalyzing transesterification reactions using both n-propanol and benzyl alcohol as reactants. The hydrophobic nature of the MAF-6 platform was shown to activate the immobilized esterase into its open-lid conformation, which exhibited a 1.5- and 4-times enzymatic activity as compared to free esterase in catalyzing transesterification reaction using n-propanol and benzyl alcohol, respectively. The present work offers insights into the potential of MAF-6 as a promising matrix for enzyme immobilization and highlights the need to explore MOF matrices with expanded pore apertures to broaden their practical applications in biocatalysis.
Collapse
Affiliation(s)
- Weibin Liang
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Kate Flint
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Yuchen Yao
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Jiacheng Wu
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Lizhuo Wang
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| | - Christian Doonan
- School of Physics, Chemistry and Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, University of Sydney, Darlington, NSW 2008, Australia
| |
Collapse
|
48
|
Sun G, Wei X, Zhang D, Huang L, Liu H, Fang H. Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring. BIOSENSORS 2023; 13:886. [PMID: 37754120 PMCID: PMC10526424 DOI: 10.3390/bios13090886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Electrochemical biosensors based on immobilized enzymes are among the most popular and commercially successful biosensors. The literature in this field suggests that modification of electrodes with nanomaterials is an excellent method for enzyme immobilization, which can greatly improve the stability and sensitivity of the sensor. However, the poor stability, weak reproducibility, and limited lifetime of the enzyme itself still limit the requirements for the development of enzyme electrochemical biosensors for food production process monitoring. Therefore, constructing sensing technologies based on enzyme electrochemical biosensors remains a great challenge. This article outlines the construction principles of four generations of enzyme electrochemical biosensors and discusses the applications of single-enzyme systems, multi-enzyme systems, and nano-enzyme systems developed based on these principles. The article further describes methods to improve enzyme immobilization by combining different types of nanomaterials such as metals and their oxides, graphene-related materials, metal-organic frameworks, carbon nanotubes, and conducting polymers. In addition, the article highlights the challenges and future trends of enzyme electrochemical biosensors, providing theoretical support and future perspectives for further research and development of high-performance enzyme chemical biosensors.
Collapse
Affiliation(s)
- Ganchao Sun
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Xiaobo Wei
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Dianping Zhang
- School of Mechanical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Liben Huang
- Huichuan Technology (Zhuhai) Co., Ltd., Zhuhai 519060, China;
| | - Huiyan Liu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| | - Haitian Fang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China; (G.S.); (X.W.)
| |
Collapse
|
49
|
Wijayanti SD, Tsvik L, Haltrich D. Recent Advances in Electrochemical Enzyme-Based Biosensors for Food and Beverage Analysis. Foods 2023; 12:3355. [PMID: 37761066 PMCID: PMC10529900 DOI: 10.3390/foods12183355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Food analysis and control are crucial aspects in food research and production in order to ensure quality and safety of food products. Electrochemical biosensors based on enzymes as the bioreceptors are emerging as promising tools for food analysis because of their high selectivity and sensitivity, short analysis time, and high-cost effectiveness in comparison to conventional methods. This review provides the readers with an overview of various electrochemical enzyme-based biosensors in food analysis, focusing on enzymes used for different applications in the analysis of sugars, alcohols, amino acids and amines, and organic acids, as well as mycotoxins and chemical contaminants. In addition, strategies to improve the performance of enzyme-based biosensors that have been reported over the last five years will be discussed. The challenges and future outlooks for the food sector are also presented.
Collapse
Affiliation(s)
- Sudarma Dita Wijayanti
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
- Department of Food Science and Biotechnology, Brawijaya University, Malang 65145, Indonesia
| | - Lidiia Tsvik
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| | - Dietmar Haltrich
- Laboratory of Food Biotechnology, Department of Food Science and Technology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190 Wien, Austria; (S.D.W.)
| |
Collapse
|
50
|
Morales AH, Hero JS, Ledesma AE, Perez HA, Navarro MC, Gómez MI, Romero CM. Interfacial Hyperactivation of Candida rugosa Lipase onto Ca 2Fe 2O 5 Nanoparticles: pH and Ionic Strength Fine-Tuning to Modulate Protein-Support Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12004-12019. [PMID: 37585874 DOI: 10.1021/acs.langmuir.3c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The current study provides a comprehensive look of the adsorption process of Candida rugosa lipase (CRL) on Ca2Fe2O5 iron oxide nanoparticles (NPs). Protein-support interactions were identified across a broad range of pH and ionic strengths (mM) through a response surface methodology, surface charge determination, and spectroscopic and in silico analyses. The maximum quantity of immobilized protein was achieved at an ionic strength of 50 mM and pH 4. However, this condition did not allow for the greatest hydrolytic activity to be obtained. Indeed, it was recorded at acidic pH, but at 150 mM, where evaluation of the recovered activity revealed hyperactivation of the enzyme. These findings were supported by adsorption isotherms performed under different conditions. Based on zeta potential measurements, electrostatic interactions contributed differently to protein-support binding under the conditions tested, showing a strong correlation with experimentally determined immobilization parameters. Raman spectra revealed an increase in hydrophobicity around tryptophan residues, whereas the enzyme immobilization significantly reduced the phenylalanine signal in CRL. This suggests that this residue was involved in the interaction with Ca2Fe2O2 and molecular docking analysis confirmed these findings. Fluorescence spectroscopy showed distinct behaviors in the CRL emission patterns with the addition of Ca2Fe2O5 at pH 4 and 7. The calculated thermodynamic parameters indicated that the contact would be mediated by hydrophobic interactions at both pHs, as well as by ionic ones at pH 4. In this approach, this work adds to our understanding of the design of biocatalysts immobilized in iron oxide NPs.
Collapse
Affiliation(s)
- Andrés H Morales
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, Tucumán T4001 MVB, Argentina
| | - Johan S Hero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, Tucumán T4001 MVB, Argentina
| | - Ana E Ledesma
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE-CONICET), Departamento Académico de Química, Facultad de Ciuencias Exactas y Tecnológicas, Universidad Nacional de Santiago del Estero, Av. Belgrano Sur 1912, Santiago del Estero 4200, Argentina
| | - Hugo A Perez
- Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL-UNSE-CONICET), Departamento Académico de Química, Facultad de Ciuencias Exactas y Tecnológicas, Universidad Nacional de Santiago del Estero, Av. Belgrano Sur 1912, Santiago del Estero 4200, Argentina
| | - María C Navarro
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, San Miguel de Tucumán T4000IL, Argentina
| | - María I Gómez
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, San Miguel de Tucumán T4000IL, Argentina
| | - Cintia M Romero
- Planta Piloto de Procesos Industriales Microbiológicos PROIMI-CONICET, Av. Belgrano y Pasaje Caseros, Tucumán T4001 MVB, Argentina
- Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, San Miguel de Tucumán T4000IL, Argentina
| |
Collapse
|