1
|
Ahmadi SS, Bagherzadeh O, Sargazi M, Kalantar F, Najafi MAE, Vahedi MM, Afshari AR, Sahebkar A. Harnessing the therapeutic potential of phytochemicals in neuroblastoma. Biofactors 2024. [PMID: 39189819 DOI: 10.1002/biof.2115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024]
Abstract
Neuroblastomas are the most common solid tumors outside of the brain that originate from immature neural crest cells, accounting for about 10% of all pediatric malignancies. The treatment for neuroblastomas involves a multimodal schedule, including surgery, radiation, chemotherapy, and immunotherapy. All these modalities are limited by side effects that might be severe, poor prognosis, and a high risk of recurrence. In the quest for additional therapeutic approaches, phytochemicals have attracted attention owing to their reported antitumor properties, safety, and multimechanistic mode of action. Several studies have used plant-derived bioactive compounds such as phenolics and flavonoids, suggesting modulation of biomolecules and signal transduction pathways involved in neuroblastoma. We reviewed the findings of recent preclinical and clinical studies demonstrating the effects of phytochemicals on neuroblastoma, shedding light on their molecular mechanism of action and potential therapeutic applications.
Collapse
Affiliation(s)
- Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Bagherzadeh
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Sargazi
- Department of Ophthalmology, Alzahra Eye Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Farnaz Kalantar
- Departman of Pharmacology, Faculty of Pharmacy and Pharmaceutical sciences, Islamic Azad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Elahi Najafi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mohammad Mahdi Vahedi
- Department of Pharmacology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Amir R Afshari
- Department of Basic Sciences, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Zhang X, Zhou H, Liu H, Xu P. Role of Oxidative Stress in the Occurrence and Development of Cognitive Dysfunction in Patients with Obstructive Sleep Apnea Syndrome. Mol Neurobiol 2024; 61:5083-5101. [PMID: 38159196 DOI: 10.1007/s12035-023-03899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS) causes recurrent apnea and intermittent hypoxia at night, leading to several complications such as cognitive dysfunction. However, the molecular mechanisms underlying cognitive dysfunction in OSAS are unclear, and oxidative stress mediated by intermittent hypoxia is an important mechanism. In addition, the improvement of cognitive dysfunction in patients with OSAS varies by different treatment regimens; among them, continuous positive airway pressure therapy (CPAP) is mostly recognized for improving cognitive dysfunction. In this review, we discuss the potential mechanisms of oxidative stress in OSAS, the common factors of affecting oxidative stress and the Links between oxidative stress and inflammation in OSAS, focusing on the potential links between oxidative stress and cognitive dysfunction in OSAS and the potential therapies for neurocognitive dysfunction in patients with OSAS mediated by oxidative stress. Therefore, further analysis on the relationship between oxidative stress and cognitive dysfunction in patients with OSAS will help to clarify the etiology and discover new treatment options, which will be of great significance for early clinical intervention.
Collapse
Affiliation(s)
- XiaoPing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - HaiJun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Gao W, Liu YF, Zhang YX, Wang Y, Jin YQ, Yuan H, Liang XY, Ji XY, Jiang QY, Wu DD. The potential role of hydrogen sulfide in cancer cell apoptosis. Cell Death Discov 2024; 10:114. [PMID: 38448410 PMCID: PMC10917771 DOI: 10.1038/s41420-024-01868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.
Collapse
Affiliation(s)
- Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
4
|
Sanie-Jahromi F, Zia Z, Afarid M. A review on the effect of garlic on diabetes, BDNF, and VEGF as a potential treatment for diabetic retinopathy. Chin Med 2023; 18:18. [PMID: 36803536 PMCID: PMC9936729 DOI: 10.1186/s13020-023-00725-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Garlic is one of the favorite herbs in traditional medicine that has been reported to have many medicinal features. The aim of the current study is to review the latest documents on the effect of garlic on diabetes, VEGF, and BDNF and, finally, to review the existing studies on the effect of garlic on diabetic retinopathy. MAIN TEXT The therapeutic effect of garlic on diabetes has been investigated in various studies. Diabetes, especially in advanced stages, is associated with complications such as diabetic retinopathy, which is caused by the alteration in the expression of molecular factors involved in angiogenesis, neurodegeneration, and inflammation in the retina. There are different in-vitro and in-vivo reports on the effect of garlic on each of these processes. Considering the present concept, we extracted the most related English articles from Web of Science, PubMed, and Scopus English databases from 1980 to 2022. All in-vitro and animal studies, clinical trials, research studies, and review articles in this area were assessed and classified. RESULT AND CONCLUSION According to previous studies, garlic has been confirmed to have beneficial antidiabetic, antiangiogenesis, and neuroprotective effects. Along with the available clinical evidence, it seems that garlic can be suggested as a complementary treatment option alongside common treatments for patients with diabetic retinopathy. However, more detailed clinical studies are needed in this field.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| | - Zahra Zia
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| | - Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| |
Collapse
|
5
|
Mitra S, Das R, Emran TB, Labib RK, Noor-E-Tabassum, Islam F, Sharma R, Ahmad I, Nainu F, Chidambaram K, Alhumaydhi FA, Chandran D, Capasso R, Wilairatana P. Diallyl Disulfide: A Bioactive Garlic Compound with Anticancer Potential. Front Pharmacol 2022; 13:943967. [PMID: 36071845 PMCID: PMC9441672 DOI: 10.3389/fphar.2022.943967] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is a life-threatening disease caused by the uncontrolled division of cells, which culminates in a solid mass of cells known as a tumor or liquid cancer. It is the leading cause of mortality worldwide, and the number of cancer patients has been increasing at an alarming rate, with an estimated 20 million cases expected by 2030. Thus, the use of complementary or alternative therapeutic techniques that can help prevent cancer has been the subject of increased attention. Garlic, the most widely used plant medicinal product, exhibits a wide spectrum of biological activities, including antibacterial, hypo-lipidemic, antithrombotic, and anticancer effects. Diallyl disulfide (DADS) is a major organosulfur compound contained within garlic. Recently, several experimental studies have demonstrated that DADS exhibits anti-tumor activity against many types of tumor cells, including gynecological cancers (cervical cancer, ovarian cancer), hematological cancers (leukemia, lymphoma), lung cancer, neural cancer, skin cancer, prostate cancer, gastrointestinal tract and associated cancers (esophageal cancer, gastric cancer, colorectal cancer), hepatocellular cancer cell line, etc. The mechanisms behind the anticancer action of DADS include epithelial-mesenchymal transition (EMT), invasion, and migration. This article aims to review the available information regarding the anti-cancer potential of DADS, as well as summarize its mechanisms of action, bioavailability, and pharmacokinetics from published clinical and toxicity studies.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rafiuddin Khan Labib
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Noor-E-Tabassum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Islamudin Ahmad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Mulawarman University, Samarinda, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Patiño-Morales CC, Jaime-Cruz R, Sánchez-Gómez C, Corona JC, Hernández-Cruz EY, Kalinova-Jelezova I, Pedraza-Chaverri J, Maldonado PD, Silva-Islas CA, Salazar-García M. Antitumor Effects of Natural Compounds Derived from Allium sativum on Neuroblastoma: An Overview. Antioxidants (Basel) 2021; 11:antiox11010048. [PMID: 35052552 PMCID: PMC8773006 DOI: 10.3390/antiox11010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Garlic (Allium sativum) has been used in alternative medicine to treat several diseases, such as cardiovascular and neurodegenerative diseases, cancer, and hepatic diseases. Several publications have highlighted other features of garlic, including its antibacterial, antioxidative, antihypertensive, and antithrombotic properties. The properties of garlic result from the combination of natural compounds that act synergistically and cause different effects. Some garlic-derived compounds have been studied for the treatment of several types of cancer; however, reports on the effects of garlic on neuroblastoma are scarce. Neuroblastoma is a prevalent childhood tumor for which the search for therapeutic alternatives to improve treatment without affecting the patients’ quality of life continues. Garlic-derived compounds hold potential for the treatment of this type of cancer. A review of articles published to date on some garlic compounds and their effect on neuroblastoma was undertaken to comprehend the possible therapeutic role of these compounds. This review aimed to analyze the impact of some garlic compounds on cells derived from neuroblastoma.
Collapse
Affiliation(s)
- Carlos César Patiño-Morales
- Laboratory of Cell Biology, Universidad Autónoma Metropolitana—Cuajimalpa, Mexico City 05348, Mexico;
- Laboratory of Developmental Biology and Experimental Teratogenesis, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.J.-C.); (C.S.-G.)
| | - Ricardo Jaime-Cruz
- Laboratory of Developmental Biology and Experimental Teratogenesis, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.J.-C.); (C.S.-G.)
| | - Concepción Sánchez-Gómez
- Laboratory of Developmental Biology and Experimental Teratogenesis, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.J.-C.); (C.S.-G.)
| | - Juan Carlos Corona
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Estefani Yaquelin Hernández-Cruz
- Department of Biology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (E.Y.H.-C.); (I.K.-J.); (J.P.-C.)
| | - Ivia Kalinova-Jelezova
- Department of Biology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (E.Y.H.-C.); (I.K.-J.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (E.Y.H.-C.); (I.K.-J.); (J.P.-C.)
| | - Perla D. Maldonado
- Laboratory of Cerebral Vascular Pathology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (P.D.M.); (C.A.S.-I.)
| | - Carlos Alfredo Silva-Islas
- Laboratory of Cerebral Vascular Pathology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (P.D.M.); (C.A.S.-I.)
| | - Marcela Salazar-García
- Laboratory of Developmental Biology and Experimental Teratogenesis, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.J.-C.); (C.S.-G.)
- Correspondence:
| |
Collapse
|
7
|
Zhang XN, Zhao N, Guo FF, Wang YR, Liu SX, Zeng T. Diallyl disulfide suppresses the lipopolysaccharide-driven inflammatory response of macrophages by activating the Nrf2 pathway. Food Chem Toxicol 2021; 159:112760. [PMID: 34896185 DOI: 10.1016/j.fct.2021.112760] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/07/2021] [Accepted: 12/05/2021] [Indexed: 12/18/2022]
Abstract
Lipopolysaccharide (LPS)-driven activation of Kupffer cells plays critical roles in the development of alcoholic liver disease (ALD). Accumulating evidence has revealed that nuclear factor erythroid 2-related factor 2 (Nrf2) can modulate the polarization of macrophages. The current study aimed to investigate the roles of diallyl disulfide (DADS) in LPS-driven inflammation in vitro and in vivo. We found that DADS significantly increased the nuclear translocation of Nrf2 and the transcription of Nrf2 targets, including HO1, NQO1, and γ-GCSc, and suppressed degradation of Nrf2 protein. Besides, DADS significantly inhibited LPS-induced activation of NF-κB and MAPK, secretion of NO and TNF-α, and production of reactive oxygen species (ROS) in LPS-exposed RAW264.7 cells. In vivo study demonstrated that DADS significantly ameliorated liver damage in mice challenged with LPS, as shown by the inhibition of increases in serum aminotransferase activities, neutrophil infiltration, and NF-κB and NLRP3 inflammasome activation. Finally, knockout of Nrf2 abrogated the suppression of DADS on macrophage polarization and on liver injury induced by LPS. These findings reveal that DADS suppresses LPS-driven inflammatory response in the liver by activating Nrf2, which suggests that the protective effects of DADS against ALD may be attributed to the modulation of Kupffer cell polarization in the liver.
Collapse
Affiliation(s)
- Xiu-Ning Zhang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ning Zhao
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fang-Fang Guo
- Department of Pharmacy, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yi-Ran Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shi-Xuan Liu
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
8
|
Diallyl Sulfide Attenuation of Carcinogenesis in Mammary Epithelial Cells through the Inhibition of ROS Formation, and DNA Strand Breaks. Biomolecules 2021; 11:biom11091313. [PMID: 34572526 PMCID: PMC8470778 DOI: 10.3390/biom11091313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Garlic has long been used medicinally for many diseases, including cancer. One of the active garlic components is diallyl sulfide (DAS), which prevents carcinogenesis and reduces the incidence rate of several cancers. In this study, non-cancerous MCF-10A cells were used as a model to investigate the effect of DAS on Benzo (a)pyrene (BaP)-induced cellular carcinogenesis. The cells were evaluated based on changes in proliferation, cell cycle arrest, the formation of peroxides, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, the generation of DNA strand breaks, and DNA Polymerase β (Pol β) expression. The results obtained indicate that when co-treated with BaP, DAS inhibited BaP-induced cell proliferation (p < 0.05) to levels similar to the negative control. BaP treatment results in a two-fold increase in the accumulation of cells in the G2/M-phase of the cell cycle, which is restored to baseline levels, similar to untreated cells and vehicle-treated cells, when pretreated with 6 μM and 60 μM DAS, respectively. Co-treatment with DAS (60 μM and 600 μM) inhibited BaP-induced reactive oxygen species (ROS) formation by 132% and 133%, respectively, as determined by the accumulation of H2O2 in the extracellular medium and an increase in 8-OHdG levels of treated cells. All DAS concentrations inhibited BaP-induced DNA strand breaks through co-treatment and pre-treatment methods at all time points evaluated. Co-Treatment with 60 μM DAS increased DNA Pol β expression in response to BaP-induced lipid peroxidation and oxidative DNA damage. These results indicate that DAS effectively inhibited BaP-induced cell proliferation, cell cycle transitions, ROS, and DNA damage in an MCF-10A cell line. These results provide more experimental evidence for garlic's antitumor abilities and corroborate many epidemiological studies regarding the association between the increased intake of garlic and the reduced risk of several types of cancer.
Collapse
|
9
|
Ansari IA, Ahmad A, Imran MA, Saeed M, Ahmad I. Organosulphur Compounds Induce Apoptosis and Cell Cycle Arrest in Cervical Cancer Cells via Downregulation of HPV E6 and E7 Oncogenes. Anticancer Agents Med Chem 2021; 21:393-405. [PMID: 32819236 DOI: 10.2174/1871520620999200818154456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The quest for strong, safe and cost-effective natural antiproliferative agents that could reduce cancer has been the focus now a days. In this regard, the organosulfur compounds from garlic (Allium sativum L.), like Diallyl Sulfide (DAS) and Diallyl Disulfide (DADS), have been shown to exhibit potent antiproliferative and anticancer properties in many studies. However, the potential of these compounds against viral oncoproteins in cervical cancer has not been fully elucidated yet. OBJECTIVE The objective of this study was to analyze the antiproliferative and apoptotic properties of DADS and DAS in HPV16+ human cervical cancer Caski cell line. METHODS Caski (cervical cancer cells) were cultured and followed by the treatment of various concentrations of organosulphur compounds (DADS and DAS), cell viability was measured by MTT assay. The apoptotic assay was performed by DAPI and Hoechst3342 staining. Reactive Oxygen Species (ROS) was estimated by DCFDA staining protocol. The distributions of cell cycle and apoptosis (FITC-Annexin V assay) were analyzed by flow cytometry. Finally, gene expression analysis was performed via quantitative real time PCR. RESULTS Our results showed that DAS and DADS exerted a significant antiproliferative effect on Caski cells by reducing the cell viability and inducing a dose-related increment in intracellular ROS production along with apoptosis in Caski cells. DAS and DADS also induced cell cycle arrest in G0/G1 phase, which was supported by the downregulation of cyclin D1 and CDK4 and upregulation of CDK inhibitors p21WAF1/CIP1 and p27KIP1 in Caski cells. Additionally, DAS and DADS lead to the downregulation of viral oncogene E6 and E7 and restoration of p53 function. CONCLUSION Thus, this study confirms the efficacy of both the organosulfur compounds DADS and DAS against cervical cancer cells.
Collapse
Affiliation(s)
- Irfan A Ansari
- Department of Biosciences, Integral University, Dasauli, Kursi Road, Lucknow, 226026, India
| | - Afza Ahmad
- Department of Biosciences, Integral University, Dasauli, Kursi Road, Lucknow, 226026, India
| | - Mohammad A Imran
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh-202002, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
10
|
Farhat Z, Hershberger PA, Freudenheim JL, Mammen MJ, Hageman Blair R, Aga DS, Mu L. Types of garlic and their anticancer and antioxidant activity: a review of the epidemiologic and experimental evidence. Eur J Nutr 2021; 60:3585-3609. [PMID: 33543365 DOI: 10.1007/s00394-021-02482-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Garlic, an Allium vegetable, contains rich flavonoids organosulfur compounds (OSCs) that have potent anticancer properties. The aim of the review is to provide an overview of the different types of garlic, their active compounds, and the potential anticancer benefits with a focus on antioxidant activity. Animal and cell line studies have provided convincing evidence that garlic and its organosulfur compounds inhibit carcinogenesis through a number of events including induction of apoptosis, inhibiting cellular proliferation, scavenging radical oxygen species (ROS), increasing the activities of enzymes such as glutathione S-transferase, and reducing tumor size. Epidemiological studies showed compelling evidence that garlic consumption is associated with decreased risk of colorectal cancer, but inconsistent evidence for stomach, breast, and prostate cancers. Studies also suggest that the presence and potency of garlic OSCs varies with respect to the preparation and form of garlic. Further epidemiological studies with information on garlic form consumed or preparation methods and molecular studies regarding its antioxidant mechanisms, such as increasing enzymatic and nonenzymatic antioxidants levels, are warranted.
Collapse
Affiliation(s)
- Zeinab Farhat
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Manoj J Mammen
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Rachael Hageman Blair
- Department of Biostatistics, University at Buffalo, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Diana S Aga
- Department of Chemistry, College of Arts and Sciences, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA
| | - Lina Mu
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York (SUNY) at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
11
|
De Greef D, Barton EM, Sandberg EN, Croley CR, Pumarol J, Wong TL, Das N, Bishayee A. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin Cancer Biol 2020; 73:219-264. [PMID: 33301861 DOI: 10.1016/j.semcancer.2020.11.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Vegetables of the Allium genus, such as garlic (Allium sativum L.), onions, shallots, leaks, and chives, have been used for many years for food consumption and for medicinal purposes. Historical medical texts have indicated the therapeutic applications of garlic as an antitumor, laxative, diuretic, antibacterial and antifungal agent. Specifically, garlic's antitumor abilities have been traced back 3500 years as a chemotherapeutic agent used in Egypt. Other beneficial effects of garlic consumption include lowering blood pressure, blood cholesterol, sugar and lipids. The processing and aging of garlic result in the production of non-toxic organosulfur by-products. These sulfur-containing compounds, such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, alliin, S-allylcysteine, and S-allylmercaptocysteine, impact various stages of carcinogenesis. The anticancer mechanisms of action of these garlic-derived phytochemicals include altering mitochondrial permeability, inhibiting angiogenesis, enhancing antioxidative and proapoptotic properties, and regulating cell proliferation. All these effects of garlic's sulfur-compounds have been demonstrated in various human cancers. The intent of this literature research is to explore the potential of garlic-derived products and bioactive organosulfur compounds as cancer chemopreventive and chemotherapeutic agents. This investigation employs criteria for systematic review and critically analyzes published in vitro, in vivo and clinical studies. Concerns and limitations that have arisen in past studies regarding standards of measurement, bioavailability, and method of delivery are addressed. Overall, it is hoped that through this systematic and comprehensive review, future researchers can be acquainted with the updated data assembled on anticancer properties of garlic and its phytoconstituents.
Collapse
Affiliation(s)
| | - Emily M Barton
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Elise N Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | | | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tin Lok Wong
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799 155, Tripura, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
12
|
Elbaz EM, Amin HAA, Kamel AS, Ibrahim SM, Helmy HS. Immunomodulatory effect of diallyl sulfide on experimentally-induced benign prostate hyperplasia via the suppression of CD4+T/IL-17 and TGF-β1/ERK pathways. Inflammopharmacology 2020; 28:1407-1420. [PMID: 32785828 DOI: 10.1007/s10787-020-00743-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/30/2020] [Indexed: 12/15/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a nonmalignant enlargement of the prostate common in older men. Diallyl sulfide (DAS), a major component of garlic, has been reported to possess antioxidant, anti-inflammatory, and antiproliferative effects. However, the underlying protective immunomodulatory mechanism of DAS on BPH remains vague. Herein, experimental BPH was induced in rats by daily subcutaneous injection of testosterone propionate (TP) (3 mg/kg, s.c.) for 4 weeks. In parallel, finasteride (Fin) (5 mg/kg, p.o) or DAS (50 mg/kg, p.o.) was administered orally during BPH induction. TP-induced histological alterations and the immune-inflammatory cascade. On the other hand, DAS or Fin administration alleviated all abnormalities induced testosterone. Fin and DAS administration markedly reduced prostate weight by 53% with Fin, and by 60% with DAS. Moreover, serum testosterone and DHT were reduced by 55% and 52%, respectively, with Fin and by 68% and 75%, respectively, with DAS, in concordance with decreased protein expression of androgen receptor (AR), and prostate-specific antigen (PSA). Furthermore, both regime lessen immune-inflammatory milieu, as evidenced by decrease CD4+ T-cells protein expression and associated inflammatory cytokines. Concomitantly, Fin and DAS exhibited marked mitigation in insulin-like growth factor-1 (IGF-1), transforming growth factor-beta1 (TGF-β1), and phosphorylated extracellular signal-regulated kinase (ERK1/2) signaling. Besides alleviating oxidative stress by 53% and 68% in prostatic MDA and by 27% and 7% in prostatic iNOS with Fin and DAS, respectively. In conclusion, this work highlighted a potential therapeutic approach of DAS as a dietary preventive agent against BPH via its anti-inflammatory and immunomodulatory effect along with suppression of the ERK pathway.
Collapse
Affiliation(s)
- Eman M Elbaz
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt.
| | - Hebat Allah A Amin
- Pathology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Sherehan M Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Hebatullah S Helmy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo, 11562, Egypt
| |
Collapse
|
13
|
Usuwanthim K, Wisitpongpun P, Luetragoon T. Molecular Identification of Phytochemical for Anticancer Treatment. Anticancer Agents Med Chem 2020; 20:651-666. [DOI: 10.2174/1871520620666200213110016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 12/15/2022]
Abstract
Cancer commands the second highest global mortality rate and causes severe public health problems.
Recent advances have been made in cancer therapy but the incidence of the disease remains high. Research on
more efficient treatment methods with reduced side effects is necessary. Historically, edible plants have been
used as traditional medicines for various diseases. These demonstrate the potential of natural products as sources
of bioactive compounds for anticancer treatment. Anticancer properties of phytochemicals are attributed to
bioactive compounds in plant extracts that suppress cancer cell proliferation and growth by inducing both cell
cycle arrest and apoptosis. This review presents a summary of the molecular identification of phytochemicals
with anticancer properties and details their action mechanisms and molecular targets. Moreover, the effects of
the natural product on both immunomodulatory and anticancer properties are provided.
Collapse
Affiliation(s)
- Kanchana Usuwanthim
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Prapakorn Wisitpongpun
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Thitiya Luetragoon
- Cellular and Molecular Immunology Research Unit, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
14
|
Nakagawa C, Suzuki-Karasaki M, Suzuki-Karasaki M, Ochiai T, Suzuki-Karasaki Y. The Mitochondrial Ca 2+ Overload via Voltage-Gated Ca 2+ Entry Contributes to an Anti-Melanoma Effect of Diallyl Trisulfide. Int J Mol Sci 2020; 21:E491. [PMID: 31940976 PMCID: PMC7013499 DOI: 10.3390/ijms21020491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/01/2020] [Accepted: 01/08/2020] [Indexed: 12/16/2022] Open
Abstract
Allium vegetables such as garlic (Allium sativum L.) are rich in organosulfur compounds that prevent human chronic diseases, including cancer. Of these, diallyl trisulfide (DATS) exhibits anticancer effects against a variety of tumors, including malignant melanoma. Although previous studies have shown that DATS increases intracellular calcium (Ca2+) in different cancer cell types, the role of Ca2+ in the anticancer effect is obscure. In the present study, we investigated the Ca2+ pathways involved in the anti-melanoma effect. We used melittin, the bee venom that can activate a store-operated Ca2+ entry (SOCE) and apoptosis, as a reference. DATS increased apoptosis in human melanoma cell lines in a Ca2+-dependent manner. It also induced mitochondrial Ca2+ (Ca2+mit) overload through intracellular and extracellular Ca2+ fluxes independently of SOCE. Strikingly, acidification augmented Ca2+mit overload, and Ca2+ channel blockers reduced the effect more significantly under acidic pH conditions. On the contrary, acidification mitigated SOCE and Ca2+mit overload caused by melittin. Finally, Ca2+ channel blockers entirely inhibited the anti-melanoma effect of DATS. Our findings suggest that DATS explicitly evokes Ca2+mit overload via a non-SOCE, thereby displaying the anti-melanoma effect.
Collapse
Affiliation(s)
- Chinatsu Nakagawa
- Department of Dermatology, Nihon University Hospital, Tokyo 101-830, Japan; (C.N.); (T.O.)
- Plasma ChemiBio Laboratory, Nasushiobara, Tochigi 329-2813, Japan; (M.S.-K.); (M.S.-K.)
| | | | - Miki Suzuki-Karasaki
- Plasma ChemiBio Laboratory, Nasushiobara, Tochigi 329-2813, Japan; (M.S.-K.); (M.S.-K.)
| | - Toyoko Ochiai
- Department of Dermatology, Nihon University Hospital, Tokyo 101-830, Japan; (C.N.); (T.O.)
- Plasma ChemiBio Laboratory, Nasushiobara, Tochigi 329-2813, Japan; (M.S.-K.); (M.S.-K.)
| | | |
Collapse
|
15
|
Chen J, Jiang S, Wang J, Renukuntla J, Sirimulla S, Chen J. A comprehensive review of cytochrome P450 2E1 for xenobiotic metabolism. Drug Metab Rev 2019; 51:178-195. [PMID: 31203697 DOI: 10.1080/03602532.2019.1632889] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1) plays a vital role in drug-induced hepatotoxicity and cancers (e.g. lung and bladder cancer), since it is responsible for metabolizing a number of medications and environmental toxins to reactive intermediate metabolites. CYP2E1 was recently found to be the highest expressed CYP enzyme in human livers using a proteomics approach, and CYP2E1-related toxicity is strongly associated with its protein level that shows significant inter-individual variability related to ethnicity, age, and sex. Furthermore, the expression of CYP2E1 demonstrates regulation by extensive genetic polymorphism, endogenous hormones, cytokines, xenobiotics, and varying pathological states. Over the past decade, the knowledge of pharmacology, toxicology, and biology about CYP2E1 has grown remarkably, but the research progress has yet to be summarized. This study presents a timely systematic review on CYP2E1's xenobiotic metabolism, genetic polymorphism, and inhibitors, with the focus on their clinical relevance for the efficacy and toxicity of various CYP2E1 substrates. Moreover, several knowledge gaps have been identified towards fully understanding the potential interactions among different CYP2E1 substrates in clinical settings. Through in-depth analyses of these knowns and unknowns, we expect this review will aid in future drug development and improve management of CYP2E1 related clinical toxicity.
Collapse
Affiliation(s)
- Jingxuan Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University , Guangzhou , China
| | - Sibo Jiang
- Department of Pharmaceutics, University of Florida , Orlando , FL , USA
| | - Jin Wang
- AbbVie Inc , North Chicago , IL , USA
| | - Jwala Renukuntla
- School of Pharmacy, The University of Texas at El Paso , El Paso , TX , USA
| | - Suman Sirimulla
- School of Pharmacy, The University of Texas at El Paso , El Paso , TX , USA
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University , Guangzhou , China
| |
Collapse
|
16
|
Elkhoely A. Diallyl sulfide ameliorates carbon tetrachloride-induced hepatotoxicity in rats via suppressing stress-activated MAPK signaling pathways. J Biochem Mol Toxicol 2019; 33:e22307. [PMID: 30811752 DOI: 10.1002/jbt.22307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
Abstract
The underlined effects of diallyl sulfide (DAS) against CCL4 -induced oxidative, inflammatory, and apoptotic acute hepatic damage were assessed. Administration of DAS (50, 100, and 200 mg/kg) along with CCL 4 effectively mitigated serum aspartate aminotransferase, alanine aminotransferase activities, MDA, TNF-α, IL-1β, and MCP-1 levels, as well as significantly restored HO-1, GSH levels and SOD activity in liver tissues compared with those in rats treated with CCL 4 . Moreover, DAS inhibited CCL 4 -induced increase of liver NF-κB (p65), Bax, p38 MAPK, and JNK protein expression. In addition, DAS accelerated protein expression of Nrf2 and Bcl-2. The hepatoprotective properties of DAS were further confirmed by the reduced severity of hepatic damage as demonstrated by histopathological findings. In conclusion, DAS achieved its protective potential against CCL4-induced hepatotoxicity through antiapoptotic activity, as well as the synchronized modulation of NF-κB and Nrf2 for the favor of antioxidant/anti-inflammatory effects via suppression of the upstream stress-activated MAPKs pathways.
Collapse
Affiliation(s)
- Abeer Elkhoely
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Helwan University, Egypt
| |
Collapse
|
17
|
Mohammadi-Motlagh HR, Yarani R, Sadeghalvad M, Adham E, Rasouli H, Mostafaie A. 2-Methylpyridine-1-ium-1-sulfonate as an Inducer of Apoptosis and Cell Cycle Arrest: A comparative in vitro and Computational Study. Nutr Cancer 2018; 71:643-656. [PMID: 30273005 DOI: 10.1080/01635581.2018.1506495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
"Let food be thy medicine and thy medicine be thy food" was expressed by Hippocrates and the health benefits of medicinal plants and natural products have been considered by humans since historic times. The current study aims to investigate the anti-cancer activity of 2-Methylpyridine-1-ium-1-sulfonate (MPS) isolated from bulbs of Allium hirtifolium. The MPS compound (in a dose-dependent manner) induced arrest the AGS cells in G1 and G2/M phases, and Caco-2 cells in G1 and S phases. These findings were associated with the down-regulation of cyclin D1, CDK4, and up-regulation of p21, p27 and p53. According to the morphological observations and DNA fragmentation assay, the MPS compound induced apoptosis in both cell lines, and also cause a significant increase in the expression of Bax/Bcl-2. In this context, our molecular docking results unveiled that the MPS compound has considerable affinity to interact with the minor groove of ctDNA and also with cell cycle kinases. To approve and find the accurate MPS mode of action against cancer cell lines (especially in gastrointestinal cancer) further studies is highly recommended.
Collapse
Affiliation(s)
| | - Reza Yarani
- a Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran.,b Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences , The Panum Institute, University of Copenhagen , Copenhagen N , Denmark
| | - Mona Sadeghalvad
- a Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Elham Adham
- a Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Hassan Rasouli
- a Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Ali Mostafaie
- a Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| |
Collapse
|
18
|
Li L, Hou Y, Yu J, Lu Y, Chang L, Jiang M, Wu X. Synergism of ursolic acid and cisplatin promotes apoptosis and enhances growth inhibition of cervical cancer cells via suppressing NF-κB p65. Oncotarget 2017; 8:97416-97427. [PMID: 29228621 PMCID: PMC5722573 DOI: 10.18632/oncotarget.22133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/17/2017] [Indexed: 01/03/2023] Open
Abstract
Objective This study was designed to investigate the effect of combination of ursolic acid (UA) with cisplatin (DDP) on cervical cancer cell proliferation and apoptosis. Methods The mRNA and protein expressions of nuclear factor-kappa B (NF-κB) p65 in cervical cancer cells were examined using RT-PCR and western blot. MTT and colony formation assays were performed to examine the DDP toxicity and the proliferation ability of cervical cancer cells. Cell morphology was observed by means of Hoechst33258 and transmission electron microscopy (TEM). The apoptosis rate and cell cycle were assessed through flow cytometry assay. Western blot was used to detect the expression of apoptosis-related molecules. Results The mRNA and protein expressions of NF-κB p65 in cervical cancer cells were significantly higher than that in cervical epithelial cells. The combined treatment of UA and DDP inhibited cervical cancer cell growth and promoted apoptosis more effectively than DDP treatment or UA treatment alone (P < 0.05). Compared with the DDP group and UA group, the expressions of Bcl-2 and NF-κB p65 in DDP +UA group were decreased, while the expressions of Bax, Caspase-3 and PARP cleavage were observably increased. The expression of nuclear NF-κB p65 significantly reduced in UA group and DDP +UA group. si-p65 group displayed a decrease of cell proliferation ability and led to a significant reduction in the number of SiHa cell colony formation. Conclusion The combination of UA with DDP could more effectively inhibit SiHa cells proliferation and facilitate cell apoptosis through suppressing NF-κB p65.
Collapse
Affiliation(s)
- Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, China
| | - Yu Hou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, China
| | - Jing Yu
- Department of Gynaecology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, China
| | - Yulin Lu
- Nursing School, Kunming Medical University, Kunming 650118, China
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, China
| | - Meiping Jiang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, China
| | - Xingrao Wu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, China
| |
Collapse
|
19
|
Hall A, Troupin A, Londono-Renteria B, Colpitts TM. Garlic Organosulfur Compounds Reduce Inflammation and Oxidative Stress during Dengue Virus Infection. Viruses 2017. [PMID: 28644404 PMCID: PMC5537651 DOI: 10.3390/v9070159] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant global human disease and mortality. One approach to develop treatments for DENV infection and the prevention of severe disease is through investigation of natural medicines. Inflammation plays both beneficial and harmful roles during DENV infection. Studies have proposed that the oxidative stress response may be one mechanism responsible for triggering inflammation during DENV infection. Thus, blocking the oxidative stress response could reduce inflammation and the development of severe disease. Garlic has been shown to both reduce inflammation and affect the oxidative stress response. Here, we show that the garlic active compounds diallyl disulfide (DADS), diallyl sulfide (DAS) and alliin reduced inflammation during DENV infection and show that this reduction is due to the effects on the oxidative stress response. These results suggest that garlic could be used as an alternative treatment for DENV infection and for the prevention of severe disease development.
Collapse
Affiliation(s)
- Alex Hall
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| | - Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| | - Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Tonya M Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA.
| |
Collapse
|
20
|
The Cytotoxicity of the Ajoene Analogue BisPMB in WHCO1 Oesophageal Cancer Cells Is Mediated by CHOP/GADD153. Molecules 2017; 22:molecules22060892. [PMID: 28555042 PMCID: PMC6152762 DOI: 10.3390/molecules22060892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 01/12/2023] Open
Abstract
Garlic is a food and medicinal plant that has been used in folk medicine since ancient times for its beneficial health effects, which include protection against cancer. Crushed garlic cloves contain an array of small sulfur-rich compounds such as ajoene. Ajoene is able to interfere with biological processes and is cytotoxic to cancer cells in the low micromolar range. BisPMB is a synthetic ajoene analogue that has been shown in our laboratory to have superior cytotoxicity to ajoene. In the current study we have performed a DNA microarray analysis of bisPMB-treated WHCO1 oesophageal cancer cells to identify pathways and processes that are affected by bisPMB. The most significantly enriched biological pathways as assessed by gene ontology, KEGG and ingenuity pathway analysis were those involving protein processing in the endoplasmic reticulum (ER) and the unfolded protein response. In support of these pathways, bisPMB was found to inhibit global protein synthesis and lead to increased levels of ubiquitinated proteins. BisPMB also induced alternate splicing of the transcription factor XBP-1; increased the expression of the ER stress sensor GRP78 and induced expression of the ER stress marker CHOP/GADD153. CHOP expression was found to be central to the cytotoxicity of bisPMB as its silencing with siRNA rendered the cells resistant to bisPMB. The MAPK proteins, JNK and ERK1/2 were activated following bisPMB treatment. However JNK activation was not critical in the cytotoxicity of bisPMB, and ERK1/2 activation was found to play a pro-survival role. Overall the ajoene analogue bisPMB appears to induce cytotoxicity in WHCO1 cells by activating the unfolded protein response through CHOP/GADD153.
Collapse
|
21
|
Feng C, Luo Y, Nian Y, Liu D, Yin X, Wu J, Di J, Zhang R, Zhang J. Diallyl Disulfide Suppresses the Inflammation and Apoptosis Resistance Induced by DCA Through ROS and the NF-κB Signaling Pathway in Human Barrett’s Epithelial Cells. Inflammation 2017; 40:818-831. [DOI: 10.1007/s10753-017-0526-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Souid S, Najjaa H, Riahi-Chebbi I, Haoues M, Neffati M, Arnault I, Auger J, Karoui H, Essafi M, Essafi-Benkhadir K. Allium RoseumL. Extract Exerts Potent Suppressive Activities on Chronic Myeloid Leukemia K562 Cell Viability Through the Inhibition of BCR-ABL, PI3K/Akt, and ERK1/2Pathways and the Abrogation of VEGF Secretion. Nutr Cancer 2016; 69:117-130. [DOI: 10.1080/01635581.2017.1248295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Jung HY, Lee KY, Yoo DY, Kim JW, Yoo M, Lee S, Yoo KY, Yoon YS, Choi JH, Hwang IK. Essential oils from two Allium species exert effects on cell proliferation and neuroblast differentiation in the mouse dentate gyrus by modulating brain-derived neurotrophic factor and acetylcholinesterase. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:431. [PMID: 27809818 PMCID: PMC5094052 DOI: 10.1186/s12906-016-1384-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/06/2016] [Indexed: 12/21/2022]
Abstract
Background In the present study, we investigated the effects of oil products from two Allium species: Allium sativum (garlic) and Allium hookeri (Chinese chives) on cell proliferation and neuroblast differentiation in the mouse dentate gyrus. Methods Using corn oil as a vehicle, the essential oil from garlic (10 ml/kg), or Chinese chives (10 ml/kg) was administered orally to 9-week-old mice once a day for 3 weeks. One hour following the last treatment, a novel object recognition test was conducted and the animals were killed 2 h after the test. Results In comparison to the vehicle-treated group, garlic essential oil (GO) treatment resulted in significantly increased exploration time and discrimination index during the novel object recognition test, while Chinese chives essential oil (CO) reduced the exploration time and discrimination index in the same test. In addition, the number of Ki67-immunoreactive proliferating cells and doublecortin-immunoreactive neuroblasts significantly increased in the dentate gyrus of GO-treated animals. However, administration of CO significantly decreased cell proliferation and neuroblast differentiation. Administration of GO significantly increased brain-derived neurotrophic factor (BDNF) levels and decreased acetylcholinesterase (AChE) activity in the hippocampal homogenates. In contrast, administration of CO decreased BDNF protein levels and had no significant effect on AChE activity, compared to that in the vehicle-treated group. Conclusions These results suggest that GO significantly improves novel object recognition as well as increases cell proliferation and neuroblast differentiation, by modulating hippocampal BDNF protein levels and AChE activity, while CO impairs novel object recognition and decreases cell proliferation and neuroblast differentiation, by reducing BDNF protein levels in the hippocampus.
Collapse
|
24
|
Rao PSS, Midde NM, Miller DD, Chauhan S, Kumar A, Kumar S. Diallyl Sulfide: Potential Use in Novel Therapeutic Interventions in Alcohol, Drugs, and Disease Mediated Cellular Toxicity by Targeting Cytochrome P450 2E1. Curr Drug Metab 2016; 16:486-503. [PMID: 26264202 DOI: 10.2174/1389200216666150812123554] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
Abstract
Diallyl sulfide (DAS) and other organosulfur compounds are chief constituents of garlic. These compounds have many health benefits, as they are very efficient in detoxifying natural agents. Therefore, these compounds may be useful for prevention/treatment of cancers. However, DAS has shown appreciable allergic reactions and toxicity, as they can also affect normal cells. Thus their use as in the prevention and treatment of cancer is limited. DAS is a selective inhibitor of cytochrome P450 2E1 (CYP2E1), which is known to metabolize many xenobiotics including alcohol and analgesic drugs in the liver. CYP2E1-mediated alcohol/drug metabolism produce reactive oxygen species and reactive metabolites, which damage DNA, protein, and lipid membranes, subsequently causing liver damage. Several groups have shown that DAS is not only capable of inhibiting alcohol- and drug-mediated cellular toxicities, but also HIV protein- and diabetes-mediated toxicities by selectively inhibiting CYP2E1 in various cell types. However, due to known DAS toxicities, its use as a treatment modality for alcohol/drug- and HIV/diabetes-mediated toxicity have only limited clinical relevance. Therefore, effort is being made to generate DAS analogs, which are potent and selective inhibitor of CYP2E1 and poor substrate of CYP2E1. This review summarizes current advances in the field of DAS, its anticancer properties, role as a CYP2E1 inhibitor, preventing agent of cellular toxicities from alcohol, analgesic drugs, xenobiotics, as well as, from diseases like HIV and diabetes. Finally, this review also provides insights toward developing novel DAS analogues for chemical intervention of many disease conditions by targeting CYP2E1 enzyme.
Collapse
Affiliation(s)
| | | | | | | | | | - Santosh Kumar
- College of Pharmacy, University of Tennessee Health Science Center, 881 Madison Ave, Rm 456, Memphis, TN 38163, USA.
| |
Collapse
|
25
|
Phang CW, Karsani SA, Sethi G, Abd Malek SN. Flavokawain C Inhibits Cell Cycle and Promotes Apoptosis, Associated with Endoplasmic Reticulum Stress and Regulation of MAPKs and Akt Signaling Pathways in HCT 116 Human Colon Carcinoma Cells. PLoS One 2016; 11:e0148775. [PMID: 26859847 PMCID: PMC4747580 DOI: 10.1371/journal.pone.0148775] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/22/2016] [Indexed: 01/05/2023] Open
Abstract
Flavokawain C (FKC) is a naturally occurring chalcone which can be found in Kava (Piper methysticum Forst) root. The present study evaluated the effect of FKC on the growth of various human cancer cell lines and the underlying associated mechanisms. FKC showed higher cytotoxic activity against HCT 116 cells in a time- and dose-dependent manner in comparison to other cell lines (MCF-7, HT-29, A549 and CaSki), with minimal toxicity on normal human colon cells. The apoptosis-inducing capability of FKC on HCT 116 cells was evidenced by cell shrinkage, chromatin condensation, DNA fragmentation and increased phosphatidylserine externalization. FKC was found to disrupt mitochondrial membrane potential, resulting in the release of Smac/DIABLO, AIF and cytochrome c into the cytoplasm. Our results also revealed that FKC induced intrinsic and extrinsic apoptosis via upregulation of the levels of pro-apoptotic proteins (Bak) and death receptors (DR5), while downregulation of the levels of anti-apoptotic proteins (XIAP, cIAP-1, c-FlipL, Bcl-xL and survivin), resulting in the activation of caspase-3, -8 and -9 and cleavage of poly(ADP-ribose) polymerase (PARP). FKC was also found to cause endoplasmic reticulum (ER) stress, as suggested by the elevation of GADD153 protein after FKC treatment. After the cells were exposed to FKC (60μM) over 18hrs, there was a substantial increase in the phosphorylation of ERK 1/2. The expression of phosphorylated Akt was also reduced. FKC also caused cell cycle arrest in the S phase in HCT 116 cells in a time- and dose-dependent manner and with accumulation of cells in the sub-G1 phase. This was accompanied by the downregulation of cyclin-dependent kinases (CDK2 and CDK4), consistent with the upregulation of CDK inhibitors (p21Cip1 and p27Kip1), and hypophosphorylation of Rb.
Collapse
Affiliation(s)
- Chung-Weng Phang
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore, Singapore
| | - Sri Nurestri Abd Malek
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
26
|
Synthesis and Structure–Activity Relations in Allylsulfide and Isothiocyanate Compounds From Garlic and Broccoli Against In Vitro Cancer Cell Growth. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-444-63749-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
27
|
Suman S, Shukla Y. Diallyl Sulfide and Its Role in Chronic Diseases Prevention. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:127-144. [PMID: 27771923 DOI: 10.1007/978-3-319-41342-6_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diallyl sulfide (C6H10S, DAS) is one of the novel natural organosulfur compounds, which is mostly obtained from the genus Allium plants. Numerous studies have revealed several unique properties of DAS in terms of its health-promoting effects. DAS has proved to be anticancer, antimicrobial, anti-angiogenic, and immunomodulatory like unique functions as demonstrated by the multiple investigations. Diallyl sulfide can also impede oxidative stress and chronic inflammation as suggested by the literature. Studies also explored that DAS could thwart the development of chronic diseases like cancer, neuronal, cardiovascular disease through modulating mechanistic pathways involved in pathogenesis. In this book chapter, we have attempted to give the comprehensive view on DAS about the physiochemical and biological properties, and its preventive role in chronic diseases with a mechanistic overview.
Collapse
Affiliation(s)
- Shankar Suman
- Food, Drug and Chemical Toxicology Division, CSIR-Indian Institute of Toxicology Research, 31, Vish Vigyan Bhawan, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Yogeshwer Shukla
- Food, Drug and Chemical Toxicology Division, CSIR-Indian Institute of Toxicology Research, 31, Vish Vigyan Bhawan, M.G. Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
28
|
Kaschula CH, Hunter R, Cotton J, Tuveri R, Ngarande E, Dzobo K, Schäfer G, Siyo V, Lang D, Kusza DA, Davies B, Katz AA, Parker MI. The garlic compound ajoene targets protein folding in the endoplasmic reticulum of cancer cells. Mol Carcinog 2015. [DOI: 10.1002/mc.22364] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Catherine H. Kaschula
- Department of Chemistry; University of Cape Town; Rondebosch, Cape Town South Africa
| | - Roger Hunter
- Department of Chemistry; University of Cape Town; Rondebosch, Cape Town South Africa
| | - Jonathan Cotton
- Department of Chemistry; University of Cape Town; Rondebosch, Cape Town South Africa
| | - Rossana Tuveri
- Department of Biomedical Science; University of Cagliari; Monserrato (CA) Italy
| | - Ellen Ngarande
- International Centre for Genetic Engineering and Biotechnology; Cape Town South Africa
| | - Kevin Dzobo
- Division of Medical Biochemistry; University of Cape Town; Cape Town South Africa
| | - Georgia Schäfer
- Division of Medical Biochemistry; University of Cape Town; Cape Town South Africa
- MRC/UCT Receptor Biology Unit, Institute of Infectious Disease and Molecular Medicine; University of Cape Town; Cape Town South Africa
| | - Vuyolwethu Siyo
- Division of Medical Biochemistry; University of Cape Town; Cape Town South Africa
| | - Dirk Lang
- Department of Human Biology, Division of Physiology; University of Cape Town; Cape Town South Africa
| | - Daniel A. Kusza
- Department of Chemistry; University of Cape Town; Rondebosch, Cape Town South Africa
| | - Bronwen Davies
- Department of Chemistry; University of Cape Town; Rondebosch, Cape Town South Africa
| | - Arieh A. Katz
- Division of Medical Biochemistry; University of Cape Town; Cape Town South Africa
- MRC/UCT Receptor Biology Unit, Institute of Infectious Disease and Molecular Medicine; University of Cape Town; Cape Town South Africa
| | - M. Iqbal Parker
- International Centre for Genetic Engineering and Biotechnology; Cape Town South Africa
- Division of Medical Biochemistry; University of Cape Town; Cape Town South Africa
| |
Collapse
|
29
|
Dasgupta P, Sengupta SB. Role of diallyl disulfide-mediated cleavage of c-Myc and Sp-1 in the regulation of telomerase activity in human lymphoma cell line U937. Nutrition 2015; 31:1031-7. [PMID: 26059379 DOI: 10.1016/j.nut.2015.02.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 02/22/2015] [Accepted: 02/25/2015] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Garlic (Allium sativum) has been considered a wonder herb for years with a reputation of disease prevention. Telomerase, a ribonucleoprotein enzyme responsible for telomere integrity, is strongly up-regulated in different types of cancers. The aim of this study was to reveal the role of diallyl disulfide (DADS), an organosulfur component of garlic, on telomerase activity in human lymphoma with an emphasis on key transcription factors c-Myc and Sp-1. METHODS Human lymphoma cell line U937 was used as model cell line. Telomerase activity was measured by telomerase repeat amplification protocol assay, levels of related proteins and mRNAs were measured by Western blot and reverse transcriptase polymerase chain reaction, respectively. Moreover, in vitro binding assay was performed using radiolabeled double-stranded DNA having specific sequences to detect involvement of transcription factors in DADS-dependent modulation of telomerase activity. RESULTS The present study demonstrated DADS-mediated decrease in telomerase activity in U937 cells with concomitant transcriptional down-regulation of human telomerase reverse transcriptase (hTERT) that is caused by reduced binding of c-Myc and Sp-1 to their respective binding sites on hTERT promoter. Lowering of DNA-binding activity of c-Myc and Sp-1 due to DADS treatment is caused by the deactivation of these transcription factors due to cleavage. Additionally, Mad1-the repressor protein of hTERT expression-is also overexpressed in DADS-treated U937 cells. CONCLUSIONS These findings strongly suggest that DADS down-regulate telomerase activity through c-Myc-, Sp-1-, and Mad1-dependent transcriptional down-regulation of hTERT.
Collapse
Affiliation(s)
- Pritha Dasgupta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | | |
Collapse
|
30
|
Lam CS, Tipoe GL, So KF, Fung ML. Neuroprotective mechanism of Lycium barbarum polysaccharides against hippocampal-dependent spatial memory deficits in a rat model of obstructive sleep apnea. PLoS One 2015; 10:e0117990. [PMID: 25714473 PMCID: PMC4340928 DOI: 10.1371/journal.pone.0117990] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/03/2015] [Indexed: 01/01/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is a hallmark of obstructive sleep apnea (OSA), which induces hippocampal injuries mediated by oxidative stress. This study aims to examine the neuroprotective mechanism of Lycium barbarum polysaccharides (LBP) against CIH-induced spatial memory deficits. Adult Sprague–Dawley rats were exposed to hypoxic treatment resembling a severe OSA condition for a week. The animals were orally fed with LBP solution (1mg/kg) daily 2 hours prior to hypoxia or in air for the control. The effect of LBP on the spatial memory and levels of oxidative stress, inflammation, endoplasmic reticulum (ER) stress, apoptosis and neurogenesis in the hippocampus was examined. There was a significant deficit in the spatial memory and an elevated level of malondialdehyde with a decreased expression of antioxidant enzymes (SOD, GPx-1) in the hypoxic group when compared with the normoxic control. In addition, redox-sensitive nuclear factor kappa B (NFКB) canonical pathway was activated with a translocation of NFКB members (p65, p50) and increased expression levels of NFКB-dependent inflammatory cytokines and mediator (TNFα, IL-1β, COX-2); also, a significantly elevated level of ER stress (GRP78/Bip, PERK, CHOP) and autophagic flux in the hypoxic group, leading to neuronal apoptosis in hippocampal subfields (DG, CA1, CA3). Remarkably, LBP administration normalized the elevated level of oxidative stress, neuroinflammation, ER stress, autophagic flux and apoptosis induced by hypoxia. Moreover, LBP significantly mitigated both the caspase-dependent intrinsic (Bax, Bcl2, cytochrome C, cleaved caspase-3) and extrinsic (FADD, cleaved caspase-8, Bid) signaling apoptotic cascades. Furthermore, LBP administration prevented the spatial memory deficit and enhanced the hippocampal neurogenesis induced by hypoxia. Our results suggest that LBP is neuroprotective against CIH-induced hippocampal-dependent spatial memory deficits by promoting hippocampal neurogenesis and negatively modulating the apoptotic signaling cascades activated by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Chun-Sing Lam
- Department of Physiology, University of Hong Kong, Hong Kong, PR China
| | - George Lim Tipoe
- Department of Anatomy, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Kwok-Fai So
- Department of Anatomy, University of Hong Kong, Hong Kong, PR China
- Department of Ophthalmology, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangdong, PR China
- Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - Man-Lung Fung
- Department of Physiology, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
- * E-mail:
| |
Collapse
|
31
|
De Gianni E, Fimognari C. Anticancer Mechanism of Sulfur-Containing Compounds. MECHANISM OF THE ANTICANCER EFFECT OF PHYTOCHEMICALS 2015; 37:167-92. [DOI: 10.1016/bs.enz.2015.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Duan F, Li Y, Chen L, Zhou X, Chen J, Chen H, Li R. Sulfur inhibits the growth of androgen-independent prostate cancer in vivo.. Oncol Lett 2014; 9:437-441. [PMID: 25436005 PMCID: PMC4247018 DOI: 10.3892/ol.2014.2700] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 09/08/2014] [Indexed: 01/13/2023] Open
Abstract
Sulfur is a bright yellow crystalline solid at room temperature. The aim of the present study was to investigate the inhibitory effect of sulfur on prostate cancer (PCa) in vivo. Prostate tumors were developed by injecting 22Rv1 or DU-145 PCa cells into sulfur-treated or untreated nude mice. The weight and volume of the tumors were measured. The cancer cells were separated from the tumors, and analyzed for their growth rate and clonogenicity in culture. The expression of PCa-targeted genes was also assessed using real-time polymerase chain reaction. The rate of growth of 22Rv1 tumors in sulfur-treated nude mice gradually decreased, and was reduced by 41.99% (P<0.01) after 22 days when compared with that of the control group. In addition, the growth of DU-145 tumors was also suppressed by 75.16% (P<0.05) after 11 weeks. The clonogenicity of the sulfur-treated tumor cells decreased by 36.7% when compared with that of the control cells. However, no significant difference in cell growth was identified. mRNA levels of the androgen-receptor, prostate specific antigen and human Hox (NKX3.1) genes were significantly decreased by 32.8, 48.2 and 42.2% in sulfur-treated tumors, respectively. Additionally, it was found that the hydrogen sulfide concentration in the serum of sulfur-treated mice was increased by 4.73% (P<0.05). Sulfur significantly suppressed the growth of PCa in vivo. Since sulfur is a known ingredient used in traditional Chinese medicine, it may be used clinically for the treatment of PCa, independently or in combination with other medicine.
Collapse
Affiliation(s)
- Fei Duan
- Shanghai Medical College, Fudan University, Shanghai 200032, P.R. China
| | - Yuhua Li
- Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, P.R. China ; Department of Pathophysiology, Prostate Diseases Prevention and Treatment Research Center, Norman Bethune College of Medicine, Jilin University, Jilin 130021, P.R. China
| | - Liangkang Chen
- Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, P.R. China
| | - Xiaoyu Zhou
- Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, P.R. China
| | - Jianxing Chen
- Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, P.R. China
| | - Hailin Chen
- Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, P.R. China
| | - Runsheng Li
- Key Laboratory of Contraceptive Drugs and Devices of NPFPC, Shanghai Institute of Planned Parenthood Research, Shanghai 200032, P.R. China
| |
Collapse
|
33
|
Banjerdpongchai R, Khaw-On P. Terpinen-4-ol induces autophagic and apoptotic cell death in human leukemic HL-60 cells. Asian Pac J Cancer Prev 2014; 14:7537-42. [PMID: 24460330 DOI: 10.7314/apjcp.2013.14.12.7537] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Terpinen-4-ol, a monoterpene, is found as the main component of essential oil extracts from many plants. In this study apoptotic and autophagic types of cell death induced by terpinen-4-ol and associated mechanisms were investigated in human leukemic HL-60 cells. MATERIALS AND METHODS The cytotoxicity of human leukemic U937 and HL-60 cells was determined by MTT assay. Cytochrome c release, expression of Bax, Bcl-2, Bcl-xl and cleaved Bid were determined by Western blotting. Cell morphology was examined under a transmission electron microscope. LC3-I/II, ATG5 and Beclin-1 levels were detected by immunoblotting. RESULTS Terpinen-4-ol exhibited cytotoxicity to human leukemic HL-60 but not U937 cells. The apoptotic response to terpinen-4-ol in HL-60 cells was due to induction of cytochrome c release from mitochondria and cleavage of Bid protein after the stimulation of caspase-8. There was a slightly decrease of Bcl-xl protein level. The characteristic cell morphology of autophagic cell death was demonstrated with multiple autophagosomes in the cytoplasm. At the molecular level, the results from Western blot analysis showed that terpinen-4-ol significantly induced accumulation of LC3-I/II, ATG5 and Beclin-1, regulatory proteins required for autophagy in mammalian cells. CONCLUSIONS Terpinen-4-ol induced-human leukemic HL-60 cell death was via both autophagy and apoptosis.
Collapse
Affiliation(s)
- Ratana Banjerdpongchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand E-mail :
| | | |
Collapse
|
34
|
Suzuki-Karasaki Y, Suzuki-Karasaki M, Uchida M, Ochiai T. Depolarization Controls TRAIL-Sensitization and Tumor-Selective Killing of Cancer Cells: Crosstalk with ROS. Front Oncol 2014; 4:128. [PMID: 24910845 PMCID: PMC4038927 DOI: 10.3389/fonc.2014.00128] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/14/2014] [Indexed: 01/22/2023] Open
Abstract
Conventional genotoxic anti-cancer drugs target the proliferative advantage of tumor cells over normal cells. This kind of approach lacks the selectivity of treatment to cancer cells, because most of the targeted pathways are essential for the survival of normal cells. As a result, traditional cancer treatments are often limited by undesirable damage to normal cells (side-effects). Ideal anti-cancer drugs are expected to be highly effective against malignant tumor cells with minimal cytotoxicity toward normal cells. Such selective killing can be achieved by targeting pathways essential for the survival of cancer cells, but not normal cells. As cancer cells are characterized by their resistance to apoptosis, selective apoptosis induction is a promising approach for selective killing of cancer cells. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising tumor-selective anti-cancer drug. However, the congenital and acquired resistance of some cancer cell types, including malignant melanoma cells, currently impedes effective TRAIL therapy, and an innovative approach that can override TRAIL resistance is urgently required. Apoptosis is characterized by cell shrinkage caused by disruption of the maintenance of the normal physiological concentrations of K(+) and Na(+) and intracellular ion homeostasis. The disrupted ion homeostasis leads to depolarization and apoptosis. Recent evidence suggests that depolarization is an early and prerequisite event during TRAIL-induced apoptosis. Moreover, diverse natural products and synthetic chemicals capable of depolarizing the cell membrane exhibit tumor-selective killing and TRAIL-sensitizing effects. Here, we discuss the role of depolarization in selective killing of cancer cells in connection with the emerging concept that oxidative stress is a critical mediator of mitochondrial and endoplasmic reticulum dysfunctions and serves as a tumor-selective target in cancer treatment.
Collapse
Affiliation(s)
- Yoshihiro Suzuki-Karasaki
- Division of Physiology, Department of Biomedical Sciences, Nihon University School of Medicine , Tokyo , Japan ; Innovative Therapy Research Group, Nihon University Research Institute of Medical Science , Tokyo , Japan
| | | | - Mayumi Uchida
- Department of Dermatology, Nihon University Surugadai Hospital , Tokyo , Japan
| | - Toyoko Ochiai
- Department of Dermatology, Nihon University Surugadai Hospital , Tokyo , Japan
| |
Collapse
|
35
|
Karkare S, Chhipa RR, Anderson J, Liu X, Henry H, Gasilina A, Nassar N, Ghosh J, Clark JP, Kumar A, Pauletti GM, Ghosh PK, Dasgupta B. Direct inhibition of retinoblastoma phosphorylation by nimbolide causes cell-cycle arrest and suppresses glioblastoma growth. Clin Cancer Res 2013; 20:199-212. [PMID: 24170547 DOI: 10.1158/1078-0432.ccr-13-0762] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Classical pharmacology allows the use and development of conventional phytomedicine faster and more economically than conventional drugs. This approach should be tested for their efficacy in terms of complementarity and disease control. The purpose of this study was to determine the molecular mechanisms by which nimbolide, a triterpenoid found in the well-known medicinal plant Azadirachta indica, controls glioblastoma growth. EXPERIMENTAL DESIGN Using in vitro signaling, anchorage-independent growth, kinase assays, and xenograft models, we investigated the mechanisms of its growth inhibition in glioblastoma. RESULTS We show that nimbolide or an ethanol soluble fraction of A. indica leaves (Azt) that contains nimbolide as the principal cytotoxic agent is highly cytotoxic against glioblastoma multiforme in vitro and in vivo. Azt caused cell-cycle arrest, most prominently at the G1-S stage in glioblastoma multiforme cells expressing EGFRvIII, an oncogene present in about 20% to 25% of glioblastoma multiformes. Azt/nimbolide directly inhibited CDK4/CDK6 kinase activity leading to hypophosphorylation of the retinoblastoma protein, cell-cycle arrest at G1-S, and cell death. Independent of retinoblastoma hypophosphorylation, Azt also significantly reduced proliferative and survival advantage of glioblastoma multiforme cells in vitro and in tumor xenografts by downregulating Bcl2 and blocking growth factor-induced phosphorylation of Akt, extracellular signal-regulated kinase 1/2, and STAT3. These effects were specific because Azt did not affect mTOR or other cell-cycle regulators. In vivo, Azt completely prevented initiation and inhibited progression of glioblastoma multiforme growth. CONCLUSIONS Our preclinical findings demonstrate nimbolide as a potent anti-glioma agent that blocks cell cycle and inhibits glioma growth in vitro and in vivo.
Collapse
Affiliation(s)
- Swagata Karkare
- Departments of Oncology, Cincinnati Children's Hospital Medical Center, OH.,James L. Winkle College of Pharmacy, University of Cincinnati, OH
| | - Rishi Raj Chhipa
- Departments of Oncology, Cincinnati Children's Hospital Medical Center, OH
| | - Jane Anderson
- Departments of Oncology, Cincinnati Children's Hospital Medical Center, OH
| | - Xiaona Liu
- Departments of Oncology, Cincinnati Children's Hospital Medical Center, OH
| | - Heather Henry
- Departments of Oncology, Cincinnati Children's Hospital Medical Center, OH
| | - Anjelika Gasilina
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Nicholas Nassar
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Jayeeta Ghosh
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Jason P Clark
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH
| | - Ashish Kumar
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH
| | | | | | - Biplab Dasgupta
- Departments of Oncology, Cincinnati Children's Hospital Medical Center, OH
| |
Collapse
|
36
|
Molecular mechanisms for the anti-cancer effects of diallyl disulfide. Food Chem Toxicol 2013; 57:362-70. [DOI: 10.1016/j.fct.2013.04.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 12/30/2022]
|
37
|
Wallace GC, Haar CP, Vandergrift WA, Giglio P, Dixon-Mah YN, Varma AK, Ray SK, Patel SJ, Banik NL, Das A. Multi-targeted DATS prevents tumor progression and promotes apoptosis in ectopic glioblastoma xenografts in SCID mice via HDAC inhibition. J Neurooncol 2013; 114:43-50. [PMID: 23754639 DOI: 10.1007/s11060-013-1165-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 05/25/2013] [Indexed: 11/25/2022]
Abstract
Glioblastoma, the most lethal brain tumor, remains incurable despite aggressive chemotherapy and surgical interventions. New chemotherapeutics for glioblastoma have been explored in preclinical models and some agents have reached the clinical setting. However, success rates are not significant. Previous investigations involving diallyl trisulfide (DATS), a garlic compound, indicated significant anti-cancer effects in glioblastoma in vitro. DATS has also been shown to inhibit histone deacetylase activity and impede glioblastoma tumor progression. We hypothesized that DATS would block ectopic U87MG tumor by multiple pro-apoptotic pathways via inhibiting histone deacetylase (HDAC). To prove this, we developed ectopic U87MG tumors in SCID mice and treated them daily with intraperitoneal injections of DATS for 7 days. Results indicated that DATS (10 μg/kg-10 mg/kg) dose-dependently reduced tumor mass and number of mitotic cells within tumors. Histological and biochemical assays demonstrated that DATS reduced mitosis in tumors, decreased HDAC activity, increased acetylation of H3 and H4, inhibited cell cycle progression, decreased pro-tumor markers (e.g., survivin, Bcl-2, c-Myc, mTOR, EGFR, VEGF), promoted apoptotic factors (e.g., bax, mcalpian, active caspase-3), and induced DNA fragmentation. Our data also demonstrated an increase in p21Waf1 expression, which correlated with increased p53 expression and MDM2 degradation following DATS treatment. Finally, histological assessment and enzyme assays showed that even the highest dose of DATS did not negatively impact hepatic function. Collectively, our results clearly demonstrated that DATS could be an effective therapeutic agent in preventing tumor progression and inducing apoptosis in human glioblastoma in vivo, without impairing hepatic function.
Collapse
Affiliation(s)
- Gerald C Wallace
- Department of Neurosciences (Neurology and Neuro-oncology) and MUSC Brain & Spine Tumor Program, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Caro AA, Adlong LW, Crocker SJ, Gardner MW, Luikart EF, Gron LU. Effect of garlic-derived organosulfur compounds on mitochondrial function and integrity in isolated mouse liver mitochondria. Toxicol Lett 2012; 214:166-74. [PMID: 22960305 DOI: 10.1016/j.toxlet.2012.08.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022]
Abstract
The objectives of this work were to evaluate the direct effects of diallysulfide (DAS) and diallyldisulfide (DADS), two major organosulfur compounds of garlic oil, on mitochondrial function and integrity, by using isolated mouse liver mitochondria in a cell-free system. DADS produced concentration-dependent mitochondrial swelling over the range 125-1000μM, while DAS was ineffective. Swelling experiments performed with de-energized or energized mitochondria showed similar maximal swelling amplitudes. Cyclosporin A (1μM), or ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, 1mM) were ineffective in inhibiting DADS-induced mitochondrial swelling. DADS produced a minor (12%) decrease in mitochondrial membrane protein thiols, but did not induce clustering of mitochondrial membrane proteins. Incubation of mitochondria with DADS (but not DAS) produced an increase in the oxidation rate of 2',7' dichlorofluorescein diacetate (DCFH-DA), together with depletion of reduced glutathione (GSH) and increased lipid peroxidation. DADS (but not DAS) produced a concentration-dependent dissipation of the mitochondrial membrane potential, but did not induce cytochrome c release. DADS-dependent effects, including mitochondrial swelling, DCFH-DA oxidation, lipid peroxidation and loss of mitochondrial membrane potential, were inhibited by antioxidants and iron chelators. These results suggest that DADS causes direct impairment of mitochondrial function as the result of oxidation of the membrane lipid phase initiated by the GSH- and iron-dependent generation of oxidants.
Collapse
Affiliation(s)
- Andres A Caro
- Chemistry Department, Hendrix College, Conway, AR, United States.
| | | | | | | | | | | |
Collapse
|
39
|
KIM HYEJEONG, HAN MINHO, KIM GIYOUNG, CHOI YOUNGWHAN, CHOI YUNGHYUN. Hexane extracts of garlic cloves induce apoptosis through the generation of reactive oxygen species in Hep3B human hepatocarcinoma cells. Oncol Rep 2012; 28:1757-63. [DOI: 10.3892/or.2012.1985] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/27/2012] [Indexed: 11/06/2022] Open
|
40
|
Nkrumah-Elie YM, Reuben JS, Hudson A, Taka E, Badisa R, Ardley T, Israel B, Sadrud-Din SY, Oriaku E, Darling-Reed SF. Diallyl trisulfide as an inhibitor of benzo(a)pyrene-induced precancerous carcinogenesis in MCF-10A cells. Food Chem Toxicol 2012; 50:2524-30. [PMID: 22525868 DOI: 10.1016/j.fct.2012.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/25/2012] [Accepted: 04/06/2012] [Indexed: 11/27/2022]
Abstract
Diallyl trisulfide (DATS) is a garlic organosulfide that is toxic to cancer cells, however, little is known about its effect in the initiation phase of carcinogenesis. We sought to determine whether DATS could inhibit the carcinogen, benzo(a)pyrene (BaP), from inducing precancerous activity, in vitro. MCF-10A cells were either pre-treated (PreTx) or concurrently treated (CoTx) with 1 μM BaP, and 6 or 60 μM DATS for up to 24h. The DATS 6 and 60 μM CoTx inhibited BaP-induced cell proliferation by an average of 71.1% and 120.8%, respectively, at 6h. The 60 μM DATS pretreatment decreased BaP-induced G2/M cell cycle transition by 127%, and reduced the increase in cells in the S-phase by 42%; whereas 60 μM DATS CoTx induced a 177% increase in cells in G1. DATS effectively inhibited (P<0.001) BaP-induced peroxide formation by at least 54%, which may have prevented the formation of BaP-induced DNA strand breaks. In this study, we reveal mechanisms involved in DATS inhibition of BaP-induced carcinogenesis, including inhibition of cell proliferation, regulation of cell cycle, attenuation of ROS formation, and inhibition of DNA damage. At the doses evaluated, DATS appears to be an effective attenuator of BaP-induced breast carcinogenesis, in vitro.
Collapse
Affiliation(s)
- Yasmeen M Nkrumah-Elie
- Florida Agricultural and Mechanical University, College of Pharmacy and Pharmaceutical Sciences, Basic Pharmaceutical Sciences Division, Tallahassee, FL 32307, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Montenarh M, Saidu NEB. The Effect of Diallyl Polysulfanes on Cellular Signaling Cascades. Nat Prod Commun 2012. [DOI: 10.1177/1934578x1200700324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Diallyl polysulfanes, such as diallyl trisulfide and diallyl tetrasulfide, are regarded as a group of potential chemopreventive compounds as they have been proven to be effective inhibitors of cancer cells. These agents have been implicated in signal transductions, including the generation of Reactive Oxygen Species (ROS), Endoplasmic Reticulum (ER) stress, mitogen-activated protein kinase (MAPK) signaling, regulation of cell cycle progression, and induction of apoptosis. Nonetheless, certain aspects of the diallyl polysulfane triggered inhibitory effects on cancer cells are still not clear. Understanding the targeted signaling pathways may help to develop new strategies to treat cancer and other diseases. This review is therefore aimed at addressing the targeting of specific intracellular signal transduction cascades by these diallyl polysulfanes in order to shed some light on possible mechanisms of action of these compounds.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medizinische Biochemie und Molekularbiologie und Kompetenzzentrum Molekulare Medizin (KOMM) Universität des Saarlandes, Gebäude 44, 66424 Homburg, Germany
| | - Nathaniel E. B. Saidu
- Medizinische Biochemie und Molekularbiologie und Kompetenzzentrum Molekulare Medizin (KOMM) Universität des Saarlandes, Gebäude 44, 66424 Homburg, Germany
| |
Collapse
|
43
|
Jacob C, Battaglia E, Burkholz T, Peng D, Bagrel D, Montenarh M. Control of oxidative posttranslational cysteine modifications: from intricate chemistry to widespread biological and medical applications. Chem Res Toxicol 2011; 25:588-604. [PMID: 22106817 DOI: 10.1021/tx200342b] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cysteine residues in proteins and enzymes often fulfill rather important roles, particularly in the context of cellular signaling, protein-protein interactions, substrate and metal binding, and catalysis. At the same time, some of the most active cysteine residues are also quite sensitive toward (oxidative) modification. S-Thiolation, S-nitrosation, and disulfide bond and sulfenic acid formation are processes which occur frequently inside the cell and regulate the function and activity of many proteins and enzymes. During oxidative stress, such modifications trigger, among others, antioxidant responses and cell death. The unique combination of nonredox function on the one hand and participation in redox signaling and control on the other has placed many cysteine proteins at the center of drug design and pesticide development. Research during the past decade has identified a range of chemically rather interesting, biologically very active substances that are able to modify cysteine residues in such proteins with huge efficiency, yet also considerable selectivity. These agents are often based on natural products and range from simple disulfides to complex polysulfanes, tetrahydrothienopyridines, α,β -unsaturated disulfides, thiuramdisulfides, and 1,2-dithiole-3-thiones. At the same time, inhibition of enzymes responsible for posttranslational cysteine modifications (and their removal) has become an important area of innovative drug research. Such investigations into the control of the cellular thiolstat by thiol-selective agents cross many disciplines and are often far from trivial.
Collapse
Affiliation(s)
- Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Chen CY, Huang CF, Tseng YT, Kuo SY. Diallyl disulfide induces Ca2+ mobilization in human colon cancer cell line SW480. Arch Toxicol 2011; 86:231-8. [PMID: 21879349 DOI: 10.1007/s00204-011-0748-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/18/2011] [Indexed: 01/17/2023]
Abstract
Diallyl disulfide (DADS), one of the major organosulfur compounds of garlic, is recognized as a group of potential chemopreventive compounds. In this study, we examines the early signaling effects of DADS on human colorectal cancer cells SW480 loaded with Ca(2+)-sensitive dye fura-2. It was found that DADS caused an immediate and sustained rise of [Ca(2+)](i) in a concentration-dependent manner (EC(50) = 232 μM). DADS also induced a [Ca(2+)](i) elevation when extracellular Ca(2+) was removed, but the magnitude was reduced by 45%. Depletion of intracellular Ca(2+) stores with 2 μM carbonylcyanide m-chlorophenylhydrazone, a mitochondrial uncoupler, didn't affect DADS's effect. In Ca(2+)-free medium, the DADS-induced [Ca(2+)](i) rise was abolished by depleting stored Ca(2+) with 1 μM thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor). DADS-caused [Ca(2+)](i) rise in Ca(2+)-containing medium was not affected by modulation of protein kinase C activity. The DADS-induced Ca(2+) influx was blocked by nicardipine (10 μM). U73122, an inhibitor of phospholipase C, abolished ATP (but not DADS)-induced [Ca(2+)](i) rise. These findings suggest that DADS induced a significant rise in [Ca(2+)](i) in SW480 colon cancer cells by stimulating both extracellular Ca(2+) influx and thapsigargin-sensitive intracellular Ca(2+) release via as yet unidentified mechanisms.
Collapse
Affiliation(s)
- Chung-Yi Chen
- Department of Medical Laboratory Science and Biotechnology, School of Medical and Health Sciences, Fooyin University, 151 Chinhsueh Rd, Ta-Liao District, Kaohsiung City, 83102, Taiwan
| | | | | | | |
Collapse
|
45
|
George J, Singh M, Srivastava AK, Bhui K, Shukla Y. Synergistic growth inhibition of mouse skin tumors by pomegranate fruit extract and diallyl sulfide: evidence for inhibition of activated MAPKs/NF-κB and reduced cell proliferation. Food Chem Toxicol 2011; 49:1511-20. [PMID: 21443920 DOI: 10.1016/j.fct.2011.03.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/18/2011] [Accepted: 03/19/2011] [Indexed: 11/30/2022]
Abstract
Limited outcomes from earlier chemopreventive studies have necessitated that some modifications be made to get better efficacy. It is proposed that cancer prevention is more feasible than treatment, and this could be achieved effortlessly with use of multiple agents competent of targeting multiple targets. This study was initiated to examine the chemopreventive efficacy of pomegranate fruit extract (PFE) and diallyl sulfide (DAS), alone and in combination, using 2-stage mouse skin tumorigenesis model. PFE and DAS alone delayed onset and tumor incidence by ∼55% and ∼45%, respectively, while their combination at low doses synergistically decreased tumor incidence more potentially (∼84%, p<0.01). In addition, regression in tumor volume was seen with continuous combinatorial treatment (p<0.01). Mechanistic studies revealed that this inhibition was associated with decreased expression of phosphorylated ERK1/2, JNK1 and activated NF-κB/p65, IKKα, IκBα phosphorylation and degradation in skin tissue/tumor. Histological and cell death analysis also confirmed that combined PFE and DAS inhibit cellular proliferation and markedly induce apoptosis than the single agents. Altogether, our results suggest that PFE and DAS in combination impart better suppressive activity than either of these agents alone and provide support that development of novel combination therapies/chemoprevention using dietary agents will be more beneficial against cancer.
Collapse
Affiliation(s)
- Jasmine George
- Proteomics Laboratory, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research, P.O. Box 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
46
|
Karmakar S, Choudhury SR, Banik NL, Ray SK. Induction of Mitochondrial Pathways and Endoplasmic Reticulum Stress for Increasing Apoptosis in Ectopic and Orthotopic Neuroblastoma Xenografts. ACTA ACUST UNITED AC 2011; 2:77-90. [PMID: 22468231 DOI: 10.4236/jct.2011.22009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cancers are characterized by dysregulation of multiple signaling pathways and thus monotherapies are hardly effective. Neuroblastoma, which often occurs in adrenal glands, is the most common childhood malignancy. Malignant neuroblastoma resists traditional treatments and further studies are needed for effective therapeutic interventions. We evaluated synergistic efficacy of N-(4-hydroxyphenyl) retinamide (4-HPR) and genistein (GST) for induction of apoptosis in human malignant neuroblastoma SH-SY5Y and SK-N-BE2 cells in culture and activation of multiple pathways for increasing apoptosis in ectopic and orthotopic neuroblastoma xenografts in nude mice. Combination of 4-HPR and GST synergistically reduced cell viability, caused subG1 accumulation, increased caspase-3 activity for apoptosis in vitro and reduced tumor growth in vivo. Western blotting indicated that combination therapy down regulated Id2 to induce differentiation, increased pro-apoptotic Bax and decreased anti-apoptotic Bcl-2 leading to an increase in Bax:Bcl-2 ratio, increased mitochondrial Bax level, caused mitochondrial release of Smac/Diablo, down regulation of the baculovirus inhibitor-of-apoptosis repeat containing (BIRC) proteins such as BIRC-2 and BIRC-3, and activation of calpain and caspase-3 in SH-SY5Y xenografts. Accumulation of apoptosis-inducing-factor (AIF) in cytosol and increase in caspase-4 activation suggested involvement of mitochondrial pathway and endoplasmic reticulum (ER) stress, respectively, for apoptosis in SH-SY5Y xenografts. In situ immunofluorescent labelings of SH-SY5Y and SK-N-BE2 xenograft sections showed overexpression of calpain, caspase-12, and caspase-3, and AIF, suggesting induction of mitochondrial caspase-dependent and caspase-independent pathways for apoptosis. Collectively, synergistic effects of 4-HPR and GST induced mitochondrial pathways and also ER stress for increasing apoptosis in ectopic and orthotopic neuroblastoma xenografts in nude mice.
Collapse
Affiliation(s)
- Surajit Karmakar
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | | | | | | |
Collapse
|
47
|
Karmakar S, Choudhury SR, Banik NL, Ray SK. N-(4-Hydroxyphenyl) Retinamide Potentiated Anti-tumor Efficacy of Genistein in Human Ewing's Sarcoma Xenografts. World J Oncol 2011; 2:53-63. [PMID: 21822457 PMCID: PMC3151019 DOI: 10.4021/wjon301w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Ewing’s sarcoma is a pediatric tumor that mainly occurs in soft tissues and bones. New therapeutic strategies are urgently needed for treatment of Ewing’s sarcoma. We examined for the first time the efficacy of N-(4-hydroxyphenyl) retinamide (4-HPR) and genistein (GST) alone and also in combination for controlling growth of human Ewing’s sarcoma SK-N-MC and RD-ES xenografts. Methods Efficacy of combination therapy was evaluated using histopathological parameters. Molecular mechanisms of combination therapy were detected using Western blotting and immunofluorescence microscopy. Results Histopathological examination of tumor sections showed that control group maintained characteristic growth of tumors, 4-HPR alone inhibited proliferation of tumor cells, GST alone induced apoptosis to some extent, and combination of 4-HPR and GST significantly induced apoptosis in both Ewing’s sarcoma xenografts. Time-dependent reductions in body weight, tumor volume, and tumor weight were also found. Combination therapy increased Bax : Bcl-2 ratio to trigger mitochondrial release of Smac/Diablo into the cytosol to downregulate the baculovirus inhibitor-of-apoptosis repeat containing (BIRC) proteins such as BIRC-2 and BIRC-3 and thereby promote apoptosis. Activation of caspase-3 and mitochondrial release of apoptosis-inducing factor (AIF) occurred in course of apoptosis. Downregulation of the survival factor NF-κB and the angiogenic factors VEGF and FGF2 and increase in caspase-3 activity controlled tumor growth. In situ immunofluorescent labelings showed overexpression of calpain, caspase-12 and caspase-3, and AIF in xenografts, indicating induction of cysteine proteases and AIF for apoptosis. Conclusions Results revealed that combination of 4-HPR and GST could be highly effective treatment for inhibiting Ewing’s sarcomas in vivo.
Collapse
Affiliation(s)
- Surajit Karmakar
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | | | | | | |
Collapse
|
48
|
Nagaraj NS, Anilakumar KR, Singh OV. Diallyl disulfide causes caspase-dependent apoptosis in human cancer cells through a Bax-triggered mitochondrial pathway. J Nutr Biochem 2010; 21:405-12. [DOI: 10.1016/j.jnutbio.2009.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 10/20/2022]
|
49
|
Daneshmandi S, Hajimoradi M, Ahmadabad HN, Hassan ZM, Roudbary M, Ghazanfari T. Effect of 14-kDa and 47-kDa protein molecules of age garlic extract on peritoneal macrophages. Immunopharmacol Immunotoxicol 2010; 33:21-7. [DOI: 10.3109/08923971003690041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Shi M, Wang HN, Xie ST, Luo Y, Sun CY, Chen XL, Zhang YZ. Antimicrobial peptaibols, novel suppressors of tumor cells, targeted calcium-mediated apoptosis and autophagy in human hepatocellular carcinoma cells. Mol Cancer 2010; 9:26. [PMID: 20122248 PMCID: PMC2825246 DOI: 10.1186/1476-4598-9-26] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 02/02/2010] [Indexed: 02/02/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers in the world which is highly chemoresistant to currently available chemotherapeutic agents. Thus, novel therapeutic targets are needed to be sought for the successful treatment of HCC. Peptaibols, a family of peptides synthesized non-ribosomally by the Trichoderma species and other fungi, exhibit antibiotic activities against bacteria and fungi. Few studies recently showed that peptaibols exerted cytotoxicity toward human lung epithelial and breast carcinoma cells. However, the mechanism involved in peptaibol-induced cell death remains poorly understood. Results Here, we showed that Trichokonin VI (TK VI), a peptaibol from Trichoderma pseudokoningii SMF2, induced growth inhibition of HCC cells in a dose-dependent manner. It did not obviously impair the viability of normal liver cells at lower concentration. Moreover, the suppression of cell viability resulted from the programmed cell death (PCD) with characteristics of apoptosis and autophagy. An influx of Ca2+ triggered the activation of μ-calpain and proceeded to the translocation of Bax to mitochondria and subsequent promotion of apoptosis. On the other hand, typically morphological characteristics consistent with autophagy were also observed by punctate distribution of MDC staining and the induction of LC3-II, including extensive autophagic vacuolization and enclosure of cell organelles by these autophagosomes. More significantly, specific depletion of Bak expression by small RNA interfering (siRNA) could partly attenuate TK VI-induced autophagy. However, siRNA against Bax led to increased autophagy. Conclusion Taken together, these findings showed for the first time that peptaibols were novel regulators involved in both apoptosis and autophagy, suggesting that the class of peptaibols might serve as potential suppressors of tumor cells.
Collapse
Affiliation(s)
- Mei Shi
- State Key Lab of Microbial Technology, Shandong University, Jinan, PR China
| | | | | | | | | | | | | |
Collapse
|