1
|
Jeon S, Yoon S, Kim Y, Shin S, Ji H, Cho E, Park D, Jung E. The effect of Salix alba L. bark extract on dark circles in vitro and in vivo. Int J Cosmet Sci 2023; 45:636-646. [PMID: 37235713 DOI: 10.1111/ics.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVE Dark circles in the infraorbital area are a common cosmetic concern among individuals because they exhibit fatigue and are undesirable across all ages. Of the dark circle etiologies, blood stasis by poor-vascular integrity can cause darkening of the lower eyelid skin, which might be alleviated by reduced endothelial permeability. In this study, we investigated the effects of Salix alba bark extract (SABE) on the synthesis of hyaluronic acid (HA) in fibroblasts and vascular integrity protection from inflammatory cytokine. We also performed a clinical trial investigating the effect of SABE on dark circles. METHODS To confirm the effect of SABE on HA synthesis in human dermal fibroblasts (HDFs), we performed ELISA and real-time PCR. We investigated the interaction HDF-secreted substance with vascular integrity, and human dermal microvascular endothelial cells (HMEC-1) were treated with conditioned medium (CM) from HDF treated with or without SABE. Subsequently, we conducted a clinical study on 29 subjects by having them apply SABE containing cream for 8 weeks. RESULTS Salix alba bark extract treatment increased HA synthesis and regulated HMW-HA-related gene expressions in HDF. CM from SABE-treated HDF alleviated endothelial permeability and led to improved vascular integrity in HMEC-1 cells. Treatment with the cream containing 2% SABE for 8 weeks improved the parameters measuring dark circles, skin microcirculation and elasticity. CONCLUSION Our results showed that SABE could protect against dark circles in vitro, and that topical treatment of SABE improved the clinical indexes of dark circles in a clinical study. Therefore, SABE can be used as an active ingredient for improving dark circles.
Collapse
Affiliation(s)
- Suwon Jeon
- BioSpectrum Life Science Institute, Yongin, Korea
| | - Sohyun Yoon
- BioSpectrum Life Science Institute, Yongin, Korea
| | - Yuna Kim
- BioSpectrum Life Science Institute, Yongin, Korea
| | | | - Hyanggi Ji
- BioSpectrum Life Science Institute, Yongin, Korea
| | - Eunae Cho
- BioSpectrum Life Science Institute, Yongin, Korea
| | | | - Eunsun Jung
- BioSpectrum Life Science Institute, Yongin, Korea
| |
Collapse
|
2
|
Wendt TS, Gonzales RJ. Ozanimod differentially preserves human cerebrovascular endothelial barrier proteins and attenuates matrix metalloproteinase-9 activity following in vitro acute ischemic injury. Am J Physiol Cell Physiol 2023; 325:C951-C971. [PMID: 37642239 DOI: 10.1152/ajpcell.00342.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Endothelial integrity is critical in mitigating a vicious cascade of secondary injuries following acute ischemic stroke (AIS). Matrix metalloproteinase-9 (MMP-9), a contributor to endothelial integrity loss, is elevated during stroke and is associated with worsened stroke outcome. We investigated the FDA-approved selective sphingosine-1-phosphate receptor 1 (S1PR1) ligand, ozanimod, on the regulation/activity of MMP-9 as well as endothelial barrier components [platelet endothelial cell adhesion molecule 1 (PECAM-1), claudin-5, and zonula occludens 1 (ZO-1)] in human brain microvascular endothelial cells (HBMECs) following hypoxia plus glucose deprivation (HGD). We previously reported that S1PR1 activation improves HBMEC integrity; however, mechanisms underlying S1PR1 involvement in endothelial cell barrier integrity have not been clearly elucidated. We hypothesized that ozanimod would attenuate an HGD-induced increase in MMP-9 activity that would concomitantly attenuate the loss of integral barrier components. Male HBMECs were treated with ozanimod or vehicle and exposed to 3 h of normoxia (21% O2) or HGD (1% O2). Immunoblotting, zymography, qRT-PCR, and immunocytochemical labeling techniques assessed processes related to MMP-9 and barrier markers. We observed that HGD acutely increased MMP-9 activity and reduced claudin-5 and PECAM-1 levels, and ozanimod attenuated these responses. In situ analysis, via PROSPER, suggested that attenuation of MMP-9 activity may be a primary factor in maintaining these integral barrier proteins. We also observed that HGD increased intracellular mechanisms associated with augmented MMP-9 activation; however, ozanimod had no effect on these select factors. Thus, we conclude that ozanimod has the potential to attenuate HGD-mediated decreases in HBMEC integrity in part by decreasing MMP-9 activity as well as preserving barrier properties.NEW & NOTEWORTHY We have identified a potential novel mechanism by which ozanimod, a selective sphingosine-1-phosphate receptor 1 (S1PR1) agonist, attenuates hypoxia plus glucose deprivation (HGD)-induced matrix metalloproteinase-9 (MMP-9) activity and disruptions in integral human brain endothelial cell barrier proteins. Our results suggest that ischemic-like injury elicits increased MMP-9 activity and alterations of barrier integrity proteins in human brain microvascular endothelial cells (HBMECs) and that ozanimod via S1PR1 attenuates these HGD-induced responses, adding to its therapeutic potential in cerebrovascular protection during the acute phase of ischemic stroke.
Collapse
Affiliation(s)
- Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, United States
| |
Collapse
|
3
|
Zhang Z, Gan Q, Han J, Tao Q, Qiu WQ, Madri JA. CD31 as a probable responding and gate-keeping protein of the blood-brain barrier and the risk of Alzheimer's disease. J Cereb Blood Flow Metab 2023; 43:1027-1041. [PMID: 37051650 PMCID: PMC10291450 DOI: 10.1177/0271678x231170041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
Several studies have shown that an abnormal vascular-immunity link could increase Alzheimer's disease (AD) risk; however, the mechanism is unclear. CD31, also named platelet endothelial cell adhesion molecule (PECAM), is a surface membrane protein of both endothelial and immune cells and plays important roles in the interaction between the vascular and immune systems. In this review, we focus on research regarding CD31 biological actions in the pathological process that may contribute to AD based on the following rationales. First, endothelial, leukocyte and soluble forms of CD31 play multi-roles in regulating transendothelial migration, increasing blood-brain barrier (BBB) permeability and resulting in neuroinflammation. Second, CD31 expressed by endothelial and immune cells dynamically modulates numbers of signaling pathways, including Src family kinases, selected G proteins, and β-catenin which in turn affect cell-matrix and cell-cell attachment, activation, permeability, survival, and ultimately neuronal cell injury. In endothelia and immune cells, these diverse CD31-mediated pathways act as a critical regulator in the immunity-endothelia-brain axis, thereby mediating AD pathogenesis in ApoE4 carriers, which is the major genetic risk factor for AD. This evidence suggests a novel mechanism and potential drug target for CD31 in the background of genetic vulnerabilities and peripheral inflammation for AD development and progression.
Collapse
Affiliation(s)
- Zhengrong Zhang
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Qini Gan
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Jingyan Han
- Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, USA
| | - Qiushan Tao
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Psychiatry, Boston University School of Medicine, Boston, MA, USA
- The Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Personalized risk predictor for acute cellular rejection in lung transplant using soluble CD31. Sci Rep 2022; 12:17628. [PMID: 36271122 PMCID: PMC9587244 DOI: 10.1038/s41598-022-21070-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 09/22/2022] [Indexed: 01/13/2023] Open
Abstract
We evaluated the contribution of artificial intelligence in predicting the risk of acute cellular rejection (ACR) using early plasma levels of soluble CD31 (sCD31) in combination with recipient haematosis, which was measured by the ratio of arterial oxygen partial pressure to fractional oxygen inspired (PaO2/FiO2) and respiratory SOFA (Sequential Organ Failure Assessment) within 3 days of lung transplantation (LTx). CD31 is expressed on endothelial cells, leukocytes and platelets and acts as a "peace-maker" at the blood/vessel interface. Upon nonspecific activation, CD31 can be cleaved, released, and detected in the plasma (sCD31). The study included 40 lung transplant recipients, seven (17.5%) of whom experienced ACR. We modelled the plasma levels of sCD31 as a nonlinear dependent variable of the PaO2/FiO2 and respiratory SOFA over time using multivariate and multimodal models. A deep convolutional network classified the time series models of each individual associated with the risk of ACR to each individual in the cohort.
Collapse
|
5
|
Huang B, Yan X, Li Y. Cancer Stem Cell for Tumor Therapy. Cancers (Basel) 2021; 13:cancers13194814. [PMID: 34638298 PMCID: PMC8508418 DOI: 10.3390/cancers13194814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Although many methods have been applied in clinical treatment for tumors, they still always show a poor prognosis. Molecule targeted therapy has revolutionized tumor therapy, and a proper target must be found urgently. With a crucial role in tumor development, metastasis and recurrence, cancer stem cells have been found to be a feasible and potential target for tumor therapy. We list the unique biological characteristics of cancer stem cells and summarize the recent strategies to target cancer stem cells for tumor therapy, through which we hope to provide a comprehensive understanding of cancer stem cells and find a better combinational strategy to target cancer stem cells for tumor therapy. Abstract Tumors pose a significant threat to human health. Although many methods, such as operations, chemotherapy and radiotherapy, have been proposed to eliminate tumor cells, the results are unsatisfactory. Targeting therapy has shown potential due to its specificity and efficiency. Meanwhile, it has been revealed that cancer stem cells (CSCs) play a crucial role in the genesis, development, metastasis and recurrence of tumors. Thus, it is feasible to inhibit tumors and improve prognosis via targeting CSCs. In this review, we provide a comprehensive understanding of the biological characteristics of CSCs, including mitotic pattern, metabolic phenotype, therapeutic resistance and related mechanisms. Finally, we summarize CSCs targeted strategies, including targeting CSCs surface markers, targeting CSCs related signal pathways, targeting CSC niches, targeting CSC metabolic pathways, inducing differentiation therapy and immunotherapy (tumor vaccine, CAR-T, oncolytic virus, targeting CSCs–immune cell crosstalk and immunity checkpoint inhibitor). We highlight the potential of immunity therapy and its combinational anti-CSC therapies, which are composed of different drugs working in different mechanisms.
Collapse
Affiliation(s)
- Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Xin Yan
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China; (B.H.); (X.Y.)
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou 730030, China
- Correspondence: ; Tel.: +86-138-9361-5421
| |
Collapse
|
6
|
Yang H, Yang Q, Wang Y, Zheng L. Inhibition of hypoxia-inducible factor-1 by Salidroside in an in vitro model of choroidal neovascularization. Cutan Ocul Toxicol 2021; 41:203-209. [PMID: 34428999 DOI: 10.1080/15569527.2021.1973023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE As a characteristic of age-related macular degeneration (AMD), choroidal neovascularization (CNV) causes severe vision loss. The current treatment has limited efficacy. This study was to investigate effects of Salidroside against CNV and explore its underlying mechanisms. METHODS RF/6A cells were treated with 200 mM cobalt chloride (CoCl2) for 6 hr to mimic hypoxic condition. Cells were then treated with Salidroside at 10, 30 and 100 µM for 24 hr. Cells treated with DMSO were used as negative control. The cell proliferation was assessed using 3-(4,5-dimethylthiazol)-2,5-diphenyltetrazolium-bromid assay. The tube formation was investigated on Matrigel. The cell migration was measured by a Transwell assay. RT-qPCR was used to detect the gene expression. Immuohistochemistry and western blot were used to detect the expression of proteins. RESULTS Salidroside significantly inhibited the cell migration and tube formation activity of RF/6A cells under hypoxia. Moreover, Salidroside reduced the expression levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF-1) in RF/6A cells. CONCLUSIONS Our data suggested that Salidroside could be a potential novel therapeutic agent against CNV.
Collapse
Affiliation(s)
- Haitao Yang
- Department of Neurosurgery, The second Fuzhou Hospital Affiliated to Xiamen University, Fuzhou 350007, People's Republic of China
| | - Qingwu Yang
- Department of Neurosurgery, The second Fuzhou Hospital Affiliated to Xiamen University, Fuzhou 350007, People's Republic of China
| | - Yunfeng Wang
- Department of Neurosurgery, The second Fuzhou Hospital Affiliated to Xiamen University, Fuzhou 350007, People's Republic of China
| | - Linfei Zheng
- Department of Neurosurgery, The second Fuzhou Hospital Affiliated to Xiamen University, Fuzhou 350007, People's Republic of China
| |
Collapse
|
7
|
Eshaq RS, Harris NR. The role of tumor necrosis factor-α and interferon-γ in the hyperglycemia-induced ubiquitination and loss of platelet endothelial cell adhesion molecule-1 in rat retinal endothelial cells. Microcirculation 2021; 28:e12717. [PMID: 34008903 PMCID: PMC10078990 DOI: 10.1111/micc.12717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to investigate the role of the hyperglycemia-induced increase in tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) in the ubiquitination and degradation of platelet endothelial cell adhesion molecule-1 (PECAM-1) in the diabetic retina. METHODS Type I diabetes was induced in rats by the injection of streptozotocin, with age-matched non-diabetic rats as controls. Primary rat retinal microvascular endothelial cells were grown in normal or high glucose media for 6 days or in normal glucose media for 24 h with addition of TNF-α and/or IFN-γ. PECAM-1, TNF-α, IFN-γ, and ubiquitin levels were assessed using Western blotting, immunofluorescence, and immunoprecipitation assays. Additionally, proteasome activity was assessed both in vivo and in vitro. RESULTS Under hyperglycemic conditions, total ubiquitination levels in the retina and RRMECs, and PECAM-1 ubiquitination levels in RRMECs, were significantly increased. Additionally, TNF-α and IFN-γ levels were significantly increased under hyperglycemic conditions. PECAM-1 levels in RRMECs treated with TNF-α and/or IFN-γ were significantly decreased. Moreover, there was a significant decrease in proteasome activity in the diabetic retina, hyperglycemic RRMECs, and RRMECs treated with TNF-α or IFN-γ. CONCLUSION Tumor necrosis factor-α and IFN-γ may contribute to the hyperglycemia-induced loss of PECAM-1 in retinal endothelial cells, possibly by upregulating PECAM-1 ubiquitination.
Collapse
Affiliation(s)
- Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| |
Collapse
|
8
|
Jang M, Choi SH, Choi JH, Oh J, Lee RM, Lee NE, Cho YJ, Rhim H, Kim HC, Cho IH, Nah SY. Ginseng gintonin attenuates the disruptions of brain microvascular permeability and microvascular endothelium junctional proteins in an APPswe/PSEN-1 double-transgenic mouse model of Αlzheimer's disease. Exp Ther Med 2021; 21:310. [PMID: 33717253 PMCID: PMC7885069 DOI: 10.3892/etm.2021.9741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/30/2020] [Indexed: 11/06/2022] Open
Abstract
It has been previously indicated that gintonin, which is a novel exogenous ginseng-derived lysophosphatidic acid (LPA) receptor ligand, restores memory dysfunctions in an APPswe/PSEN-1 double-transgenic mouse model of Alzheimer's disease (AD Tg mice) by attenuating β-amyloid plaque deposition, recovering cholinergic dysfunctions and upregulating hippocampal neurogenesis in the cortex and hippocampus. Although β-amyloid plaque depositions in AD is accompanied with disruptions of brain microvessels, including the brain-blood barrier (BBB), it is unknown whether gintonin exerts protective effects on brain microvascular dysfunctions in AD Tg mice. In the present study, the effects of gintonin-enriched fraction (GEF) on the changes in β-amyloid plaque depositions, brain permeability of Evans blue, and microvascular junctional proteins were investigated in AD Tg mice. Long-term oral administration of GEF reduced β-amyloid plaque depositions in the cortex and hippocampus of AD Tg mice. GEF treatment also reduced the permeability of Evans blue through BBB and decreased immunoreactivity of platelet endothelial cell adhesion molecule-1 (a marker of BBB disruption) in the cortex and hippocampus of AD Tg mice in a dose-dependent manner. However, GEF elevated the protein expression of occludin, claudin-5 and zonula occludens-1, which are tight-junction proteins. The present results demonstrated that long-term oral GEF treatment not only attenuates β-amyloid plaque depositions in the brain but also exhibits protective effects against microvascular disruptions in AD Tg mice. Finally, GEF exhibits anti-AD effects through attenuation of β-amyloid plaque depositions and protection against brain microvascular damage in an AD animal model.
Collapse
Affiliation(s)
- Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinhee Oh
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ra Mi Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Eun Lee
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeon-Jin Cho
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.,Brain Korea 21 Plus Program and Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
9
|
Queisser KA, Mellema RA, Petrey AC. Hyaluronan and Its Receptors as Regulatory Molecules of the Endothelial Interface. J Histochem Cytochem 2021; 69:25-34. [PMID: 32870756 PMCID: PMC7780188 DOI: 10.1369/0022155420954296] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
On the surface of endothelial cells (ECs) lies the glycocalyx, a barrier of polysaccharides that isolates the ECs from the blood. The role of the glycocalyx is dynamic and complex, thanks to not only its structure, but its vast number of components, one being hyaluronan (HA). HA is a critical component of the glycocalyx, having been found to have a wide variety of functions depending on its molecular weight, its modification, and receptor-ligand interactions. As HA and viscous blood are in constant contact, HA can transmit mechanosensory information directly to the cytoskeleton of the ECs. The degradation and synthesis of HA directly alters the permeability of the EC barrier; HA modulation not only alters the physical barrier but also can signal the initiation of other pathways. EC proliferation and angiogenesis are in part regulated by HA fragmentation, HA-dependent receptor binding, and downstream signals. The interaction between the CD44 receptor and HA is a driving force behind leukocyte recruitment, but each class of leukocyte still interacts with HA in unique ways during inflammation. HA regulates a diverse repertoire of EC functions.
Collapse
Affiliation(s)
| | - Rebecca A Mellema
- Division of Microbiology & Immunology, Department of Pathology, The University of Utah, Salt Lake City, Utah
| | - Aaron C Petrey
- Molecular Medicine Program, The University of Utah, Salt Lake City, Utah
- Division of Microbiology & Immunology, Department of Pathology, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
10
|
Bonacina F, Da Dalt L, Catapano AL, Norata GD. Metabolic adaptations of cells at the vascular-immune interface during atherosclerosis. Mol Aspects Med 2020; 77:100918. [PMID: 33032828 PMCID: PMC7534736 DOI: 10.1016/j.mam.2020.100918] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Metabolic reprogramming is a physiological cellular adaptation to intracellular and extracellular stimuli that couples to cell polarization and function in multiple cellular subsets. Pathological conditions associated to nutrients overload, such as dyslipidaemia, may disturb cellular metabolic homeostasis and, in turn, affect cellular response and activation, thus contributing to disease progression. At the vascular/immune interface, the site of atherosclerotic plaque development, many of these changes occur. Here, an intimate interaction between endothelial cells (ECs), vascular smooth muscle cells (VSMCs) and immune cells, mainly monocytes/macrophages and lymphocytes, dictates physiological versus pathological response. Furthermore, atherogenic stimuli trigger metabolic adaptations both at systemic and cellular level that affect the EC layer barrier integrity, VSMC proliferation and migration, monocyte infiltration, macrophage polarization, lymphocyte T and B activation. Rewiring cellular metabolism by repurposing “metabolic drugs” might represent a pharmacological approach to modulate cell activation at the vascular immune interface thus contributing to control the immunometabolic response in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- F Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - L Da Dalt
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - A L Catapano
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCSS Multimedica, Milan, Italy.
| | - G D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; IRCCS, Ospedale Bassini, Cinisello Balsamo, Italy.
| |
Collapse
|
11
|
Wright WS, Eshaq RS, Lee M, Kaur G, Harris NR. Retinal Physiology and Circulation: Effect of Diabetes. Compr Physiol 2020; 10:933-974. [PMID: 32941691 PMCID: PMC10088460 DOI: 10.1002/cphy.c190021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this article, we present a discussion of diabetes and its complications, including the macrovascular and microvascular effects, with the latter of consequence to the retina. We will discuss the anatomy and physiology of the retina, including aspects of metabolism and mechanisms of oxygenation, with the latter accomplished via a combination of the retinal and choroidal blood circulations. Both of these vasculatures are altered in diabetes, with the retinal circulation intimately involved in the pathology of diabetic retinopathy. The later stages of diabetic retinopathy involve poorly controlled angiogenesis that is of great concern, but in our discussion, we will focus more on several alterations in the retinal circulation occurring earlier in the progression of disease, including reductions in blood flow and a possible redistribution of perfusion that may leave some areas of the retina ischemic and hypoxic. Finally, we include in this article a more recent area of investigation regarding the diabetic retinal vasculature, that is, the alterations to the endothelial surface layer that normally plays a vital role in maintaining physiological functions. © 2020 American Physiological Society. Compr Physiol 10:933-974, 2020.
Collapse
Affiliation(s)
- William S Wright
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Randa S Eshaq
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Minsup Lee
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
12
|
Serrano JJ, Delgado B, Medina MÁ. Control of tumor angiogenesis and metastasis through modulation of cell redox state. Biochim Biophys Acta Rev Cancer 2020; 1873:188352. [PMID: 32035101 DOI: 10.1016/j.bbcan.2020.188352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
Abstract
Redox reactions pervade all biology. The control of cellular redox state is essential for bioenergetics and for the proper functioning of many biological functions. This review traces a timeline of findings regarding the connections between redox and cancer. There is ample evidence of the involvement of cellular redox state on the different hallmarks of cancer. Evidence of the control of tumor angiogenesis and metastasis through modulation of cell redox state is reviewed and highlighted.
Collapse
Affiliation(s)
- José J Serrano
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
| | - Belén Delgado
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain
| | - Miguel Ángel Medina
- Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, E-29071 Málaga, Spain; IBIMA (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain; CIBER de Enfermedades Raras (CIBERER), E-29071 Málaga, Spain.
| |
Collapse
|
13
|
Chang CW, Seibel AJ, Avendano A, Cortes-Medina M, Song JW. Distinguishing Specific CXCL12 Isoforms on Their Angiogenesis and Vascular Permeability Promoting Properties. Adv Healthc Mater 2020; 9:e1901399. [PMID: 31944591 PMCID: PMC7033017 DOI: 10.1002/adhm.201901399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/17/2019] [Indexed: 11/05/2022]
Abstract
Angiogenesis is associated with increased vessel sprouting and permeability. Important mediators of these angiogenic responses include local environment of signaling molecules and supporting extracellular matrix (ECM). However, dissecting the interplay of these instructive signals in vivo with multiple cells and extracellular molecules remains a central challenge. Here, microfluidic biomimicry is integrated with 3D ECM hydrogels that are well-characterized for molecular-binding and mechanical properties to reconstitute vessel-like analogues in vitro. This study focuses on three distinct isoforms of the pro-metastatic chemokine CXCL12. In collagen-only hydrogel, CXCL12-α is the most potent isoform in promoting sprouting and permeability, followed by CXCL12-β and CXCL12-γ. Strikingly, addition of hyaluronan (HA), a large and negatively charged glycosaminoglycan, with collagen matrices selectively increases vessel sprouting and permeability conferred by CXCL12-γ. This outcome is supported by the measured binding affinities to collagen/HA ECM, suggesting that negatively charged HA increases the binding of CXCL12-γ to augment its angiogenic potency. Moreover, it is shown that addition of HA to collagen matrices on its own decreases vessel sprouting and permeability, and these responses are nullified by blocking the HA receptor CD44. Collectively, these results demonstrate that differences in binding to extracellular HA help underlie CXCL12 isoform-specific responses toward directing angiogenesis.
Collapse
Affiliation(s)
- Chia-Wen Chang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Alex J. Seibel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Marcos Cortes-Medina
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Jonathan W. Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, USA
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
14
|
Jiménez-Meléndez A, Fernández-Álvarez M, Calle A, Ramírez MÁ, Diezma-Díaz C, Vázquez-Arbaizar P, Ortega-Mora LM, Álvarez-García G. Lytic cycle of Besnoitia besnoiti tachyzoites displays similar features in primary bovine endothelial cells and fibroblasts. Parasit Vectors 2019; 12:517. [PMID: 31685001 PMCID: PMC6829937 DOI: 10.1186/s13071-019-3777-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bovine besnoitiosis, caused by the cyst-forming apicomplexan parasite Besnoitia besnoiti, is a chronic and debilitating cattle disease that continues to spread in Europe in the absence of control tools. In this scenario, in vitro culture systems are valuable tools to carry out drug screenings and to unravel host-parasite interactions. However, studies performed in bovine target cells are scarce. METHODS The objective of the present study was to obtain primary bovine aortic endothelial cells (BAECs) and fibroblast cell cultures, target cells during the acute and the chronic stage of the disease, respectively, from healthy bovine donors. Afterwards, expression of surface (CD31, CD34 and CD44) and intracellular markers (vimentin and cytokeratin) was studied to characterize cell populations by flow cytometry. Next, the lytic cycle of B. besnoiti tachyzoites was studied in both target cells. Invasion rates (IRs) were determined by immunofluorescence at several time points post-infection, and proliferation kinetics were studied by quantitative PCR (qPCR). Finally, the influence of bovine viral diarrhea virus (BVDV) co-infection on the host cell machinery, and consequently on B. besnoiti invasion and proliferation, was investigated in BAECs. RESULTS Morphology and cytometry results confirmed the endothelial and fibroblast origins. CD31 was the surface marker that best discriminated between BAECs and fibroblasts, since fibroblasts lacked CD31 labelling. Expression of CD34 was weak in low-passage BAECs and absent in high-passage BAECs and fibroblasts. Positive labelling for CD44, vimentin and cytokeratin was observed in both BAECs and fibroblasts. Regarding the lytic cycle of the parasite, although low invasion rates (approximately 3-4%) were found in both cell culture systems, more invasion was observed in BAECs at 24 and 72 hpi. The proliferation kinetics did not differ between BAECs and fibroblasts. BVDV infection favoured early Besnoitia invasion but there was no difference in tachyzoite yields observed in BVDV-BAECs compared to BAECs. CONCLUSIONS We have generated and characterized two novel standardized in vitro models for Besnoitia besnoiti infection based on bovine primary target BAECs and fibroblasts, and have shown the relevance of BVDV coinfections, which should be considered in further studies with other cattle pathogens.
Collapse
Affiliation(s)
- Alejandro Jiménez-Meléndez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - María Fernández-Álvarez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Alexandra Calle
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avenida Puerta de Hierro 12, local 10, 28040 Madrid, Spain
| | - Miguel Ángel Ramírez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avenida Puerta de Hierro 12, local 10, 28040 Madrid, Spain
| | - Carlos Diezma-Díaz
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Patricia Vázquez-Arbaizar
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Gema Álvarez-García
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
15
|
Yang X, Meegan JE, Jannaway M, Coleman DC, Yuan SY. A disintegrin and metalloproteinase 15-mediated glycocalyx shedding contributes to vascular leakage during inflammation. Cardiovasc Res 2019; 114:1752-1763. [PMID: 29939250 PMCID: PMC6198742 DOI: 10.1093/cvr/cvy167] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/22/2018] [Indexed: 01/25/2023] Open
Abstract
Aims Endothelial hyperpermeability exacerbates multiple organ damage during inflammation or infection. The endothelial glycocalyx, a protective matrix covering the luminal surface of endothelial cells (ECs), undergoes enzymatic shedding during inflammation, contributing to barrier hyperpermeability. A disintegrin and metalloproteinase 15 (ADAM15) is a sheddase capable of cleaving the ectodomains of membrane-bound molecules. Herein, we tested whether and how ADAM15 is involved in glycocalyx shedding and vascular leakage during sepsis. Methods and results Dextran-150kD exclusion assay revealed lipopolysaccharide (LPS) significantly reduced glycocalyx thickness in mouse cremaster microvessels. Consistently, shedding products of glycocalyx constituents, including CD44 ectodomain, were detected with an increased plasma level after cecal ligation and puncture (CLP)-induced sepsis. The direct effects of CD44 ectodomain on endothelial barrier function were evaluated, which revealed CD44 ectodomain dose-dependently reduced transendothelial electrical resistance (TER) and caused cell–cell adherens junction disorganization. Furthermore, we examined the role of ADAM15 in CD44 cleavage and glycocalyx shedding. An in vitro cleavage assay coupled with liquid chromatography-tandem mass spectrometry confirmed ADAM15 cleaved CD44 at His235-Thr236 bond. In ECs with ADAM15 knockdown, LPS-induced CD44 cleavage and TER reduction were greatly attenuated, whereas, ADAM15 overexpression exacerbated CD44 cleavage and TER response to LPS. Consistently, ADAM15 knockout in mice attenuated CLP-induced increase in plasma CD44. Intravital and electron microscopic images revealed ADAM15 deficiency prevented LPS-induced glycocalyx injury in cremaster and pulmonary microvasculatures. Functionally, ADAM15−/− mice with better-preserved glycocalyx exhibited resistance to LPS-induced vascular leakage, as evidenced by reduced albumin extravasation in pulmonary and mesenteric vessels. Importantly, in intact, functionally vital human lungs, perfusion of LPS induced a significant up-regulation of ADAM15, accompanied by elevated CD44 in the effluent and increased vascular permeability to albumin. Conclusion Together, our data support the critical role of ADAM15 in mediating vascular barrier dysfunction during inflammation. Its mechanisms of action involve CD44 shedding and endothelial glycocalyx injury.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, USA
| | - Jamie E Meegan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, USA
| | - Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, USA
| | - Danielle C Coleman
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 8, Tampa, FL, USA.,Department of Surgery, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, USA
| |
Collapse
|
16
|
Al-Ahmad AJ, Patel R, Palecek SP, Shusta EV. Hyaluronan impairs the barrier integrity of brain microvascular endothelial cells through a CD44-dependent pathway. J Cereb Blood Flow Metab 2019; 39:1759-1775. [PMID: 29589805 PMCID: PMC6727144 DOI: 10.1177/0271678x18767748] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hyaluronan (HA) constitutes the most abundant extracellular matrix component during brain development, only to become a minor component rapidly after birth and in adulthood to remain in specified regions. HA signaling has been associated with several neurological disorders, yet the impact of HA signaling at the blood-brain barrier (BBB) function remains undocumented. In this study, we investigated the impact of HA on BBB properties using human-induced pluripotent stem cell (iPSC) -derived and primary human and rat BMECs. The impact of HA signaling on developmental and mature BMECs was assessed by measuring changes in TEER, permeability, BMECs markers (GLUT1, tight junction proteins, P-gp) expression and localization, CD44 expression and hyaluronan levels. In general, HA treatment decreased barrier function and reduced P-gp activity with effects being more prominent upon treatment with oligomeric forms of HA (oHA). Such effects were exacerbated when applied during BMEC differentiation phase (considered as developmental BBB). We noted a hyaluronidase activity as well as an increase in CD44 expression during prolonged oxygen-glucose deprivation stress. Inhibition of HA signaling by antibody blockade of CD44 abrogated the detrimental effects of HA treatment. These results suggest the importance of HA signaling through CD44 on BBB properties.
Collapse
Affiliation(s)
- Abraham J Al-Ahmad
- 1 Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.,2 Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Ronak Patel
- 2 Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sean P Palecek
- 1 Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- 1 Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
17
|
Caligiuri G. Mechanotransduction, immunoregulation, and metabolic functions of CD31 in cardiovascular pathophysiology. Cardiovasc Res 2019; 115:1425-1434. [DOI: 10.1093/cvr/cvz132] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
Biomechanical changes in the heart and vessels drive rapid and dynamic regulation of blood flow, a vital process for meeting the changing metabolic needs of the peripheral tissues at any given point in time. The fluid movement of the blood exerts haemodynamic stress upon the solid elements of the cardiovascular system: the heart, vessels, and cellular components of the blood. Cardiovascular diseases can lead to prolonged mechanical stress, such as cardiac remodelling during heart failure or vascular stiffening in atherosclerosis. This can lead to a significantly reduced or increasingly turbulent blood supply, inducing a shift in cellular metabolism that, amongst other effects, can trigger the release of reactive oxygen species and initiate a self-perpetuating cycle of inflammation and oxidative stress. CD31 is the most abundant constitutive co-signalling receptor glycoprotein on endothelial cells, which line the cardiovascular system and form the first-line of cellular contact with the blood. By associating with most endothelial receptors involved in mechanosensing, CD31 regulates the response to biomechanical stimuli. In addition, by relocating in the lipid rafts of endothelial cells as well as of cells stably interacting with the endothelium, including leucocytes and platelets, CD31–CD31 trans-homophilic engagement guides and restrains platelet and immune cell accumulation and activation and at sites of damage. In this way, CD31 is at the centre of mediating mechanical, metabolic, and immunological changes within the circulation and provides a single target that may have pleiotropic beneficial effects.
Collapse
Affiliation(s)
- Giuseppina Caligiuri
- Université de Paris, Cardiovascular Immunobiology, UMRS1148, INSERM, Paris, France
- Cardiology Department and Physiology Departments, AP-HP, University Hospital Xavier Bichat, 46 Rue Henri Huchard, Paris, France
| |
Collapse
|
18
|
Azad T, Ghahremani M, Yang X. The Role of YAP and TAZ in Angiogenesis and Vascular Mimicry. Cells 2019; 8:cells8050407. [PMID: 31052445 PMCID: PMC6562567 DOI: 10.3390/cells8050407] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is a physiological process that begins in utero and continues throughout life in both good health and disease. Understanding the underlying mechanism in angiogenesis could uncover a new therapeutic approach in pathological angiogenesis. Since its discovery, the Hippo signaling pathway has emerged as a key player in controlling organ size and tissue homeostasis. Recently, new studies have discovered that Hippo and two of its main effectors, Yes-associated protein (YAP) and its paralog transcription activator with PDZ binding motif (TAZ), play critical roles during angiogenesis. In this review, we summarize the mechanisms by which YAP/TAZ regulate endothelial cell shape, behavior, and function in angiogenesis. We further discuss how YAP/TAZ function as part of developmental and pathological angiogenesis. Finally, we review the role of YAP/TAZ in tumor vascular mimicry and propose directions for future work.
Collapse
Affiliation(s)
- Taha Azad
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Mina Ghahremani
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
19
|
Yan BC, Xu P, Gao M, Wang J, Jiang D, Zhu X, Won MH, Su PQ. Changes in the Blood-Brain Barrier Function Are Associated With Hippocampal Neuron Death in a Kainic Acid Mouse Model of Epilepsy. Front Neurol 2018; 9:775. [PMID: 30258402 PMCID: PMC6143688 DOI: 10.3389/fneur.2018.00775] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
The kainic acid (KA)-induced epilepsy experimental model is widely used to study the mechanisms underlying this disorder. Recently, the blood-brain barrier (BBB) has become an innovative alternative treatment target for epilepsy patients. KA causes neuronal injury and BBB damage in this experimental epilepsy model but the mechanisms underlying epilepsy-related neuronal injury, autophagy, and BBB damage remain unclear. Therefore, the present study investigated the relationships among neuronal injury, the expressions of autophagy-related proteins, and changes in BBB-related proteins during the acute phase of epilepsy to further understand the mechanisms and pharmacotherapy of epilepsy. NeuN immunohistochemistry and Fluoro-Jade B (FJ-B) staining in the hippocampal CA3 region revealed that neuronal death induced by intraventricular injections of 10 μg/kg KA was greater than that induced by 3 μg/kg KA. In addition, there were transient increases in the levels of microtubule-associated protein light chain 3-II (LC3I/II) and Beclin-1, which are autophagy-related proteins involved in neuronal death, in this region 24 h after the administration of 10 μg/kg KA. There were also morphological changes in BBB-related cells such as astrocytes, endothelial cells (ECs), and tight junctions (TJs). More specifically, there was a significant increase in the activation of astrocytes 72 h after the administration of 10 μg/kg KA as well as continuous increases in the expressions of platelet endothelial cell adhesion molecule-1 (PECAM-1) and BBB-related TJ proteins (Zonula occludens-1 and Claudin-5) until 72 h after KA treatment. These results suggest that the overexpression of autophagy-related proteins and astrocytes and transient increases in the expressions of BBB-related TJ proteins may be closely related to autophagic neuronal injury. These findings provide a basis for the identification of novel therapeutic targets for patients with epilepsy.
Collapse
Affiliation(s)
- Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China.,Department of Integrated Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Pei Xu
- Department of Neurology, Haian Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Haian, China
| | - Manman Gao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Jie Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Dan Jiang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Xiaolu Zhu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Pei Qing Su
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
Venkataramani V, Küffer S, Cheung KCP, Jiang X, Trümper L, Wulf GG, Ströbel P. CD31 Expression Determines Redox Status and Chemoresistance in Human Angiosarcomas. Clin Cancer Res 2017; 24:460-473. [PMID: 29084920 DOI: 10.1158/1078-0432.ccr-17-1778] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022]
Abstract
Purpose: Angiosarcomas are soft tissue sarcomas with endothelial differentiation and vasoformative capacity. Most angiosarcomas show strong constitutive expression of the endothelial adhesion receptor CD31/PECAM-1 pointing to an important role of this molecule. However, the biological function of CD31 in angiosarcomas is unknown.Experimental Design: The expression levels of CD31 in angiosarcoma cells and its effects on cell viability, colony formation, and chemoresistance were evaluated in human angiosarcoma clinical samples and in cell lines through isolation of CD31high and CD31low cell subsets. The redox-regulatory CD31 function linked to YAP signaling was determined using a CD31-blocking antibody and siRNA approach and was further validated in CD31-knockout endothelial cells.Results: We found that most angiosarcomas contain a small CD31low cell population. CD31low cells had lost part of their endothelial properties and were more tumorigenic and chemoresistant than CD31high cells due to more efficient reactive oxygen species (ROS) detoxification. Active downregulation of CD31 resulted in loss of endothelial tube formation, nuclear accumulation of YAP, and YAP-dependent induction of antioxidative enzymes. Addition of pazopanib, a known enhancer of proteasomal YAP degradation resensitized CD31low cells for doxorubicin resulting in growth suppression and induction of apoptosis.Conclusions: Human angiosarcomas contain a small aggressive CD31low population that have lost part of their endothelial differentiation programs and are more resistant against oxidative stress and DNA damage due to intensified YAP signaling. Our finding that the addition of YAP inhibitors can resensitize CD31low cells toward doxorubicin may aid in the rational development of novel combination therapies to treat angiosarcomas. Clin Cancer Res; 24(2); 460-73. ©2017 AACR.
Collapse
Affiliation(s)
- Vivek Venkataramani
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany. .,Cell Biology Program, Memorial Sloan Kettering Cancer Center, Göttingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Kenneth C P Cheung
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, Göttingen, Germany
| | - Lorenz Trümper
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Gerald G Wulf
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
21
|
Kuwahara G, Hashimoto T, Tsuneki M, Yamamoto K, Assi R, Foster TR, Hanisch JJ, Bai H, Hu H, Protack CD, Hall MR, Schardt JS, Jay SM, Madri JA, Kodama S, Dardik A. CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation. Arterioscler Thromb Vasc Biol 2017; 37:1147-1156. [PMID: 28450292 DOI: 10.1161/atvbaha.117.309385] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Arteriovenous fistulae (AVF) remain the optimal conduit for hemodialysis access but continue to demonstrate poor patency and poor rates of maturation. We hypothesized that CD44, a widely expressed cellular adhesion molecule that serves as a major receptor for extracellular matrix components, promotes wall thickening and extracellular matrix deposition during AVF maturation. APPROACH AND RESULTS AVF were created via needle puncture in wild-type C57BL/6J and CD44 knockout mice. CD44 mRNA and protein expression was increased in wild-type AVF. CD44 knockout mice showed no increase in AVF wall thickness (8.9 versus 26.8 μm; P=0.0114), collagen density, and hyaluronic acid density, but similar elastin density when compared with control AVF. CD44 knockout mice also showed no increase in vascular cell adhesion molecule-1 expression, intercellular adhesion molecule-1 expression, and monocyte chemoattractant protein-1 expression in the AVF compared with controls; there were also no increased M2 macrophage markers (transglutaminase-2: 81.5-fold, P=0.0015; interleukin-10: 7.6-fold, P=0.0450) in CD44 knockout mice. Delivery of monocyte chemoattractant protein-1 to CD44 knockout mice rescued the phenotype with thicker AVF walls (27.2 versus 14.7 μm; P=0.0306), increased collagen density (2.4-fold; P=0.0432), and increased number of M2 macrophages (2.1-fold; P=0.0335). CONCLUSIONS CD44 promotes accumulation of M2 macrophages, extracellular matrix deposition, and wall thickening during AVF maturation. These data show the association of M2 macrophages with wall thickening during AVF maturation and suggest that enhancing CD44 activity may be a strategy to increase AVF maturation.
Collapse
Affiliation(s)
- Go Kuwahara
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Takuya Hashimoto
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Masayuki Tsuneki
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Kota Yamamoto
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Roland Assi
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Trenton R Foster
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Jesse J Hanisch
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Hualong Bai
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Haidi Hu
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Clinton D Protack
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Michael R Hall
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - John S Schardt
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Steven M Jay
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Joseph A Madri
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Shohta Kodama
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.)
| | - Alan Dardik
- From the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT (G.K., T.H., K.Y., R.A., T.R.F., J.J.H., H.B., H.H., C.D.P., M.R.H., J.A.M., A.D.); Department of Cardiovascular Surgery (G.K.) and Department of Regenerative Medicine and Transplantation (G.K., S.K.), Fukuoka University, Japan; Department of Surgery, Veterans Affairs Connecticut Healthcare Systems, West Haven (T.H., K.Y., H.B., H.H., A.D.); Division of Vascular Surgery, Department of Surgery, The University of Tokyo, Japan (T.H., K.Y.); Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan (M.T.); Department of Pathology (M.T., J.A.M.) and Department of Surgery (R.A., T.R.F., J.J.H., C.D.P., M.R.H., A.D.), Yale University School of Medicine, New Haven, CT; and Fischell Department of Bioengineering, University of Maryland, College Park (J.S.S., S.M.J.).
| |
Collapse
|
22
|
The role of endothelial HIF-1 αin the response to sublethal hypoxia in C57BL/6 mouse pups. J Transl Med 2017; 97:356-369. [PMID: 28092362 DOI: 10.1038/labinvest.2016.154] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 12/24/2022] Open
Abstract
Chronic sublethal hypoxia, a complication of premature birth, is associated with cognitive and motor handicaps. Responsiveness to and recovery from this hypoxic environment is dependent on induction of HIF-1 α in the cells affected. Microvascular endothelial-glial and microvascular endothelial-neuronal precursor interactions have been found to be dynamic and reciprocal, involving autocrine and paracrine signaling, with response and recovery correlated with baseline levels and levels of induction of HIF-1 α.To ascertain the roles of endothelial HIF-1 α in the responses of brain microvascular endothelial cells (EC) and neuronal precursors to hypoxia, we examined the effects of the presence and absence of endothelial HIF-1 α expression in culture and in cells comprising the subventricular zone (SVZ) and dentate gyrus under normoxic and hypoxic conditions. We used C57BL/6 WT and EC HIF-1 α -deficient mice and brain microvascular ECs isolated from these mice in western blots, immunofluorescence, and behavioral studies to examine the roles of EC HIF-1 α behaviors of endothelial and neuronal precursor cells (NPCs) in SVZ and hippocampal tissues under normoxic and hypoxic conditions and behaviors of these mice in open field activity tests. Analyses of ECs and SVZ and dentate gyrus tissues revealed effects of the absence of endothelial HIF-1 α on proliferation and apoptosis as well as open field activity, with both ECs and neuronal cells exhibiting decreased proliferation, increased apoptosis, and pups exhibiting gender-specific differences in open field activities. Our studies demonstrate the autocrine and paracrine effects of EC HIF-1 α-modulating proliferative and apoptotic behaviors of EC and NPC in neurogenic regions of the brain and gender-specific behaviors in normoxic and hypoxic settings.
Collapse
|
23
|
Shatirishvili M, Burk AS, Franz CM, Pace G, Kastilan T, Breuhahn K, Hinterseer E, Dierich A, Bakiri L, Wagner EF, Ponta H, Hartmann TN, Tanaka M, Orian-Rousseau V. Epidermal-specific deletion of CD44 reveals a function in keratinocytes in response to mechanical stress. Cell Death Dis 2016; 7:e2461. [PMID: 27831556 PMCID: PMC5260879 DOI: 10.1038/cddis.2016.342] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/18/2016] [Accepted: 09/23/2016] [Indexed: 11/09/2022]
Abstract
CD44, a large family of transmembrane glycoproteins, plays decisive roles in physiological and pathological conditions. CD44 isoforms are involved in several signaling pathways essential for life such as growth factor-induced signaling by EGF, HGF or VEGF. CD44 is also the main hyaluronan (HA) receptor and as such is involved in HA-dependent processes. To allow a genetic dissection of CD44 functions in homeostasis and disease, we generated a Cd44 floxed allele allowing tissue- and time-specific inactivation of all CD44 isoforms in vivo. As a proof of principle, we inactivated Cd44 in the skin epidermis using the K14Cre allele. Although the skin of such Cd44Δker mutants appeared morphologically normal, epidermal stiffness was reduced, wound healing delayed and TPA induced epidermal thickening decreased. These phenotypes might be caused by cell autonomous defects in differentiation and HA production as well as impaired adhesion and migration on HA by Cd44Δker keratinocytes. These findings support the usefulness of the conditional Cd44 allele in unraveling essential physiological and pathological functions of CD44 isoforms.
Collapse
Affiliation(s)
- M Shatirishvili
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - A S Burk
- University of Heidelberg, Institute of Physical Chemistry, Heidelberg, Germany
| | - C M Franz
- Karlsruhe Institute of Technology, DFG-Center for Functional Nanostructures, Karlsruhe, Germany
| | - G Pace
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - T Kastilan
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - K Breuhahn
- Heidelberg University Hospital, Institute of Pathology, Heidelberg, Germany
| | - E Hinterseer
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
| | - A Dierich
- Institut Clinique de la Souris Illkirch, Illkirch, France
| | - L Bakiri
- Spanish National Cancer Centre, Genes Development and Disease Group, Cancer Cell Biology Programme, Madrid, Spain
| | - E F Wagner
- Spanish National Cancer Centre, Genes Development and Disease Group, Cancer Cell Biology Programme, Madrid, Spain
| | - H Ponta
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe, Germany
| | - T N Hartmann
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department with Hematology, Medical Oncology, Hemostaseology, Infectious Diseases, and Rheumatology, Oncologic Center, Paracelsus Medical University, Salzburg, Austria
| | - M Tanaka
- University of Heidelberg, Institute of Physical Chemistry, Heidelberg, Germany.,Institute for Integrated Cell-Material Sciences (WPI iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - V Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe, Germany
| |
Collapse
|
24
|
Lee MJ, Bing SJ, Choi J, Jang M, Lee G, Lee H, Chang BS, Jee Y, Lee SJ, Cho IH. IKKβ-mediated inflammatory myeloid cell activation exacerbates experimental autoimmune encephalomyelitis by potentiating Th1/Th17 cell activation and compromising blood brain barrier. Mol Neurodegener 2016; 11:54. [PMID: 27450563 PMCID: PMC4957872 DOI: 10.1186/s13024-016-0116-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 07/02/2016] [Indexed: 01/31/2023] Open
Abstract
Background The inflammatory myeloid cell activation is one of the hallmarks of experimental autoimmune encephalomyelitis (EAE), yet the in vivo role of the inflammatory myeloid cell activation in EAE has not been clearly resolved. It is well-known that IKK/NF-κB is a key signaling pathway that regulates inflammatory myeloid activation. Methods We investigated the in vivo role of inflammatory myeloid cell activation in myelin oligodendrocyte glycoprotein (MOG) peptides-induced EAE using myeloid cell type-specific ikkβ gene conditional knockout-mice (LysM-Cre/IkkβF/F). Results In our study, LysM-Cre/IkkβF/F mice had alleviated clinical signs of EAE corresponding to the decreased spinal demyelination, microglial activation, and immune cell infiltration in the spinal cord, compared to the wild-type mice (WT, IkkβF/F). Myeloid ikkβ gene deletion significantly reduced the percentage of CD4+/IFN-γ+ (Th1) and CD4+/IL-17+ (Th17) cells but increased the percentages of CD4+/CD25+/Foxp3+ (Treg) cells in the spinal cord and lymph nodes, corresponding to the altered mRNA expression of IFN-γ, IL-17, IL-23, and Foxp3 in the spinal cords of LysM-Cre/IkkβF/F EAE mice. Also, the beneficial effect of myeloid IKKβ deletion in EAE corresponded to the decreased permeability of the blood brain barrier (BBB). Conclusions Our findings strongly suggest that IKK/NF-kB-induced myeloid cell activation exacerbates EAE by activating Th1 and Th17 responses and compromising the BBB. The development of NF-κB inhibitory agents with high efficacy through specific targeting of IKKβ in myeloid cells might be of therapeutic potential in MS and other autoimmune disorders. Electronic supplementary material The online version of this article (doi:10.1186/s13024-016-0116-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Jung Lee
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.,Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - So Jin Bing
- Department of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jonghee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.,Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Minhee Jang
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Gihyun Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyunkyoung Lee
- Department of Neuroscience and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung Soo Chang
- Department of Cosmetology, Hanseo University, Seosan, 31962, Republic of Korea
| | - Youngheun Jee
- Department of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Sung Joong Lee
- Department of Neuroscience and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea. .,Brain Korea 21 Plus Program, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea. .,Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
25
|
Tsuneki M, Madri JA. CD44 Influences Fibroblast Behaviors Via Modulation of Cell-Cell and Cell-Matrix Interactions, Affecting Survivin and Hippo Pathways. J Cell Physiol 2016; 231:731-43. [PMID: 26248063 DOI: 10.1002/jcp.25123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 12/17/2022]
Abstract
CD44 has been studied in a wide variety of cell types, in a diverse array of cell behaviors and in a diverse range of signaling pathways. We now document a role for CD44 in mediating fibroblast behaviors via regulation of N-cadherin, extracellular matrix expression, Survivin and the Hippo pathway. Here, we report our findings on the roles of CD44 in modulating proliferation, apoptosis, migration and invasion of murine wild-type (WT-FB) and CD44 knockout dermal fibroblasts (CD44KO-FB). As we have documented in microvascular endothelial cells lacking CD44, we found persistent increased proliferation, reduced activation of cleaved caspase 3, increased initial attachment, but decreased strength of cell attachment in high cell density, post confluent CD44KO-FB cultures. Additionally, we found that siRNA knock-down of CD44 mimicked the behaviors of CD44KO-FB, restoring the decreases in N-cadherin, collagen type I, fibronectin, Survivin, nuclear fractions of YAP and phospho-YAP and decreased levels of cleaved caspase 3 to the levels observed in CD44KO-FB. Interestingly, plating CD44KO-FB on collagen type I or fibronectin resulted in significant decreases in secondary proliferation rates compared to plating cells on non-coated dishes, consistent with increased cell adhesion compared to their effects on WT-FB. Lastly, siRNA knockdown of CD44 in WT-FB resulted in increased fibroblast migration compared to WT-FB, albeit at reduced rates compared to CD44KO-FB. These results are consistent with CD44's pivotal role in modulating several diverse behaviors important for adhesion, proliferation, apoptosis, migration and invasion during development, growth, repair, maintenance and regression of a wide variety of mesenchymal tissues.
Collapse
Affiliation(s)
- Masayuki Tsuneki
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.,Division of Cancer Biology, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo, Japan
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
26
|
Ventorp F, Barzilay R, Erhardt S, Samuelsson M, Träskman-Bendz L, Janelidze S, Weizman A, Offen D, Brundin L. The CD44 ligand hyaluronic acid is elevated in the cerebrospinal fluid of suicide attempters and is associated with increased blood-brain barrier permeability. J Affect Disord 2016; 193:349-54. [PMID: 26796235 DOI: 10.1016/j.jad.2015.12.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/07/2015] [Accepted: 12/26/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND The glycosaminoglycan hyaluronic acid (HA) is an important component of the extracellular matrix (ECM) in the brain. CD44 is a cell adhesion molecule that binds to HA in the ECM and is present on astrocytes, microglia and certain neurons. Cell adhesion molecules have been reported to be involved in anxiety and mood disorders. CD44 levels are decreased in the cerebrospinal fluid (CSF) of depressed individuals, and the CD44 gene has been identified in brain GWAS studies as a possible risk gene for suicidal behavior. METHOD We measured the CSF levels of HA and the soluble CD44 (sCD44) in suicide attempters (n=94) and in healthy controls (n=45) using ELISA and electrochemiluminescence assays. We also investigated other proteins known to interact with CD44, such as osteopontin and the matrix metalloproteinases MMP1, MMP3 and MMP9. RESULTS The suicide attempters had higher CSF levels of HA (p=.003) and MMP9 (p=.004). The CSF levels of HA correlated with BBB-permeability (rho=0.410, p<.001) and MMP9 correlated with sCD44 levels (rho=0.260, p=.005). LIMITATIONS Other relevant biological contributors to suicidal behavior is not addressed in parallel to the specific role of CD44-HA signaling. The gender distribution of the patients from whom CSF was analyzed was uneven. CONCLUSIONS Increased BBB-permeability and HA levels might be a results of increased neuroinflammation and can play a role in the pathobiology of suicidal behavior. The CD44 signaling pathway might be considered a novel target for intervention in mood disorders.
Collapse
Affiliation(s)
- F Ventorp
- Psychoimmunology Unit, Division of Psychiatry, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, Michigan, United States.
| | - R Barzilay
- Laboratory of Neuroscience, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petach-Tikva, Israel; Research Unit at Geha Mental Health Center, Petach-Tikva, Israel
| | - S Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - M Samuelsson
- Psychiatry Section, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - L Träskman-Bendz
- Psychoimmunology Unit, Division of Psychiatry, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - S Janelidze
- Psychoimmunology Unit, Division of Psychiatry, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - A Weizman
- Research Unit at Geha Mental Health Center, Petach-Tikva, Israel; Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - D Offen
- Laboratory of Neuroscience, Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel Aviv University, Petach-Tikva, Israel
| | - L Brundin
- Psychoimmunology Unit, Division of Psychiatry, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, Michigan, United States; Laboratory of Behavioral Medicine, Van Andel Research Institute, Grand Rapids, Michigan, United States
| |
Collapse
|
27
|
Guo S, Lok J, Zhao S, Leung W, Som AT, Hayakawa K, Wang Q, Xing C, Wang X, Ji X, Zhou Y, Lo EH. Effects of Controlled Cortical Impact on the Mouse Brain Vasculome. J Neurotrauma 2016; 33:1303-16. [PMID: 26528928 DOI: 10.1089/neu.2015.4101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Perturbations in blood vessels play a critical role in the pathophysiology of brain injury and neurodegeneration. Here, we use a systematic genome-wide transcriptome screening approach to investigate the vasculome after brain trauma in mice. Mice were subjected to controlled cortical impact and brains were extracted for analysis at 24 h post-injury. The core of the traumatic lesion was removed and then cortical microvesels were isolated from nondirectly damaged ipsilateral cortex. Compared to contralateral cortex and normal cortex from sham-operated mice, we identified a wide spectrum of responses in the vasculome after trauma. Up-regulated pathways included those involved in regulation of inflammation and extracellular matrix processes. Decreased pathways included those involved in regulation of metabolism, mitochondrial function, and transport systems. These findings suggest that microvascular perturbations can be widespread and not necessarily localized to core areas of direct injury per se and may further provide a broader gene network context for existing knowledge regarding inflammation, metabolism, and blood-brain barrier alterations after brain trauma. Further efforts are warranted to map the vasculome with higher spatial and temporal resolution from acute to delayed phase post-trauma. Investigating the widespread network responses in the vasculome may reveal potential mechanisms, therapeutic targets, and biomarkers for traumatic brain injury.
Collapse
Affiliation(s)
- Shuzhen Guo
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Josephine Lok
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts.,2 Department of Pediatrics, Massachusetts General Hospital , Harvard Medical School, Boston, Massachusetts
| | - Song Zhao
- 3 The Department of Spine Surgery, the First Hospital of Jilin University , Changchun, China
| | - Wendy Leung
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Angel T Som
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Kazuhide Hayakawa
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Qingzhi Wang
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Changhong Xing
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Xiaoying Wang
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Xunming Ji
- 4 Cerebrovascular Research Center, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Yiming Zhou
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Eng H Lo
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
28
|
Fonseca NA, Rodrigues AS, Rodrigues-Santos P, Alves V, Gregório AC, Valério-Fernandes Â, Gomes-da-Silva LC, Rosa MS, Moura V, Ramalho-Santos J, Simões S, Moreira JN. Nucleolin overexpression in breast cancer cell sub-populations with different stem-like phenotype enables targeted intracellular delivery of synergistic drug combination. Biomaterials 2015; 69:76-88. [PMID: 26283155 DOI: 10.1016/j.biomaterials.2015.08.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 12/31/2022]
Abstract
Breast cancer stem cells (CSC) are thought responsible for tumor growth and relapse, metastization and active evasion to standard chemotherapy. The recognition that CSC may originate from non-stem cancer cells (non-SCC) through plastic epithelial-to-mesenchymal transition turned these into relevant cell targets. Of crucial importance for successful therapeutic intervention is the identification of surface receptors overexpressed in both CSC and non-SCC. Cell surface nucleolin has been described as overexpressed in cancer cells as well as a tumor angiogenic marker. Herein we have addressed the questions on whether nucleolin was a common receptor among breast CSC and non-SCC and whether it could be exploited for targeting purposes. Liposomes functionalized with the nucleolin-binding F3 peptide, targeted simultaneously, nucleolin-overexpressing putative breast CSC and non-SCC, which was paralleled by OCT4 and NANOG mRNA levels in cells from triple negative breast cancer (TNBC) origin. In murine embryonic stem cells, both nucleolin mRNA levels and F3 peptide-targeted liposomes cellular association were dependent on the stemness status. An in vivo tumorigenic assay suggested that surface nucleolin overexpression per se, could be associated with the identification of highly tumorigenic TNBC cells. This proposed link between nucleolin expression and the stem-like phenotype in TNBC, enabled 100% cell death mediated by F3 peptide-targeted synergistic drug combination, suggesting the potential to abrogate the plasticity and adaptability associated with CSC and non-SCC. Ultimately, nucleolin-specific therapeutic tools capable of simultaneous debulk multiple cellular compartments of the tumor microenvironment may pave the way towards a specific treatment for TNBC patient care.
Collapse
Affiliation(s)
- Nuno A Fonseca
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - Ana S Rodrigues
- PhD Program in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal
| | - Paulo Rodrigues-Santos
- Immunology Institute, Faculty of Medicine (Polo I), University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal; Immunology and Oncology Laboratory, Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal
| | - Vera Alves
- Immunology Institute, Faculty of Medicine (Polo I), University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal
| | - Ana C Gregório
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; PhD Program in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão (Polo II), Rua Dom Francisco de Lemos, Coimbra 3030-789, Portugal
| | - Ângela Valério-Fernandes
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; PhD Program in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão (Polo II), Rua Dom Francisco de Lemos, Coimbra 3030-789, Portugal
| | - Lígia C Gomes-da-Silva
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal; PhD Program in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal
| | - Manuel Santos Rosa
- Immunology Institute, Faculty of Medicine (Polo I), University of Coimbra, Rua Larga, Coimbra 3004-504, Portugal
| | - Vera Moura
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; TREAT U, S.A., Parque Industrial de Taveiro, Lote 44, Coimbra 3045-508, Portugal
| | - João Ramalho-Santos
- Biology of Reproduction and Stem Cell Group, Center for Neuroscience and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456, Portugal
| | - Sérgio Simões
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal
| | - João Nuno Moreira
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Faculty of Medicine (Polo I), Rua Larga, Coimbra 3004-504, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra 3000-548, Portugal.
| |
Collapse
|
29
|
Li Q, Tsuneki M, Krauthammer M, Couture R, Schwartz M, Madri JA. Modulation of Sox10, HIF-1α, Survivin, and YAP by Minocycline in the Treatment of Neurodevelopmental Handicaps following Hypoxic Insult. THE AMERICAN JOURNAL OF PATHOLOGY 2015. [PMID: 26209807 DOI: 10.1016/j.ajpath.2015.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Premature infants are at an increased risk of developing cognitive and motor handicaps due to chronic hypoxia. Although the current therapies have reduced the incidence of these handicaps, untoward side effects abound. Using a murine model of sublethal hypoxia, we demonstrated reduction in several transcription factors that modulate expression of genes known to be involved in several neural functions. We demonstrate the induction of these genes by minocycline, a tetracycline antibiotic with noncanonical functions, in both in vitro and in vivo studies. Specifically, there was induction of genes, including Sox10, Hif1a, Hif2a, Birc5, Yap1, Epo, Bdnf, Notch1 (cleaved), Pcna, Mag, Mobp, Plp1, synapsin, Adgra2, Pecam1, and reduction in activation of caspase 3, all known to affect proliferation, apoptosis, synaptic transmission, and nerve transmission. Minocycline treatment of mouse pups reared under sublethal hypoxic conditions resulted in improvement in open field testing parameters. These studies demonstrate beneficial effects of minocycline treatment following hypoxic insult, document up-regulation of several genes associated with improved cognitive function, and support the possibility of minocycline as a potential therapeutic target in the treatment of neurodevelopmental handicaps observed in the very premature newborn population. Additionally, these studies may aid in further interpretation of the effects of minocycline in the treatment trials and animal model studies of fragile X syndrome and multiple sclerosis.
Collapse
Affiliation(s)
- Qi Li
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Masayuki Tsuneki
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut; Division of Cancer Biology, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Michael Krauthammer
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Rachael Couture
- Department Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Michael Schwartz
- Department Neuroscience, Yale University School of Medicine, New Haven, Connecticut
| | - Joseph A Madri
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
30
|
A hydrogel-endothelial cell implant mimics infantile hemangioma: modulation by survivin and the Hippo pathway. J Transl Med 2015; 95:765-80. [PMID: 25961170 PMCID: PMC4828971 DOI: 10.1038/labinvest.2015.61] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/04/2015] [Accepted: 03/16/2015] [Indexed: 12/16/2022] Open
Abstract
Microvascular endothelial cells cultured in three-dimensional hydrogel scaffolds form a network of microvessel structures when implanted subcutaneously in mice, inosculate with host vessels, and over time remodel into large ectatic vascular structures resembling hemangiomas. When compared with infantile hemangiomas, similarities were noted, including a temporal progression from a morphological appearance of a proliferative phase to the appearance of an involuted phase, mimicking the proliferative and involutional phases of infantile hemangioma. Consistent with the progression of a proliferative phase to an involuted phase, both the murine implants and human biopsy tissue exhibit reduced expression of Ajuba, YAP, and Survivin labeling as they progressed over time. Significant numbers of CD45+, CD11b+, Mac3+ mononuclear cells were found at the 2-week time point in our implant model that correlated with the presence of CD45+, CD68+ mononuclear cells observed in biopsies of human proliferative-phase hemangiomas. At the 4-week time point in our implant model, only small numbers of CD45+ cells were detected, which again correlated with our findings of significantly diminished CD45+, CD68+ mononuclear cells in human involutional-phase hemangiomas. The demonstration of mononuclear cell infiltration transiently in the proliferative phase of these lesions suggests that the vascular proliferation and/or regression may be driven in part by an immune response. Gross and microscopic morphological appearances of human proliferative and involutional hemangiomas and our implant model correlate well with each other as do the expression levels of Hippo pathway components (Ajuba and YAP) and Survivin and correlate with proliferation in these entities. Inhibitors of Survivin and Ajuba (which we have demonstrated to inhibit proliferation and increase apoptosis in murine hemangioendothelioma cell tissue culture) may have potential as other beneficial treatments for proliferating infantile hemangiomas. This implant model may have potential as a modest through-put screen for testing and development of therapeutics targeted at the proliferative phase of infantile hemangiomas, reducing the subsequent postinvolutional scarring or deformities sometimes associated with these lesions.
Collapse
|
31
|
Tsuneki M, Madri JA, Saku T. Cell–extracellular matrix interactions in oral tumorigenesis: Roles of podoplanin and CD44 and modulation of Hippo pathway. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Abstract
Vascular integrity or the maintenance of blood vessel continuity is a fundamental process regulated by endothelial cell-cell junctions. Defects in endothelial barrier function are an initiating factor in several disease processes including tumor angiogenesis and metastasis. The glycosaminoglycan, hyaluronan (HA), maintains vascular integrity through specific mechanisms including HA-binding protein signaling in caveolin-enriched microdomains, a subset of lipid rafts. Certain disease states, including cancer, increase enzymatic hyaluronidase activity and reactive oxygen species generation, which break down high molecular weight HA (HMW-HA) to low molecular weight fragments (LMW-HA). LMW-HA can activate specific HA-binding proteins during tumor progression to promote disruption of endothelial cell-cell contacts. In contrast, exogenous administration of HMW-HA promotes enhancement of vascular integrity. This review focuses on the roles of HA in regulating angiogenic and metastatic processes based on its size and the HA-binding proteins present. Further, potential therapeutic applications of HMW-HA in treating cancer are discussed.
Collapse
Affiliation(s)
- Patrick A Singleton
- Department of Medicine, Section of Pulmonary and Critical Care, Chicago, Illinois, USA; Department of Anesthesia and Critical Care, The University of Chicago, Chicago, Illinois, USA.
| |
Collapse
|
33
|
LI GANG, HAN ZONGLIN, DONG HEGUI, ZHANG XIA, KONG XIANGQIAN, JIN XING. Platelet endothelial cell adhesion molecule-1 gene 125C/G polymorphism is associated with deep vein thrombosis. Mol Med Rep 2015; 12:2203-10. [DOI: 10.3892/mmr.2015.3586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 12/19/2014] [Indexed: 11/06/2022] Open
|
34
|
Chapouly C, Tadesse Argaw A, Horng S, Castro K, Zhang J, Asp L, Loo H, Laitman BM, Mariani JN, Straus Farber R, Zaslavsky E, Nudelman G, Raine CS, John GR. Astrocytic TYMP and VEGFA drive blood-brain barrier opening in inflammatory central nervous system lesions. Brain 2015; 138:1548-67. [PMID: 25805644 DOI: 10.1093/brain/awv077] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/26/2015] [Indexed: 12/21/2022] Open
Abstract
In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood-brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood-brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood-brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood-brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood-brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood-brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an astrocyte-derived permeability factor, and suggest TYMP and VEGFA together promote blood-brain barrier breakdown.
Collapse
Affiliation(s)
- Candice Chapouly
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Azeb Tadesse Argaw
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Sam Horng
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Kamilah Castro
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Jingya Zhang
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Linnea Asp
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Hannah Loo
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Benjamin M Laitman
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - John N Mariani
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Rebecca Straus Farber
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Elena Zaslavsky
- 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 4 Department of Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - German Nudelman
- 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 4 Department of Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Cedric S Raine
- 5 Department of Pathology (Neuropathology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gareth R John
- 1 Corinne Goldsmith Dickinson Centre for MS, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 2 Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA 3 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| |
Collapse
|
35
|
Adhesion molecule-mediated hippo pathway modulates hemangioendothelioma cell behavior. Mol Cell Biol 2014; 34:4485-99. [PMID: 25266662 DOI: 10.1128/mcb.00671-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hemangioendotheliomas are categorized as intermediate-grade vascular tumors that are commonly localized in the lungs and livers. The regulation of this tumor cell's proliferative and apoptotic mechanisms is ill defined. We recently documented an important role for Hippo pathway signaling via endothelial cell adhesion molecules in brain microvascular endothelial cell proliferation and apoptosis. We found that endothelial cells lacking cell adhesion molecules escaped from contact inhibition and exhibited abnormal proliferation and apoptosis. Here we report on the roles of adherens junction molecule modulation of survivin and the Hippo pathway in the proliferation and apoptosis of a murine hemangioendothelioma (EOMA) cell. We demonstrated reduced adherens junction molecule (CD31 and VE-cadherin) expression, increased survivin and Ajuba expression, and a reduction in Hippo pathway signaling resulting in increased proliferation and decreased activation of effector caspase 3 in postconfluent EOMA cell cultures. Furthermore, we confirmed that YM155, an antisurvivin drug that interferes with Sp1-survivin promoter interactions, and survivin small interference RNA (siRNA) transfection elicited induction of VE-cadherin, decreased Ajuba expression, increased Hippo pathway and caspase activation and apoptosis, and decreased cell proliferation. These findings support the importance of the Hippo pathway in hemangioendothelioma cell proliferation and survival and YM155 as a potential therapeutic agent in this category of vascular tumors.
Collapse
|
36
|
Privratsky JR, Newman PJ. PECAM-1: regulator of endothelial junctional integrity. Cell Tissue Res 2014; 355:607-19. [PMID: 24435645 DOI: 10.1007/s00441-013-1779-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 12/09/2013] [Indexed: 12/15/2022]
Abstract
PECAM-1 (also known as CD31) is a cellular adhesion and signaling receptor comprising six extracellular immunoglobulin (Ig)-like homology domains, a short transmembrane domain and a 118 amino acid cytoplasmic domain that becomes serine and tyrosine phosphorylated upon cellular activation. PECAM-1 expression is restricted to blood and vascular cells. In circulating platelets and leukocytes, PECAM-1 functions largely as an inhibitory receptor that, via regulated sequential phosphorylation of its cytoplasmic domain, limits cellular activation responses. PECAM-1 is also highly expressed at endothelial cell intercellular junctions, where it functions as a mechanosensor, as a regulator of leukocyte trafficking and in the maintenance of endothelial cell junctional integrity. In this review, we will describe (1) the functional domains of PECAM-1 and how they contribute to its barrier-enhancing properties, (2) how the physical properties of PECAM-1 influence its subcellular localization and its ability to influence endothelial cell barrier function, (3) various stimuli that initiate PECAM-1 signaling and/or function at the endothelial junction and (4) cross-talk of PECAM-1 with other junctional molecules, which can influence endothelial cell function.
Collapse
Affiliation(s)
- Jamie R Privratsky
- Blood Research Institute, BloodCenter of Wisconsin, P.O. Box 2178, 638N. 18th Street, Milwaukee, WI, 53201, USA
| | | |
Collapse
|
37
|
Tsuneki M, Madri JA. CD44 regulation of endothelial cell proliferation and apoptosis via modulation of CD31 and VE-cadherin expression. J Biol Chem 2014; 289:5357-70. [PMID: 24425872 DOI: 10.1074/jbc.m113.529313] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD44 has been implicated in a diverse array of cell behaviors and in a diverse range of signaling pathway activations under physiological and pathophysiological conditions. We have documented a role for CD44 in mediating vascular barrier integrity via regulation of PECAM-1 (CD31) expression. We now report our findings on the roles of CD44 in modulating proliferation and apoptosis of microvascular endothelial cells via its modulation of CD31 and VE-cadherin expression and the Hippo pathway. In this report, we demonstrate persistent increased proliferation and reduced activations of both effector and initiator caspases in high cell density, postconfluent CD44 knock-out (CD44KO), and CD31KO cultures. We found that reconstitution with murine CD44 or CD31 restored the proliferative and caspase activation rates to WT levels. Moreover, we have confirmed that the CD31 ecto-domain plays a key role in specific caspase cascades as well as cell adhesion-mediated cell growth and found that CD31 deficiency results in a reduction in VE-cadherin expression. Last, we have shown that both CD44KO and CD31KO endothelial cells exhibit a reduced VE-cadherin expression correlating with increased survivin expression and YAP nuclear localization, consistent with inactivation of the Hippo pathway, resulting in increased proliferation and decreased apoptosis. These findings support the concept that CD44 mediates several of its effects on endothelia through modulation of adhesion protein expression, which, in addition to its known modulation of junctional integrity, matrix metalloproteinase levels and activation, interactions with cortical membrane proteins, and selected signaling pathways, plays a key role as a critical regulator of vascular function.
Collapse
Affiliation(s)
- Masayuki Tsuneki
- From the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520
| | | |
Collapse
|
38
|
Kim KS, Kim JE, Choi KJ, Bae S, Kim DH. Characterization of DNA damage-induced cellular senescence by ionizing radiation in endothelial cells. Int J Radiat Biol 2013; 90:71-80. [DOI: 10.3109/09553002.2014.859763] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|