1
|
Sapienza J, Agostoni G, Comai S, Nasini S, Dall'Acqua S, Sut S, Spangaro M, Martini F, Bechi M, Buonocore M, Bigai G, Repaci F, Nocera D, Ave C, Guglielmino C, Cocchi F, Cavallaro R, Deste G, Bosia M. Neuroinflammation and kynurenines in schizophrenia: Impact on cognition depending on cognitive functioning and modulatory properties in relation to cognitive remediation and aerobic exercise. Schizophr Res Cogn 2024; 38:100328. [PMID: 39281320 PMCID: PMC11399803 DOI: 10.1016/j.scog.2024.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
Background In the last decade, the kynurenine pathway (KP) has gained attention in the pathogenesis of cognitive impairment in schizophrenia being at the croassroad between neuroinflammation and glutamatergic and cholinergic neurotransmission. However, clinical findings are scarse and conflicting, and the specific contributions of these two systems to the neurobiology of cognitive symptoms are far from being elucidated. Furthermore, little is known about the molecular underpinnings of non-pharmacological interventions for cognitive improvement, including rehabilitation strategies. Methods The current study examined 72 patients with schizophrenia, divided in two clusters depending on the severity of the cognitive impairment, with the aim to evaluate the impact of inflammatory biomarkers and KP metabolites depending on cognitive functioning. Moreover, we studied their possible link to the cognitive outcome in relation to sessions of cognitive remediation therapy (CRT) and aerobic exercise (AE) in a longitudinal arm of 42 patients. Results Neuroinflammation appeared to exert a more pronounced influence on cognition in patients exhibiting a higher cognitive functioning, contrasting with the activation of the KP, which had a greater impact on individuals with a lower cognitive profile. Cognitive improvements after the treatments were negatively predicted by levels of TNF-α and positively predicted by the 3-hydroxykynurenine (3-HK)/kynurenine (KYN) ratio, an index of the kynurenine-3-monooxygenase (KMO) enzyme activity. Conclusion Overall, these findings add novel evidence on the biological underpinnings of cognitive impairment in schizophrenia pointing at a differential role of neuroinflammation and KP metabolites in inducing cognitive deficits depending on the cognitive reserve and predicting outcomes after rehabilitation.
Collapse
Affiliation(s)
- Jacopo Sapienza
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | - Giulia Agostoni
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Sofia Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Marco Spangaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Martini
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Bechi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mariachiara Buonocore
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgia Bigai
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| | - Federica Repaci
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Nocera
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| | - Chiara Ave
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| | - Carmelo Guglielmino
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cocchi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| | - Giacomo Deste
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Marta Bosia
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Gupta V, Singh S, Singh TG. Pervasive expostulation of p53 gene promoting the precipitation of neurogenic convulsions: A journey in therapeutic advancements. Eur J Pharmacol 2024; 983:176990. [PMID: 39251181 DOI: 10.1016/j.ejphar.2024.176990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Epilepsy, a neurological disorder characterized by prolonged and excessive seizures, has been linked to elevated levels of the tumor suppressor gene p53, which contributes to neuronal dysfunction. This review explores the molecular mechanisms of p53 in epilepsy and discusses potential future therapeutic strategies. Research indicates that changes in p53 expression during neuronal apoptosis, neuroinflammation, and oxidative stress play a significant role in the pathogenesis of epilepsy. Elevated p53 disrupts glutamatergic neurotransmission and hyperactivates NMDA and AMPA receptors, leading to increased neuronal calcium influx, mitochondrial oxidative stress, and activation of apoptotic pathways mediated neuronal dysfunction, exacerbating epileptogenesis. The involvement of p53 in epilepsy suggests that targeting this protein could be beneficial in mitigating neuronal damage and preventing seizure recurrence. Pharmacological agents like pifithrin-α have shown promise in reducing p53-mediated apoptosis and seizure severity. Gene therapy approaches, such as viral vector-mediated delivery of wild-type p53 or RNA interference targeting mutant p53, have also been effective in restoring normal p53 function and reducing seizure susceptibility. Despite these advances, the heterogeneous nature of epilepsy and potential long-term side effects of p53 modulation present challenges. Future research should focus on elucidating the precise molecular mechanisms of p53 and developing personalized therapeutic strategies. Modulating p53 activity holds promise for reducing seizure susceptibility and improving the quality of life for individuals with epilepsy. The current review provides the understanding the intricate role of p53 in neuroinflammatory pathways, including JAK-STAT, JNK, NF-κB, Sonic Hedgehog, and Wnt, is crucial for developing targeted therapies.
Collapse
Affiliation(s)
- Vrinda Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India; School of Public Health, Faculty of Health, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
3
|
Naderi S, Khodagholi F, Janahmadi M, Motamedi F, Torabi A, Batool Z, Heydarabadi MF, Pourbadie HG. Ferroptosis and Cognitive Impairment: Unraveling the Link and Potential Therapeutic Targets. Neuropharmacology 2024; 263:110210. [PMID: 39521042 DOI: 10.1016/j.neuropharm.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, share key characteristics, notably cognitive impairment and significant cell death in specific brain regions. Cognition, a complex mental process allowing individuals to perceive time and place, is disrupted in these conditions. This consistent disruption suggests the possibility of a shared underlying mechanism across all neurodegenerative diseases. One potential common factor is the activation of pathways leading to cell death. Despite significant progress in understanding cell death pathways, no definitive treatments have emerged. This has shifted focus towards less-explored mechanisms like ferroptosis, which holds potential due to its involvement in oxidative stress and iron metabolism. Unlike apoptosis or necrosis, ferroptosis offers a novel therapeutic avenue due to its distinct biochemical and genetic underpinnings, making it a promising target in neurodegenerative disease treatment. Ferroptosis is distinguished from other cellular death mechanisms, by distinctive characteristics such as an imbalance of iron hemostasis, peroxidation of lipids in the plasma membrane, and dysregulated glutathione metabolism. In this review, we discuss the potential role of ferroptosis in cognitive impairment. We then summarize the evidence linking ferroptosis biomarkers to cognitive impairment brought on by neurodegeneration while highlighting recent advancements in our understanding of the molecular and genetic mechanisms behind the condition. Finally, we discuss the prospective therapeutic implications of targeting ferroptosis for the treatment of cognitive abnormalities associated with neurodegeneration, including natural and synthetic substances that suppress ferroptosis via a variety of mechanisms. Promising therapeutic candidates, including antioxidants and iron chelators, are being explored to inhibit ferroptosis and mitigate cognitive decline.
Collapse
Affiliation(s)
- Soudabeh Naderi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Motamedi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Torabi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Hamid Gholami Pourbadie
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran; Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Moreira ET, Lourenço MP, Cunha-Fernandes T, Silva TI, Siqueira LD, Castro-Faria-Neto HC, Reis PA. Minocycline inhibits microglial activation in the CA1 hippocampal region and prevents long-term cognitive sequel after experimental cerebral malaria. J Neuroimmunol 2024; 397:578480. [PMID: 39504755 DOI: 10.1016/j.jneuroim.2024.578480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024]
Abstract
Cerebral malaria is the worst complication of malaria infection, has a high mortality rate, and may cause different neurodysfunctions, including cognitive decline. Neuroinflammation is an important cause of cognitive damage in neurodegenerative diseases, and microglial cells can be activated in a disease-associated profile leading to tissue damage and neuronal death. Here, we demonstrated that treatment with minocycline reduced blood-brain barrier breakdown and modulated ICAM1 mRNA expression; reduced proinflammatory cytokines, such as TNF-α, IL-1β, IFN-γ, and IL-6; and prevented long-term cognitive decline in contextual and aversive memory tasks. Taken together, our data suggest that microglial cells are activated during experimental cerebral malaria, leading to neuroinflammatory events that end up in cognitive damage. In addition, pharmacological modulation of microglial activation, by drugs such as minocycline may be an important therapeutic strategy in the prevention of long-term memory impairment.
Collapse
Affiliation(s)
- E T Moreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Universidade Cruzeiro do Sul, Brazil; Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - M P Lourenço
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - T Cunha-Fernandes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - T I Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - L D Siqueira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - H C Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - P A Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Departamento de Bioquímica, Instituto de Biologia Roberto Alcântara Gomes, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Zhang G, Liang Z, Wang Y, Zhang Z, Hoi PM. Tetramethylpyrazine Analogue T-006 Protects Neuronal and Endothelial Cells Against Oxidative Stress via PI3K/AKT/mTOR and Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1272. [PMID: 39456524 PMCID: PMC11505549 DOI: 10.3390/antiox13101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND T-006, a novel neuroprotective derivative of tetramethylpyrazine (TMP), exhibits multifunctional neuroprotective properties. T-006 has been shown to improve neurological and behavioral functions in animal models of ischemic stroke and neurodegenerative diseases. The present study aims to further elucidate the mechanisms underlying the protective effects of T-006 against oxidative injuries induced by glutamate or hypoxia. METHODS Mouse hippocampal HT22 cells were used to evaluate the neuroprotective effects of T-006 against glutamate-induced injuries, while mouse brain endothelial bEnd.3 cells were used to evaluate the cerebrovascular protective effects of T-006 against oxygen-glucose deprivation followed by reperfusion (OGD/R)-induced injuries. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to measure cell viability and oxidative stress. Western blot and immunofluorescence analyses of protein expression were used to study cell signaling pathways. RESULTS T-006 exhibited significant protective effects in both oxidative injury models. In HT22 cells, T-006 reduced cell death and enhanced antioxidant capacity by upregulating mTOR and nuclear factor erythroid 2-related factor 2/Heme oxygenase-1 (Nrf2/HO-1) signaling. Similarly, in bEnd.3 cells, T-006 reduced oxidative injuries and preserved tight junction integrity through Nrf2/HO-1 upregulation. These effects were inhibited by LY294002, a Phosphoinositide 3-kinase (PI3K) inhibitor. CONCLUSIONS T-006 may exert its neuroprotective and cerebrovascular protective effects via the regulation of PI3K/AKT-mediated pathways, which facilitate downstream mTOR and Nrf2 signaling, leading to improved cell survival and antioxidant defenses.
Collapse
Affiliation(s)
- Guiliang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Zirong Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Yuqiang Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou 510632, China; (Y.W.); (Z.Z.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou 510632, China; (Y.W.); (Z.Z.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
6
|
Simões JLB, de Carvalho Braga G, Eichler SW, da Silva GB, Bagatini MD. Implications of COVID-19 in Parkinson's disease: the purinergic system in a therapeutic-target perspective to diminish neurodegeneration. Purinergic Signal 2024; 20:487-507. [PMID: 38460075 PMCID: PMC11377384 DOI: 10.1007/s11302-024-09998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/21/2024] [Indexed: 03/11/2024] Open
Abstract
The pathophysiology of Parkinson's disease (PD) is marked by degeneration of dopaminergic neurons in the substantia nigra. With advent of COVID-19, which is closely associated with generalized inflammation and multiple organ dysfunctions, the PD patients may develop severe conditions of disease leading to exacerbated degeneration. This condition is caused by the excessive release of pro-inflammatory markers, called cytokine storm, that is capable of triggering neurodegenerative conditions by affecting the blood-brain barrier (BBB). A possible SARS-CoV-2 infection, in serious cases, may compromise the immune system by triggering a hyperstimulation of the neuroimmune response, similar to the pathological processes found in PD. From this perspective, the inflammatory scenario triggers oxidative stress and, consequently, cellular dysfunction in the nervous tissue. The P2X7R seems to be the key mediator of the neuroinflammatory process, as it acts by increasing the concentration of ATP, allowing the influx of Ca2+ and the occurrence of mutations in the α-synuclein protein, causing activation of this receptor. Thus, modulation of the purinergic system may have therapeutic potential on the effects of PD, as well as on the damage caused by inflammation of the BBB, which may be able to mitigate the neurodegeneration caused by diseases. Considering all the processes of neuroinflammation, oxidative stress, and mitochondrial dysfunction that PD propose, we can conclude that the P2X7 antagonist acts in the prevention of viral diseases, and it also controls purinergic receptors formed by multi-target compounds directed to self-amplification circuits and, therefore, may be a viable strategy to obtain the desired disease-modifying effect. Thus, purinergic system receptor modulations have a high therapeutic potential for neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
| | | | | | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Margarete Dulce Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
7
|
Sapienza J, Martini F, Comai S, Cavallaro R, Spangaro M, De Gregorio D, Bosia M. Psychedelics and schizophrenia: a double-edged sword. Mol Psychiatry 2024:10.1038/s41380-024-02743-x. [PMID: 39294303 DOI: 10.1038/s41380-024-02743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
Psychedelics have shown promising effects in several psychiatric diseases as demonstrated by multiple clinical trials. However, no clinical experiments on patients with schizophrenia have been conducted up to date, except for some old semi-anecdotal studies mainly performed in the time-span '50s-'60s. Notably, these studies reported interesting findings, particularly on the improvement of negative symptoms and social cognition. With no doubts the lack of modern clinical studies is due to the psychomimetic properties of psychedelics, a noteworthy downside that could worsen positive symptoms. However, a rapidly increasing body of evidence has suggested that the mechanisms of action of such compounds partially overlaps with the pathogenic underpinnings of schizophrenia but in an opposite way. These findings suggest that, despite being a controversial issue, the use of psychedelics in the treatment of schizophrenia would be based on a strong biological rationale. Therefore, the aim of our perspective paper is to provide a background on the old experiments with psychedelics performed on patients with schizophrenia, interpreting them in the light of recent molecular findings on their ability to induce neuroplasticity and modulate connectivity, the immune and TAARs systems, neurotransmitters, and neurotropic factors. No systematic approach was adopted in reviewing the evidence given the difficulty to retrieve and interpret old findings. Interestingly, we identified a therapeutic potential of psychedelics in schizophrenia adopting a critical point of view, particularly on negative symptoms and social cognition, and we summarized all the relevant findings. We also identified an eligible subpopulation of chronic patients predominantly burdened by negative symptoms, outlining possible therapeutic strategies which encompass very low doses of psychedelics (microdosing), carefully considering safety and feasibility, to pave the way to future clinical trials.
Collapse
Affiliation(s)
- Jacopo Sapienza
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | | | - Stefano Comai
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Roberto Cavallaro
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | | | - Danilo De Gregorio
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Bosia
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
8
|
Hakimi Naeini S, Rajabi-Maham H, Azizi V, Hosseini A. Anticonvulsant effect of glycitin in pentylenetetrazol induced male Wistar rat model by targeting oxidative stress and Nrf2/HO-1 signaling. Front Pharmacol 2024; 15:1392325. [PMID: 39246658 PMCID: PMC11377222 DOI: 10.3389/fphar.2024.1392325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
Epilepsy, characterized by recurrent seizures, poses a significant health challenge globally. Despite the availability of anti-seizure medications, their adverse effects and inadequate efficacy in controlling seizures propel the exploration of alternative therapeutic measures. In hypothesis, glycitin is a phytoestrogenic compound found in soybeans and due to its estrogenic properties may have anti-epileptic and neuroprotective effects. This study investigates the potential anti-epileptic properties of glycitin in the context of pentylenetetrazol (PTZ) induced seizures in male Wistar rats. The rats were pretreated with varying doses of glycitin (5, 10, and 20 mg/kg) before PTZ (35 mg/kg) administration, and assessments included behavioral observations and histological evaluation via hematoxylin and eosin (H&E) staining. Additionally, oxidative stress markers, such as malondialdehyde (MDA), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels, were quantified to examine glycitin's impact on oxidative stress. Molecular analysis was conducted to assess the activation of the Nuclear factor erythroid 2-related factor (Nrf2)/Heme oxygenase 1 (HO-1) signaling pathway. Results indicated that glycitin pretreatment effectively mitigated PTZ-induced convulsive behaviors, supported by histological findings from H&E staining. Furthermore, glycitin administration led to significant alterations in MDA, GPx, and SOD levels, suggestive of its ability to modulate oxidative stress. Notably, glycitin treatment induced activation of the Nrf2/HO-1 signaling pathway. These findings underscore the potential of glycitin as an anticonvulsant agent, elucidating its mechanism of action through histological protection, modulation of oxidative stress markers, and activation of the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Saghi Hakimi Naeini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Vahid Azizi
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
9
|
Kumar S, Mehan S, Khan Z, Das Gupta G, Narula AS. Guggulsterone Selectively Modulates STAT-3, mTOR, and PPAR-Gamma Signaling in a Methylmercury-Exposed Experimental Neurotoxicity: Evidence from CSF, Blood Plasma, and Brain Samples. Mol Neurobiol 2024; 61:5161-5193. [PMID: 38170440 DOI: 10.1007/s12035-023-03902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a paralytic disease that damages the brain and spinal cord motor neurons. Several clinical and preclinical studies have found that methylmercury (MeHg+) causes ALS. In ALS, MeHg+-induced neurotoxicity manifests as oligodendrocyte destruction; myelin basic protein (MBP) deficiency leads to axonal death. ALS development has been connected to an increase in signal transducer and activator of transcription-3 (STAT-3), a mammalian target of rapamycin (mTOR), and a decrease in peroxisome proliferator-activated receptor (PPAR)-gamma. Guggulsterone (GST), a plant-derived chemical produced from Commiphorawhighitii resin, has been found to protect against ALS by modulating these signaling pathways. Vitamin D3 (VitD3) deficiency has been related to oligodendrocyte precursor cells (OPC) damage, demyelination, and white matter deterioration, which results in motor neuron death. As a result, the primary goal of this work was to investigate the therapeutic potential of GST by altering STAT-3, mTOR, and PPAR-gamma levels in a MeHg+-exposed experimental model of ALS in adult rats. The GST30 and 60 mg/kg oral treatments significantly improved the behavioral, motor, and cognitive dysfunctions and increased remyelination, as proven by the Luxol Fast Blue stain (LFB), and reduced neuroinflammation as measured by histological examinations. Furthermore, the co-administration of VitD3 exhibits moderate efficacy when administered in combination with GST60. Our results show that GST protects neurons by decreasing STAT-3 and mTOR levels while increasing PPAR-gamma protein levels in ALS rats.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ghanshyam Das Gupta
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
10
|
Nagarajan S, Prabu R, Parachuri N, Thulasidas M. Electroretinogram as a Screening Tool to Assess Vigabatrin-Induced Retinal Toxicity in Children With Infantile Spasms. J Pediatr Ophthalmol Strabismus 2024; 61:273-278. [PMID: 38482803 DOI: 10.3928/01913913-20240215-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
PURPOSE To assess the utility of electroretinogram (ERG) as a screening tool for vigabatrin-induced retinal toxicity in children with infantile spasms. METHODS This was an observational cohort study including children with infantile spasms receiving treatment with vigabatrin. A 30-Hz flicker potential ERG, using the RETeval system (LKC Technologies), was done at baseline before starting vigabatrin at 6 months and 1 year. The amplitudes were recorded. RESULTS Eleven children were included in the study. The most common etiologic factor for infantile spasms was tuberous sclerosis (36.4%) followed by West syndrome (27.3%). The mean age of the children was 7.14 ± 2.9 months, with a range of 3 to 16 months. The mean difference in amplitude was 3.21 ± 2.45 and 5.72 ± 4.18 µV at 6 and 12 months follow-up, respectively (P < .001). Eight of the 11 children (72.7%) showed vigabatrin-induced retinal toxicity, and all 8 children were receiving vigabatrin for more than 6 months. CONCLUSIONS ERG can be used for vigabatrin-induced retinal toxicity monitoring in children with infantile spasms. Vigabatrin-induced retinal toxicity is related to the duration of treatment rather than cumulative dosage. [J Pediatr Ophthalmol Strabismus. 2024;61(4):273-278.].
Collapse
|
11
|
Wang J, Shi L, Wang C, Yao LH, Li G, Wang S. Astragaloside depresses compound action potential in sciatic nerve of frogs involved in L-type Ca 2+-channel dependent mechanism. Nat Prod Res 2024:1-10. [PMID: 38824425 DOI: 10.1080/14786419.2024.2353388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
The sciatic nerve is the largest sensorimotor nerve within the peripheral nervous system (PNS), possessing the ability to produce endogenous neurotrophins. Compound nerve action potentials (CNAPs) are regarded as a physiological/pathological indicator to identify nerve activity in signal transduction of the PNS. Astragaloside (AST), a small-molecule saponin purified from Astragalus membranaceus, is widely used to treat chronic disease. Nonetheless, the regulatory effects of AST on the sciatic nerve remain unknown. Therefore, the present investigation was undertaken to study the effect of AST on CNAPs of frog sciatic nerves. Here, AST depressed the conduction velocity and amplitude of CNAPs. Importantly, the AST-induced responses could be blocked by a Ca2+-free medium, or by applying all Ca2+ channel antagonists (CdCl2/LaCl3) or L-type Ca2+ channel blockers (nifedipine/diltiazem), but not the T-type and P-type Ca2+ channel antagonist (NiCl2). Altogether, these findings suggested that AST may attenuate the CNAPs of frog sciatic nerves in vitro via the L-type Ca2+-channel dependent mechanisms.
Collapse
Affiliation(s)
- Jinxiu Wang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Lulu Shi
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Chuchu Wang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Li-Hua Yao
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Guoyin Li
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| | - Songhua Wang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, PR China
| |
Collapse
|
12
|
Song YT, Li SS, Chao CY, Shuang-Guo, Chen GZ, Wang SX, Zhang MX, Yin YL, Li P. Floralozone regulates MiR-7a-5p expression through AMPKα2 activation to improve cognitive dysfunction in vascular dementia. Exp Neurol 2024; 376:114748. [PMID: 38458310 DOI: 10.1016/j.expneurol.2024.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/07/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND The pathogenesis of vascular dementia (VD) is complex, and currently, no effective treatments have been recommended. Floralozone is a colorless liquid first discovered in Lagotis Gaertn. Recently, its medicinal value has been increasingly recognized. Our previous study has demonstrated that Floralozone can improve cognitive dysfunction in rats with VD by regulating the transient receptor potential melastatin 2 (TRPM2) and N-methyl-D-aspartate receptor (NMDAR) signaling pathways. However, the mechanism by which Floralozone regulates TRPM2 and NMDAR to improve VD remains unclear. AMP-activated protein kinase (AMPK) is an energy regulator in vivo; however, its role of AMPK activation in stroke remains controversial. MiR-7a-5p has been identified to be closely related to neuronal function. PURPOSE To explore whether Floralozone can regulate the miR-7a-5p level in vivo through AMPKα2 activation, affect the TRPM2 and NR2B expression levels, and improve VD symptoms. METHODS The VD model was established by a modified bilateral occlusion of the common carotid arteries (2-VO) of Sprague-Dawley (SD) rats and AMPKα2 KO transgenic (AMPKα2-/-) mice. Primary hippocampal neurons were modeled using oxygen and glucose deprivation (OGD). Morris water maze (MWM) test, hematoxylin-eosin staining (HE staining), and TUNEL staining were used to investigate the effects of Floralozone on behavior and hippocampal morphology in rats. Minichromosome maintenance complex component 2(MCM2) positive cells were used to investigate the effect of Floralozone on neurogenesis. Immunofluorescence staining, qRT-PCR, and western blot analysis were used to investigate the effect of Floralozone on the expression levels of AMPKα2, miR-7a-5p, TRPM2, and NR2B. RESULTS The SD rat experiment revealed that Floralozone improved spatial learning and memory, improved the morphology and structure of hippocampal neurons, reduced apoptosis of hippocampal neurons and promoted neurogenesis in VD rats. Floralozone could increase the miR-7a-5p expression level, activate AMPKα2 and NR2B expressions, and inhibit TRPM2 expression in hippocampal neurons of VD rats. The AMPKα2 KO transgenic (AMPKα2-/-) mice experiment demonstrated that Floralozone could regulate miR-7a-5p, TRPM2, and NR2B expression levels through AMPKα2 activation. The cell experiment revealed that the TRPM2 and NR2B expression levels were regulated by miR-7a-5p, whereas the AMPKα2 expression level was not. CONCLUSION Floralozone could regulate miR-7a-5p expression level by activating the protein expression of AMPKα2, control the protein expression of TRPM2 and NR2B, improve the morphology and structure of hippocampus neurons, reduce the apoptosis of hippocampus neurons, promote neurogenesis and improve the cognitive dysfunction.
Collapse
Affiliation(s)
- Yu-Ting Song
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; JinShan Hospital of Fudan University, Shanghai 201508, China
| | - Shan-Shan Li
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Chun-Yan Chao
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China; Huang Huai University, Zhumadian 463000, China
| | - Shuang-Guo
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning 437100, China
| | - Gui-Zi Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuang-Xi Wang
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Ming-Xiang Zhang
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Ya-Ling Yin
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| | - Peng Li
- Henan international joint laboratory of cardiovascular remodeling and drug intervention, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, School of Basic Medical Sciences, College of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
13
|
Pandya VA, Patani R. The role of glial cells in amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:381-450. [PMID: 38802179 DOI: 10.1016/bs.irn.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) has traditionally been considered a neuron-centric disease. This view is now outdated, with increasing recognition of cell autonomous and non-cell autonomous contributions of central and peripheral nervous system glia to ALS pathomechanisms. With glial research rapidly accelerating, we comprehensively interrogate the roles of astrocytes, microglia, oligodendrocytes, ependymal cells, Schwann cells and satellite glia in nervous system physiology and ALS-associated pathology. Moreover, we highlight the inter-glial, glial-neuronal and inter-system polylogue which constitutes the healthy nervous system and destabilises in disease. We also propose classification based on function for complex glial reactive phenotypes and discuss the pre-requisite for integrative modelling to advance translation. Given the paucity of life-enhancing therapies currently available for ALS patients, we discuss the promising potential of harnessing glia in driving ALS therapeutic discovery.
Collapse
Affiliation(s)
- Virenkumar A Pandya
- University College London Medical School, London, United Kingdom; The Francis Crick Institute, London, United Kingdom.
| | - Rickie Patani
- The Francis Crick Institute, London, United Kingdom; Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom.
| |
Collapse
|
14
|
Chang YB, Jung EJ, Jo K, Suh HJ, Choi HS. Neuroprotective effect of whey protein hydrolysate containing leucine-aspartate-isoleucine-glutamine-lysine on HT22 cells in hydrogen peroxide-induced oxidative stress. J Dairy Sci 2024; 107:2620-2632. [PMID: 38101744 DOI: 10.3168/jds.2023-24284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
This study aimed to investigate the neuroprotective effects of whey protein hydrolysate (WPH) containing the pentapeptide leucine-aspartate-isoleucine-glutamine-lysine (LDIQK). Whey protein hydrolysate (50, 100, and 200 µg/mL) demonstrated the ability to restore the viability of HT22 cells subjected to 300 µM hydrogen peroxide (H2O2)-induced oxidative stress. Furthermore, at a concentration of 200 µg/mL, it significantly reduced the increase in reactive oxygen species production and calcium ion (Ca2+) influx induced by H2O2 by 46.1% and 46.2%, respectively. Similarly, the hydrolysate significantly decreased the levels of p-tau, a hallmark of tauopathy, and BCL2 associated X (BAX), a proapoptosis factor, while increasing the protein levels of choline acetyltransferase (ChAT), an enzyme involved in acetylcholine synthesis, brain-derived neurotrophic factor (BDNF), a nerve growth factor, and B-cell lymphoma 2 (BCL2, an antiapoptotic factor. Furthermore, it increased nuclear factor erythroid 2-related factor 2 (Nrf2)-hemoxygenase-1(HO-1) signaling, which is associated with the antioxidant response, while reducing the activation of mitogen-activated protein kinase (MAPK) signaling pathway components, namely phosphor-extracellular signal-regulated kinases (p-ERK), phosphor-c-Jun N-terminal kinases (p-JNK), and p-p38. Column chromatography and tandem mass spectrometry analysis identified LDIQK as a compound with neuroprotective effects in WPH; it inhibited Ca2+ influx and regulated the BAX/BCL2 ratio. Collectively, WPH containing LDIQK demonstrated neuroprotective effects against H2O2-induced neuronal cell damage, suggesting that WPH or its active peptide, LDIQK, may serve as a potential edible agent for improving cognitive dysfunction.
Collapse
Affiliation(s)
- Yeok B Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Eun-Jin Jung
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyung J Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea; Transdisciplinary Major in Learning Health Systems, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
15
|
González-Cota AL, Martínez-Flores D, Rosendo-Pineda MJ, Vaca L. NMDA receptor-mediated Ca 2+ signaling: Impact on cell cycle regulation and the development of neurodegenerative diseases and cancer. Cell Calcium 2024; 119:102856. [PMID: 38408411 DOI: 10.1016/j.ceca.2024.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024]
Abstract
NMDA receptors are Ca2+-permeable ligand-gated ion channels that mediate fast excitatory transmission in the central nervous system. NMDA receptors regulate the proliferation and differentiation of neural progenitor cells and also play critical roles in neural plasticity, memory, and learning. In addition to their physiological role, NMDA receptors are also involved in glutamate-mediated excitotoxicity, which results from excessive glutamate stimulation, leading to Ca2+ overload, and ultimately to neuronal death. Thus, NMDA receptor-mediated excitotoxicity has been linked to several neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, dementia, and stroke. Interestingly, in addition to its effects on cell death, aberrant expression or activation of NMDA receptors is also involved in pathological cellular proliferation, and is implicated in the invasion and proliferation of various types of cancer. These disorders are thought to be related to the contribution of NMDA receptors to cell proliferation and cell death through cell cycle modulation. This review aims to discuss the evidence implicating NMDA receptor activity in cell cycle regulation and the link between aberrant NMDA receptor activity and the development of neurodegenerative diseases and cancer due to cell cycle dysregulation. The information presented here will provide insights into the signaling pathways and the contribution of NMDA receptors to these diseases, and suggests that NMDA receptors are promising targets for the prevention and treatment of these diseases, which are leading causes of death and disability worldwide.
Collapse
Affiliation(s)
- Ana L González-Cota
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Daniel Martínez-Flores
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Margarita Jacaranda Rosendo-Pineda
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Luis Vaca
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, Mexico.
| |
Collapse
|
16
|
Li YY, Qin ZH, Sheng R. The Multiple Roles of Autophagy in Neural Function and Diseases. Neurosci Bull 2024; 40:363-382. [PMID: 37856037 PMCID: PMC10912456 DOI: 10.1007/s12264-023-01120-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/11/2023] [Indexed: 10/20/2023] Open
Abstract
Autophagy involves the sequestration and delivery of cytoplasmic materials to lysosomes, where proteins, lipids, and organelles are degraded and recycled. According to the way the cytoplasmic components are engulfed, autophagy can be divided into macroautophagy, microautophagy, and chaperone-mediated autophagy. Recently, many studies have found that autophagy plays an important role in neurological diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, neuronal excitotoxicity, and cerebral ischemia. Autophagy maintains cell homeostasis in the nervous system via degradation of misfolded proteins, elimination of damaged organelles, and regulation of apoptosis and inflammation. AMPK-mTOR, Beclin 1, TP53, endoplasmic reticulum stress, and other signal pathways are involved in the regulation of autophagy and can be used as potential therapeutic targets for neurological diseases. Here, we discuss the role, functions, and signal pathways of autophagy in neurological diseases, which will shed light on the pathogenic mechanisms of neurological diseases and suggest novel targets for therapies.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
17
|
Poore CP, Hazalin NAMN, Wei S, Low SW, Chen B, Nilius B, Hassan Z, Liao P. TRPM4 blocking antibody reduces neuronal excitotoxicity by specifically inhibiting glutamate-induced calcium influx under chronic hypoxia. Neurobiol Dis 2024; 191:106408. [PMID: 38199274 DOI: 10.1016/j.nbd.2024.106408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/12/2024] Open
Abstract
Excitotoxicity arises from unusually excessive activation of excitatory amino acid receptors such as glutamate receptors. Following an energy crisis, excitotoxicity is a major cause for neuronal death in neurological disorders. Many glutamate antagonists have been examined for their efficacy in mitigating excitotoxicity, but failed to generate beneficial outcome due to their side effects on healthy neurons where glutamate receptors are also blocked. In this study, we found that during chronic hypoxia there is upregulation and activation of a nonselective cation channel TRPM4 that contributes to the depolarized neuronal membrane potential and enhanced glutamate-induced calcium entry. TRPM4 is involved in modulating neuronal membrane excitability and calcium signaling, with a complex and multifaceted role in the brain. Here, we inhibited TRPM4 using a newly developed blocking antibody M4P, which could repolarize the resting membrane potential and ameliorate calcium influx upon glutamate stimulation. Importantly, M4P did not affect the functions of healthy neurons as the activity of TRPM4 channel is not upregulated under normoxia. Using a rat model of chronic hypoxia with both common carotid arteries occluded, we found that M4P treatment could reduce apoptosis in the neurons within the hippocampus, attenuate long-term potentiation impairment and improve the functions of learning and memory in this rat model. With specificity to hypoxic neurons, TRPM4 blocking antibody can be a novel way of controlling excitotoxicity with minimal side effects that are common among direct blockers of glutamate receptors.
Collapse
Affiliation(s)
- Charlene P Poore
- Calcium Signaling Laboratory, National Neuroscience Institute, 308433, Singapore
| | - Nurul A M N Hazalin
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Puncak Alam, 42300, Selangor, Malaysia; Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Shunhui Wei
- Calcium Signaling Laboratory, National Neuroscience Institute, 308433, Singapore
| | - See Wee Low
- Calcium Signaling Laboratory, National Neuroscience Institute, 308433, Singapore
| | - Bo Chen
- Calcium Signaling Laboratory, National Neuroscience Institute, 308433, Singapore
| | - Bernd Nilius
- Department Molecular Cell Biology, Campus Gasthuisberg, KU Leuven, Leuven 3000, Belgium
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| | - Ping Liao
- Calcium Signaling Laboratory, National Neuroscience Institute, 308433, Singapore.
| |
Collapse
|
18
|
Canbolat F, Kantarci-Carsibasi N, Isik S, Shamshir SRM, Girgin M. Identification of the Candidate mGlu2 Allosteric Modulator THRX-195518 through In Silico Method and Evaluation of Its Neuroprotective Potential against Glutamate-Induced Neurotoxicity in SH-SY5Y Cell Line. Curr Issues Mol Biol 2024; 46:788-807. [PMID: 38248353 PMCID: PMC10814480 DOI: 10.3390/cimb46010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/23/2024] Open
Abstract
Glutamate (Glu) toxicity has been an important research topic in toxicology and neuroscience studies. In vitro and in vivo studies have shown that Group II metabotropic Glu2 (mGlu2) activators have cell viability effects. This study aims to determine a candidate ligand with high mGlu2 allosteric region activity among cytotoxicity-safe molecules using the in silico positioning method and to evaluate its cell viability effect in vitro. We investigated the candidate molecule's cell viability effect on the SH-SY5Y human neuroblastoma cell line by MTT analysis. In the study, LY 379268 (agonist) and JNJ-46281222 (positive allosteric modulator; PAM) were used as control reference molecules. Drug bank screening yielded THRX-195518 (docking score being -12.4 kcal/mol) as a potential novel drug candidate that has a high docking score and has not been mentioned in the literature so far. The orthosteric agonist LY 379268 exhibited a robust protective effect in our study. Additionally, our findings demonstrate that JNJ-46281222 and THRX-195518, identified as activating the mGlu2 allosteric region through in silico methods, preserve cell viability against Glu toxicity. Therefore, our study not only emphasizes the positive effects of this compound on cell viability against Glu toxicity but also sheds light on the potential of THRX-195518, acting as a mGlu2 PAM, based on in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) data, as a candidate drug molecule. These findings underscore the potential utility of THRX-195518 against both neurotoxicity and Central Nervous System (CNS) disorders, providing valuable insights.
Collapse
Affiliation(s)
- Fadime Canbolat
- Department of Pharmacy Services, Vocational School of Health Services, Çanakkale Onsekiz Mart University, 17800 Çanakkale, Turkey
| | - Nigar Kantarci-Carsibasi
- Department of Chemical Engineering, Uskudar University, 34662 Istanbul, Turkey; (N.K.-C.); (M.G.)
| | - Sevim Isik
- Stem Cell Research and Application Center (USKOKMER), Department of Molecular Biology and Genetics, Uskudar University, 34662 Istanbul, Turkey;
| | | | - Münteha Girgin
- Department of Chemical Engineering, Uskudar University, 34662 Istanbul, Turkey; (N.K.-C.); (M.G.)
| |
Collapse
|
19
|
De Marchi F, Venkatesan S, Saraceno M, Mazzini L, Grossini E. Acetyl-L-carnitine and Amyotrophic Lateral Sclerosis: Current Evidence and Potential use. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:588-601. [PMID: 36998125 DOI: 10.2174/1871527322666230330083757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND The management of neurodegenerative diseases can be frustrating for clinicians, given the limited progress of conventional medicine in this context. AIM For this reason, a more comprehensive, integrative approach is urgently needed. Among various emerging focuses for intervention, the modulation of central nervous system energetics, oxidative stress, and inflammation is becoming more and more promising. METHODS In particular, electrons leakage involved in the mitochondrial energetics can generate reactive oxygen-free radical-related mitochondrial dysfunction that would contribute to the etiopathology of many disorders, such as Alzheimer's and other dementias, Parkinson's disease, multiple sclerosis, stroke, and amyotrophic lateral sclerosis (ALS). RESULTS In this context, using agents, like acetyl L-carnitine (ALCAR), provides mitochondrial support, reduces oxidative stress, and improves synaptic transmission. CONCLUSION This narrative review aims to update the existing literature on ALCAR molecular profile, tolerability, and translational clinical potential use in neurodegeneration, focusing on ALS.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Sakthipriyan Venkatesan
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale 28100, Novara, Italy
| | - Massimo Saraceno
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale 28100 Novara, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, University of Piemonte Orientale 28100, Novara, Italy
| |
Collapse
|
20
|
Kumar A, Krishnani H, Pande A, Jaiswal S, Meshram RJ. Rasmussen's Encephalitis: A Literary Review. Cureus 2023; 15:e47698. [PMID: 38022088 PMCID: PMC10676233 DOI: 10.7759/cureus.47698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Usually affecting one hemisphere of the brain, Rasmussen's encephalitis (RE) is a persistent inflammatory disease of unclear origin. Rasmussen and colleagues presumed a viral etiology of the sickness in their first description. Later, the condition was linked to autoantibodies that were in the blood. Recently, it was shown that the cause of RE was a cytotoxic T-cell reaction to neurons. RE may be identified histopathologically by cortical inflammation, neuronal degeneration, and cerebral hemispheric-specific gliosis. The hemisphere is affected by increasing multilocular inflammation. To diagnose patients sooner and to evaluate whether the aforementioned phenomena are primary or secondary, it is essential to continue the search for a primary immunological or viral component. This information is crucial for determining the effectiveness of immunotherapy. RE-related seizures can only now be managed surgically. The only procedure that works is complete hemispheric disconnection (hemidisconnection), which may be done as either a (functional) hemispherectomy or hemispherectomy. Although thalidomide has been anecdotally reported, its safety profile prevents it from being used as a first-line treatment despite having a noticeable effect on the frequency and severity of seizures. Finding the disease's root causes more quickly by combining descriptive clinical studies, genetic testing, and early histological evaluation of RE tissue specimens to check for viral and autoimmune pathogenesis. Creating appropriate in vitro or animal models will enable the study of causality, perhaps directing clinical trials.
Collapse
Affiliation(s)
- Abhishek Kumar
- Medical Education, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Harshil Krishnani
- Medical Education, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Arundhati Pande
- Medical Education, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Siddhant Jaiswal
- Medical Education, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Revat J Meshram
- Paediatrics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
21
|
Santos ABD, Thaneshwaran S, Ali LK, Leguizamón CRR, Wang Y, Kristensen MP, Langkilde AE, Kohlmeier KA. Sex-dependent neuronal effects of α-synuclein reveal that GABAergic transmission is neuroprotective of sleep-controlling neurons. Cell Biosci 2023; 13:172. [PMID: 37710341 PMCID: PMC10500827 DOI: 10.1186/s13578-023-01105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/13/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Sleep disorders (SDs) are a symptom of the prodromal phase of neurodegenerative disorders that are mechanistically linked to the protein α-synuclein (α-syn) including Parkinson's disease (PD). SDs during the prodromal phase could result from neurodegeneration induced in state-controlling neurons by accumulation of α-syn predominant early in the disease, and consistent with this, we reported the monomeric form of α-syn (monomeric α-syn; α-synM) caused cell death in the laterodorsal tegmental nucleus (LDT), which controls arousal as well as the sleep and wakefulness state. However, we only examined the male LDT, and since sex is considered a risk factor for the development of α-syn-related diseases including prodromal SDs, the possibility exists of sex-based differences in α-synM effects. Accordingly, we examined the hypothesis that α-synM exerts differential effects on membrane excitability, intracellular calcium, and cell viability in the LDT of females compared to males. METHODS Patch clamp electrophysiology, bulk load calcium imaging, and cell death histochemistry were used in LDT brain slices to monitor responses to α-synM and effects of GABA receptor acting agents. RESULTS Consistent with our hypothesis, we found differing effects of α-synM on female LDT neurons when compared to male. In females, α-synM induced a decrease in membrane excitability and heightened reductions in intracellular calcium, which were reliant on functional inhibitory acid transmission, as well as decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) with a concurrent reduction in action potential firing rate. Cell viability studies showed higher α-synM-mediated neurodegeneration in males compared to females that depended on inhibitory amino acid transmission. Further, presence of GABA receptor agonists was associated with reduced cell death in males. CONCLUSIONS When taken together, we conclude that α-synM induces a sex-dependent effect on LDT neurons involving a GABA receptor-mediated mechanism that is neuroprotective. Understanding the potential sex differences in neurodegenerative processes, especially those occurring early in the disease, could enable implementation of sex-based strategies to identify prodromal PD cases, and promote efforts to illuminate new directions for tailored treatment and management of PD.
Collapse
Affiliation(s)
- Altair Brito Dos Santos
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
- Dept of Neuroscience, University of Copenhagen, Copenhagen, 2200 Denmark
| | - Siganya Thaneshwaran
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | - Lara Kamal Ali
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | - César Ramón Romero Leguizamón
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | - Yang Wang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | | | - Annette E. Langkilde
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| | - Kristi A. Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100 Denmark
| |
Collapse
|
22
|
Gao Y, Liu N, Chen J, Zheng P, Niu J, Tang S, Peng X, Wu J, Yu J, Ma L. Neuropharmacological insight into preventive intervention in posttraumatic epilepsy based on regulating glutamate homeostasis. CNS Neurosci Ther 2023; 29:2430-2444. [PMID: 37309302 PMCID: PMC10401093 DOI: 10.1111/cns.14294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Posttraumatic epilepsy (PTE) is one of the most critical complications of traumatic brain injury (TBI), significantly increasing TBI patients' neuropsychiatric symptoms and mortality. The abnormal accumulation of glutamate caused by TBI and its secondary excitotoxicity are essential reasons for neural network reorganization and functional neural plasticity changes, contributing to the occurrence and development of PTE. Restoring glutamate balance in the early stage of TBI is expected to play a neuroprotective role and reduce the risk of PTE. AIMS To provide a neuropharmacological insight for drug development to prevent PTE based on regulating glutamate homeostasis. METHODS We discussed how TBI affects glutamate homeostasis and its relationship with PTE. Furthermore, we also summarized the research progress of molecular pathways for regulating glutamate homeostasis after TBI and pharmacological studies aim to prevent PTE by restoring glutamate balance. RESULTS TBI can lead to the accumulation of glutamate in the brain, which increases the risk of PTE. Targeting the molecular pathways affecting glutamate homeostasis helps restore normal glutamate levels and is neuroprotective. DISCUSSION Taking glutamate homeostasis regulation as a means for new drug development can avoid the side effects caused by direct inhibition of glutamate receptors, expecting to alleviate the diseases related to abnormal glutamate levels in the brain, such as PTE, Parkinson's disease, depression, and cognitive impairment. CONCLUSION It is a promising strategy to regulate glutamate homeostasis through pharmacological methods after TBI, thereby decreasing nerve injury and preventing PTE.
Collapse
Affiliation(s)
- Yuan Gao
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Ning Liu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Juan Chen
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Ping Zheng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| | - Shengsong Tang
- Hunan Province Key Laboratory for Antibody‐Based Drug and Intelligent Delivery System, School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Xiaodong Peng
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jing Wu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Jianqiang Yu
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
| | - Lin Ma
- Department of PharmacologyNingxia Medical UniversityYinchuanChina
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous RegionNingxia Medical UniversityYinchuanChina
| |
Collapse
|
23
|
Nikolaeva A, Pospelova M, Krasnikova V, Makhanova A, Tonyan S, Krasnopeev Y, Kayumova E, Vasilieva E, Efimtsev A, Levchuk A, Trufanov G, Voynov M, Shevtsov M. Elevated Levels of Serum Biomarkers Associated with Damage to the CNS Neurons and Endothelial Cells Are Linked with Changes in Brain Connectivity in Breast Cancer Patients with Vestibulo-Atactic Syndrome. PATHOPHYSIOLOGY 2023; 30:260-274. [PMID: 37368372 DOI: 10.3390/pathophysiology30020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
Vestibulo-atactic syndrome (VAS), which represents a combination of motor and vestibular disorders, can be manifested as a clinical complication of breast cancer treatment and has a significant impact on patients' quality of life. The identification of novel potential biomarkers that might help to predict the onset of VAS and its progression could improve the management of this group of patients. In the current study, the levels of intercellular cell adhesion molecule 1 (ICAM-1), platelet/endothelial cell adhesion molecule 1 (PECAM-1), NSE (neuron-specific enolase), and the antibodies recognizing NR-2 subunit of NMDA receptor (NR-2-ab) were measured in the blood serum of BC survivor patients with vestibulo-atactic syndrome (VAS) and associated with the brain connectome data obtained via functional magnetic resonance imaging (fMRI) studies. A total of 21 patients were registered in this open, single-center trial and compared to age-matched healthy female volunteers (control group) (n = 17). BC patients with VAS demonstrated higher serum levels of ICAM-1, PECAM-1, and NSE and a lower value of NR-2-ab, with values of 654.7 ± 184.8, 115.3 ± 37.03, 49.9 ± 103.9, and 0.5 ± 0.3 pg/mL, respectively, as compared to the healthy volunteers, with 230.2 ± 44.8, 62.8 ± 15.6, 15.5 ± 6.4, and 1.4 ± 0.7 pg/mL. According to the fMRI data (employing seed-to-voxel and ROI-to-ROI methods), in BC patients with VAS, significant changes were detected in the functional connectivity in the areas involved in the regulation of postural-tonic reflexes, the coordination of movements, and the regulation of balance. In conclusion, the detected elevated levels of serum biomarkers may reveal damage to the CNS neurons and endothelial cells that is, in turn, associated with the change in the brain connectivity in this group of patients.
Collapse
Affiliation(s)
- Alexandra Nikolaeva
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Maria Pospelova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Varvara Krasnikova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Albina Makhanova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Samvel Tonyan
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Yurii Krasnopeev
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Evgeniya Kayumova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Elena Vasilieva
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Aleksandr Efimtsev
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Anatoliy Levchuk
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Gennadiy Trufanov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Mark Voynov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
| | - Maxim Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Akkuratova Str. 2, 197341 Saint Petersburg, Russia
- Department of Radiation Oncology, Technishe Universität München (TUM), Klinikum rechts der Isar, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
24
|
Amaral-Silva L, Santin JM. Synaptic modifications transform neural networks to function without oxygen. BMC Biol 2023; 21:54. [PMID: 36927477 PMCID: PMC10022038 DOI: 10.1186/s12915-023-01518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/18/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Neural circuit function is highly sensitive to energetic limitations. Much like mammals, brain activity in American bullfrogs quickly fails in hypoxia. However, after emergence from overwintering, circuits transform to function for approximately 30-fold longer without oxygen using only anaerobic glycolysis for fuel, a unique trait among vertebrates considering the high cost of network activity. Here, we assessed neuronal functions that normally limit network output and identified components that undergo energetic plasticity to increase robustness in hypoxia. RESULTS In control animals, oxygen deprivation depressed excitatory synaptic drive within native circuits, which decreased postsynaptic firing to cause network failure within minutes. Assessments of evoked and spontaneous synaptic transmission showed that hypoxia impairs synaptic communication at pre- and postsynaptic loci. However, control neurons maintained membrane potentials and a capacity for firing during hypoxia, indicating that those processes do not limit network activity. After overwintering, synaptic transmission persisted in hypoxia to sustain motor function for at least 2 h. CONCLUSIONS Alterations that allow anaerobic metabolism to fuel synapses are critical for transforming a circuit to function without oxygen. Data from many vertebrate species indicate that anaerobic glycolysis cannot fuel active synapses due to the low ATP yield of this pathway. Thus, our results point to a unique strategy whereby synapses switch from oxidative to exclusively anaerobic glycolytic metabolism to preserve circuit function during prolonged energy limitations.
Collapse
Affiliation(s)
- Lara Amaral-Silva
- Division of Biological Sciences, The University of Missouri, Columbia, USA.
| | - Joseph M Santin
- Division of Biological Sciences, The University of Missouri, Columbia, USA.
| |
Collapse
|
25
|
Briyal S, Ranjan AK, Gulati A. Oxidative stress: A target to treat Alzheimer's disease and stroke. Neurochem Int 2023; 165:105509. [PMID: 36907516 DOI: 10.1016/j.neuint.2023.105509] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/01/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Oxidative stress has been established as a well-known pathological condition in several neurovascular diseases. It starts with increased production of highly oxidizing free-radicals (e.g. reactive oxygen species; ROS and reactive nitrogen species; RNS) and becomes too high for the endogenous antioxidant system to neutralize them, which results in a significantly disturbed balance between free-radicals and antioxidants levels and causes cellular damage. A number of studies have evidently shown that oxidative stress plays a critical role in activating multiple cell signaling pathways implicated in both progression as well as initiation of neurological diseases. Therefore, oxidative stress continues to remain a key therapeutic target for neurological diseases. This review discusses the mechanisms involved in reactive oxygen species (ROS) generation in the brain, oxidative stress, and pathogenesis of neurological disorders such as stroke and Alzheimer's disease (AD) and the scope of antioxidant therapies for these disorders.
Collapse
Affiliation(s)
- Seema Briyal
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA.
| | - Amaresh K Ranjan
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA
| | - Anil Gulati
- College of Pharmacy, Midwestern University, Downers Grove, IL, 60515, USA; Pharmazz Inc. Research and Development, Willowbrook, IL, USA
| |
Collapse
|
26
|
Maldonado J, Huang JH, Childs EW, Tharakan B. Racial/Ethnic Differences in Traumatic Brain Injury: Pathophysiology, Outcomes, and Future Directions. J Neurotrauma 2023; 40:502-513. [PMID: 36029219 DOI: 10.1089/neu.2021.0455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in the United States, exacting a debilitating physical, social, and financial strain. Therefore, it is crucial to examine the impact of TBI on medically underserved communities in the U.S. The purpose of the current study was to review the literature on TBI for evidence of racial/ethnic differences in the U.S. Results of the review showed significant racial/ethnic disparities in TBI outcome and several notable differences in other TBI variables. American Indian/Alaska Natives have the highest rate and number of TBI-related deaths compared with all other racial/ethnic groups; Blacks/African Americans are significantly more likely to incur a TBI from violence when compared with Non-Hispanic Whites; and minorities are significantly more likely to have worse functional outcome compared with Non-Hispanic Whites, particularly among measures of community integration. We were unable to identify any studies that looked directly at underlying racial/ethnic biological variations associated with different TBI outcomes. In the absence of studies on racial/ethnic differences in TBI pathobiology, taking an indirect approach, we looked for studies examining racial/ethnic differences in oxidative stress and inflammation outside the scope of TBI as they are known to heavily influence TBI pathobiology. The literature indicates that Blacks/African Americans have greater inflammation and oxidative stress compared with Non-Hispanic Whites. We propose that future studies investigate the possibility of racial/ethnic differences in inflammation and oxidative stress within the context of TBI to determine whether there is any relationship or impact on TBI outcome.
Collapse
Affiliation(s)
- Justin Maldonado
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott and White Health and Texas A&M University College of Medicine, Temple, Texas, USA
| | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Binu Tharakan
- Department of Surgery, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Inhibition of Vesicular Glutamate Transporters (VGLUTs) with Chicago Sky Blue 6B Before Focal Cerebral Ischemia Offers Neuroprotection. Mol Neurobiol 2023; 60:3130-3146. [PMID: 36802054 PMCID: PMC10122628 DOI: 10.1007/s12035-023-03259-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 02/07/2023] [Indexed: 02/21/2023]
Abstract
Brain ischemia is one of the leading causes of death and long-term disability in the world. Interruption of the blood supply to the brain is a direct stimulus for many pathological events. The massive vesicular release of glutamate (Glu) after ischemia onset induces excitotoxicity, which is a potent stress on neurons. Loading of presynaptic vesicles with Glu is the first step of glutamatergic neurotransmission. Vesicular glutamate transporters 1, 2, and 3 (VGLUT1, 2, and 3) are the main players involved in filling presynaptic vesicles with Glu. VGLUT1 and VGLUT2 are expressed mainly in glutamatergic neurons. Therefore, the possibility of pharmacological modulation to prevent ischemia-related brain damage is attractive. In this study, we aimed to determine the effect of focal cerebral ischemia on the spatiotemporal expression of VGLUT1 and VGLUT2 in rats. Next, we investigated the influence of VGLUT inhibition with Chicago Sky Blue 6B (CSB6B) on Glu release and stroke outcome. The effect of CSB6B pretreatment on infarct volume and neurological deficit was compared with a reference model of ischemic preconditioning. The results of this study indicate that ischemia upregulated the expression of VGLUT1 in the cerebral cortex and in the dorsal striatum 3 days after ischemia onset. The expression of VGLUT2 was elevated in the dorsal striatum and in the cerebral cortex 24 h and 3 days after ischemia, respectively. Microdialysis revealed that pretreatment with CSB6B significantly reduced the extracellular Glu concentration. Altogether, this study shows that inhibition of VGLUTs might be a promising therapeutic strategy for the future.
Collapse
|
28
|
Chakraborty R, Tabassum H, Parvez S. NLRP3 inflammasome in traumatic brain injury: Its implication in the disease pathophysiology and potential as a therapeutic target. Life Sci 2023; 314:121352. [PMID: 36592789 DOI: 10.1016/j.lfs.2022.121352] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury (TBI), an acquired brain injury imparted by a mechanical trauma to the head, has significant ramifications in terms of long-term disability and cost of healthcare. TBI is characterized by an initial phase of cell death owing to direct mechanical injury, followed by a secondary phase in which neuroinflammation plays a pivotal role. Activation of inflammasome complexes triggers a cascade that leads to activation of inflammatory mediators such as caspase-1, Interleukin (IL)-18, and IL-1β, eventually causing pyroptosis. NLRP3 inflammasome, a component of the innate immune response, has been implicated in a number of neurodegenerative diseases, including TBI. Recent findings indicate that NLRP3 inhibitors can potentially ameliorate neuroinflammation and improve cognition and motor function in TBI. The NLRP3 inflammasome also holds potential as a predictive biomarker for the long-term sequelae following TBI. Although several therapeutic agents have shown promising results in pre-clinical studies, none of them have been effective in human trials for TBI, to date. Thus, it is imperative that such promising therapeutic candidates are evaluated in clinical trials to assess their efficacy in alleviating neurological impairments in TBI. This review offers an insight into the pathophysiology of TBI, with an emphasis on neuroinflammation in the aftermath of TBI. We highlight the NLRP3 inflammasome and explore its role in the neuroinflammatory cascade in TBI. We also shed light on its potential as a prospective biomarker and therapeutic target for TBI management.
Collapse
Affiliation(s)
- Rohan Chakraborty
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Ministry of Health and Family Welfare, Govt. of India, V. Ramalingaswami Bhawan, P.O. Box No. 4911, New Delhi 110029, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
29
|
Stellon D, Talbot J, Hewitt AW, King AE, Cook AL. Seeing Neurodegeneration in a New Light Using Genetically Encoded Fluorescent Biosensors and iPSCs. Int J Mol Sci 2023; 24:1766. [PMID: 36675282 PMCID: PMC9861453 DOI: 10.3390/ijms24021766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases present a progressive loss of neuronal structure and function, leading to cell death and irrecoverable brain atrophy. Most have disease-modifying therapies, in part because the mechanisms of neurodegeneration are yet to be defined, preventing the development of targeted therapies. To overcome this, there is a need for tools that enable a quantitative assessment of how cellular mechanisms and diverse environmental conditions contribute to disease. One such tool is genetically encodable fluorescent biosensors (GEFBs), engineered constructs encoding proteins with novel functions capable of sensing spatiotemporal changes in specific pathways, enzyme functions, or metabolite levels. GEFB technology therefore presents a plethora of unique sensing capabilities that, when coupled with induced pluripotent stem cells (iPSCs), present a powerful tool for exploring disease mechanisms and identifying novel therapeutics. In this review, we discuss different GEFBs relevant to neurodegenerative disease and how they can be used with iPSCs to illuminate unresolved questions about causes and risks for neurodegenerative disease.
Collapse
Affiliation(s)
- David Stellon
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
30
|
Neurotoxicity evoked by organophosphates and available countermeasures. Arch Toxicol 2023; 97:39-72. [PMID: 36335468 DOI: 10.1007/s00204-022-03397-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Organophosphorus compounds (OP) are a constant problem, both in the military and in the civilian field, not only in the form of acute poisoning but also for their long-lasting consequences. No antidote has been found that satisfactorily protects against the toxic effects of organophosphates. Likewise, there is no universal cure to avert damage after poisoning. The key mechanism of organophosphate toxicity is the inhibition of acetylcholinesterase. The overstimulation of nicotinic or muscarinic receptors by accumulated acetylcholine on a synaptic cleft leads to activation of the glutamatergic system and the development of seizures. Further consequences include generation of reactive oxygen species (ROS), neuroinflammation, and the formation of various other neuropathologists. In this review, we present neuroprotection strategies which can slow down the secondary nerve cell damage and alleviate neurological and neuropsychiatric disturbance. In our opinion, there is no unequivocal approach to ensure neuroprotection, however, sooner the neurotoxicity pathway is targeted, the better the results which can be expected. It seems crucial to target the key propagation pathways, i.e., to block cholinergic and, foremostly, glutamatergic cascades. Currently, the privileged approach oriented to stimulating GABAAR by benzodiazepines is of limited efficacy, so that antagonizing the hyperactivity of the glutamatergic system could provide an even more efficacious approach for terminating OP-induced seizures and protecting the brain from permanent damage. Encouraging results have been reported for tezampanel, an antagonist of GluK1 kainate and AMPA receptors, especially in combination with caramiphen, an anticholinergic and anti-glutamatergic agent. On the other hand, targeting ROS by antioxidants cannot or already developed neuroinflammation does not seem to be very productive as other processes are also involved.
Collapse
|
31
|
Yu BJ, Oz RS, Sethi S. Ketogenic diet as a metabolic therapy for bipolar disorder: Clinical developments. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023. [DOI: 10.1016/j.jadr.2022.100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Correa BH, Moreira CR, Hildebrand ME, Vieira LB. The Role of Voltage-Gated Calcium Channels in Basal Ganglia Neurodegenerative Disorders. Curr Neuropharmacol 2023; 21:183-201. [PMID: 35339179 PMCID: PMC10190140 DOI: 10.2174/1570159x20666220327211156] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022] Open
Abstract
Calcium (Ca2+) plays a central role in regulating many cellular processes and influences cell survival. Several mechanisms can disrupt Ca2+ homeostasis to trigger cell death, including oxidative stress, mitochondrial damage, excitotoxicity, neuroinflammation, autophagy, and apoptosis. Voltage-gated Ca2+ channels (VGCCs) act as the main source of Ca2+ entry into electrically excitable cells, such as neurons, and they are also expressed in glial cells such as astrocytes and oligodendrocytes. The dysregulation of VGCC activity has been reported in both Parkinson's disease (PD) and Huntington's (HD). PD and HD are progressive neurodegenerative disorders (NDs) of the basal ganglia characterized by motor impairment as well as cognitive and psychiatric dysfunctions. This review will examine the putative role of neuronal VGCCs in the pathogenesis and treatment of central movement disorders, focusing on PD and HD. The link between basal ganglia disorders and VGCC physiology will provide a framework for understanding the neurodegenerative processes that occur in PD and HD, as well as a possible path towards identifying new therapeutic targets for the treatment of these debilitating disorders.
Collapse
Affiliation(s)
- Bernardo H.M. Correa
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Roberto Moreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Luciene Bruno Vieira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
33
|
Rajabian A, Farzanehfar M, Hosseini H, Arab FL, Nikkhah A. Boswellic acids as promising agents for the management of brain diseases. Life Sci 2022; 312:121196. [DOI: 10.1016/j.lfs.2022.121196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
|
34
|
Abu-Elfotuh K, Abdel-Sattar SA, Abbas AN, Mahran YF, Alshanwani AR, Hamdan AME, Atwa AM, Reda E, Ahmed YM, Zaghlool SS, El-Din MN. The protective effect of thymoquinone or/and thymol against monosodium glutamate-induced attention-deficit/hyperactivity disorder (ADHD)-like behavior in rats: Modulation of Nrf2/HO-1, TLR4/NF-κB/NLRP3/caspase-1 and Wnt/β-Catenin signaling pathways in rat model. Biomed Pharmacother 2022; 155:113799. [PMID: 36271575 DOI: 10.1016/j.biopha.2022.113799] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022] Open
Abstract
Both thymoquinone (TQ) and thymol (T) have been proved to possess a positive impact on human health. In this research, we aimed to investigate the effect of these compounds separately and together on the Attention-deficit/hyperactivity disorder (ADHD)-like behavior induced by monosodium glutamate (MSG) in rats. Forty male, Spargue Dawley rat pups (postnatal day 21), were randomly allocated into five groups: Normal saline (NS), MSG, MSG+TQ, MSG+T, and MSG+TQ+T. MSG (0.4 mg/kg/day), TQ (10 mg/kg/day) and T (30 mg/kg/day) were orally administered for 8 weeks. The behavioral tests proved that rats treated with TQ and/or T showed improved locomotor, attention and cognitive functions compared to the MSG group with more pronounced effect displayed with their combination. All treated groups showed improvement in MSG-induced aberrations in brain levels of GSH, IL-1β, TNF-α, GFAP, glutamate, calcium, dopamine, norepinephrine, Wnt3a, β-Catenin and BDNF. TQ and/or T treatment also enhanced the mRNA expression of Nrf2, HO-1 and Bcl2 while reducing the protein expression of TLR4, NFκB, NLRP3, caspase 1, Bax, AIF and GSK3β as compared to the MSG group. However, the combined therapy showed more significant effects in all measured parameters. All of these findings were further confirmed by the histopathological examinations. Current results concluded that the combined therapy of TQ and T had higher protective effects than their individual supplementations against MSG-induced ADHD-like behavior in rats.
Collapse
|
35
|
Liu N, Lin MM, Wang Y. The Emerging Roles of E3 Ligases and DUBs in Neurodegenerative Diseases. Mol Neurobiol 2022; 60:247-263. [PMID: 36260224 DOI: 10.1007/s12035-022-03063-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/27/2022] [Indexed: 10/24/2022]
Abstract
Despite annual increases in the incidence and prevalence of neurodegenerative diseases, there is a lack of effective treatment strategies. An increasing number of E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) have been observed to participate in the pathogenesis mechanisms of neurodegenerative diseases, on the basis of which we conducted a systematic literature review of the studies. This review will help to explore promising therapeutic targets from highly dynamic ubiquitination modification processes.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Miao-Miao Lin
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yan Wang
- Department of Pharmacology College of Pharmaceutical Sciences, Suzhou Key Laboratory of Aging and Nervous Diseases, and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
36
|
Astaxanthin Protection against Neuronal Excitotoxicity via Glutamate Receptor Inhibition and Improvement of Mitochondrial Function. Mar Drugs 2022; 20:md20100645. [PMID: 36286468 PMCID: PMC9605357 DOI: 10.3390/md20100645] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Excitotoxicity is known to associate with neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis and Huntington’s disease, as well as aging, stroke, trauma, ischemia and epilepsy. Excessive release of glutamate, overactivation of glutamate receptors, calcium overload, mitochondrial dysfunction and excessive reactive oxygen species (ROS) formation are a few of the suggested key mechanisms. Astaxanthin (AST), a carotenoid, is known to act as an antioxidant and protect neurons from excitotoxic injuries. However, the exact molecular mechanism of AST neuroprotection is not clear. Thus, in this study, we investigated the role of AST in neuroprotection in excitotoxicity. We utilized primary cortical neuronal culture and live cell fluorescence imaging for the study. Our results suggest that AST prevents neuronal death, reduces ROS formation and decreases the abnormal mitochondrial membrane depolarization induced by excitotoxic glutamate insult. Additionally, AST modulates intracellular calcium levels by inhibiting peak and irreversible secondary sustained calcium levels in neurons. Furthermore, AST regulates the ionotropic glutamate subtype receptors NMDA, AMPA, KA and mitochondrial calcium. Moreover, AST decreases NMDA and AMPA receptor protein expression levels, while KA remains unaffected. Overall, our results indicate that AST protects neurons from excitotoxic neuronal injury by regulating ionotropic glutamate receptors, cytosolic secondary calcium rise and mitochondrial calcium buffering. Hence, AST could be a promising therapeutic agent against excitotoxic insults in neurodegenerative diseases.
Collapse
|
37
|
Scheid S, Lejarre A, Wollborn J, Buerkle H, Goebel U, Ulbrich F. Argon preconditioning protects neuronal cells with a Toll-like receptor-mediated effect. Neural Regen Res 2022; 18:1371-1377. [PMID: 36453425 PMCID: PMC9838174 DOI: 10.4103/1673-5374.355978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The noble gas argon has the potential to protect neuronal cells from cell death. So far, this effect has been studied in treatment after acute damage. Preconditioning using argon has not yet been investigated. In this study, human neuroblastoma SH-SY5Y cells were treated with different concentrations of argon (25%, 50%, and 74%; 21% O2, 5% CO2, balance nitrogen) at different time intervals before inflicting damage with rotenone (20 µM, 4 hours). Apoptosis was determined by flow cytometry after annexin V and propidium iodide staining. Surface expressions of Toll-like receptors 2 and 4 were also examined. Cells were also processed for analysis by western blot and qPCR to determine the expression of apoptotic and inflammatory proteins, such as extracellular-signal regulated kinase (ERK1/2), nuclear transcription factor-κB (NF-κB), protein kinase B (Akt), caspase-3, Bax, Bcl-2, interleukin-8, and heat shock proteins. Immunohistochemical staining was performed for TLR2 and 4 and interleukin-8. Cells were also pretreated with OxPAPC, an antagonist of TLR2 and 4 to elucidate the molecular mechanism. Results showed that argon preconditioning before rotenone application caused a dose-dependent but not a time-dependent reduction in the number of apoptotic cells. Preconditioning with 74% argon for 2 hours was used for further experiments showing the most promising results. Argon decreased the surface expression of TLR2 and 4, whereas OxPAPC treatment partially abolished the protective effect of argon. Argon increased phosphorylation of ERK1/2 but decreased NF-κB and Akt. Preconditioning inhibited mitochondrial apoptosis and the heat shock response. Argon also suppressed the expression of the pro-inflammatory cytokine interleukin-8. Immunohistochemistry confirmed the alteration of TLRs and interleukin-8. OxPAPC reversed the argon effect on ERK1/2, Bax, Bcl-2, caspase-3, and interleukin-8 expression, but not on NF-κB and the heat shock proteins. Taken together, argon preconditioning protects against apoptosis of neuronal cells and mediates its action via Toll-like receptors. Argon may represent a promising therapeutic alternative in various clinical settings, such as the treatment of stroke.
Collapse
Affiliation(s)
- Stefanie Scheid
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Adrien Lejarre
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Jakob Wollborn
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany,Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Hartmut Buerkle
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Ulrich Goebel
- Department of Anesthesiology and Critical Care Medicine, St. Franziskus-Hospital, Muenster, Germany
| | - Felix Ulbrich
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany,Correspondence to: Felix Ulbrich, .
| |
Collapse
|
38
|
Dubey Tiwari K, Sharma G, Prakash M, Parihar M, Dawane V. Effects of high glutamate concentrations on mitochondria of human neuroblastoma SH-SY5Y cells. ANNALES PHARMACEUTIQUES FRANÇAISES 2022; 81:457-465. [PMID: 36252868 DOI: 10.1016/j.pharma.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/17/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND The excess amount of glutamate in neurons is associated with the excitotoxicity and neurodegenerative diseases. Glutamate induces neurotoxicity primarily by immense influx of Ca2+ arising from overstimulation of the NMDA subtype of glutamate receptors. The neuronal death induced by the overstimulation of glutamate receptors depends critically on a sustained increase in mitochondrial Ca2+ influx and impairment in mitochondrial functions. The mitochondrial impairment is an important contributor to the glutamate-induced neuronal toxicity and thus provides an important target for the intervention. The present study investigates the effects of high glutamate concentrations on mitochondrial functions. RESULTS Here, we have shown that the higher concentration of glutamate treatment caused a significant elevation in the N-methyl-D-aspartate (NMDA) receptors expression and elevated the intra-mitochondrial calcium accumulation in SHSY5Y neuronal cells. As a result of an accumulation of intra-mitochondrial calcium, there is a concentration-dependent elevation in ROS in the mitochondria. Tyrosine nitration of several mitochondrial proteins was increased while the mitochondrial membrane potential was dissipated. Furthermore, glutamate treatments also resulted in mitochondrial membrane permeability transition. CONCLUSIONS These findings suggest that treatment of high glutamate concentration causes impairment of mitochondrial functions by an increase in intra-mitochondrial calcium, ROS production, dissipation of mitochondrial membrane potential and mitochondrial permeability transition pore opening in human neuroblastoma SHSY5Y cells.
Collapse
|
39
|
Lin MM, Liu N, Qin ZH, Wang Y. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacol Sin 2022; 43:2439-2447. [PMID: 35233090 PMCID: PMC9525705 DOI: 10.1038/s41401-022-00879-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
Both mitochondrial dysfunction and neuroinflammation are implicated in neurodegeneration and neurodegenerative diseases. Accumulating evidence shows multiple links between mitochondrial dysfunction and neuroinflammation. Mitochondrial-derived damage-associated molecular patterns (DAMPs) are recognized by immune receptors of microglia and aggravate neuroinflammation. On the other hand, inflammatory factors released by activated glial cells trigger an intracellular cascade, which regulates mitochondrial metabolism and function. The crosstalk between mitochondrial dysfunction and neuroinflammatory activation is a complex and dynamic process. There is strong evidence that mitochondrial dysfunction precedes neuroinflammation during the progression of diseases. Thus, an in-depth understanding of the specific molecular mechanisms associated with mitochondrial dysfunction and the progression of neuroinflammation in neurodegenerative diseases may contribute to the identification of new targets for the treatment of diseases. In this review, we describe in detail the DAMPs that induce or aggravate neuroinflammation in neurodegenerative diseases including mtDNA, mitochondrial unfolded protein response (mtUPR), mitochondrial reactive oxygen species (mtROS), adenosine triphosphate (ATP), transcription factor A mitochondria (TFAM), cardiolipin, cytochrome c, mitochondrial Ca2+ and iron.
Collapse
Affiliation(s)
- Miao-Miao Lin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Na Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
40
|
Zhao X, Cheng P, Xu R, Meng K, Liao S, Jia P, Zheng X, Xiao C. Insights into the development of pentylenetetrazole-induced epileptic seizures from dynamic metabolomic changes. Metab Brain Dis 2022; 37:2441-2455. [PMID: 35838870 DOI: 10.1007/s11011-022-01018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
Epilepsy is often considered to be a progressive neurological disease, and the nature of this progression remains unclear. Understanding the overall and common metabolic changes of epileptic seizures can provide novel clues for their control and prevention. Herein, a chronic kindling animal model was established to obtain generalized tonic-clonic seizures via the repeated injections of pentylenetetrazole (PTZ) at subconvulsive dose. Dynamic metabolomic changes in plasma and urine from PTZ-kindled rats at the different kindling phases were explored using NMR-based metabolomics, in combination with behavioral assessment, brain neurotransmitter measurement, electroencephalography and histopathology. The increased levels of glucose, lactate, glutamate, creatine and creatinine, together with the decreased levels of pyruvate, citrate and succinate, ketone bodies, asparagine, alanine, leucine, valine and isoleucine in plasma and/or urine were involved in the development and progression of seizures. These altered metabolites reflected the pathophysiological processes including the compromised energy metabolism, the disturbed amino acid metabolism, the peripheral inflammation and changes in gut microbiota functions. NMR-based metabolomics could provide brain disease information by the dynamic plasma and urinary metabolic changes during chronic epileptic seizures, yielding classification of seizure stages and profound insights into controlling epilepsy via targeting deficient energy metabolism.
Collapse
Affiliation(s)
- Xue Zhao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Peixuan Cheng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Ru Xu
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Kaili Meng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Sha Liao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Pu Jia
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Xiaohui Zheng
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China
| | - Chaoni Xiao
- The College of Life Sciences, Northwest University, 710069, Xi'an, PR China.
| |
Collapse
|
41
|
Aussel A, Ranta R, Aron O, Colnat-Coulbois S, Maillard L, Buhry L. Cell to network computational model of the epileptic human hippocampus suggests specific roles of network and channel dysfunctions in the ictal and interictal oscillations. J Comput Neurosci 2022; 50:519-535. [PMID: 35971033 DOI: 10.1007/s10827-022-00829-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 10/15/2022]
Abstract
The mechanisms underlying the generation of hippocampal epileptic seizures and interictal events and their interactions with the sleep-wake cycle are not yet fully understood. Indeed, medial temporal lobe epilepsy is associated with hippocampal abnormalities both at the neuronal (channelopathies, impaired potassium and chloride dynamics) and network level (neuronal and axonal loss, mossy fiber sprouting), with more frequent seizures during wakefulness compared with slow-wave sleep. In this article, starting from our previous computational modeling work of the hippocampal formation based on realistic topology and synaptic connectivity, we study the role of micro- and mesoscale pathological conditions of the epileptic hippocampus in the generation and maintenance of seizure-like theta and interictal oscillations. We show, through the simulations of hippocampal activity during slow-wave sleep and wakefulness that: (i) both mossy fiber sprouting and sclerosis account for seizure-like theta activity, (ii) but they have antagonist effects (seizure-like activity occurrence increases with sprouting but decreases with sclerosis), (iii) though impaired potassium and chloride dynamics have little influence on the generation of seizure-like activity, they do play a role on the generation of interictal patterns, and (iv) seizure-like activity and fast ripples are more likely to occur during wakefulness and interictal spikes during sleep.
Collapse
Affiliation(s)
- Amélie Aussel
- Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA UMR 7503), University of Lorraine, 54506, Nancy, France. .,Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.
| | - Radu Ranta
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France
| | - Olivier Aron
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Sophie Colnat-Coulbois
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Louise Maillard
- Centre de Recherche en Automatique de Nancy, University of Lorraine, CRAN-CNRS UMR 7039, Nancy, France.,Department of Neurology, CHU de Nancy, Nancy, France
| | - Laure Buhry
- Laboratoire Lorrain de Recherche en Informatique et ses applications (LORIA UMR 7503), University of Lorraine, 54506, Nancy, France
| |
Collapse
|
42
|
Telegina DV, Antonenko AK, Fursova AZ, Kolosova NG. The glutamate/GABA system in the retina of male rats: effects of aging, neurodegeneration, and supplementation with melatonin and antioxidant SkQ1. Biogerontology 2022; 23:571-585. [PMID: 35969289 DOI: 10.1007/s10522-022-09983-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
Glutamate and -aminobutyric acid (GABA) are the most abundant amino acids in the retina. An imbalance of the glutamate/GABA system is involved in the pathogenesis of various neurodegenerative disorders. Here we for the first time analyzed alterations of expression of glutamate- and GABA-synthesizing enzymes, transporters, and relevant receptors in the retina with age in Wistar rats and in senescence-accelerated OXYS rats who develop AMD-like retinopathy. We noted consistent age-dependent expression changes of GABAergic-system proteins (GAD67, GABA-T, and GAT1) in OXYS and Wistar rats: upregulation by age 3 months and downregulation at age 18 months. At a late stage of AMD-like retinopathy in OXYS rats (18 months), there was significant upregulation of glutaminase and downregulation of glutamine synthetase, possibly indicating an increasing level of glutamate in the retina. AMD-like-retinopathy development in the OXYS strain was accompanied by underexpression of glutamate transporter GLAST. Prolonged supplementation with both melatonin and SkQ1 (separately) suppressed the progression of the AMD-like pathology in OXYS rats without affecting the glutamate/GABA system but worsened the condition of the Wistar rat's retina during normal aging. We observed decreasing protein levels of glutamine synthetase, GLAST, and GABAAR1 and an increasing level of glutaminase in Wistar rats. In summary, both melatonin and mitochondrial antioxidant SkQ1 had different effect on the retinal glutamate / GABA in healthy Wistar and senescence-accelerated OXYS rats.
Collapse
|
43
|
Liang L, Silva AM, Jeon P, Ford SD, MacKinley M, Théberge J, Palaniyappan L. Widespread cortical thinning, excessive glutamate and impaired linguistic functioning in schizophrenia: A cluster analytic approach. Front Hum Neurosci 2022; 16:954898. [PMID: 35992940 PMCID: PMC9390601 DOI: 10.3389/fnhum.2022.954898] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Symptoms of schizophrenia are closely related to aberrant language comprehension and production. Macroscopic brain changes seen in some patients with schizophrenia are suspected to relate to impaired language production, but this is yet to be reliably characterized. Since heterogeneity in language dysfunctions, as well as brain structure, is suspected in schizophrenia, we aimed to first seek patient subgroups with different neurobiological signatures and then quantify linguistic indices that capture the symptoms of "negative formal thought disorder" (i.e., fluency, cohesion, and complexity of language production). Methods Atlas-based cortical thickness values (obtained with a 7T MRI scanner) of 66 patients with first-episode psychosis and 36 healthy controls were analyzed with hierarchical clustering algorithms to produce neuroanatomical subtypes. We then examined the generated subtypes and investigated the quantitative differences in MRS-based glutamate levels [in the dorsal anterior cingulate cortex (dACC)] as well as in three aspects of language production features: fluency, syntactic complexity, and lexical cohesion. Results Two neuroanatomical subtypes among patients were observed, one with near-normal cortical thickness patterns while the other with widespread cortical thinning. Compared to the subgroup of patients with relatively normal cortical thickness patterns, the subgroup with widespread cortical thinning was older, with higher glutamate concentration in dACC and produced speech with reduced mean length of T-units (complexity) and lower repeats of content words (lexical cohesion), despite being equally fluent (number of words). Conclusion We characterized a patient subgroup with thinner cortex in first-episode psychosis. This subgroup, identifiable through macroscopic changes, is also distinguishable in terms of neurochemistry (frontal glutamate) and language behavior (complexity and cohesion of speech). This study supports the hypothesis that glutamate-mediated cortical thinning may contribute to a phenotype that is detectable using the tools of computational linguistics in schizophrenia.
Collapse
Affiliation(s)
- Liangbing Liang
- Graduate Program in Neuroscience, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
| | | | - Peter Jeon
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Sabrina D. Ford
- Robarts Research Institute, Western University, London, ON, Canada
- London Health Sciences Centre, Victoria Hospital, London, ON, Canada
| | - Michael MacKinley
- Robarts Research Institute, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Jean Théberge
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
| | - Lena Palaniyappan
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
44
|
Palmieri I, Poloni TE, Medici V, Zucca S, Davin A, Pansarasa O, Ceroni M, Tronconi L, Guaita A, Gagliardi S, Cereda C. Differential Neuropathology, Genetics, and Transcriptomics in Two Kindred Cases with Alzheimer’s Disease and Lewy Body Dementia. Biomedicines 2022; 10:biomedicines10071687. [PMID: 35884993 PMCID: PMC9313121 DOI: 10.3390/biomedicines10071687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) and Lewy body dementia (LBD) are two different forms of dementia, but their pathology may involve the same cortical areas with overlapping cognitive manifestations. Nonetheless, the clinical phenotype is different due to the topography of the lesions driven by the different underlying molecular processes that arise apart from genetics, causing diverse neurodegeneration. Here, we define the commonalities and differences in the pathological processes of dementia in two kindred cases, a mother and a son, who developed classical AD and an aggressive form of AD/LBD, respectively, through a neuropathological, genetic (next-generation sequencing), and transcriptomic (RNA-seq) comparison of four different brain areas. A genetic analysis did not reveal any pathogenic variants in the principal AD/LBD-causative genes. RNA sequencing highlighted high transcriptional dysregulation within the substantia nigra in the AD/LBD case, while the AD case showed lower transcriptional dysregulation, with the parietal lobe being the most involved brain area. The hippocampus (the most degenerated area) and basal ganglia (lacking specific lesions) expressed the lowest level of dysregulation. Our data suggest that there is a link between transcriptional dysregulation and the amount of tissue damage accumulated across time, assessed through neuropathology. Moreover, we highlight that the molecular bases of AD and LBD follow very different pathways, which underlie their neuropathological signatures. Indeed, the transcriptome profiling through RNA sequencing may be an important tool in flanking the neuropathological analysis for a deeper understanding of AD and LBD pathogenesis.
Collapse
Affiliation(s)
- Ilaria Palmieri
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (I.P.); (M.C.); (S.G.); (C.C.)
| | - Tino Emanuele Poloni
- Department of Neurology-Neuropathology and Abbiategrasso Brain Bank, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy; (T.E.P.); (V.M.); (A.G.)
- Department of Rehabilitation, ASP Golgi-Redaelli, Abbiategrasso, 20081 Milan, Italy
| | - Valentina Medici
- Department of Neurology-Neuropathology and Abbiategrasso Brain Bank, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy; (T.E.P.); (V.M.); (A.G.)
| | | | - Annalisa Davin
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Orietta Pansarasa
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (I.P.); (M.C.); (S.G.); (C.C.)
- Correspondence:
| | - Mauro Ceroni
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (I.P.); (M.C.); (S.G.); (C.C.)
- Department of Neurology-Neuropathology and Abbiategrasso Brain Bank, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy; (T.E.P.); (V.M.); (A.G.)
| | - Livio Tronconi
- U.O. Medicina Legale, IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Unit of Legal Medicine and Forensic Sciences “A. Fornari”, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Antonio Guaita
- Department of Neurology-Neuropathology and Abbiategrasso Brain Bank, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy; (T.E.P.); (V.M.); (A.G.)
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Stella Gagliardi
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (I.P.); (M.C.); (S.G.); (C.C.)
| | - Cristina Cereda
- IRCCS Mondino Foundation, 27100 Pavia, Italy; (I.P.); (M.C.); (S.G.); (C.C.)
- Department of Women, Mothers and Neonatal Care, Children’s Hospital “V. Buzzi”, 20100 Milan, Italy
| |
Collapse
|
45
|
Shandilya A, Mehan S, Kumar S, Sethi P, Narula AS, Alshammari A, Alharbi M, Alasmari AF. Activation of IGF-1/GLP-1 Signalling via 4-Hydroxyisoleucine Prevents Motor Neuron Impairments in Experimental ALS-Rats Exposed to Methylmercury-Induced Neurotoxicity. Molecules 2022; 27:3878. [PMID: 35745001 PMCID: PMC9228431 DOI: 10.3390/molecules27123878] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe adult motor neuron disease that causes progressive neuromuscular atrophy, muscle wasting, weakness, and depressive-like symptoms. Our previous research suggests that mercury levels are directly associated with ALS progression. MeHg+-induced ALS is characterised by oligodendrocyte destruction, myelin basic protein (MBP) depletion, and white matter degeneration, leading to demyelination and motor neuron death. The selection of MeHg+ as a potential neurotoxicant is based on our evidence that it has been connected to the development of ALS-like characteristics. It causes glutamate-mediated excitotoxicity, calcium-dependent neurotoxicity, and an ALS-like phenotype. Dysregulation of IGF-1/GLP-1 signalling has been associated with ALS progression. The bioactive amino acid 4-hydroxyisoleucine (HI) from Trigonella foenum graecum acts as an insulin mimic in rodents and increases insulin sensitivity. This study examined the neuroprotective effects of 4-HI on MeHg+-treated adult Wistar rats with ALS-like symptoms, emphasising brain IGF1/GLP-1 activation. Furthermore, we investigated the effect of 4-HI on MBP levels in rat brain homogenate, cerebrospinal fluid (CSF), blood plasma, and cell death indicators such as caspase-3, Bax, and Bcl-2. Rats were assessed for muscular strength, locomotor deficits, depressed behaviour, and spatial learning in the Morris water maze (MWM) to measure neurobehavioral abnormalities. Doses of 4-HI were given orally for 42 days in the MeHg+ rat model at 50 mg/kg or 100 mg/kg to ameliorate ALS-like neurological dysfunctions. Additionally, neurotransmitters and oxidative stress markers were examined in rat brain homogenates. Our findings suggest that 4-HI has neuroprotective benefits in reducing MeHg+-induced behavioural, neurochemical, and histopathological abnormalities in ALS-like rats exposed to methylmercury.
Collapse
Affiliation(s)
- Ambika Shandilya
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (A.S.); (S.K.); (P.S.)
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (A.S.); (S.K.); (P.S.)
| | - Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (A.S.); (S.K.); (P.S.)
| | - Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (A.S.); (S.K.); (P.S.)
| | - Acharan S. Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA;
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (A.F.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (A.F.A.)
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.); (A.F.A.)
| |
Collapse
|
46
|
Sarić N, Hashimoto-Torii K, Jevtović-Todorović V, Ishibashi N. Nonapoptotic caspases in neural development and in anesthesia-induced neurotoxicity. Trends Neurosci 2022; 45:446-458. [PMID: 35491256 PMCID: PMC9117442 DOI: 10.1016/j.tins.2022.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Apoptosis, classically initiated by caspase pathway activation, plays a prominent role during normal brain development as well as in neurodegeneration. The noncanonical, nonlethal arm of the caspase pathway is evolutionarily conserved and has also been implicated in both processes, yet is relatively understudied. Dysregulated pathway activation during critical periods of neurodevelopment due to environmental neurotoxins or exposure to compounds such as anesthetics can have detrimental consequences for brain maturation and long-term effects on behavior. In this review, we discuss key molecular characteristics and roles of the noncanonical caspase pathway and how its dysregulation may adversely affect brain development. We highlight both genetic and environmental factors that regulate apoptotic and sublethal caspase responses and discuss potential interventions that target the noncanonical caspase pathway for developmental brain injuries.
Collapse
Affiliation(s)
- Nemanja Sarić
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | | | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA; Department of Pediatrics, Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Children's National Heart Institute, Children's National Hospital, Washington, DC, USA.
| |
Collapse
|
47
|
Sultan FA, Sawaya BE. Gadd45 in Neuronal Development, Function, and Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:117-148. [PMID: 35505167 DOI: 10.1007/978-3-030-94804-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The growth arrest and DNA damage-inducible (Gadd) 45 proteins have been associated with numerous cellular mechanisms including cell cycle control, DNA damage sensation and repair, genotoxic stress, neoplasia, and molecular epigenetics. The genes were originally identified in in vitro screens of irradiation- and interleukin-induced transcription and have since been implicated in a host of normal and aberrant central nervous system processes. These include early and postnatal development, injury, cancer, memory, aging, and neurodegenerative and psychiatric disease states. The proteins act through a variety of molecular signaling cascades including the MAPK cascade, cell cycle control mechanisms, histone regulation, and epigenetic DNA demethylation. In this review, we provide a comprehensive discussion of the literature implicating each of the three members of the Gadd45 family in these processes.
Collapse
Affiliation(s)
- Faraz A Sultan
- Department of Psychiatry, Rush University, Chicago, IL, USA.
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,FELS Cancer Institute for Personalized Medicine Institute, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Departments of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Cancer and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.,Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
48
|
Cell models for Alzheimer’s and Parkinson’s disease: At the interface of biology and drug discovery. Biomed Pharmacother 2022; 149:112924. [DOI: 10.1016/j.biopha.2022.112924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
|
49
|
Kunkl M, Amormino C, Tedeschi V, Fiorillo MT, Tuosto L. Astrocytes and Inflammatory T Helper Cells: A Dangerous Liaison in Multiple Sclerosis. Front Immunol 2022; 13:824411. [PMID: 35211120 PMCID: PMC8860818 DOI: 10.3389/fimmu.2022.824411] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) characterized by the recruitment of self-reactive T lymphocytes, mainly inflammatory T helper (Th) cell subsets. Once recruited within the CNS, inflammatory Th cells produce several inflammatory cytokines and chemokines that activate resident glial cells, thus contributing to the breakdown of blood-brain barrier (BBB), demyelination and axonal loss. Astrocytes are recognized as key players of MS immunopathology, which respond to Th cell-defining cytokines by acquiring a reactive phenotype that amplify neuroinflammation into the CNS and contribute to MS progression. In this review, we summarize current knowledge of the astrocytic changes and behaviour in both MS and experimental autoimmune encephalomyelitis (EAE), and the contribution of pathogenic Th1, Th17 and Th1-like Th17 cell subsets, and CD8+ T cells to the morphological and functional modifications occurring in astrocytes and their pathological outcomes.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
50
|
Hohmann U, Ghadban C, Hohmann T, Kleine J, Schmidt M, Scheller C, Strauss C, Dehghani F. Nimodipine Exerts Time-Dependent Neuroprotective Effect after Excitotoxical Damage in Organotypic Slice Cultures. Int J Mol Sci 2022; 23:ijms23063331. [PMID: 35328753 PMCID: PMC8954806 DOI: 10.3390/ijms23063331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
During injuries in the central nervous system, intrinsic protective processes become activated. However, cellular reactions, especially those of glia cells, are frequently unsatisfactory, and further exogenous protective mechanisms are necessary. Nimodipine, a lipophilic L-type calcium channel blocking agent is clinically used in the treatment of aneurysmal subarachnoid haemorrhage with neuroprotective effects in different models. Direct effects of nimodipine on neurons amongst others were observed in the hippocampus as well as its influence on both microglia and astrocytes. Earlier studies proposed that nimodipine protective actions occur not only via calcium channel-mediated vasodilatation but also via further time-dependent mechanisms. In this study, the effect of nimodipine application was investigated in different time frames on neuronal damage in excitotoxically lesioned organotypic hippocampal slice cultures. Nimodipine, but not nifedipine if pre-incubated for 4 h or co-applied with NMDA, was protective, indicating time dependency. Since blood vessels play no significant role in our model, intrinsic brain cell-dependent mechanisms seems to strongly be involved. We also examined the effect of nimodipine and nifedipine on microglia survival. Nimodipine seem to be a promising agent to reduce secondary damage and reduce excitotoxic damage.
Collapse
Affiliation(s)
- Urszula Hohmann
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Chalid Ghadban
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Tim Hohmann
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Joshua Kleine
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Miriam Schmidt
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
| | - Christian Scheller
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (C.S.); (C.S.)
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (C.S.); (C.S.)
| | - Faramarz Dehghani
- Medical Faculty, Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany; (U.H.); (C.G.); (T.H.); (J.K.); (M.S.)
- Correspondence: ; Tel.: +49-3455571707
| |
Collapse
|