1
|
de Carvalho FM, Laux M, Ciapina LP, Gerber AL, Guimarães APC, Kloh VP, Apolinário M, Paes JES, Jonck CR, de Vasconcelos ATR. Finding microbial composition and biological processes as predictive signature to access the ongoing status of mangrove preservation. Int Microbiol 2024; 27:1485-1500. [PMID: 38388811 PMCID: PMC11452435 DOI: 10.1007/s10123-024-00492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/08/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Mangroves are complex land-sea transition ecosystems whose microbiota are essential for their nutrient recycling and conservation. Brazil is the third-largest estuarine area in the world and "Baía de Todos os Santos" (BTS) is one of the largest bays of the country, with wide anthropogenic exploration. Using a metagenomic approach, we investigated composition and functional adaptability as signatures of the microbiome of pristine and anthropized areas of BTS, including those under petroleum refinery influence. The taxonomic analysis showed dominance of sulfate-reducing Desulfobacteraceae, Rhodobacteraceae, and Flavobacteriaceae. Taxa were significantly diverse between pristine and disturbed areas. Disturbed mangroves showed a notary increase in abundance of halophilic, sulfur-related, and hydrocarbon-degrading genera and a decrease in diatoms compared to pristine area. The metabolic profile of BTS mangroves was correlated with the differentially abundant microbiota. Two ecological scenarios were observed: one marked by functions of central metabolism associated with biomass degradation and another by mechanisms of microbial adaptability to pollution conditions and environmental degradation. Part of the microbiome was distinct and not abundant in Brazilian estuarine soils. The microbiome signature observed in each BTS mangrove reflects how human actions impact the diversity of these ecosystems and also emphasize their role in attempting to restore disturbed mangroves. The microbiome may act as a potential biological indicator of the preservation status of these soils, despite the limitation of soil property conditions. Additionally, our data pointed to metagenomics as an additional tool for environmental assessment and reinforced the need for protective measures for the mangroves under study.
Collapse
Affiliation(s)
- Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Marcele Laux
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Luciane Prioli Ciapina
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Ana Paula C Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Vinícius Prata Kloh
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Moacir Apolinário
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brazil
| | - Jorge Eduardo Santos Paes
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brazil
| | - Célio Roberto Jonck
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brazil
| | - Ana Tereza R de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil.
| |
Collapse
|
2
|
Solano JH, Moitinho MA, Chiaramonte JB, Bononi L, Packer AP, Melo IS, Dini-Andreote F, Tsai SM, Taketani RG. Organic matter decay and bacterial community succession in mangroves under simulated climate change scenarios. Braz J Microbiol 2024:10.1007/s42770-024-01455-2. [PMID: 39028532 DOI: 10.1007/s42770-024-01455-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
Mangroves are coastal environments that provide resources for adjacent ecosystems due to their high productivity, organic matter decomposition, and carbon cycling by microbial communities in sediments. Since the industrial revolution, the increase of Greenhouse Gases (GHG) released due to fossil fuel burning led to many environmental abnormalities such as an increase in average temperature and ocean acidification. Based on the hypothesis that climate change modifies the microbial diversity associated with decaying organic matter in mangrove sediments, this study aimed to evaluate the microbial diversity under simulated climate change conditions during the litter decomposition process and the emission of GHG. Thus, microcosms containing organic matter from the three main plant species found in mangroves throughout the State of São Paulo, Brazil (Rhizophora mangle, Laguncularia racemosa, and Avicennia schaueriana) were incubated simulating climate changes (increase in temperature and pH). The decay rate was higher in the first seven days of incubation, but the differences between the simulated treatments were minor. GHG fluxes were higher in the first ten days and higher in samples under increased temperature. The variation in time resulted in substantial impacts on α-diversity and community composition, initially with a greater abundance of Gammaproteobacteria for all plant species despite the climate conditions variations. The PCoA analysis reveals the chronological sequence in β-diversity, indicating the increase of Deltaproteobacteria at the end of the process. The GHG emission varied in function of the organic matter source with an increase due to the elevated temperature, concurrent with the rise in the Deltaproteobacteria population. Thus, these results indicate that under the expected climate change scenario for the end of the century, the decomposition rate and GHG emissions will be potentially higher, leading to a harmful feedback loop of GHG production. This process can happen independently of an impact on the bacterial community structure due to these changes.
Collapse
Affiliation(s)
- Juanita H Solano
- Brazilian Agricultural. Research Corporation, Embrapa Environment, SP 340. Highway-Km 127.5, Jaguariúna, SP, 13820-000, Brazil
- College of Agriculture Luiz de Queiroz, University of São Paulo, Pádua Dias Avenue, 11, Piracicaba, SP, 13418-900, Brazil
| | - Marta A Moitinho
- Brazilian Agricultural. Research Corporation, Embrapa Environment, SP 340. Highway-Km 127.5, Jaguariúna, SP, 13820-000, Brazil
- College of Agriculture Luiz de Queiroz, University of São Paulo, Pádua Dias Avenue, 11, Piracicaba, SP, 13418-900, Brazil
| | - Josiane B Chiaramonte
- Brazilian Agricultural. Research Corporation, Embrapa Environment, SP 340. Highway-Km 127.5, Jaguariúna, SP, 13820-000, Brazil
- College of Agriculture Luiz de Queiroz, University of São Paulo, Pádua Dias Avenue, 11, Piracicaba, SP, 13418-900, Brazil
| | - Laura Bononi
- Brazilian Agricultural. Research Corporation, Embrapa Environment, SP 340. Highway-Km 127.5, Jaguariúna, SP, 13820-000, Brazil
- College of Agriculture Luiz de Queiroz, University of São Paulo, Pádua Dias Avenue, 11, Piracicaba, SP, 13418-900, Brazil
| | - Ana Paula Packer
- Brazilian Agricultural. Research Corporation, Embrapa Environment, SP 340. Highway-Km 127.5, Jaguariúna, SP, 13820-000, Brazil
| | - Itamar S Melo
- Brazilian Agricultural. Research Corporation, Embrapa Environment, SP 340. Highway-Km 127.5, Jaguariúna, SP, 13820-000, Brazil
| | - Francisco Dini-Andreote
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Siu Mui Tsai
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Rodrigo G Taketani
- College of Agriculture Luiz de Queiroz, University of São Paulo, Pádua Dias Avenue, 11, Piracicaba, SP, 13418-900, Brazil.
- Centre for Mineral Technology, CETEM, MCTIC Ministry of Science, Technology, Innovation and Communication, Av. Pedro Calmon, 900, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21941-908, Brazil.
- Sustainable Agriculture Sciences, Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
3
|
Sun D, Huang Y, Wang Z, Tang X, Ye W, Cao H, Shen H. Soil microbial community structure, function and network along a mangrove forest restoration chronosequence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169704. [PMID: 38163592 DOI: 10.1016/j.scitotenv.2023.169704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Mangrove forests have high ecological, social and economic values, but due to environmental changes and human activities, natural mangrove forests have experienced serious degradations and reductions in distribution area worldwide. In the coastal zones of southern China, an introduced mangrove species, Sonneratia apetala, has been extensively used for mangrove restoration because of its rapid growth and strong environmental adaptability. However, little is known about how soil microorganisms vary with the restoration stages of the afforested mangrove forests. Here, we examined the changes in soil physicochemical properties and microbial biomass, community structure and function, and network in three afforested S. apetala forests with restoration time of 7, 12, and 18 years and compared them with a bare flat and a 60-year-old natural Kandelia obovata forest in a mangrove nature reserve. Our results showed that the contents of soil salinity, organic carbon, total nitrogen, ammonium nitrogen, and microbial biomass increased, while soil pH and bacterial alpha diversity decreased with afforestation age. Soil microbial community structure was significantly affected by soil salinity, organic carbon, pH, total nitrogen, ammonium nitrogen, available phosphorus, and available kalium, and susceptibility to environmental factors was more pronounced in bacterial than fungal community structure. The relative abundances of aerobic chemoheterotrophy were significantly higher in 12- and 18-year-old S. apetala than in K. obovata forest, while that of sulfate-reducing bacteria showed a decreasing trend with afforestation age. The abundance of dung saprotroph was significantly higher in 12- and 18-year-old S. apetala forests than in the natural forest. With the increasing afforestation age, the modularity of microbial networks increased, while stability and robustness decreased. Our results suggest that planting S. apetala contributes to improving soil fertility and microbial biomass but may make soil microbial networks more vulnerable.
Collapse
Affiliation(s)
- Dangge Sun
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyi Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangming Wang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xuli Tang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanhui Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglin Cao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Shen
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Booth JM, Fusi M, Marasco R, Daffonchio D. The microbial landscape in bioturbated mangrove sediment: A resource for promoting nature-based solutions for mangroves. Microb Biotechnol 2023. [PMID: 37209285 PMCID: PMC10364319 DOI: 10.1111/1751-7915.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/22/2023] Open
Abstract
Globally, soils and sediments are affected by the bioturbation activities of benthic species. The consequences of these activities are particularly impactful in intertidal sediment, which is generally anoxic and nutrient-poor. Mangrove intertidal sediments are of particular interest because, as the most productive forests and one of the most important stores of blue carbon, they provide global-scale ecosystem services. The mangrove sediment microbiome is fundamental for ecosystem functioning, influencing the efficiency of nutrient cycling and the abundance and distribution of key biological elements. Redox reactions in bioturbated sediment can be extremely complex, with one reaction creating a cascade effect on the succession of respiration pathways. This facilitates the overlap of different respiratory metabolisms important in the element cycles of the mangrove sediment, including carbon, nitrogen, sulphur and iron cycles, among others. Considering that all ecological functions and services provided by mangrove environments involve microorganisms, this work reviews the microbial roles in nutrient cycling in relation to bioturbation by animals and plants, the main mangrove ecosystem engineers. We highlight the diversity of bioturbating organisms and explore the diversity, dynamics and functions of the sediment microbiome, considering both the impacts of bioturbation. Finally, we review the growing evidence that bioturbation, through altering the sediment microbiome and environment, determining a 'halo effect', can ameliorate conditions for plant growth, highlighting the potential of the mangrove microbiome as a nature-based solution to sustain mangrove development and support the role of this ecosystem to deliver essential ecological services.
Collapse
Affiliation(s)
- Jenny M Booth
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Coastal Research Group, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre for Conservation and Restoration Science, School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
- Joint Nature Conservation Committee, Peterborough, UK
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
5
|
Qian L, Yu X, Gu H, Liu F, Fan Y, Wang C, He Q, Tian Y, Peng Y, Shu L, Wang S, Huang Z, Yan Q, He J, Liu G, Tu Q, He Z. Vertically stratified methane, nitrogen and sulphur cycling and coupling mechanisms in mangrove sediment microbiomes. MICROBIOME 2023; 11:71. [PMID: 37020239 PMCID: PMC10074775 DOI: 10.1186/s40168-023-01501-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Mangrove ecosystems are considered as hot spots of biogeochemical cycling, yet the diversity, function and coupling mechanism of microbially driven biogeochemical cycling along the sediment depth of mangrove wetlands remain elusive. Here we investigated the vertical profile of methane (CH4), nitrogen (N) and sulphur (S) cycling genes/pathways and their potential coupling mechanisms using metagenome sequencing approaches. RESULTS Our results showed that the metabolic pathways involved in CH4, N and S cycling were mainly shaped by pH and acid volatile sulphide (AVS) along a sediment depth, and AVS was a critical electron donor impacting mangrove sediment S oxidation and denitrification. Gene families involved in S oxidation and denitrification significantly (P < 0.05) decreased along the sediment depth and could be coupled by S-driven denitrifiers, such as Burkholderiaceae and Sulfurifustis in the surface sediment (0-15 cm). Interestingly, all S-driven denitrifier metagenome-assembled genomes (MAGs) appeared to be incomplete denitrifiers with nitrate/nitrite/nitric oxide reductases (Nar/Nir/Nor) but without nitrous oxide reductase (Nos), suggesting such sulphide-utilizing groups might be an important contributor to N2O production in the surface mangrove sediment. Gene families involved in methanogenesis and S reduction significantly (P < 0.05) increased along the sediment depth. Based on both network and MAG analyses, sulphate-reducing bacteria (SRB) might develop syntrophic relationships with anaerobic CH4 oxidizers (ANMEs) by direct electron transfer or zero-valent sulphur, which would pull forward the co-existence of methanogens and SRB in the middle and deep layer sediments. CONCLUSIONS In addition to offering a perspective on the vertical distribution of microbially driven CH4, N and S cycling genes/pathways, this study emphasizes the important role of S-driven denitrifiers on N2O emissions and various possible coupling mechanisms of ANMEs and SRB along the mangrove sediment depth. The exploration of potential coupling mechanisms provides novel insights into future synthetic microbial community construction and analysis. This study also has important implications for predicting ecosystem functions within the context of environmental and global change. Video Abstract.
Collapse
Affiliation(s)
- Lu Qian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Hang Gu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Fei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Yijun Fan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qiang He
- Department of Civil and Environmental Engineering, the University of Tennessee, Knoxville, TN 37996 USA
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Yisheng Peng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Zhijian Huang
- School of Marine Science, Sun Yat-Sen University, Zhuhai, 519080 China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Jianguo He
- School of Life Science, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Guangli Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237 China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510006 China
| |
Collapse
|
6
|
Skariah S, Abdul-Majid S, Hay AG, Acharya A, Kano N, Al-Ishaq RK, de Figueiredo P, Han A, Guzman A, Dargham SR, Sameer S, Kim GE, Khan S, Pillai P, Sultan AA. Soil Properties Correlate with Microbial Community Structure in Qatari Arid Soils. Microbiol Spectr 2023; 11:e0346222. [PMID: 36847511 PMCID: PMC10100838 DOI: 10.1128/spectrum.03462-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
This is the first detailed characterization of the microbiota and chemistry of different arid habitats from the State of Qatar. Analysis of bacterial 16S rRNA gene sequences showed that in aggregate, the dominant microbial phyla were Actinobacteria (32.3%), Proteobacteria (24.8%), Firmicutes (20.7%), Bacteroidetes (6.3%), and Chloroflexi (3.6%), though individual soils varied widely in the relative abundances of these and other phyla. Alpha diversity measured using feature richness (operational taxonomic units [OTUs]), Shannon's entropy, and Faith's phylogenetic diversity (PD) varied significantly between habitats (P = 0.016, P = 0.016, and P = 0.015, respectively). Sand, clay, and silt were significantly correlated with microbial diversity. Highly significant negative correlations were also seen at the class level between both classes Actinobacteria and Thermoleophilia (phylum Actinobacteria) and total sodium (R = -0.82 and P = 0.001 and R = -0.86, P = 0.000, respectively) and slowly available sodium (R = -0.81 and P = 0.001 and R = -0.8 and P = 0.002, respectively). Additionally, class Actinobacteria also showed significant negative correlation with sodium/calcium ratio (R = -0.81 and P = 0.001). More work is needed to understand if there is a causal relationship between these soil chemical parameters and the relative abundances of these bacteria. IMPORTANCE Soil microbes perform a multitude of essential biological functions, including organic matter decomposition, nutrient cycling, and soil structure preservation. Qatar is one of the most hostile and fragile arid environments on earth and is expected to face a disproportionate impact of climate change in the coming years. Thus, it is critical to establish a baseline understanding of microbial community composition and to assess how soil edaphic factors correlate with microbial community composition in this region. Although some previous studies have quantified culturable microbes in specific Qatari habitats, this approach has serious limitations, as in environmental samples, approximately only 0.5% of cells are culturable. Hence, this method vastly underestimates natural diversity within these habitats. Our study is the first to systematically characterize the chemistry and total microbiota associated with different habitats present in the State of Qatar.
Collapse
Affiliation(s)
- Sini Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
| | - Sara Abdul-Majid
- Department of Microbiology and Immunology, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
| | - Anthony G. Hay
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Anushree Acharya
- Department of Microbiology and Immunology, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
| | - Noora Kano
- Department of Microbiology and Immunology, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
| | - Raghad Khalid Al-Ishaq
- Department of Microbiology and Immunology, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
| | - Paul de Figueiredo
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, Texas, USA
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, Texas, USA
| | - Adrian Guzman
- Department of Electrical and Computer Engineering, Texas A&M University, Texas, USA
- Department of Biomedical Engineering, Texas A&M University, Texas, USA
| | - Soha Roger Dargham
- Biostatistics, Epidemiology, & Biomathematics Research Core, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
| | - Saad Sameer
- Department of Microbiology and Immunology, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
| | - Gi Eun Kim
- Department of Microbiology and Immunology, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
| | - Sabiha Khan
- Department of Microbiology and Immunology, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
| | - Priyamvada Pillai
- Department of Microbiology and Immunology, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
| | - Ali A. Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine—Qatar, Cornell University, Qatar Foundation—Education City, Doha, Qatar
| |
Collapse
|
7
|
Loiola M, Silva AET, Krull M, Barbosa FA, Galvão EH, Patire VF, Cruz ICS, Barros F, Hatje V, Meirelles PM. Mangrove microbial community recovery and their role in early stages of forest recolonization within shrimp ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158863. [PMID: 36126709 DOI: 10.1016/j.scitotenv.2022.158863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
Shrimp farming is blooming worldwide, posing a severe threat to mangroves and its multiple goods and ecosystem services. Several studies reported the impacts of aquaculture on mangrove biotic communities, including microbiomes. However, little is known about how mangrove soil microbiomes would change in response to mangrove forest recolonization. Using genome-resolved metagenomics, we compared the soil microbiome of mangrove forests (both with and without the direct influence of shrimp farming effluents) with active shrimp farms and mangroves under a recolonization process. We found that the structure and composition of active shrimp farms microbial communities differ from the control mangrove forests, mangroves under the impact of the shrimp farming effluents, and mangroves under recolonization. Shrimp farming ponds microbiomes have lower microbial diversity and are dominated by halophilic microorganisms, presenting high abundance of multiple antibiotic resistance genes. On the other hand, control mangrove forests, impacted mangroves (exposed to the shrimp farming effluents), and recolonization ponds were more diverse, with a higher abundance of genes related to carbon mobilization. Our data also indicated that the microbiome is recovering in the mangrove recolonization ponds, performing vital metabolic functions and functionally resembling microbiomes found in those soils of neighboring control mangrove forests. Despite highlighting the damage caused by the habitat changes in mangrove soil microbiome community and functioning, our study sheds light on these systems incredible recovery capacity. Our study shows the importance of natural mangrove forest recovery, enhancing ecosystem services by the soil microbial communities even in a very early development stage of mangrove forest, thus encouraging mangrove conservation and restoration efforts worldwide.
Collapse
Affiliation(s)
- Miguel Loiola
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Marcos Krull
- Leibniz Centre for Agricultural Landscape Research (ZALF), Germany
| | | | | | - Vinicius F Patire
- Centro Interdisciplinar de Energia e Ambiente (CIENAM), Universidade Federal da Bahia, Brazil
| | | | - Francisco Barros
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil; Instituto Nacional de Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Brazil
| | - Vanessa Hatje
- Centro Interdisciplinar de Energia e Ambiente (CIENAM), Universidade Federal da Bahia, Brazil; Instituto de Química, Universidade Federal da Bahia, Brazil
| | - Pedro Milet Meirelles
- Instituto de Biologia, Universidade Federal da Bahia, Salvador, Brazil; Instituto Nacional de Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (IN-TREE), Brazil.
| |
Collapse
|
8
|
Palit K, Rath S, Chatterjee S, Das S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32467-32512. [PMID: 35182344 DOI: 10.1007/s11356-022-19048-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Mangroves are among the world's most productive ecosystems and a part of the "blue carbon" sink. They act as a connection between the terrestrial and marine ecosystems, providing habitat to countless organisms. Among these, microorganisms (e.g., bacteria, archaea, fungi, phytoplankton, and protozoa) play a crucial role in this ecosystem. Microbial cycling of major nutrients (carbon, nitrogen, phosphorus, and sulfur) helps maintain the high productivity of this ecosystem. However, mangrove ecosystems are being disturbed by the increasing concentration of greenhouse gases within the atmosphere. Both the anthropogenic and natural factors contribute to the upsurge of greenhouse gas concentration, resulting in global warming. Changing climate due to global warming and the increasing rate of human interferences such as pollution and deforestation are significant concerns for the mangrove ecosystem. Mangroves are susceptible to such environmental perturbations. Global warming, human interventions, and its consequences are destroying the ecosystem, and the dreadful impacts are experienced worldwide. Therefore, the conservation of mangrove ecosystems is necessary for protecting them from the changing environment-a step toward preserving the globe for better living. This review highlights the importance of mangroves and their microbial components on a global scale and the degree of vulnerability of the ecosystems toward anthropic and climate change factors. The future scenario of the mangrove ecosystem and the resilience of plants and microbes have also been discussed.
Collapse
Affiliation(s)
- Krishna Palit
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
9
|
Mo S, Li J, Li B, Kashif M, Nie S, Liao J, Su G, Jiang Q, Yan B, Jiang C. L-Cysteine Synthase Enhanced Sulfide Biotransformation in Subtropical Marine Mangrove Sediments as Revealed by Metagenomics Analysis. WATER 2021; 13:3053. [DOI: 10.3390/w13213053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
High sulfides concentrations can be poisonous to environment because of anthropogenic waste production or natural occurrences. How to elucidate the biological transformation mechanisms of sulfide pollutants in the subtropical marine mangrove ecosystem has gained increased interest. Thus, in the present study, the sulfide biotransformation in subtropical mangroves ecosystem was accurately evaluated using metagenomic sequencing and quantitative polymerase chain reaction analysis. Most abundant genes were related to the organic sulfur transformation. Furthermore, an ecological model of sulfide conversion was constructed. Total phosphorus was the dominant environmental factor that drove the sulfur cycle and microbial communities. We compared mangrove and non-mangrove soils and found that the former enhanced metabolism that was related to sulfate reduction when compared to the latter. Total organic carbon, total organic nitrogen, iron, and available sulfur were the key environmental factors that effectively influenced the dissimilatory sulfate reduction. The taxonomic assignment of dissimilatory sulfate-reducing genes revealed that Desulfobacterales and Chromatiales were mainly responsible for sulfate reduction. Chromatiales were most sensitive to environmental factors. The high abundance of cysE and cysK could contribute to the coping of the microbial community with the toxic sulfide produced by Desulfobacterales. Collectively, these findings provided a theoretical basis for the mechanism of the sulfur cycle in subtropical mangrove ecosystems.
Collapse
|
10
|
Mo S, Li J, Li B, Kashif M, Nie S, Liao J, Su G, Jiang Q, Yan B, Jiang C. L-Cysteine Synthase Enhanced Sulfide Biotransformation in Subtropical Marine Mangrove Sediments as Revealed by Metagenomics Analysis. WATER 2021; 13:3053. [DOI: https:/doi.org/10.3390/w13213053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
High sulfides concentrations can be poisonous to environment because of anthropogenic waste production or natural occurrences. How to elucidate the biological transformation mechanisms of sulfide pollutants in the subtropical marine mangrove ecosystem has gained increased interest. Thus, in the present study, the sulfide biotransformation in subtropical mangroves ecosystem was accurately evaluated using metagenomic sequencing and quantitative polymerase chain reaction analysis. Most abundant genes were related to the organic sulfur transformation. Furthermore, an ecological model of sulfide conversion was constructed. Total phosphorus was the dominant environmental factor that drove the sulfur cycle and microbial communities. We compared mangrove and non-mangrove soils and found that the former enhanced metabolism that was related to sulfate reduction when compared to the latter. Total organic carbon, total organic nitrogen, iron, and available sulfur were the key environmental factors that effectively influenced the dissimilatory sulfate reduction. The taxonomic assignment of dissimilatory sulfate-reducing genes revealed that Desulfobacterales and Chromatiales were mainly responsible for sulfate reduction. Chromatiales were most sensitive to environmental factors. The high abundance of cysE and cysK could contribute to the coping of the microbial community with the toxic sulfide produced by Desulfobacterales. Collectively, these findings provided a theoretical basis for the mechanism of the sulfur cycle in subtropical mangrove ecosystems.
Collapse
|
11
|
De Paula NM, da Silva K, Brugnari T, Haminiuk CWI, Maciel GM. Biotechnological potential of fungi from a mangrove ecosystem: Enzymes, salt tolerance and decolorization of a real textile effluent. Microbiol Res 2021; 254:126899. [PMID: 34715448 DOI: 10.1016/j.micres.2021.126899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022]
Abstract
The mangrove is an ecosystem bounded by the line of the largest tide in size that occurs in climatic and subtropical regions. In this environment, microorganisms and their enzymes are involved in a series of transformations and nutrient cycling. To evaluate the biotechnological potential of fungi from a mangrove ecosystem, samples from mangrove trees were collected at the Paranaguá Estuarine Complex in Brazil and 40 fungal isolates were obtained, cultivated, and screened for hydrolytic and ligninolytic enzymes production, adaptation to salinity and genetic diversity. The results showed a predominance of hydrolytic enzymes and fungal tolerance to ≤ 50 g L-1 sodium chloride (NaCl) concentration, a sign of adaptive halophilia. Through morphological and molecular analyses, the isolates were identified as: Trichoderma atroveride, Microsphaeropsis arundinis, Epicoccum sp., Trichoderma sp., Gliocladium sp., Geotrichum sp. and Cryphonectria sp. The ligninolytic enzymatic potential of the fungi was evaluated in liquid cultures in the presence and absence of seawater and the highest activity of laccase among isolates was observed in the presence of seawater with M. arundinis (LB07), which produced 1,037 U L-1. Enzymatic extracts of M. arundinis fixed at 100 U L-1 of laccase partially decolorized a real textile effluent in a reaction without pH adjustment and chemical mediators. Considering that mangrove fungi are still few explored, the results bring an important contribution to the knowledge about these microorganisms, as their ability to adapt to saline conditions, biodegradation of pollutants, and enzymatic potential, which make them promising candidates in biotechnological processes.
Collapse
Affiliation(s)
- Nigella Mendes De Paula
- Biotechnology Laboratory, Department of Chemistry and Biology, Federal University of Technology - Paraná, Curitiba, PR, Brazil
| | - Krisle da Silva
- Brazilian Agricultural Research Corporation, Embrapa Florestas, Colombo, PR, Brazil
| | - Tatiane Brugnari
- Biotechnology Laboratory, Department of Chemistry and Biology, Federal University of Technology - Paraná, Curitiba, PR, Brazil
| | | | - Giselle Maria Maciel
- Biotechnology Laboratory, Department of Chemistry and Biology, Federal University of Technology - Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
12
|
Tavares TCL, Bezerra WM, Normando LRO, Rosado AS, Melo VMM. Brazilian Semi-Arid Mangroves-Associated Microbiome as Pools of Richness and Complexity in a Changing World. Front Microbiol 2021; 12:715991. [PMID: 34512595 PMCID: PMC8427804 DOI: 10.3389/fmicb.2021.715991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/06/2021] [Indexed: 01/04/2023] Open
Abstract
Mangrove microbiomes play an essential role in the fate of mangroves in our changing planet, but the factors regulating the biogeographical distribution of mangrove microbial communities remain essentially vague. This paper contributes to our understanding of mangrove microbiomes distributed along three biogeographical provinces and ecoregions, covering the exuberant mangroves of Amazonia ecoregion (North Brazil Shelf) as well as mangroves located in the southern limit of distribution (Southeastern ecoregion, Warm Temperate Southwestern Atlantic) and mangroves localized on the drier semi-arid coast (Northeastern ecoregion, Tropical Southwestern Atlantic), two important ecotones where poleward and landward shifts, respectively, are expected to occur related to climate change. This study compared the microbiomes associated with the conspicuous red mangrove (Rhizophora mangle) root soils encompassing soil properties, latitudinal factors, and amplicon sequence variants of 105 samples. We demonstrated that, although the northern and southern sites are over 4,000 km apart, and despite R. mangle genetic divergences between north and south populations, their microbiomes resemble each other more than the northern and northeastern neighbors. In addition, the northeastern semi-arid microbiomes were more diverse and displayed a higher level of complexity than the northern and southern ones. This finding may reflect the endurance of the northeast microbial communities tailored to deal with the stressful conditions of semi-aridity and may play a role in the resistance and growing landward expansion observed in such mangroves. Minimum temperature, precipitation, organic carbon, and potential evapotranspiration were the main microbiota variation drivers and should be considered in mangrove conservation and recovery strategies in the Anthropocene. In the face of changes in climate, land cover, biodiversity, and chemical composition, the richness and complexity harbored by semi-arid mangrove microbiomes may hold the key to mangrove adaptability in our changing planet.
Collapse
Affiliation(s)
| | - Walderly Melgaço Bezerra
- Laboratory of Microbial Ecology and Biotechnology, Department of Biology, Federal University of Ceará (UFC), Fortaleza, Brazil
| | | | - Alexandre Soares Rosado
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Vânia Maria Maciel Melo
- Laboratory of Microbial Ecology and Biotechnology, Department of Biology, Federal University of Ceará (UFC), Fortaleza, Brazil
| |
Collapse
|
13
|
Buessecker S, Zamora Z, Sarno AF, Finn DR, Hoyt AM, van Haren J, Urquiza Muñoz JD, Cadillo-Quiroz H. Microbial Communities and Interactions of Nitrogen Oxides With Methanogenesis in Diverse Peatlands of the Amazon Basin. Front Microbiol 2021; 12:659079. [PMID: 34267733 PMCID: PMC8276178 DOI: 10.3389/fmicb.2021.659079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Tropical peatlands are hotspots of methane (CH4) production but present high variation and emission uncertainties in the Amazon region. This is because the controlling factors of methane production in tropical peats are not yet well documented. Although inhibitory effects of nitrogen oxides (NOx) on methanogenic activity are known from pure culture studies, the role of NOx in the methane cycling of peatlands remains unexplored. Here, we investigated the CH4 content, soil geochemistry and microbial communities along 1-m-soil profiles and assessed the effects of soil NOx and nitrous oxide (N2O) on methanogenic abundance and activity in three peatlands of the Pastaza-Marañón foreland basin. The peatlands were distinct in pH, DOC, nitrate pore water concentrations, C/N ratios of shallow soils, redox potential, and 13C enrichment in dissolved inorganic carbon and CH4 pools, which are primarily contingent on H2-dependent methanogenesis. Molecular 16S rRNA and mcrA gene data revealed diverse and novel methanogens varying across sites. Importantly, we also observed a strong stratification in relative abundances of microbial groups involved in NOx cycling, along with a concordant stratification of methanogens. The higher relative abundance of ammonia-oxidizing archaea (Thaumarchaeota) in acidic oligotrophic peat than ammonia-oxidizing bacteria (Nitrospira) is noteworthy as putative sources of NOx. Experiments testing the interaction of NOx species and methanogenesis found that the latter showed differential sensitivity to nitrite (up to 85% reduction) and N2O (complete inhibition), which would act as an unaccounted CH4 control in these ecosystems. Overall, we present evidence of diverse peatlands likely differently affected by inhibitory effects of nitrogen species on methanogens as another contributor to variable CH4 fluxes.
Collapse
Affiliation(s)
- Steffen Buessecker
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Zacary Zamora
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Analissa F Sarno
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Damien Robert Finn
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Alison M Hoyt
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Joost van Haren
- Biosphere 2 Institute, University of Arizona, Oracle, AZ, United States.,Honors College, University of Arizona, Tucson, AZ, United States
| | - Jose D Urquiza Muñoz
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany.,Laboratory of Soil Research, Research Institute of Amazonia's Natural Resources, National University of the Peruvian Amazon, Iquitos, Peru.,School of Forestry, National University of the Peruvian Amazon, Iquitos, Peru
| | - Hinsby Cadillo-Quiroz
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Swette Center for Environmental Biotechnology, The Biodesign Institute, Arizona State University, Tempe, AZ, United States.,Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
14
|
Zhang CJ, Chen YL, Sun YH, Pan J, Cai MW, Li M. Diversity, metabolism and cultivation of archaea in mangrove ecosystems. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:252-262. [PMID: 37073347 PMCID: PMC10077227 DOI: 10.1007/s42995-020-00081-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/19/2020] [Indexed: 05/03/2023]
Abstract
Mangroves comprise a globally significant intertidal ecosystem that contains a high diversity of microorganisms, including fungi, bacteria and archaea. Archaea is a major domain of life that plays important roles in biogeochemical cycles in these ecosystems. In this review, the potential roles of archaea in mangroves are briefly highlighted. Then, the diversity and metabolism of archaeal community of mangrove ecosystems across the world are summarized and Bathyarchaeota, Euryarchaeota, Thaumarchaeota, Woesearchaeota, and Lokiarchaeota are confirmed as the most abundant and ubiquitous archaeal groups. The metabolic potential of these archaeal groups indicates their important ecological function in carbon, nitrogen and sulfur cycling. Finally, some cultivation strategies that could be applied to uncultivated archaeal lineages from mangrove wetlands are suggested, including refinements to traditional cultivation methods based on genomic and transcriptomic information, and numerous innovative cultivation techniques such as single-cell isolation and high-throughput culturing (HTC). These cultivation strategies provide more opportunities to obtain previously uncultured archaea.
Collapse
Affiliation(s)
- Cui-Jing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Yu-Lian Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Yi-Hua Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Ming-Wei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| |
Collapse
|
15
|
Chuvochina M, Adame MF, Guyot A, Lovelock C, Lockington D, Gamboa-Cutz JN, Dennis PG. Drivers of bacterial diversity along a natural transect from freshwater to saline subtropical wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143455. [PMID: 33243518 DOI: 10.1016/j.scitotenv.2020.143455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Tropical coastal wetlands provide a range of ecosystem services that are closely associated with microbially-driven biogeochemical processes. Knowledge of the main players and their drivers in those processes can have huge implications on the carbon and nutrient fluxes in wetland soils, and thus on the ecosystems services we derive from them. Here, we collected surface (0-5 cm) and subsurface (20-25 cm) soil samples along a transect from forested freshwater wetlands, to saltmarsh, and mangroves. For each sample, we measured a range of abiotic properties and characterised the diversity of bacterial communities using 16S rRNA gene amplicon sequencing. The alpha diversity of bacterial communities in mangroves exceeded that of freshwater wetlands, which were dominated by members of the Acidobacteria, Alphaproteobacteria and Verrucomicrobia, and associated with high soil pore-water concentrations of soluble reactive phosphorous, and nitrogen as nitrate and nitrite (N-NOX-). Bacterial communities in the saltmarsh were strongly stratified by depth and included members of the Actinobacteria, Chloroflexi, and Deltaproteobacteria. Finally, the mangroves were dominated by representatives of Deltaproteobacteria, mainly Desulfobacteraceae and Synthrophobacteraceae, and were associated with high salinity and soil pore-water concentrations of ammonium (N-NH4+). These communities suggest methane consumption in freshwater wetlands, and sulfate reduction in deep soils of marshes and in mangroves. Our work contributes to the important goal of describing reference conditions for specific wetlands in terms of both bacterial communities and their drivers. This information may be used to monitor change and assess wetland health and function.
Collapse
Affiliation(s)
- Maria Chuvochina
- Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD 4072, Australia; National Centre for Groundwater Research and Training, Flinders University, Bedford Park 5042, Australia
| | | | - Adrien Guyot
- National Centre for Groundwater Research and Training, Flinders University, Bedford Park 5042, Australia; School of Civil Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Catherine Lovelock
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David Lockington
- National Centre for Groundwater Research and Training, Flinders University, Bedford Park 5042, Australia; School of Civil Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Paul G Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
16
|
Euler S, Jeffrey LC, Maher DT, Mackenzie D, Tait DR. Shifts in methanogenic archaea communities and methane dynamics along a subtropical estuarine land use gradient. PLoS One 2020; 15:e0242339. [PMID: 33232349 PMCID: PMC7685437 DOI: 10.1371/journal.pone.0242339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/30/2020] [Indexed: 02/01/2023] Open
Abstract
In coastal aquatic ecosystems, prokaryotic communities play an important role in regulating the cycling of nutrients and greenhouse gases. In the coastal zone, estuaries are complex and delicately balanced systems containing a multitude of specific ecological niches for resident microbes. Anthropogenic influences (i.e. urban, industrial and agricultural land uses) along the estuarine continuum can invoke physical and biochemical changes that impact these niches. In this study, we investigate the relative abundance of methanogenic archaea and other prokaryotic communities, distributed along a land use gradient in the subtropical Burnett River Estuary, situated within the Great Barrier Reef catchment, Australia. Microbiological assemblages were compared to physicochemical, nutrient and greenhouse gas distributions in both pore and surface water. Pore water samples from within the most urbanised site showed a high relative abundance of methanogenic Euryarchaeota (7.8% of all detected prokaryotes), which coincided with elevated methane concentrations in the water column, ranging from 0.51 to 0.68 μM at the urban and sewage treatment plant (STP) sites, respectively. These sites also featured elevated dissolved organic carbon (DOC) concentrations (0.66 to 1.16 mM), potentially fuelling methanogenesis. At the upstream freshwater site, both methane and DOC concentrations were considerably higher (2.68 μM and 1.8 mM respectively) than at the estuarine sites (0.02 to 0.66 μM and 0.39 to 1.16 mM respectively) and corresponded to the highest relative abundance of methanotrophic bacteria. The proportion of sulfate reducing bacteria in the prokaryotic community was elevated within the urban and STP sites (relative abundances of 8.0%– 10.5%), consistent with electron acceptors with higher redox potentials (e.g. O2, NO3-) being scarce. Overall, this study showed that ecological niches in anthropogenically altered environments appear to give an advantage to specialized prokaryotes invoking a potential change in the thermodynamic landscape of the ecosystem and in turn facilitating the generation of methane–a potent greenhouse gas.
Collapse
Affiliation(s)
- Sebastian Euler
- SCU GeoScience, Southern Cross University, Lismore, NSW, Australia
- * E-mail: ,
| | - Luke C. Jeffrey
- SCU GeoScience, Southern Cross University, Lismore, NSW, Australia
| | - Damien T. Maher
- SCU GeoScience, Southern Cross University, Lismore, NSW, Australia
- School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW, Australia
| | - Derek Mackenzie
- SCU GeoScience, Southern Cross University, Lismore, NSW, Australia
| | - Douglas R. Tait
- SCU GeoScience, Southern Cross University, Lismore, NSW, Australia
| |
Collapse
|
17
|
Zhang CJ, Chen YL, Pan J, Wang YM, Li M. Spatial and seasonal variation of methanogenic community in a river-bay system in South China. Appl Microbiol Biotechnol 2020; 104:4593-4603. [PMID: 32306050 DOI: 10.1007/s00253-020-10613-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
Abstract
River-bay system is a transitional zone connecting land and ocean and an important natural source for methane emission. Methanogens play important roles in the global greenhouse gas budget and carbon cycle since they produce methane. The abundance and community assemblage of methanogens in such a dynamic system are not well understood. Here, we used quantitative PCR and high-throughput sequencing of the mcrA gene to investigate the abundance and community composition of methanogens in the Shenzhen River-Bay system, a typical subtropical river-bay system in Southern of China, during the wet and dry seasons. Results showed that mcrA gene abundance was significantly higher in the sediments of river than those of estuary, and was higher in wet season than dry season. Sequences of mcrA gene were mostly assigned to three orders, including Methanosarcinales, Methanomicrobiales, and Methanobacteriales. Specifically, Methanosarcina, Methanosaeta, and Methanobacterium were the most abundant and ubiquitous genera. Methanogenic communities generally clustered according to habitat (river vs. estuary), and salinity was the major factor driving the methanogenic community assemblage. Furthermore, the indicator groups for two habitats were identified. For example, Methanococcoides, Methanoculleus, and Methanogenium preferentially existed in estuarine sediments, whereas Methanomethylovorans, Methanolinea, Methanoregula, and Methanomassiliicoccales were more abundant in riverine sediments, indicating distinct ecological niches. Overall, these findings reveal the distribution patterns of methanogens and expand our understanding of methanogenic community assemblage in the river-bay system. Key Points • Abundance of methanogens was relatively higher in riverine sediments. • Methanogenic community in estuarine habitat separated from that in riverine habitat. • Salinity played a vital role in regulating methanogenic community assemblage.
Collapse
Affiliation(s)
- Cui-Jing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu-Lian Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Yong-Ming Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
18
|
Microbial community structure of soils in Bamenwan mangrove wetland. Sci Rep 2019; 9:8406. [PMID: 31182804 PMCID: PMC6557889 DOI: 10.1038/s41598-019-44788-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/23/2019] [Indexed: 11/30/2022] Open
Abstract
Microbial community diversity and composition are important for the maintenance of mangrove ecosystem. Bacterial and archaeal community composition of the Bamenwan Mangrove Wetland soil in Hainan, China, was determined using pyrosequencing technique. Bacterial community composition presented differences among the five soil samples. Rhizobiales with higher abundance were observed in inner mangrove forest samples, while Desulfobacterales were in the seaward edge samples, and Frankiales, Gaiellales and Rhodospirillales in the landedge sample. For archaea, Crenarchaeota and Euryarchaeota dominated in five samples, but the proportion in each samples were different. Dominant archaeal community composition at the order level was similar in the seaward edge samples. The dominant archaeal clusters in the two inner mangrove forest samples were different, with Soil Crenarchaeotic Group (SCG) and Halobacteriales in sample inside of Bruguiera sexangula forest and SCG, Methanosarcinales and Marine Benthic Group B (MBGB) in sample inside of Xylocarpus mekongensis forest. The dominant archaeal clusters in land sample were unique, with Terrestrial Group and South African Gold Mine Group 1. The metabolic pathways including metabolism, genetic information processing, environmental information processing, cellular processes, organismal systems and human diseases were all detected for bacterial and archaeal functional profiles, but metabolic potentials among five samples were different.
Collapse
|
19
|
Li Y, Zheng L, Zhang Y, Liu H, Jing H. Comparative metagenomics study reveals pollution induced changes of microbial genes in mangrove sediments. Sci Rep 2019; 9:5739. [PMID: 30952929 PMCID: PMC6450915 DOI: 10.1038/s41598-019-42260-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/26/2019] [Indexed: 01/21/2023] Open
Abstract
Mangrove forests are widespread along the subtropical and tropical coasts. They provide a habitat for a wide variety of plants, animals and microorganisms, and act as a buffer zone between the ocean and land. Along with other coastal environments, mangrove ecosystems are under increasing pressure from human activities, such as excessive input of nutrients and toxic pollutants. Despite efforts to understand the diversity of microbes in mangrove sediments, their metabolic capability in pristine and contaminated mangrove sediments remains largely unknown. By using metagenomic approach, we investigated the metabolic capacity of microorganisms in contaminated (CMS) and pristine (PMS) mangrove sediments at subtropical and tropical coastal sites. When comparing the CMS with PMS, we found that the former had a reduced diazotroph abundance and nitrogen fixing capability, but an enhanced metabolism that is related to the generation of microbial greenhouse gases via increased methanogenesis and sulfate reduction. In addition, a high concentration of heavy metals (mainly Zn, Cd, and Pb) and abundance of metal/antibiotic resistance encoding genes were found in CMS. Together, these data provide evidence that contamination in mangrove sediment can markedly change microbial community and metabolism; however, no significant differences in gene distribution were found between the subtropical and tropical mangrove sediments. In summary, contamination in mangrove sediments might weaken the microbial metabolisms that enable the mangrove ecosystems to act as a buffer zone for terrestrial nutrients deposition, and induce bioremediation processes accompanied with an increase in greenhouse gas emission.
Collapse
Affiliation(s)
- Yingdong Li
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, China
| | - Liping Zheng
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yue Zhang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, China.
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
| |
Collapse
|
20
|
Cotta SR, Cadete LL, van Elsas JD, Andreote FD, Dias ACF. Exploring bacterial functionality in mangrove sediments and its capability to overcome anthropogenic activity. MARINE POLLUTION BULLETIN 2019; 141:586-594. [PMID: 30955771 DOI: 10.1016/j.marpolbul.2019.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
Mangrove forests are highly productive yet vulnerable ecosystems that act as important carbon sinks ("blue carbon"). The objective of this work was to analyze the impact of anthropogenic activities on microbiome structure and functioning. The metagenomic analysis revealed that the taxonomic compositions were grossly similar across all mangrove microbiomes. Remarkably, these microbiomes, along the gradient of anthropogenic impact, showed fluctuations in the relative abundances of bacterial taxa predicted to be involved in sulfur cycling processes. Functions involved in sulfur metabolism, such as APS pathways (associated with sulfate reduction and sulfur oxidation processes) were prevalent across the microbiomes, being sox and dsrAB genes highly expressed on anthropogenically-impacted areas. Apparently, the oil-impacted microbiomes were more affected in taxonomic than in functional terms, as high functional redundancies were noted across them. The microbial gene diversity found was typical for a functional system, even following the previous disturbance.
Collapse
Affiliation(s)
- Simone Raposo Cotta
- Department of Soil Science, ESALQ/USP, University of São Paulo, Piracicaba, Brazil
| | - Luana Lira Cadete
- Department of Soil Science, ESALQ/USP, University of São Paulo, Piracicaba, Brazil
| | - Jan Dirk van Elsas
- Microbial Ecology Group, Institute for Evolutionary Life Sciences, University of Groningen, AG, Groningen, the Netherlands
| | | | | |
Collapse
|
21
|
Wu S, Li R, Xie S, Shi C. Depth-related change of sulfate-reducing bacteria community in mangrove sediments: The influence of heavy metal contamination. MARINE POLLUTION BULLETIN 2019; 140:443-450. [PMID: 30803665 DOI: 10.1016/j.marpolbul.2019.01.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
This study provides new insight towards the effects of heavy metal contamination on sulfate-reducing bacteria (SRB) in mangrove ecosystem. We investigated SRB communities in mangrove sediments (0-30 cm depth) from Futian, Xixiang and Shajing mangrove wetlands in Shenzhen, China, with different heavy metal contamination levels. The results showed that SRB community abundance (1.71 × 107-3.04 × 108 dsrB gene copies g-1 wet weight sediment) was depth-related and significantly correlated with Cd and Ni concentrations. The α-diversity indices of SRB community (Chao1 = 21.25-84.50, Shannon = 2.31-2.96) were significantly correlated with Cd level in mangrove sediments. Desulfobacteraceae, Desulfobulbaceae and Syntrophobacteraceae acted as major SRB groups in mangrove sediments, and Syntrophobacteraceae was most sensitive to metal contamination. UniFrace clustering analysis revealed that SRB community structure was influenced by the heavy metal concentrations. Moreover, redundancy analysis indicated that Cd and total phosphorus were the major environmental factors affecting the SRB structure in mangrove sediments.
Collapse
Affiliation(s)
- Sijie Wu
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China.
| | - Ruili Li
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China.
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Cong Shi
- School of Environment and Energy, Shenzhen Graduate School of Peking University, Shenzhen 518055, Guangdong, China
| |
Collapse
|
22
|
Wang R, Xu S, Jiang C, Zhang Y, Bai N, Zhuang G, Bai Z, Zhuang X. Impacts of Human Activities on the Composition and Abundance of Sulfate-Reducing and Sulfur-Oxidizing Microorganisms in Polluted River Sediments. Front Microbiol 2019; 10:231. [PMID: 30809217 PMCID: PMC6379298 DOI: 10.3389/fmicb.2019.00231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/28/2019] [Indexed: 11/30/2022] Open
Abstract
Water system degradation has a severe impact on daily life, especially in developing countries. However, microbial changes associated with this degradation, especially changes in microbes related to sulfur (S) cycling, are poorly understood. In this study, the abundance, structure, and diversity of sulfate-reducing microorganisms (SRM) and sulfur-oxidizing microorganisms (SOM) in the sediments from the Ziya River Basin, which is polluted by various human interventions (urban and agricultural activities), were investigated. Quantitative real-time PCR showed that the S cycling-related (SCR) genes (dsrB and soxB) were significantly elevated, reaching 2.60 × 107 and 1.81 × 108 copies per gram of dry sediment, respectively, in the region polluted by human urban activities (RU), and the ratio of dsrB to soxB abundance was significantly elevated in the region polluted by human agricultural activities (RA) compared with those in the protected wildlife reserve (RP), indicating that the mechanisms underlying water system degradation differ between RU and RA. Based on a 16S rRNA gene analysis, human interventions had substantial effects on microbial communities, particularly for microbes involved in S cycling. Some SCR genera (i.e., Desulfatiglans and Geothermobacter) were enriched in the sediments from both RA and RU, while others (i.e., Desulfofustis and Desulfonatronobacter) were only enriched in the sediments from RA. A redundancy analysis indicated that NH4+-N and total organic carbon significantly influenced the abundance of SRM and SOM, and sulfate significantly influenced only the abundance of SRM. A network analysis showed high correlation between SCR microorganisms and other microbial groups for both RU and RA, including those involved in carbon and metal cycling. These findings indicated the different effects of different human interventions on the microbial community composition and water quality degradation.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shengjun Xu
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Cancan Jiang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Na Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,School of Safety and Environmental Engineering, Capital University of Economics and Business, Beijing, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhihui Bai
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Taketani RG, Moitinho MA, Mauchline TH, Melo IS. Co-occurrence patterns of litter decomposing communities in mangroves indicate a robust community resistant to disturbances. PeerJ 2018; 6:e5710. [PMID: 30310750 PMCID: PMC6174875 DOI: 10.7717/peerj.5710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/08/2018] [Indexed: 12/31/2022] Open
Abstract
Background Mangroves are important coastal ecosystems known for high photosynthetic productivity and the ability to support marine food chains through supply of dissolved carbon or particular organic matter. Most of the carbon found in mangroves is produced by its vegetation and is decomposed in root associated sediment. This process involves a tight interaction between microbial populations, litter chemical composition, and environmental parameters. Here, we study the complex interactions found during litter decomposition in mangroves by applying network analysis to metagenomic data. Methods Leaves of three species of mangrove trees typically found in the southeast of Brazil (Rhizophora mangle, Laguncularia racemosa, and Avicennia schaueriana) were collected in separate litter bags and left on three different mangroves for 60 days. These leaves were subsequently used for metagenome sequencing using Ion Torrent technology. Sequences were annotated in MG-RAST and used for network construction using MENAp. Results The most common phyla were Proteobacteria (classes Gamma and Alphaproteobacteria) followed by Firmicutes (Clostridia and Bacilli). The most abundant protein clusters were associated with the metabolism of carbohydrates, amino acids, and proteins. Non-metric multidimensional scaling of the metagenomic data indicated that substrate (i.e., tree species) did not significantly select for a specific community. Both networks exhibited scale-free characteristics and small world structure due to the low mean shortest path length and high average clustering coefficient. These networks also had a low number of hub nodes most of which were module hubs. Discussion This study demonstrates that under different environmental pressures (i.e., plant species or mangrove location) the microbial community associated with the decaying material forms a robust and stable network.
Collapse
Affiliation(s)
- Rodrigo G Taketani
- Department of Soil Sciences, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil.,Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation-EMBRAPA, Jaguariuna, SP, Brazil
| | - Marta A Moitinho
- Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation-EMBRAPA, Jaguariuna, SP, Brazil
| | - Tim H Mauchline
- Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, United Kingdom
| | - Itamar S Melo
- Laboratory of Environmental Microbiology, Embrapa Environment, Brazilian Agricultural Research Corporation-EMBRAPA, Jaguariuna, SP, Brazil
| |
Collapse
|
24
|
Imchen M, Kumavath R, Barh D, Vaz A, Góes-Neto A, Tiwari S, Ghosh P, Wattam AR, Azevedo V. Comparative mangrove metagenome reveals global prevalence of heavy metals and antibiotic resistome across different ecosystems. Sci Rep 2018; 8:11187. [PMID: 30046123 PMCID: PMC6060162 DOI: 10.1038/s41598-018-29521-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/13/2018] [Indexed: 12/17/2022] Open
Abstract
The mangrove ecosystem harbors a complex microbial community that plays crucial role in biogeochemical cycles. In this study, we analyzed mangrove sediments from India using de novo whole metagenome next generation sequencing (NGS) and compared their taxonomic and functional community structures to mangrove metagenomics samples from Brazil and Saudi Arabia. The most abundant phyla in the mangroves of all three countries was Proteobacteria, followed by Firmicutes and Bacteroidetes. A total of 1,942 genes were found to be common across all the mangrove sediments from each of the three countries. The mangrove resistome consistently showed high resistance to fluoroquinolone and acriflavine. A comparative study of the mangrove resistome with other ecosystems shows a higher frequency of heavy metal resistance in mangrove and terrestrial samples. Ocean samples had a higher abundance of drug resistance genes with fluoroquinolone and methicillin resistance genes being as high as 28.178% ± 3.619 and 10.776% ± 1.823. Genes involved in cobalt-zinc-cadmium resistance were higher in the mangrove (23.495% ± 4.701) and terrestrial (27.479% ± 4.605) ecosystems. Our comparative analysis of samples collected from a variety of habitats shows that genes involved in resistance to both heavy metals and antibiotics are ubiquitous, irrespective of the ecosystem examined.
Collapse
Affiliation(s)
- Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya P.O, Kasaragod, Kerala, 671316, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya P.O, Kasaragod, Kerala, 671316, India.
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal, India.,Division of Bioinformatics and Computational Genomics, NITTE University Center for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India.,Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Aline Vaz
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Aristóteles Góes-Neto
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Institute of Biological Sciences (ICB), Federal University of Minas Gerais (UFMG), Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Sandeep Tiwari
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Preetam Ghosh
- Department of Computer Science Virginia Commonwealth University, Virginia, 23284, USA
| | - Alice R Wattam
- Biocomplexity Institute, Virginia Tech University, Blacksburg, Virginia, 24061, USA
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais, Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
25
|
Rigonato J, Kent AD, Gumiere T, Branco LHZ, Andreote FD, Fiore MF. Temporal assessment of microbial communities in soils of two contrasting mangroves. Braz J Microbiol 2017; 49:87-96. [PMID: 28827029 PMCID: PMC5790579 DOI: 10.1016/j.bjm.2017.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/29/2017] [Accepted: 04/11/2017] [Indexed: 12/04/2022] Open
Abstract
Variations in microbial communities promoted by alterations in environmental conditions are reflected in similarities/differences both at taxonomic and functional levels. Here we used a natural gradient within mangroves from seashore to upland, to contrast the natural variability in bacteria, cyanobacteria and diazotroph assemblages in a pristine area compared to an oil polluted area along a timespan of three years, based on ARISA (bacteria and cyanobacteria) and nifH T-RFLP (diazotrophs) fingerprinting. The data presented herein indicated that changes in all the communities evaluated were mainly driven by the temporal effect in the contaminated area, while local effects were dominant on the pristine mangrove. A positive correlation of community structure between diazotrophs and cyanobacteria was observed, suggesting the functional importance of this phylum as nitrogen fixers in mangroves soils. Different ecological patterns explained the microbial behavior in the pristine and polluted mangroves. Stochastic models in the pristine mangrove indicate that there is not a specific environmental factor that determines the bacterial distribution, while cyanobacteria and diazotrophs better fitted in deterministic model in the same area. For the contaminated mangrove site, deterministic models better represented the variations in the communities, suggesting that the presence of oil might change the microbial ecological structures over time. Mangroves represent a unique environment threatened by global change, and this study contributed to the knowledge of the microbial distribution in such areas and its response on persistent contamination historic events.
Collapse
Affiliation(s)
- Janaina Rigonato
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, SP, Brazil; São Paulo State University, Instituto de Biociências, Letras e Ciências Exatas, Department of Zoology and Botany, São José do Rio Preto, SP, Brazil
| | - Angela D Kent
- University of Illinois at Urbana-Champaign, Department of Natural Resources and Environmental Sciences, Champaign, Illinois, USA
| | - Thiago Gumiere
- University of São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Department of Soil Science, Piracicaba, São Paulo, Brazil
| | - Luiz Henrique Zanini Branco
- São Paulo State University, Instituto de Biociências, Letras e Ciências Exatas, Department of Zoology and Botany, São José do Rio Preto, SP, Brazil
| | - Fernando Dini Andreote
- University of São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Department of Soil Science, Piracicaba, São Paulo, Brazil
| | - Marli Fátima Fiore
- University of São Paulo, Center for Nuclear Energy in Agriculture, Piracicaba, SP, Brazil.
| |
Collapse
|
26
|
Ottoni JR, Cabral L, de Sousa STP, Júnior GVL, Domingos DF, Soares Junior FL, da Silva MCP, Marcon J, Dias ACF, de Melo IS, de Souza AP, Andreote FD, de Oliveira VM. Functional metagenomics of oil-impacted mangrove sediments reveals high abundance of hydrolases of biotechnological interest. World J Microbiol Biotechnol 2017; 33:141. [DOI: 10.1007/s11274-017-2307-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/31/2017] [Indexed: 11/25/2022]
|
27
|
Archaea in Natural and Impacted Brazilian Environments. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:1259608. [PMID: 27829818 PMCID: PMC5086508 DOI: 10.1155/2016/1259608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/08/2016] [Indexed: 11/26/2022]
Abstract
In recent years, archaeal diversity surveys have received increasing attention. Brazil is a country known for its natural diversity and variety of biomes, which makes it an interesting sampling site for such studies. However, archaeal communities in natural and impacted Brazilian environments have only recently been investigated. In this review, based on a search on the PubMed database on the last week of April 2016, we present and discuss the results obtained in the 51 studies retrieved, focusing on archaeal communities in water, sediments, and soils of different Brazilian environments. We concluded that, in spite of its vast territory and biomes, the number of publications focusing on archaeal detection and/or characterization in Brazil is still incipient, indicating that these environments still represent a great potential to be explored.
Collapse
|
28
|
Cabral L, Júnior GVL, Pereira de Sousa ST, Dias ACF, Lira Cadete L, Andreote FD, Hess M, de Oliveira VM. Anthropogenic impact on mangrove sediments triggers differential responses in the heavy metals and antibiotic resistomes of microbial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:460-469. [PMID: 27297401 DOI: 10.1016/j.envpol.2016.05.078] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 04/27/2016] [Accepted: 05/26/2016] [Indexed: 05/20/2023]
Abstract
Mangroves are complex and dynamic ecosystems highly dependent on diverse microbial activities. In the last decades, these ecosystems have been exposed to and affected by diverse human activities, such as waste disposal and accidental oil spills. Complex microbial communities inhabiting the soil and sediment of mangroves comprise microorganisms that have developed mechanisms to adapt to organic and inorganic contaminants. The resistance of these microbes to contaminants is an attractive property and also the reason why soil and sediment living microorganisms and their enzymes have been considered promising for environmental detoxification. The aim of the present study was to identify active microbial genes in heavy metals, i.e., Cu, Zn, Cd, Pb and Hg, and antibiotic resistomes of polluted and pristine mangrove sediments through the comparative analysis of metatranscriptome data. The concentration of the heavy metals Zn, Cr, Pb, Cu, Ni, Cd, and Hg and abundance of genes and transcripts involved in resistance to toxic compounds (the cobalt-zinc-cadmium resistance protein complex; the cobalt-zinc-cadmium resistance protein CzcA and the cation efflux system protein CusA) have been closely associated with sites impacted with petroleum, sludge and other urban waste. The taxonomic profiling of metatranscriptome sequences suggests that members of Gammaproteobacteria and Deltaproteobacteria classes contribute to the detoxification of the polluted soil. Desulfobacterium autotrophicum was the most abundant microorganism in the oil-impacted site and displayed specific functions related to heavy metal resistance, potentially playing a key role in the successful persistence of the microbial community of this site.
Collapse
Affiliation(s)
- Lucélia Cabral
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gileno Vieira Lacerda Júnior
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Armando Cavalcante Franco Dias
- Department of Soil Science, ''Luiz de Queiroz'' College of Agriculture, University of Sao Paulo, Piracicaba, São Paulo, Brazil
| | - Luana Lira Cadete
- Department of Soil Science, ''Luiz de Queiroz'' College of Agriculture, University of Sao Paulo, Piracicaba, São Paulo, Brazil
| | - Fernando Dini Andreote
- Department of Soil Science, ''Luiz de Queiroz'' College of Agriculture, University of Sao Paulo, Piracicaba, São Paulo, Brazil
| | - Matthias Hess
- University of California, Davis, Department of Animal Science, Davis, CA, USA
| | - Valéria Maia de Oliveira
- Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
29
|
Wang L, Huang X, Zheng TL. Responses of bacterial and archaeal communities to nitrate stimulation after oil pollution in mangrove sediment revealed by Illumina sequencing. MARINE POLLUTION BULLETIN 2016; 109:281-289. [PMID: 27262497 DOI: 10.1016/j.marpolbul.2016.05.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 06/05/2023]
Abstract
This study aimed to investigate microbial responses to nitrate stimulation in oiled mangrove mesocosm. Both supplementary oil and nitrate changed the water and sediment chemical properties contributing to the shift of microbial communities. Denitrifying genes nirS and nirK were increased several times by the interaction of oil spiking and nitrate addition. Bacterial chao1 was reduced by oil spiking and further by nitrate stimulation, whereas archaeal chao1 was only inhibited by oil pollution on early time. Sampling depth explained most of variation and significantly impacted bacterial and archaeal communities, while oil pollution only significantly impacted bacterial communities (p<0.05). Despite explaining less variation, nitrate addition coupled with oil spiking enhanced the growth of hydrocarbon degraders in mangrove. The findings demonstrate the impacts of environmental factors and their interactions in shaping microbial communities during nitrate stimulation. Our study suggests introducing genera Desulfotignum and Marinobacter into oiled mangrove for bioaugmentation.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361021, China
| | - Xu Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Tian-Ling Zheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361021, China
| |
Collapse
|
30
|
Abstract
Mangroves are unique, and endangered, coastal ecosystems that play a vital role in the tropical and subtropical environments. A comprehensive description of the microbial communities in these ecosystems is currently lacking, and additional studies are required to have a complete understanding of the functioning and resilience of mangroves worldwide. In this work, we carried out a metagenomic study by comparing the microbial community of mangrove sediment with the rhizosphere microbiome of Avicennia marina, in northern Red Sea mangroves, along the coast of Saudi Arabia. Our results revealed that rhizosphere samples presented similar profiles at the taxonomic and functional levels and differentiated from the microbiome of bulk soil controls. Overall, samples showed predominance by Proteobacteria, Bacteroidetes and Firmicutes, with high abundance of sulfate reducers and methanogens, although specific groups were selectively enriched in the rhizosphere. Functional analysis showed significant enrichment in 'metabolism of aromatic compounds', 'mobile genetic elements', 'potassium metabolism' and 'pathways that utilize osmolytes' in the rhizosphere microbiomes. To our knowledge, this is the first metagenomic study on the microbiome of mangroves in the Red Sea, and the first application of unbiased 454-pyrosequencing to study the rhizosphere microbiome associated with A. marina. Our results provide the first insights into the range of functions and microbial diversity in the rhizosphere and soil sediments of gray mangrove (A. marina) in the Red Sea.
Collapse
|
31
|
Distribution and population structure characteristics of microorganisms in urban sewage system. Appl Microbiol Biotechnol 2015; 99:7723-34. [DOI: 10.1007/s00253-015-6661-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/23/2015] [Accepted: 05/01/2015] [Indexed: 12/29/2022]
|
32
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 rlike (select (case when (5853=5853) then 0x31302e313132382f61656d2e30303134372d3135 else 0x28 end))-- yhjw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
33
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and (select (case when (4843=4843) then null else ctxsys.drithsx.sn(1,4843) end) from dual) is null] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
34
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
35
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
36
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and (select (case when (4809=6114) then null else ctxsys.drithsx.sn(1,4809) end) from dual) is null-- zlmh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
37
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
38
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and extractvalue(5836,concat(0x5c,0x7162707671,(select (elt(5836=5836,1))),0x717a6b7171))-- jijh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
39
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
40
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
41
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 order by 1-- wjpz] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
42
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
43
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
44
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
45
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
46
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 or extractvalue(9645,concat(0x5c,0x7162707671,(select (elt(9645=9645,1))),0x717a6b7171))-- tzdx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
47
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 order by 1#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
48
|
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
49
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and 9969=9969-- bqjm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|
50
|
Evidence of Active Methanogen Communities in Shallow Sediments of the Sonora Margin Cold Seeps. Appl Environ Microbiol 2015. [DOI: 10.1128/aem.00147-15 and 5417=7636-- tabb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT
In the Sonora Margin cold seep ecosystems (Gulf of California), sediments underlying microbial mats harbor high biogenic methane concentrations, fueling various microbial communities, such as abundant lineages of anaerobic methanotrophs (ANME). However, the biodiversity, distribution, and metabolism of the microorganisms producing this methane remain poorly understood. In this study, measurements of methanogenesis using radiolabeled dimethylamine, bicarbonate, and acetate showed that biogenic methane production in these sediments was mainly dominated by methylotrophic methanogenesis, while the proportion of autotrophic methanogenesis increased with depth. Congruently, methane production and methanogenic
Archaea
were detected in culture enrichments amended with trimethylamine and bicarbonate. Analyses of denaturing gradient gel electrophoresis (DGGE) fingerprinting and reverse-transcribed PCR-amplified 16S rRNA sequences retrieved from these enrichments revealed the presence of active methylotrophic
Methanococcoides
burtonii
relatives and several new autotrophic
Methanogenium
lineages, confirming the cooccurrence of
Methanosarcinales
and
Methanomicrobiales
methanogens with abundant ANME populations in the sediments of the Sonora Margin cold seeps.
Collapse
|