1
|
Inskeep KA, Crase B, Dayarathna T, Stottmann RW. SMPD4-mediated sphingolipid metabolism regulates brain and primary cilia development. Development 2024; 151:dev202645. [PMID: 39470011 PMCID: PMC11586524 DOI: 10.1242/dev.202645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Genetic variants in multiple sphingolipid biosynthesis genes cause human brain disorders. A recent study looked at people from 12 unrelated families with variants in the gene SMPD4, a neutral sphingomyelinase that metabolizes sphingomyelin into ceramide at an early stage of the biosynthesis pathway. These individuals have severe developmental brain malformations, including microcephaly and cerebellar hypoplasia. The disease mechanism of SMPD4 was not known and so we pursued a new mouse model. We hypothesized that the role of SMPD4 in producing ceramide is important for making primary cilia, a crucial organelle mediating cellular signaling. We found that the mouse model has cerebellar hypoplasia due to failure of Purkinje cell development. Human induced pluripotent stem cells lacking SMPD4 exhibit neural progenitor cell death and have shortened primary cilia, which is rescued by adding exogenous ceramide. SMPD4 production of ceramide is crucial for human brain development.
Collapse
Affiliation(s)
- Katherine A. Inskeep
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Bryan Crase
- Department of Neuroscience, The Ohio State University College of Arts and Sciences, Columbus, OH 43210, USA
| | - Thamara Dayarathna
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Rolf W. Stottmann
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Inskeep KA, Crase B, Stottmann RW. SMPD4 mediated sphingolipid metabolism regulates brain and primary cilia development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571873. [PMID: 38168190 PMCID: PMC10760124 DOI: 10.1101/2023.12.15.571873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Genetic variants in multiple sphingolipid biosynthesis genes cause human brain disorders. A recent study collected patients from twelve unrelated families with variants in the gene SMPD4 , a neutral sphingomyelinase which metabolizes sphingomyelin into ceramide at an early stage of the biosynthesis pathway. These patients have severe developmental brain malformations including microcephaly and cerebellar hypoplasia. However, the mechanism of SMPD4 was not known and we pursued a new mouse model. We hypothesized that the role of SMPD4 in producing ceramide is important for making primary cilia, a crucial organelle mediating cellular signaling. We found that the mouse model has cerebellar hypoplasia due to failure of Purkinje cell development. Human induced pluripotent stem cells exhibit neural progenitor cell death and have shortened primary cilia which is rescued by adding exogenous ceramide. SMPD4 production of ceramide is crucial for human brain development.
Collapse
|
3
|
Leibel SL, Tseu I, Zhou A, Hodges A, Yin J, Bilodeau C, Goltsis O, Post M. Metabolomic profiling of human pluripotent stem cell differentiation into lung progenitors. iScience 2022; 25:103797. [PMID: 35198866 PMCID: PMC8850758 DOI: 10.1016/j.isci.2022.103797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
Metabolism is vital to cellular function and tissue homeostasis during human lung development. In utero, embryonic pluripotent stem cells undergo endodermal differentiation toward a lung progenitor cell fate that can be mimicked in vitro using induced human pluripotent stem cells (hiPSCs) to study genetic mutations. To identify differences between wild-type and surfactant protein B (SFTPB)-deficient cell lines during endoderm specification toward lung, we used an untargeted metabolomics approach to evaluate the developmental changes in metabolites. We found that the metabolites most enriched during the differentiation from pluripotent stem cell to lung progenitor cell, regardless of cell line, were sphingomyelins and phosphatidylcholines, two important lipid classes in lung development. The SFTPB mutation had no metabolic impact on early endodermal lung development. The identified metabolite signatures during lung progenitor cell differentiation may be utilized as biomarkers for normal embryonic lung development.
Collapse
Affiliation(s)
- Sandra L Leibel
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92037, USA.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Irene Tseu
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Anson Zhou
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Andrew Hodges
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jun Yin
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Claudia Bilodeau
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Olivia Goltsis
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| |
Collapse
|
4
|
Yue L, Lu X, Dennery PA, Yao H. Metabolic dysregulation in bronchopulmonary dysplasia: Implications for identification of biomarkers and therapeutic approaches. Redox Biol 2021; 48:102104. [PMID: 34417157 PMCID: PMC8710987 DOI: 10.1016/j.redox.2021.102104] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/03/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants. Accumulating evidence shows that dysregulated metabolism of glucose, lipids and amino acids are observed in premature infants. Animal and cell studies demonstrate that abnormal metabolism of these substrates results in apoptosis, inflammation, reduced migration, abnormal proliferation or senescence in response to hyperoxic exposure, and that rectifying metabolic dysfunction attenuates neonatal hyperoxia-induced alveolar simplification and vascular dysgenesis in the lung. BPD is often associated with several comorbidities, including pulmonary hypertension and neurodevelopmental abnormalities, which significantly increase the morbidity and mortality of this disease. Here, we discuss recent progress on dysregulated metabolism of glucose, lipids and amino acids in premature infants with BPD and in related in vivo and in vitro models. These findings suggest that metabolic dysregulation may serve as a biomarker of BPD and plays important roles in the pathogenesis of this disease. We also highlight that targeting metabolic pathways could be employed in the prevention and treatment of BPD.
Collapse
Affiliation(s)
- Li Yue
- Department of Orthopedics, Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Xuexin Lu
- Department of Pediatrics, Ascension St. John Hospital, Detroit, MI, USA
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA; Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Li ZT, Yau LF, Qiu Y, Li SQ, Zhan YQ, Chan WH, Chen ZM, Li Z, Li Y, Lin Y, Cheng J, Zhang JQ, Jiang ZH, Wang JR, Ye F. Serum Sphingolipids Aiding the Diagnosis of Adult HIV-Negative Patients with Talaromyces marneffei Infection. Front Cell Infect Microbiol 2021; 11:701913. [PMID: 34262882 PMCID: PMC8274425 DOI: 10.3389/fcimb.2021.701913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Increasing attention has been directed to Talaromyces marneffei (T. marneffei) infection in HIV-negative patients due to its high mortality rate. However, nonspecific symptoms and biological characteristics similar to those of other common pathogenic fungi complicate the rapid and accurate diagnosis of T. marneffei infection. Sphingolipids (SPLs) are bioactive lipids involved in the regulation of various physiological and pathological processes and have been identified as serum biomarkers for several diseases. This study employed a sphingolipidomic approach established in our previous work to explore the use of serum SPLs in the diagnosis of HIV-negative patients with T. marneffei infection. Additional clinical cohorts of patients infected with other microorganisms were also recruited. We found that sphinganine (Sa) (d16:0) exhibited obvious depletion after infection; moreover, its level in patients with T. marneffei infection was significantly lower than that in patients infected with other microorganisms. Therefore, Sa (d16:0) was considered a specific diagnostic biomarker for T. marneffei infection, and 302.71 nM was selected as the optimal cutoff value with a diagnostic sensitivity of 87.5% and specificity of 100%. These results suggested that determination of serum Sa (d16:0) levels can be used as a new alternative tool for the rapid diagnosis of T. marneffei infection in HIV-negative patients.
Collapse
Affiliation(s)
- Zheng-Tu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Lee-Fong Yau
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Ye Qiu
- Department of Comprehensive Internal Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Shao-Qiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Yang-Qing Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Wai-Him Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Zhao-Ming Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Zhun Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Yongming Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Ye Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Jing Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| | - Jian-Quan Zhang
- Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, National Center for Respiratory Medicine, Guangzhou, China
| |
Collapse
|
6
|
Berkowitz L, Henríquez MP, Salazar C, Rojas E, Echeverría G, Love GD, Rigotti A, Coe CL, Ryff CD. Association between serum sphingolipids and eudaimonic well-being in white U.S. adults. Sci Rep 2021; 11:13139. [PMID: 34162955 PMCID: PMC8222370 DOI: 10.1038/s41598-021-92576-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022] Open
Abstract
Emerging research has linked psychological well-being with many physiological markers as well as morbidity and mortality. In this analysis, the relationship between components of eudaimonic well-being and serum sphingolipids levels was investigated using data from a large national survey of middle-aged American adults (Midlife in the United States). Health behaviors (i.e., diet, exercise, and sleep) were also examined as potential mediators of these relationships. Serum levels of total ceramides-the main molecular class of sphingolipids previously associated with several disease conditions-were inversely linked with environmental mastery. In addition, significant correlations were found between specific ceramide, dihydroceramide, and hexosylceramides species with environmental mastery, purpose in life, and self-acceptance. Using hierarchical regression and mediation analyses, health behaviors appeared to mediate these associations. However, the link between ceramides and environmental mastery was partially independent of health behaviors, suggesting the role of additional mediating factors. These findings point to sphingolipid metabolism as a novel pathway of health benefits associated with psychological well-being. In particular, having a sense of environmental mastery may promote restorative behaviors and benefit health via improved blood sphingolipid profiles.
Collapse
Affiliation(s)
- Loni Berkowitz
- Department of Nutrition, Diabetes and Metabolism, Center of Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 328, Santiago, Chile.
| | | | - Cristian Salazar
- Department of Nutrition, Diabetes and Metabolism, Center of Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 328, Santiago, Chile
| | - Eric Rojas
- Department of Clinical Laboratory, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guadalupe Echeverría
- Department of Nutrition, Diabetes and Metabolism, Center of Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 328, Santiago, Chile
| | - Gayle D Love
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Attilio Rigotti
- Department of Nutrition, Diabetes and Metabolism, Center of Molecular Nutrition and Chronic Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 328, Santiago, Chile
| | - Christopher L Coe
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Carol D Ryff
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
James BN, Oyeniran C, Sturgill JL, Newton J, Martin RK, Bieberich E, Weigel C, Maczis MA, Palladino END, Lownik JC, Trudeau JB, Cook-Mills JM, Wenzel S, Milstien S, Spiegel S. Ceramide in apoptosis and oxidative stress in allergic inflammation and asthma. J Allergy Clin Immunol 2021; 147:1936-1948.e9. [PMID: 33130063 PMCID: PMC8081742 DOI: 10.1016/j.jaci.2020.10.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 09/29/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Nothing is known about the mechanisms by which increased ceramide levels in the lung contribute to allergic responses and asthma severity. OBJECTIVE We sought to investigate the functional role of ceramide in mouse models of allergic airway disease that recapitulate the cardinal clinical features of human allergic asthma. METHODS Allergic airway disease was induced in mice by repeated intranasal administration of house dust mite or the fungal allergen Alternaria alternata. Processes that can be regulated by ceramide and are important for severity of allergic asthma were correlated with ceramide levels measured by mass spectrometry. RESULTS Both allergens induced massive pulmonary apoptosis and also significantly increased reactive oxygen species in the lung. Prevention of increases in lung ceramide levels mitigated allergen-induced apoptosis, reactive oxygen species, and neutrophil infiltration. In contrast, dietary supplementation of the antioxidant α-tocopherol decreased reactive oxygen species but had no significant effects on elevation of ceramide level or apoptosis, indicating that the increases in lung ceramide levels in allergen-challenged mice are not mediated by oxidative stress. Moreover, specific ceramide species were altered in bronchoalveolar lavage fluid from patients with severe asthma compared with in bronchoalveolar lavage fluid from individuals without asthma. CONCLUSION Our data suggest that elevation of ceramide level after allergen challenge contributes to the apoptosis, reactive oxygen species generation, and neutrophilic infiltrate that characterize the severe asthmatic phenotype. Ceramide might be the trigger of formation of Creola bodies found in the sputum of patients with severe asthma and could be a biomarker to optimize diagnosis and to monitor and improve clinical outcomes in this disease.
Collapse
Affiliation(s)
- Briana N James
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Clement Oyeniran
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Jamie L Sturgill
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kentucky College of Medicine, Lexington, Ky
| | - Jason Newton
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Rebecca K Martin
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Ky
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Melissa A Maczis
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Elisa N D Palladino
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Joseph C Lownik
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - John B Trudeau
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Joan M Cook-Mills
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana School of Medicine, Indianapolis, Ind
| | - Sally Wenzel
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | - Sheldon Milstien
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, Va.
| |
Collapse
|
8
|
Roberts K, Stepanovich G, Bhatt-Mehta V, Donn SM. New Pharmacologic Approaches to Bronchopulmonary Dysplasia. J Exp Pharmacol 2021; 13:377-396. [PMID: 33790663 PMCID: PMC8006962 DOI: 10.2147/jep.s262350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary Dysplasia is the most common long-term respiratory morbidity of preterm infants, with the risk of development proportional to the degree of prematurity. While its pathophysiologic and histologic features have changed over time as neonatal demographics and respiratory therapies have evolved, it is now thought to be characterized by impaired distal lung growth and abnormal pulmonary microvascular development. Though the exact sequence of events leading to the development of BPD has not been fully elucidated and likely varies among patients, it is thought to result from inflammatory and mechanical/oxidative injury from chronic ventilatory support in fragile, premature lungs susceptible to injury from surfactant deficiency, structural abnormalities, inadequate antioxidant defenses, and a chest wall that is more compliant than the lung. In addition, non-pulmonary issues may adversely affect lung development, including systemic infections and insufficient nutrition. Once BPD has developed, its management focuses on providing adequate gas exchange while promoting optimal lung growth. Pharmacologic strategies to ameliorate or prevent BPD continue to be investigated. A variety of agents, to be reviewed henceforth, have been developed or re-purposed to target different points in the pathways that lead to BPD, including anti-inflammatories, diuretics, steroids, pulmonary vasodilators, antioxidants, and a number of molecules involved in the cell signaling cascade thought to be involved in the pathogenesis of BPD.
Collapse
Affiliation(s)
- Katelyn Roberts
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Gretchen Stepanovich
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Varsha Bhatt-Mehta
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
- College of Pharmacy, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Steven M Donn
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Hyperoxic Exposure Caused Lung Lipid Compositional Changes in Neonatal Mice. Metabolites 2020; 10:metabo10090340. [PMID: 32825609 PMCID: PMC7569933 DOI: 10.3390/metabo10090340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022] Open
Abstract
Treatments with supplemental oxygen in premature infants can impair lung development, leading to bronchopulmonary dysplasia (BPD). Although a stage-specific alteration of lung lipidome occurs during postnatal lung development, whether neonatal hyperoxia, a known mediator of BPD in rodent models, changes lipid profiles in mouse lungs is still to be elucidated. To answer this question, newborn mice were exposed to hyperoxia for 3 days and allowed to recover in normoxia until postnatal day (pnd) 7 and pnd14, time-points spanning the peak stage of alveologenesis. A total of 2263 lung lipid species were detected by liquid chromatography–mass spectrometry, covering 5 lipid categories and 18 lipid subclasses. The most commonly identified lipid species were glycerophospholipids, followed by sphingolipids and glycerolipids. In normoxic conditions, certain glycerophospholipid and glycerolipid species augmented at pnd14 compared to pnd7. At pnd7, hyperoxia generally increased glycerophospholipid, sphingolipid, and glycerolipid species. Hyperoxia increased NADPH, acetyl CoA, and citrate acid but reduced carnitine and acyl carnitine. Hyperoxia increased oxidized glutathione but reduced catalase. These changes were not apparent at pnd14. Hyperoxia reduced docosahexaenoic acid and arachidonic acid at pnd14 but not at pnd7. Altogether, the lung lipidome changes throughout alveolarization. Neonatal hyperoxia alters the lung lipidome, which may contribute to alveolar simplification and dysregulated vascular development.
Collapse
|
10
|
Brack E, Wachtel M, Wolf A, Kaech A, Ziegler U, Schäfer BW. Fenretinide induces a new form of dynamin-dependent cell death in pediatric sarcoma. Cell Death Differ 2020; 27:2500-2516. [PMID: 32144381 DOI: 10.1038/s41418-020-0518-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Alveolar rhabdomyosarcoma (aRMS) is a highly malicious childhood malignancy characterized by specific chromosomal translocations mostly encoding the oncogenic transcription factor PAX3-FOXO1 and therefore also referred to as fusion-positive RMS (FP-RMS). Previously, we have identified fenretinide (retinoic acid p-hydroxyanilide) to affect PAX3-FOXO1 expression levels as well as FP-RMS cell viability. Here, we characterize the mode of action of fenretinide in more detail. First, we demonstrate that fenretinide-induced generation of reactive oxygen species (ROS) depends on complex II of the mitochondrial respiratory chain, since ROS scavenging as well as complexing of iron completely abolished cell death. Second, we co-treated cells with a range of pharmacological inhibitors of specific cell death pathways including z-vad (apoptosis), necrostatin-1 (necroptosis), 3-methyladenine (3-MA) (autophagy), and ferrostatin-1 (ferroptosis) together with fenretinide. Surprisingly, none of these inhibitors was able to prevent cell death. Also genetic depletion of key players in the apoptotic and necroptotic pathway (BAK, BAX, and RIPK1) confirmed the pharmacological data. Interestingly however, electron microscopy of fenretinide-treated cells revealed an excessive accumulation of cytoplasmic vacuoles, which were distinct from autophagosomes. Further flow cytometry and fluorescence microscopy experiments suggested a hyperstimulation of macropinocytosis, leading to an accumulation of enlarged early and late endosomes. Surprisingly, pharmacological inhibition as well as genetic depletion of large dynamin GTPases completely abolished fenretinide-induced vesicle formation and subsequent cell death, suggesting a new form of dynamin-dependent programmed cell death. Taken together, our data identify a new form of cell death mediated through the production of ROS by fenretinide treatment, highlighting the value of this compound for treatment of sarcoma patients including FP-RMS.
Collapse
Affiliation(s)
- Eva Brack
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anja Wolf
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Yeganeh B, Lee J, Bilodeau C, Lok I, Ermini L, Ackerley C, Caniggia I, Tibboel J, Kroon A, Post M. Acid Sphingomyelinase Inhibition Attenuates Cell Death in Mechanically Ventilated Newborn Rat Lung. Am J Respir Crit Care Med 2020; 199:760-772. [PMID: 30326731 DOI: 10.1164/rccm.201803-0583oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Premature infants subjected to mechanical ventilation (MV) are prone to lung injury that may result in bronchopulmonary dysplasia. MV causes epithelial cell death and halts alveolar development. The exact mechanism of MV-induced epithelial cell death is unknown. OBJECTIVES To determine the contribution of autophagy to MV-induced epithelial cell death in newborn rat lungs. METHODS Newborn rat lungs and fetal rat lung epithelial (FRLE) cells were exposed to MV and cyclic stretch, respectively, and were then analyzed by immunoblotting and mass spectrometry for autophagy, apoptosis, and bioactive sphingolipids. MEASUREMENTS AND MAIN RESULTS Both MV and stretch first induce autophagy (ATG 5-12 [autophagy related 5-12] and LC3B-II [microtubule-associated proteins 1A/1B light chain 3B-II] formation) followed by extrinsic apoptosis (cleaved CASP8/3 [caspase-8/3] and PARP [poly(ADP-ribose) polymerase] formation). Stretch-induced apoptosis was attenuated by inhibiting autophagy. Coimmunoprecipitation revealed that stretch promoted an interaction between LC3B and the FAS (first apoptosis signal) cell death receptor in FRLE cells. Ceramide levels, in particular C16 ceramide, were rapidly elevated in response to ventilation and stretch, and C16 ceramide treatment of FRLE cells induced autophagy and apoptosis in a temporal pattern similar to that seen with MV and stretch. SMPD1 (sphingomyelin phosphodiesterase 1) was activated by ventilation and stretch, and its inhibition prevented ceramide production, LC3B-II formation, LC3B/first apoptosis signal interaction, caspase-3 activation, and, ultimately, FLRE cell death. SMPD1 inhibition also attenuated ventilation-induced autophagy and apoptosis in newborn rats. CONCLUSIONS Ventilation-induced ceramides promote autophagy-mediated cell death, and identifies SMPD1 as a potential therapeutic target for the treatment of ventilation-induced lung injury in newborns.
Collapse
Affiliation(s)
- Behzad Yeganeh
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joyce Lee
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,2 Institute of Medical Science and
| | - Claudia Bilodeau
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,3 Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Irene Lok
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Leonardo Ermini
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cameron Ackerley
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Isabella Caniggia
- 4 Mount Sinai Hospital, the Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada; and
| | - Jeroen Tibboel
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,5 Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, the Netherlands
| | - Andre Kroon
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,5 Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, the Netherlands
| | - Martin Post
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,2 Institute of Medical Science and
| |
Collapse
|
12
|
Baumgartner T, Zurauskaite G, Steuer C, Bernasconi L, Huber A, Mueller B, Schuetz P. Association of serum sphingomyelin profile with clinical outcomes in patients with lower respiratory tract infections: results of an observational, prospective 6-year follow-up study. Clin Chem Lab Med 2019; 57:679-689. [PMID: 30267624 DOI: 10.1515/cclm-2018-0509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 08/21/2018] [Indexed: 01/11/2023]
Abstract
Background Sphingolipids - the structural cell membrane components - and their metabolites are involved in signal transduction and participate in the regulation of immunity. We investigated the prognostic implications of sphingolipid metabolic profiling on mortality in a large cohort of patients with lower respiratory tract infections (LRTIs). Methods We measured 15 different sphingomyelin (SM) types in patients with LRTIs from a previous Swiss multicenter trial that examined the impact of procalcitonin-guided antibiotic therapy on total antibiotic use and rates and duration of hospitalization. Primary and secondary end points were adverse outcomes - defined as death or intensive care unit admission within 30 days - and 6-year mortality. Results Of 360 patients, 8.9% experienced an adverse outcome within 30 days and 46% died within 6 years. Levels of all SM types were significantly lower in pneumonia patients vs. those with chronic obstructive pulmonary disease (COPD) exacerbation (p<0.0001 for all comparisons). Sphingomyelin subspecies SM (OH) C22:1 and SM (OH) C22:2 were associated with lower risk for short-term adverse outcomes (sex-, gender- and comorbidity-adjusted odds ratios [OR]: 0.036; 95% confidence interval [CI], 0.002-0.600; p=0.021 and 0.037; 95% CI, 0.001-0.848; p=0.039, respectively). We found no significant associations with 6-year mortality for any SM. Conclusions Circulating sphingolipid levels are lower in inflammatory conditions such as pneumonia and correlate with adverse short-term outcomes. Further characterization of the physiological, pathophysiological and metabolic roles of sphingolipids under inflammatory conditions may facilitate understanding of their roles in infectious disease.
Collapse
Affiliation(s)
- Thomas Baumgartner
- Division of Endocrinology, Diabetology and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland, Phone: 0041 62 838 68 32, Fax: 0041 62 838 98 73.,University Department of Internal Medicine, Kantonsspital Aarau, Tellstr., 5001 Aarau, Switzerland
| | - Giedre Zurauskaite
- Division of Endocrinology, Diabetology and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Christian Steuer
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Luca Bernasconi
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Andreas Huber
- Department of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Beat Mueller
- Division of Endocrinology, Diabetology and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| | - Philipp Schuetz
- Division of Endocrinology, Diabetology and Metabolism, Medical University Department, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
13
|
Mandell EW, Savani RC. Ceramides, Autophagy, and Apoptosis Mechanisms of Ventilator-induced Lung Injury and Potential Therapeutic Targets. Am J Respir Crit Care Med 2019; 199:687-689. [PMID: 30372122 PMCID: PMC6423105 DOI: 10.1164/rccm.201810-1857ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Erica W. Mandell
- Department of PediatricsUniversity of Colorado School of MedicineAurora, Coloradoand
| | - Rashmin C. Savani
- Department of PediatricsUniversity of Texas Southwestern Medical CenterDallas, Texas
| |
Collapse
|
14
|
Bodas M, Pehote G, Silverberg D, Gulbins E, Vij N. Autophagy augmentation alleviates cigarette smoke-induced CFTR-dysfunction, ceramide-accumulation and COPD-emphysema pathogenesis. Free Radic Biol Med 2019; 131:81-97. [PMID: 30500419 DOI: 10.1016/j.freeradbiomed.2018.11.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/27/2023]
Abstract
In this study, we aimed to investigate precise mechanism(s) of sphingolipid-imbalance and resulting ceramide-accumulation in COPD-emphysema. Where, human and murine emphysema lung tissues or human bronchial epithelial cells (Beas2b) were used for experimental analysis. We found that lungs of smokers and COPD-subjects with increasing emphysema severity demonstrate sphingolipid-imbalance, resulting in significant ceramide-accumulation and increased ceramide/sphingosine ratio, as compared to non-emphysema/non-smoker controls. Next, we found a substantial increase in emphysema chronicity-related ceramide-accumulation in murine (C57BL/6) lungs, while sphingosine levels only slightly increased. In accordance, the expression of the acid ceramidase decreased after CS-exposure. Moreover, CS-induced (sub-chronic) ceramide-accumulation was significantly (p < 0.05) reduced by treatment with TFEB/autophagy-inducing drug, gemfibrozil (GEM), suggesting that autophagy regulates CS-induced ceramide-accumulation. Next, we validated experimentally that autophagy/lipophagy-induction using an anti-oxidant, cysteamine, significantly (p < 0.05) reduces CS-extract (CSE)-mediated intracellular-ceramide-accumulation in p62 + aggresome-bodies. In addition to intracellular-accumulation, we found that CSE also induces membrane-ceramide-accumulation by ROS-dependent acid-sphingomyelinase (ASM) activation and plasma-membrane translocation, which was significantly controlled (p < 0.05) by cysteamine (an anti-oxidant) and amitriptyline (AMT, an inhibitor of ASM). Cysteamine-mediated and CSE-induced membrane-ceramide regulation was nullified by CFTR-inhibitor-172, demonstrating that CFTR controls redox impaired-autophagy dependent membrane-ceramide accumulation. In summary, our data shows that CS-mediated autophagy/lipophagy-dysfunction results in intracellular-ceramide-accumulation, while acquired CFTR-dysfunction-induced ASM causes membrane ceramide-accumulation. Thus, CS-exposure alters the sphingolipid-rheostat leading to the increased membrane- and intracellular- ceramide-accumulation inducing COPD-emphysema pathogenesis that is alleviated by treatment with cysteamine, a potent anti-oxidant with CFTR/autophagy-augmenting properties.
Collapse
Affiliation(s)
- Manish Bodas
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA
| | - Garrett Pehote
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA
| | - David Silverberg
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA
| | - Erich Gulbins
- Dept. of Molecular Biology, University of Duisburg-Essen, Germany and Dept. of Surgery, University of Cincinnati, OH, USA
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mt Pleasant, MI, USA; The Johns Hopkins University SOM University, Baltimore, MD, USA; VIJ Biotech LLC, Baltimore, MD, USA and 4Dx Ltd, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Wang Z, Liu G, Jiang J. Profiling of apoptosis- and autophagy-associated molecules in human lung cancer A549 cells in response to cisplatin treatment using stable isotope labeling with amino acids in cell culture. Int J Oncol 2019; 54:1071-1085. [PMID: 30664195 DOI: 10.3892/ijo.2019.4690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/01/2018] [Indexed: 11/06/2022] Open
Abstract
Cis‑diammine‑dichloro‑platinum II‑based adjuvant chemotherapy provides an alternative therapy to improve the survival of patients with lung tumors, especially those with non‑small cell lung cancer (NSCLC). However, drug resistance is a large clinical problem and its underlying mechanism remains unclear. In the present study, NSCLC A549 cells were treated with a low concentration of cisplatin in order to observe and determine the development of chemoresistance, via growth curves, colony forming assays and apoptosis assays. Then the induction of autophagy was examined in the cisplatin‑treated A549 cells with a fluorescence reporter. Profiled proteins in the cisplatin‑treated A549 cells were also assessed using the stable isotope labeling by amino acids in cell culture (SILAC) method, and then the differentially expressed molecules were verified. The results demonstrated that A549 cells became less sensitive to cisplatin [resistant A549 cells (A549R)] following 20 passages in the medium containing a low concentration of cisplatin, with less apoptotic cells post‑cisplatin treatment. A549R cells grew more efficiently in the cisplatin medium, with more colony formation and more cells migrating across the baseline. In addition, NSCLC results demonstrated that more autophagy‑related proteins (ATGs) were expressed in the A549R cells. Furthermore, the western blotting results confirmed this upregulation of ATGs in A549R cells. In addition, two repeated SILAC screening experiments recognized 15 proteins [glucose‑regulated protein, 78 kDa (GRP78), heat shock protein 71, pre‑mRNA processing factor 19, polypyrimidine tract binding protein 1, translationally controlled tumor protein, Cathepsin D, Cytochrome c, thioredoxin domain containing 5, MutS homolog (MSH) 6, Annexin A2 (ANXA2), BRCA2 and Cyclin dependent kinase inhibitor 1A interacting protein, MSH2, protein phosphatase 2A 55 kDa regulatory subunit Bα, Rho glyceraldehyde‑3‑phosphate‑dissociation inhibitor 1 and ANXA4] that were upregulated by >1.5‑fold in heavy (H)‑ and light (L)‑labeled A549R cells. In addition, 16 and 14 proteins were downregulated by >1.5‑fold in the H‑ and L‑labeled A549R cells, respectively. The majority of the downregulated proteins were associated with apoptosis. In conclusion, the present study isolated a cisplatin‑resistant human lung cancer A549 cell clone, with reduced apoptosis and high levels of autophagy, in response to cisplatin treatment. In cisplatin‑resistant A549R cells, SILAC proteomics recognized the high expression of GRP78 and other proteins that are associated with anti‑apoptosis and/or autophagy promotion.
Collapse
Affiliation(s)
- Zongqiang Wang
- Department of Medical Services, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Jinlan Jiang
- Science Research Center, Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
16
|
Sánchez-Soberón F, Cuykx M, Serra N, Linares V, Bellés M, Covaci A, Schuhmacher M. In-vitro metabolomics to evaluate toxicity of particulate matter under environmentally realistic conditions. CHEMOSPHERE 2018; 209:137-146. [PMID: 29929119 DOI: 10.1016/j.chemosphere.2018.06.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
In this pilot study three fractions of particulate matter (PM0.25, PM2.5-0.25, and PM10-2.5) were collected in three environments (classroom, home, and outdoors) in a village located nearby an industrial complex. Time-activity pattern of 20 students attending the classroom was obtained, and the dose of particles reaching the children's lungs under actual environmental conditions (i.e. real dose) was calculated via dosimetry model. The highest PM concentrations were reached in the classroom. Simulations showed that heavy intensity outdoor activities played a major role in PM deposition, especially in the upper part of the respiratory tract. The mass of PM10-2.5 reaching the alveoli was minor, while PM2.5-0.25 and PM0.25 apportion for most of the PM mass retained in the lungs. Consequently, PM2.5-0.25 and PM0.25 were the only fractions used in two subsequent toxicity assays onto alveolar cells (A549). First, a cytotoxicity dose-response assay was performed, and doses corresponding to 5% mortality (LC5) were estimated. Afterwards, two LC-MS metabolomic assays were conducted: one applying LC5, and another applying real dose. A lower estimated LC5 value was obtained for PM0.25 than PM2.5-0.25 (8.08 and 73.7 ng/mL respectively). The number of altered features after LC5 exposure was similar for both fractions (39 and 38 for PM0.25 and PM2.5-0.25 respectively), while after real dose exposure these numbers differed (10 and 5 for PM0.25 and PM2.5-0.25 respectively). The most metabolic changes were related to membrane and lung surfactant lipids. This study highlights the capacity of PM to alter metabolic profile of lung cells at conventional environmental levels.
Collapse
Affiliation(s)
- Francisco Sánchez-Soberón
- Universitat Rovira i Virgili, Chemical Engineering Department, Environmental Analysis and Management Group, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - Matthias Cuykx
- Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Noemí Serra
- Universitat Rovira i Virgili, School of Medicine, Laboratory of Toxicology and Environmental Health, San Lorenzo 21, 43201, Reus, Spain
| | - Victoria Linares
- Universitat Rovira i Virgili, School of Medicine, Laboratory of Toxicology and Environmental Health, San Lorenzo 21, 43201, Reus, Spain
| | - Montserrat Bellés
- Universitat Rovira i Virgili, School of Medicine, Laboratory of Toxicology and Environmental Health, San Lorenzo 21, 43201, Reus, Spain
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Marta Schuhmacher
- Universitat Rovira i Virgili, Chemical Engineering Department, Environmental Analysis and Management Group, Av. Països Catalans 26, 43007, Tarragona, Spain.
| |
Collapse
|
17
|
Zhou YZ, Xue LY, Gao L, Qin XM, Du GH. Ginger extract extends the lifespan of Drosophila melanogaster through antioxidation and ameliorating metabolic dysfunction. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
18
|
Kyle JE, Clair G, Bandyopadhyay G, Misra RS, Zink EM, Bloodsworth KJ, Shukla AK, Du Y, Lillis J, Myers JR, Ashton J, Bushnell T, Cochran M, Deutsch G, Baker ES, Carson JP, Mariani TJ, Xu Y, Whitsett JA, Pryhuber G, Ansong C. Cell type-resolved human lung lipidome reveals cellular cooperation in lung function. Sci Rep 2018; 8:13455. [PMID: 30194354 PMCID: PMC6128932 DOI: 10.1038/s41598-018-31640-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022] Open
Abstract
Cell type-resolved proteome analyses of the brain, heart and liver have been reported, however a similar effort on the lipidome is currently lacking. Here we applied liquid chromatography-tandem mass spectrometry to characterize the lipidome of major lung cell types isolated from human donors, representing the first lipidome map of any organ. We coupled this with cell type-resolved proteomics of the same samples (available at Lungmap.net). Complementary proteomics analyses substantiated the functional identity of the isolated cells. Lipidomics analyses showed significant variations in the lipidome across major human lung cell types, with differences most evident at the subclass and intra-subclass (i.e. total carbon length of the fatty acid chains) level. Further, lipidomic signatures revealed an overarching posture of high cellular cooperation within the human lung to support critical functions. Our complementary cell type-resolved lipid and protein datasets serve as a rich resource for analyses of human lung function.
Collapse
Affiliation(s)
- Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Gautam Bandyopadhyay
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Ravi S Misra
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Erika M Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Anil K Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yina Du
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jacquelyn Lillis
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Jason R Myers
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - John Ashton
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Timothy Bushnell
- Flow Cytometry Core Facility, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Matthew Cochran
- Flow Cytometry Core Facility, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, 98105, USA
| | - Erin S Baker
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - James P Carson
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX, 78712, USA
| | - Thomas J Mariani
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yan Xu
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Charles Ansong
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
19
|
Hendricks-Muñoz KD, Xu J, Voynow JA. Tracheal aspirate VEGF and sphingolipid metabolites in the preterm infant with later development of bronchopulmonary dysplasia. Pediatr Pulmonol 2018; 53:1046-1052. [PMID: 29687638 DOI: 10.1002/ppul.24022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/03/2018] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Vascular endothelial growth factor (VEGF) and sphingolipid metabolites, sphingosine 1-phosphate (S1P), and ceramides are important to lung development and repair. We hypothesized specific sphingolipid and VEGF alterations would be associated with BPD development and aimed to investigate the early tracheal aspirate (TA) VEGF and S1P relationship with later diagnosis of preterm infant bronchopulmonary dysplasia, BPD. DESIGN TA VEGF and lipidomics were measured in TA from Infants <32 weeks gestational age at birth with and without later BPD. BPD was defined using the NICHD severity BPD definition. Clinical demographics and medical course were identified with statistical analysis performed with JMP, Statistical Analysis Software. RESULTS The analysis included 25 infants (9 NoBPD and 16 BPD) with mean gestational age of 27.8 ± 2.5 SD weeks and 25.1 ± 1.9 SD weeks respectively, P < 0.01. Later development of BPD was associated with elevated mean TA VEGF 604.3 ± 150.2 SE pg/mL versus NoBPD 120 ± 34.3 SE pg/mL, elevated S1P, 11.5 ± 2.3 SE pmol/mL versus NoBPD 4.8 ± 0.6 SE pmol/mL, and elevated selected ceramides during the first week of life. CONCLUSIONS Airway VEGF and sphingolipid metabolites were distinctly elevated within the first days of postnatal life in preterm infants with later BPD progression. These biomarkers may be useful as indicators of lung injury development or as targets to decrease BPD risk.
Collapse
Affiliation(s)
- Karen D Hendricks-Muñoz
- Division of Neonatal Medicine, Department of Pediatrics, Children's Hospital of Richmond at VCU, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jie Xu
- Division of Neonatal Medicine, Department of Pediatrics, Children's Hospital of Richmond at VCU, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Judith A Voynow
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Richmond at VCU and School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
20
|
Zhang Y, Tang H, Yuan X, Ran Q, Wang X, Song Q, Zhang L, Qiu Y, Wang X. TGF-β3 Promotes MUC5AC Hyper-Expression by Modulating Autophagy Pathway in Airway Epithelium. EBioMedicine 2018; 33:242-252. [PMID: 29997053 PMCID: PMC6085582 DOI: 10.1016/j.ebiom.2018.06.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/13/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Mucus secretion accumulation in the airways may act as a contributing factor for the development of airflow limitation in severe fetal asthma patients. Accumulated evidences showed that transforming growth factor beta (TGF-β) plays a regulatory role in airway remodeling including mucus hyper-secretion in asthma. However, the detailed molecular mechanisms of TGF-β3 induced MUC5AC hyper-expression in airway epithelium remains unclear. Here, we demonstrated the pivotal roles of autophagy in regulation of MUC5AC hyper-production induced by TGF-β3 in airway epithelium. Our experimental data showed that inhibiting autophagy pathway in repeated ovalbumin (OVA) exposed mice exhibited decreased airway hyper-response and airway inflammation, diminishing the expression of Muc5ac and TGF-β3. Furthermore, our studies demonstrated that autophagy was induced upon exposure to TGF-β3 and then mediated MUC5AC hyper-expression by activating the activator protein-1 (AP-1) in human bronchial epithelial cells. Finally, Smad2/3 pathway was involved in TGF-β3-induced MUC5AC hyper-expressions by promoting autophagy. These data indicated that autophagy was required for TGF-β3 induced airway mucous hyper-production, and that inhibition of autophagy exerted therapeutic benefits for TGF-β3 induced airway mucus secretion.
Collapse
Affiliation(s)
- Yun Zhang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; First Department of Respiratory Disease, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Hongmei Tang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiefang Yuan
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qin Ran
- First Department of Respiratory Disease, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaoyun Wang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Qi Song
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Lei Zhang
- First Department of Respiratory Disease, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yuhuan Qiu
- First Department of Respiratory Disease, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xing Wang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
21
|
Titz B, Kogel U, Martin F, Schlage WK, Xiang Y, Nury C, Dijon S, Baumer K, Peric D, Bornand D, Dulize R, Phillips B, Leroy P, Vuillaume G, Lebrun S, Elamin A, Guedj E, Trivedi K, Ivanov NV, Vanscheeuwijck P, Peitsch MC, Hoeng J. A 90-day OECD TG 413 rat inhalation study with systems toxicology endpoints demonstrates reduced exposure effects of the aerosol from the carbon heated tobacco product version 1.2 (CHTP1.2) compared with cigarette smoke. II. Systems toxicology assessment. Food Chem Toxicol 2018; 115:284-301. [PMID: 29545142 DOI: 10.1016/j.fct.2018.02.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Modified risk tobacco products (MRTPs) have the potential to reduce smoking-related health risks. The Carbon Heated Tobacco Product 1.2 (CHTP1.2) is a potential MRTP that uses a pressed carbon heat source to generate an aerosol by heating tobacco. Here, we report the results from the systems toxicology arm of a 90-day rat inhalation study (OECD test guideline 413) to assess the effects of CHTP1.2 aerosol compared with cigarette smoke (CS). Transcriptomics, proteomics, and lipidomics analyses complemented the standard endpoints. In the respiratory nasal epithelium, CS induced an adaptive tissue and inflammatory response, which was much weaker after CHTP1.2 aerosol exposure, mostly limited to the highest CHTP1.2 concentration (at twice the 3R4F CS concentration: 50 vs. 23 μg nicotine/L), in female rats. In the lungs, the effects of CS exposure included inflammatory and cellular stress responses, which were absent or much lower after CHTP1.2 aerosol exposure. Outside of the respiratory tract, CS and CHTP1.2 aerosol induced effects that were previously associated with exposure to any nicotine-containing aerosol, e.g., lower lipid concentrations in serum. Overall, this systems toxicology analysis complements and confirms the results from classical toxicological endpoints and further suggests potentially reduced respiratory health risks of CHTP1.2.
Collapse
Affiliation(s)
- Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Ulrike Kogel
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, 51429, Bergisch Gladbach, Germany
| | - Yang Xiang
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Catherine Nury
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Sophie Dijon
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Karine Baumer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Dariusz Peric
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - David Bornand
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Remi Dulize
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Blaine Phillips
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore(2)
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Gregory Vuillaume
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Stefan Lebrun
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Keyur Trivedi
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Patrick Vanscheeuwijck
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2)
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000, Neuchatel, Switzerland(2).
| |
Collapse
|
22
|
Sun H, Yang L, Li MX, Fang H, Zhang AH, Song Q, Liu XY, Su J, Yu MD, Makino T, Wang XJ. UPLC-G2Si-HDMS untargeted metabolomics for identification of metabolic targets of Yin-Chen-Hao-Tang used as a therapeutic agent of dampness-heat jaundice syndrome. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1081-1082:41-50. [PMID: 29502028 DOI: 10.1016/j.jchromb.2018.02.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/17/2018] [Accepted: 02/24/2018] [Indexed: 12/25/2022]
Abstract
Yin-Chen-Hao-Tang (YCHT), the classic formulae of traditional Chinese medicine (TCM), is widely used to treat dampness-heat jaundice syndrome (DHJS) and various liver diseases. However, the therapeutic mechanism of YCHT is yet to have an integrated biological interpretation. In this work, we used metabolomics technology to reveal the adjustment of small molecule metabolites in body during the treatment of YCHT. Aim to discover the serum biomarkers which are associated with the treatment of DHJS against YCHT. Pathological results and biochemical indicators showed that the hepatic injury and liver index abnormalities caused by DHJS was effectively improve after treatment with YCHT. On the basis of effective treatment, ultra-high performance liquid chromatography (UPLC-G2Si-HDMS) combined with the multivariate statistical analysis method was utilized to analyze the serum samples. Finally, 22 biomarkers were identified by using mass spectrometry and illuminated the correlative metabolic pathways which play a significant role and as therapeutic targets in the treatment of DHJS. This work demonstrated that mass spectrometry metabolomics provides a new insight to elucidate the action mechanism of formulae.
Collapse
Affiliation(s)
- Hui Sun
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Le Yang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Meng-Xi Li
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Heng Fang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Ai-Hua Zhang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Qi Song
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Xing-Yuan Liu
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Jing Su
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Meng-Die Yu
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China
| | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 4678603, Japan
| | - Xi-Jun Wang
- Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Chinmedomics Research Center of State Administration of TCM, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road, 24, Harbin, China.
| |
Collapse
|
23
|
Chagovets V, Wang Z, Kononikhin A, Starodubtseva N, Borisova A, Salimova D, Popov I, Kozachenko A, Chingin K, Chen H, Frankevich V, Adamyan L, Sukhikh G. A Comparison of Tissue Spray and Lipid Extract Direct Injection Electrospray Ionization Mass Spectrometry for the Differentiation of Eutopic and Ectopic Endometrial Tissues. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:323-330. [PMID: 28956319 DOI: 10.1007/s13361-017-1792-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Recent research revealed that tissue spray mass spectrometry enables rapid molecular profiling of biological tissues, which is of great importance for the search of disease biomarkers as well as for online surgery control. However, the payback for the high speed of analysis in tissue spray analysis is the generally lower chemical sensitivity compared with the traditional approach based on the offline chemical extraction and electrospray ionization mass spectrometry detection. In this study, high resolution mass spectrometry analysis of endometrium tissues of different localizations obtained using direct tissue spray mass spectrometry in positive ion mode is compared with the results of electrospray ionization analysis of lipid extracts. Identified features in both cases belong to three lipid classes: phosphatidylcholines, phosphoethanolamines, and sphingomyelins. Lipids coverage is validated by hydrophilic interaction liquid chromatography with mass spectrometry of lipid extracts. Multivariate analysis of data from both methods reveals satisfactory differentiation of eutopic and ectopic endometrium tissues. Overall, our results indicate that the chemical information provided by tissue spray ionization is sufficient to allow differentiation of endometrial tissues by localization with similar reliability but higher speed than in the traditional approach relying on offline extraction. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Vitaliy Chagovets
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina Str, 117997, Moscow, Russia
| | - Zhihao Wang
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina Str, 117997, Moscow, Russia
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Road, Nanchang, 330013, China
| | - Alexey Kononikhin
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina Str, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudnyi, Moscow Region, Russia
| | - Natalia Starodubtseva
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina Str, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudnyi, Moscow Region, Russia
| | - Anna Borisova
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina Str, 117997, Moscow, Russia
| | - Dinara Salimova
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina Str, 117997, Moscow, Russia
| | - Igor Popov
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina Str, 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudnyi, Moscow Region, Russia
| | - Andrey Kozachenko
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina Str, 117997, Moscow, Russia
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Road, Nanchang, 330013, China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan Road, Nanchang, 330013, China.
| | - Vladimir Frankevich
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina Str, 117997, Moscow, Russia.
| | - Leila Adamyan
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina Str, 117997, Moscow, Russia
| | - Gennady Sukhikh
- V. I. Kulakov Research Center for Obstetrics, Gynecology, and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina Str, 117997, Moscow, Russia
| |
Collapse
|
24
|
Zhang SY, Shao D, Liu H, Feng J, Feng B, Song X, Zhao Q, Chu M, Jiang C, Huang W, Wang X. Metabolomics analysis reveals that benzo[a]pyrene, a component of PM 2.5, promotes pulmonary injury by modifying lipid metabolism in a phospholipase A2-dependent manner in vivo and in vitro. Redox Biol 2017; 13:459-469. [PMID: 28715731 PMCID: PMC5512213 DOI: 10.1016/j.redox.2017.07.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/26/2017] [Accepted: 07/02/2017] [Indexed: 12/17/2022] Open
Abstract
Particulate matter with an aerodynamic diameter less than 2.5μM (PM2.5) is one of the major environmental pollutants in China. In this study, we carried out a metabolomics profile study on PM2.5-induced inflammation. PM2.5 from Beijing, China, was collected and given to rats through intra-tracheal instillation in vivo. Acute pulmonary injury were observed by pulmonary function assessment and H.E. staining. The lipid metabolic profile was also altered with increased phospholipid and sphingolipid metabolites in broncho-alveolar lavage fluid (BALF) after PM2.5 instillation. Organic component analysis revealed that benzo[a]pyrene (BaP) is one of the most abundant and toxic components in the PM2.5 collected on the fiber filter. In vitro, BaP was used to treat A549 cells, an alveolar type II cell line. BaP (4μM, 24h) induced inflammation in the cells. Metabolomics analysis revealed that BaP (4μM, 6h) treatment altered the cellular lipid metabolic profile with increased phospholipid metabolites and reduced sphingolipid metabolites and free fatty acids (FFAs). The proportion of ω-3 polyunsaturated fatty acid (PUFA) was also decreased. Mechanically, BaP (4μM) increased the phospholipase A2 (PLA2) activity at 4h as well as the mRNA level of Pla2g2a at 12h. The pro-inflammatory effect of BaP was reversed by the cytosolic PLA2 (cPLA2) inhibitor and chelator of intracellular Ca2+. This study revealed that BaP, as a component of PM2.5, induces pulmonary injury by activating PLA2 and elevating lysophosphatidylcholine (LPC) in a Ca2+-dependent manner in the alveolar type II cells.
Collapse
Affiliation(s)
- Song-Yang Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, People's Republic of China
| | - Danqing Shao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, People's Republic of China
| | - Huiying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, People's Republic of China
| | - Juan Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, People's Republic of China
| | - Baihuan Feng
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, People's Republic of China
| | - Xiaoming Song
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, People's Republic of China
| | - Qian Zhao
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, People's Republic of China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, People's Republic of China
| | - Wei Huang
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, People's Republic of China.
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, People's Republic of China.
| |
Collapse
|
25
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
26
|
Adamyan LV, Starodubtseva N, Borisova A, Stepanian AA, Chagovets V, Salimova D, Wang Z, Kononikhin A, Popov I, Bugrova A, Chingin K, Kozachenko A, Chen H, Frankevich V. Direct Mass Spectrometry Differentiation of Ectopic and Eutopic Endometrium in Patients with Endometriosis. J Minim Invasive Gynecol 2017; 25:426-433. [PMID: 28888701 DOI: 10.1016/j.jmig.2017.08.658] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023]
Abstract
STUDY OBJECTIVE To introduce a method for the rapid assessment of endometriotic tissues using direct mass spectrometry (MS)-based lipidomics. DESIGN A prospective observational cohort study (Canadian Task Force classification II2). SETTING Department of Operative Gynecology of the Research Centre for Obstetrics, Gynecology and Perinatology. PATIENTS Fifty patients with ovarian cysts and peritoneal endometriosis who underwent laparoscopic surgery between 2014 and 2016. INTERVENTION Differences in mass spectrometric profiles of ectopic endometria (endometriosis) and eutopic endometria were analyzed for each patient in combination with morphohistologic evaluation. The lipidomic approach was applied using a direct high-resolution MS method. MEASUREMENTS AND MAIN RESULTS Of 148 metabolites, 15 showed significant differences between endometriotic tissue and a healthy endometrium of the same patient, considered as a control in this study. The main lipids prevalent in endometriotic tissues were phosphoethanolamine (PE O-20:0), sphingomyelin (SM 34:1), diglycerides (DG 44:9), phosphatidylcholines (PC 32:1, PC O-36:3, PC 38:7, PC 38:6, PC 40:8, PC 40:7, PC 40:6, PC 40:9, and PC O-42:1), and triglycerides (TG 41:2, TG 49:4, and TG 52:3). Using partial least squares discriminant analysis models, MS showed that the lipidomic profile of endometriotic tissue (peritoneal endometriosis and ovarian endometriomas) was clearly separated from the eutopic endometrium, indicating tissue-type differentiation. CONCLUSION Our results suggest that direct MS may play an important role for endometriotic tissue identification. Such an approach has potential usefulness for real-time tissue determination and differentiation during surgical treatment. Lipids of 3 important classes, sphingolipids, phospholipids, and the fatty acids (di- and triglycerides), were identified. Validation is required to determine whether these lipids can be used to discriminate between patients with endometriosis and those with other gynecologic diseases.
Collapse
Affiliation(s)
- Leila V Adamyan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Natalia Starodubtseva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Moscow Institute of Physics and Technology, Moscow, Russia
| | - Anna Borisova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Assia A Stepanian
- Academia of Women's Health and Endoscopic Surgery, Atlanta, Georgia.
| | - Vitaliy Chagovets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Dinara Salimova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Zhihao Wang
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, China
| | - Alexey Kononikhin
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Moscow Institute of Physics and Technology, Moscow, Russia
| | - Igor Popov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia; Moscow Institute of Physics and Technology, Moscow, Russia
| | - Anna Bugrova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, China
| | - Andrey Kozachenko
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, Nanchang, China
| | - Vladimir Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
27
|
Liu Q, Hu S, He Y, Zhang J, Zeng X, Gong F, Liang L. The protective effects of Zhen-Wu-Tang against cisplatin-induced acute kidney injury in rats. PLoS One 2017; 12:e0179137. [PMID: 28586398 PMCID: PMC5460876 DOI: 10.1371/journal.pone.0179137] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 05/24/2017] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition that confers a risk of progression of chronic kidney disease and a high risk of death. The purpose of the current study is to investigate the anti-apoptotic and anti-fibrotic effects of Zhen-Wu-Tang (ZWT) on cisplatin (CIS)-induced renal injury and elucidate the involvement of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), the PI3K/Akt signaling pathway, transforming growth factor (TGF)-β and the Wnt/β-catenin signaling pathway in the positive effects of Zhen-Wu-Tang on the kidneys. Wistar rats were randomly assigned into six groups of 6 rats each as follows: normal control 1; normal control 2; CIS 1 and CIS 2, which received single intraperitoneal injections of CIS (6 mg/kg); CIS+ZWT 4 and CIS+ZWT 10, which received ZWT (1 ml/100 g/day, ig) starting days after the CIS injection for 4 and 10 days, respectively. Hematoxylin-eosin (H&E) staining was performed to identify the amelioration of histopathological changes in the kidneys and apoptosis of the renal proximal tubular cells. Picrosirius red staining was used to evaluate renal fibrosis after ZWT treatment. The relationship between ZWT and the upregulation of Nrf2, phosphorylation of Akt, and the downregulation of TGF-β and WNT/β-catenin were determined by Western blotting. At the end of the experiment, serum was isolated from the orbital blood of rats, and blood urea nitrogen (BUN) and creatinine (Cr) levels were measured. The results showed that ZWT restored the histological alterations, aberrant collagen deposition in the kidneys and the BUN and Cr levels that were increased by CIS. Treatment with ZWT reduced the expression levels of TGF-β and Wnt and increased the expression levels of Nrf2, PI3K and Akt in the CIS-exposed kidney tissues. Furthermore, ZWT downregulated apoptosis and fibrosis by modulating the expression levels of caspase-3, Bax and alpha-smooth muscle actin (α-SMA). In conclusion, this study provides evidence for the anti-fibrotic and anti-apoptotic roles of ZWT in CIS-induced experimental kidney injury.
Collapse
Affiliation(s)
- Qi Liu
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Shouyu Hu
- Department of Neurology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yi He
- Department of Urology, the Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jiashu Zhang
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaona Zeng
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Fengtao Gong
- College of pharmacy, Dalian Medical University, Dalian, Liaoning, China
| | - Li’na Liang
- College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning, China
- * E-mail:
| |
Collapse
|
28
|
Chagovets VV, Wang Z, Kononikhin AS, Starodubtseva NL, Borisova A, Salimova D, Popov IA, Kozachenko AV, Chingin K, Chen H, Frankevich VE, Adamyan LV, Sukhikh GT. Endometriosis foci differentiation by rapid lipid profiling using tissue spray ionization and high resolution mass spectrometry. Sci Rep 2017; 7:2546. [PMID: 28566741 PMCID: PMC5451410 DOI: 10.1038/s41598-017-02708-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/18/2017] [Indexed: 12/14/2022] Open
Abstract
Obtaining fast screening information on molecular composition of a tissue sample is of great importance for a disease biomarkers search and for online surgery control. In this study, high resolution mass spectrometry analysis of eutopic and ectopic endometrium tissues (90 samples) is done using direct tissue spray mass spectrometry in both positive and negative ion modes. The most abundant peaks in the both ion modes are those corresponding to lipids. Species of three lipid classes are observed, phosphatidylcholines (PC), sphingomyelins (SM) and phosphoethanolamines (PE). Direct tissue analysis gives mainly information on PC and SM lipids (29 species) in positive ion mode and PC, SM and PE lipids (50 species) in negative ion mode which gives complementary data for endometriosis foci differentiation. The biggest differences were found for phospholipids with polyunsaturated acyls and alkils. Although, tissue spray shows itself as appropriate tool for tissue investigation, caution should be paid to the interpretation of mass spectra because of their higher complexity with more possible adducts formation and multiple interferences must be taken into account. The present work extends the application of direct tissue analysis for the rapid differentiation between endometriotic tissues of different foci.
Collapse
Affiliation(s)
- Vitaliy V Chagovets
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Zhihao Wang
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan road, 330013, Nanchang, China
| | - Alexey S Kononikhin
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudnyi, Moscow Region, Russia
| | - Natalia L Starodubtseva
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudnyi, Moscow Region, Russia
| | - Anna Borisova
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Dinara Salimova
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Igor A Popov
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudnyi, Moscow Region, Russia
| | - Andrey V Kozachenko
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Konstantin Chingin
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan road, 330013, Nanchang, China
| | - Huanwen Chen
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology, 418 Guanglan road, 330013, Nanchang, China.
| | - Vladimir E Frankevich
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia.
| | - Leila V Adamyan
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| | - Gennady T Sukhikh
- V.I. Kulakov Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Healthcare of the Russian Federation, 4 Oparina str., 117997, Moscow, Russia
| |
Collapse
|
29
|
Messer JS. The cellular autophagy/apoptosis checkpoint during inflammation. Cell Mol Life Sci 2017; 74:1281-1296. [PMID: 27837217 PMCID: PMC11107496 DOI: 10.1007/s00018-016-2403-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/17/2016] [Accepted: 10/27/2016] [Indexed: 12/22/2022]
Abstract
Cell death is a major determinant of inflammatory disease severity. Whether cells live or die during inflammation largely depends on the relative success of the pro-survival process of autophagy versus the pro-death process of apoptosis. These processes interact and influence each other during inflammation and there is a checkpoint at which cells irrevocably commit to either one pathway or another. This review will discuss the concept of the autophagy/apoptosis checkpoint and its importance during inflammation, the mechanisms of inflammation leading up to the checkpoint, and how the checkpoint is regulated. Understanding these concepts is important since manipulation of the autophagy/apoptosis checkpoint represents a novel opportunity for treatment of inflammatory diseases caused by too much or too little cell death.
Collapse
Affiliation(s)
- Jeannette S Messer
- Department of Medicine, Knapp Center for Biomedical Discovery, University of Chicago, 900 E. 57th Street, 9th Floor, Chicago, IL, 60637, USA.
| |
Collapse
|
30
|
The microbiome-immune-host defense barrier complex (microimmunosome) and developmental programming of noncommunicable diseases. Reprod Toxicol 2017; 68:49-58. [DOI: 10.1016/j.reprotox.2016.04.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/15/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022]
|
31
|
Navarrete A, Rupérez FJ, Mendes TO, Pérez-Rial S, Girón-Martínez A, Terrón-Expósito R, Díaz-Gil JJ, Peces-Barba G, Barbas C, García A. A metabolomic approach shows sphingosine 1-phosphate and lysophospholipids as mediators of the therapeutic effect of liver growth factor in emphysema. J Pharm Biomed Anal 2017; 139:238-246. [PMID: 28314215 DOI: 10.1016/j.jpba.2017.02.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/18/2017] [Accepted: 02/26/2017] [Indexed: 02/06/2023]
Abstract
Tobacco smoke exposure is the principal cause of lung tissue destruction, which in turn results in emphysema that leads into shortness of breath. Liver growth factor (LGF, a cell and tissue regenerating factor with therapeutic activity in several organs) has antifibrotic and antioxidant properties that could be useful to promote lung tissue regenerating capacity in damaged lungs. The current study has examined differences in metabolite profiles (fingerprints) of plasma from mice (strain C57BL/6J, susceptible to develop emphysema) exposed to tobacco smoke during six months. One group of mice received a treatment with Liver Growth Factor (LGF) after emphysema was established, whereas the other group did not receive the treatment. Age and sex-matched mice not exposed to smoke were also maintained with or without treatment as controls. Metabolic fingerprints (untargeted analysis) of plasma after protein precipitation were obtained by LC-QTOF-MS. The signals were processed and a large number of possible metabolites were found (23944). Multivariate data analysis provided models that highlighted the differences between control and smoke exposed mice in both conditions. Accurate masses of features (possible compounds) representing significant differences were searched using online public databases. Lipid mediators, related to intracellular signaling in inflammation, were found among the metabolites putatively identified as markers of the different conditions and among them, sphingosine, sphingosine 1-phosphate and lysophospholipids point at the relevance of such metabolites in the regulation of the processes related to tissue regeneration mediated by LGF. These results also suggest that metabolomic fingerprinting could potentially guide the characterization of relevant metabolites leading the regeneration of lungs in emphysema disease.
Collapse
Affiliation(s)
- A Navarrete
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, 28668, Madrid, Spain
| | - F J Rupérez
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, 28668, Madrid, Spain
| | - T O Mendes
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, 28668, Madrid, Spain
| | - S Pérez-Rial
- Pulmonology Experimental Lab., IIS-Fundación Jiménez Díaz-UAM-CIBERES, Avenida Reyes Católicos 2, 28040, Madrid, Spain
| | - A Girón-Martínez
- Pulmonology Experimental Lab., IIS-Fundación Jiménez Díaz-UAM-CIBERES, Avenida Reyes Católicos 2, 28040, Madrid, Spain
| | - R Terrón-Expósito
- Pulmonology Experimental Lab., IIS-Fundación Jiménez Díaz-UAM-CIBERES, Avenida Reyes Católicos 2, 28040, Madrid, Spain
| | - J J Díaz-Gil
- Pulmonology Experimental Lab., IIS-Fundación Jiménez Díaz-UAM-CIBERES, Avenida Reyes Católicos 2, 28040, Madrid, Spain
| | - G Peces-Barba
- Pulmonology Experimental Lab., IIS-Fundación Jiménez Díaz-UAM-CIBERES, Avenida Reyes Católicos 2, 28040, Madrid, Spain
| | - C Barbas
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, 28668, Madrid, Spain
| | - A García
- CEMBIO (Center for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, Campus Montepríncipe, Boadilla del Monte, 28668, Madrid, Spain.
| |
Collapse
|
32
|
Lipidomics reveals dramatic lipid compositional changes in the maturing postnatal lung. Sci Rep 2017; 7:40555. [PMID: 28145528 PMCID: PMC5286405 DOI: 10.1038/srep40555] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/01/2016] [Indexed: 12/15/2022] Open
Abstract
Lung immaturity is a major cause of morbidity and mortality in premature infants. Understanding the molecular mechanisms driving normal lung development could provide insights on how to ameliorate disrupted development. While transcriptomic and proteomic analyses of normal lung development have been previously reported, characterization of changes in the lipidome is lacking. Lipids play significant roles in the lung, such as dipalmitoylphosphatidylcholine in pulmonary surfactant; however, many of the roles of specific lipid species in normal lung development, as well as in disease states, are not well defined. In this study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the murine lipidome during normal postnatal lung development. Lipidomics analysis of lungs from post-natal day 7, day 14 and 6–8 week mice (adult) identified 924 unique lipids across 21 lipid subclasses, with dramatic alterations in the lipidome across developmental stages. Our data confirmed previously recognized aspects of post-natal lung development and revealed several insights, including in sphingolipid-mediated apoptosis, inflammation and energy storage/usage. Complementary proteomics, metabolomics and chemical imaging corroborated these observations. This multi-omic view provides a unique resource and deeper insight into normal pulmonary development.
Collapse
|
33
|
Evaluation of the Tobacco Heating System 2.2. Part 7: Systems toxicological assessment of a mentholated version revealed reduced cellular and molecular exposure effects compared with mentholated and non-mentholated cigarette smoke. Regul Toxicol Pharmacol 2016; 81 Suppl 2:S123-S138. [DOI: 10.1016/j.yrtph.2016.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 12/29/2022]
|
34
|
Fu D, Li Y, Li J, Shi X, Yang R, Zhong Y, Wang H, Liao A. The effect of S1P receptor signaling pathway on the survival and drug resistance in multiple myeloma cells. Mol Cell Biochem 2016; 424:185-193. [PMID: 27785703 DOI: 10.1007/s11010-016-2854-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/22/2016] [Indexed: 11/30/2022]
Abstract
Multiple myeloma (MM) remains incurable by conventional chemotherapy. Sphingosine-1-phosphate (S1P) receptor-mediated signaling has been recently demonstrated to have critical roles in cell survival and drug resistance in a number of hematological malignancies. To dissect the roles of S1P receptor pathway in MM, we systematically examined cell viability and protein expression associated with cell survival and drug resistance in MM cell lines upon treatment with either pathway activator (S1P) or inhibitor (FTY720). Our results reveal that FTY720 inhibits cell proliferation by downregulating expression of target genes, while S1P has an opposite effect. Knocking down of S1P receptor S1P5R results in a reduction of cell survival-related gene expression; however, it does not have impacts on expression of drug resistance genes. These results suggest that S1P signaling plays a role in cell proliferation and drug resistance in MM, and targeting this pathway will provide a new therapeutic direction for MM management.
Collapse
Affiliation(s)
- Di Fu
- Department of Hematology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110021, Liaoning, China
| | - Yingchun Li
- Department of Hematology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110021, Liaoning, China
| | - Jia Li
- Department of Hematology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110021, Liaoning, China
| | - Xiaoyan Shi
- Department of Hematology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110021, Liaoning, China
| | - Ronghui Yang
- Department of Hematology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110021, Liaoning, China
| | - Yuan Zhong
- Department of Hematology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110021, Liaoning, China
| | - Huihan Wang
- Department of Hematology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110021, Liaoning, China
| | - Aijun Liao
- Department of Hematology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang, 110021, Liaoning, China.
| |
Collapse
|
35
|
Zhao J, Chen C, Guo M, Tao Y, Cui P, Zhou Y, Qin N, Zheng J, Zhang J, Xu L. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4. Front Immunol 2016; 7:389. [PMID: 27774091 PMCID: PMC5054040 DOI: 10.3389/fimmu.2016.00389] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/15/2016] [Indexed: 01/13/2023] Open
Abstract
Recent evidence showed that microRNA-7 (miR-7) played an important role in the pathologies of lung-related diseases. However, the potential role of miR-7 in acute lung injury (ALI) still remains poorly understood. Here, we assessed the effect of miR-7 deficiency on the pathology of ALI. We, first, found that the expression of miR-7 was upregulated in lung tissue in murine LPS-induced ALI model. Notably, we generated miR-7 knock down mice by using miRNA-Sponge technique and found that miR-7 deficiency could ameliorate the pathologies of lung as evidenced by accelerated body weight recovery, reduced level of bronchoalveolar lavage (BAL) proinflammatory cytokines and decreased number of BAL cells in ALI mice. Moreover, the proportion and number of various immune cells in BAL, including innate immune cell F4/80+ macrophages, γδT cells, NK1.1+ T cells, and CD11c+DCs, as well as adaptive immune cell CD4+ T cells and CD8+ T cells, also significantly changed, respectively. Mechanistic evidence showed that KLF4, a target molecule of miR-7, was upregulated in lung tissues in ALI model, accompanied by altered transduction of NF-κB, AKT, and ERK pathway. These data provided a previously unknown role of miR-7 in pathology of ALI, which could ultimately aid the understanding of development of ALI and the development of new therapeutic strategies against clinical inflammatory lung diseases.
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - Chao Chen
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - Mengmeng Guo
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - Yijin Tao
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - PanPan Cui
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical College , Guizhou , China
| | - Nalin Qin
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - Jing Zheng
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical College , Guizhou , China
| | - Lin Xu
- Department of Immunology, Zunyi Medical College , Guizhou , China
| |
Collapse
|
36
|
Aureli M, Schiumarini D, Loberto N, Bassi R, Tamanini A, Mancini G, Tironi M, Munari S, Cabrini G, Dechecchi MC, Sonnino S. Unravelling the role of sphingolipids in cystic fibrosis lung disease. Chem Phys Lipids 2016; 200:94-103. [DOI: 10.1016/j.chemphyslip.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
|
37
|
Snoek KG, Reiss IKM, Tibboel J, van Rosmalen J, Capolupo I, van Heijst A, Schaible T, Post M, Tibboel D. Sphingolipids in Congenital Diaphragmatic Hernia; Results from an International Multicenter Study. PLoS One 2016; 11:e0155136. [PMID: 27159222 PMCID: PMC4861280 DOI: 10.1371/journal.pone.0155136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Congenital diaphragmatic hernia is a severe congenital anomaly with significant mortality and morbidity, for instance chronic lung disease. Sphingolipids have shown to be involved in lung injury, but their role in the pathophysiology of chronic lung disease has not been explored. We hypothesized that sphingolipid profiles in tracheal aspirates could play a role in predicting the mortality/ development of chronic lung disease in congenital diaphragmatic hernia patients. Furthermore, we hypothesized that sphingolipid profiles differ between ventilation modes; conventional mechanical ventilation versus high-frequency oscillation. METHODS Sphingolipid levels in tracheal aspirates were determined at days 1, 3, 7 and 14 in 72 neonates with congenital diaphragmatic hernia, born after > 34 weeks gestation at four high-volume congenital diaphragmatic hernia centers. Data were collected within a multicenter trial of initial ventilation strategy (NTR 1310). RESULTS 36 patients (50.0%) died or developed chronic lung disease, 34 patients (47.2%) by stratification were initially ventilated by conventional mechanical ventilation and 38 patients (52.8%) by high-frequency oscillation. Multivariable logistic regression analysis with correction for side of the defect, liver position and observed-to-expected lung-to-head ratio, showed that none of the changes in sphingolipid levels were significantly associated with mortality /development of chronic lung disease. At day 14, long-chain ceramides 18:1 and 24:0 were significantly elevated in patients initially ventilated by conventional mechanical ventilation compared to high-frequency oscillation. CONCLUSIONS We could not detect significant differences in temporal sphingolipid levels in congenital diaphragmatic hernia infants with mortality/development of chronic lung disease versus survivors without development of CLD. Elevated levels of ceramides 18:1 and 24:0 in the conventional mechanical ventilation group when compared to high-frequency oscillation could probably be explained by high peak inspiratory pressures and remodeling of the alveolar membrane.
Collapse
Affiliation(s)
- Kitty G. Snoek
- Intensive Care and Department of Paediatric Surgery, Erasmus Medical Center- Sophia Children’s Hospital, Rotterdam, The Netherlands
- * E-mail:
| | - Irwin K. M. Reiss
- Department of Neonatology, Erasmus Medical Center- Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Jeroen Tibboel
- Intensive Care and Department of Paediatric Surgery, Erasmus Medical Center- Sophia Children’s Hospital, Rotterdam, The Netherlands
| | - Joost van Rosmalen
- Department of Biostatistics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Irma Capolupo
- Department of Medical and Surgical Neonatology, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Arno van Heijst
- Department of Neonatology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Thomas Schaible
- Department of Neonatology, Universitätsklinikum Mannheim, Mannheim, Germany
| | - Martin Post
- Program of Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Dick Tibboel
- Intensive Care and Department of Paediatric Surgery, Erasmus Medical Center- Sophia Children’s Hospital, Rotterdam, The Netherlands
| |
Collapse
|
38
|
Titz B, Boué S, Phillips B, Talikka M, Vihervaara T, Schneider T, Nury C, Elamin A, Guedj E, Peck MJ, Schlage WK, Cabanski M, Leroy P, Vuillaume G, Martin F, Ivanov NV, Veljkovic E, Ekroos K, Laaksonen R, Vanscheeuwijck P, Peitsch MC, Hoeng J. Effects of Cigarette Smoke, Cessation, and Switching to Two Heat-Not-Burn Tobacco Products on Lung Lipid Metabolism in C57BL/6 and Apoe-/- Mice-An Integrative Systems Toxicology Analysis. Toxicol Sci 2016; 149:441-57. [PMID: 26582801 PMCID: PMC4725611 DOI: 10.1093/toxsci/kfv244] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The impact of cigarette smoke (CS), a major cause of lung diseases, on the composition and metabolism of lung lipids is incompletely understood. Here, we integrated quantitative lipidomics and proteomics to investigate exposure effects on lung lipid metabolism in a C57BL/6 and an Apolipoprotein E-deficient (Apoe(-/-)) mouse study. In these studies, mice were exposed to high concentrations of 3R4F reference CS, aerosol from potential modified risk tobacco products (MRTPs) or filtered air (Sham) for up to 8 months. The 2 assessed MRTPs, the prototypical MRTP for C57BL/6 mice and the Tobacco Heating System 2.2 for Apoe(-/-) mice, utilize "heat-not-burn" technologies and were each matched in nicotine concentrations to the 3R4F CS. After 2 months of CS exposure, some groups were either switched to the MRTP or underwent cessation. In both mouse strains, CS strongly affected several categories of lung lipids and lipid-related proteins. Candidate surfactant lipids, surfactant proteins, and surfactant metabolizing proteins were increased. Inflammatory eicosanoids, their metabolic enzymes, and several ceramide classes were elevated. Overall, CS induced a coordinated lipid response controlled by transcription regulators such as SREBP proteins and supported by other metabolic adaptations. In contrast, most of these changes were absent in the mice exposed to the potential MRTPs, in the cessation group, and the switching group. Our findings demonstrate the complex biological response of the lungs to CS exposure and support the benefits of cessation or switching to a heat-not-burn product using a design such as those employed in this study.
Collapse
Affiliation(s)
- Bjoern Titz
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland; *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland;
| | - Stéphanie Boué
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Blaine Phillips
- Philip Morris International Research Laboratories, 50 Science Park Road, Singapore, Singapore; and
| | - Marja Talikka
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | | | - Thomas Schneider
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Catherine Nury
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Ashraf Elamin
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Emmanuel Guedj
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Michael J Peck
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Walter K Schlage
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Maciej Cabanski
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Patrice Leroy
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Gregory Vuillaume
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Florian Martin
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Nikolai V Ivanov
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Emilija Veljkovic
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Kim Ekroos
- Zora Biosciences Oy, Biologinkuja 1, 02150 Espoo, Finland
| | | | - Patrick Vanscheeuwijck
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Manuel C Peitsch
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland
| | - Julia Hoeng
- *Philip Morris International Research and Development, Quai Jeanrenaud 5, 2000 Neuchatel, Switzerland;
| |
Collapse
|
39
|
Zeki AA, Yeganeh B, Kenyon NJ, Post M, Ghavami S. Autophagy in airway diseases: a new frontier in human asthma? Allergy 2016; 71:5-14. [PMID: 26335713 DOI: 10.1111/all.12761] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 12/11/2022]
Abstract
The study of autophagy ('self-eating'), a fundamental cell fate pathway involved in physiological and pathological subcellular processes, opens a new frontier in the continuous search for novel therapies for human asthma. Asthma is a complex syndrome with different disease phenotypes. Autophagy plays a central role in cell physiology, energy and metabolism, and cell survival. Autophagy's hallmark is the formation of double-membrane autophagic autophagosomes, and this process is operational in airway epithelial and mesenchymal cells in asthma. Genetic associations between autophagy genes and asthma have been observed including single nucleotide polymorphisms in Atg5 which correlate with reduced lung function. Immune mechanisms important in asthma such as Th2 cells and eosinophils also manifest autophagy. Lastly, we address the role of autophagy in extracellular matrix deposition and fibrosis in asthmatic airways remodeling, a pathologic process still without effective therapy, and discuss potential pharmacologic inhibitors. We end by offering two opposing but plausible hypotheses as to how autophagy may be directly involved in airway fibrosis.
Collapse
Affiliation(s)
- A. A. Zeki
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine; Center for Comparative Respiratory Biology and Medicine; Davis CA USA
| | - B. Yeganeh
- Physiology and Experimental Medicine; Hospital for Sick Children (Sickkids); University of Toronto; Toronto ON Canada
| | - N. J. Kenyon
- Division of Pulmonary, Critical Care, and Sleep Medicine; Department of Internal Medicine; Center for Comparative Respiratory Biology and Medicine; Davis CA USA
| | - M. Post
- Physiology and Experimental Medicine; Hospital for Sick Children (Sickkids); University of Toronto; Toronto ON Canada
| | - S. Ghavami
- Department of Human Anatomy & Cell Science; Faculty of Health Sciences; College of Medicine; University of Manitoba; Winnipeg MB Canada
| |
Collapse
|
40
|
|