1
|
Xie F, Shen B, Luo Y, Zhou H, Xie Z, Zhu S, Wei X, Chang Z, Zhu Z, Ding C, Jin K, Yang C, Batzu L, Chaudhuri KR, Chan LL, Tan EK, Wang Q. Repetitive transcranial magnetic stimulation alleviates motor impairment in Parkinson's disease: association with peripheral inflammatory regulatory T-cells and SYT6. Mol Neurodegener 2024; 19:80. [PMID: 39456006 PMCID: PMC11515224 DOI: 10.1186/s13024-024-00770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been used to treat various neurological disorders. However, the molecular mechanism underlying the therapeutic effect of rTMS on Parkinson's disease (PD) has not been fully elucidated. Neuroinflammation like regulatory T-cells (Tregs) appears to be a key modulator of disease progression in PD. If rTMS affects the peripheral Tregs in PD remains unknown. METHODS Here, we conducted a prospective clinical study (Chinese ClinicalTrials. gov: ChiCTR 2100051140) involving 54 PD patients who received 10-day rTMS (10 Hz) stimulation on the primary motor cortex (M1) region or sham treatment. Clinical and function assessment as well as flow cytology study were undertaken in 54 PD patients who were consecutively recruited from the department of neurology at Zhujiang hospital between September 2021 and January 2022. Subsequently, we implemented flow cytometry analysis to examine the Tregs population in spleen of MPTP-induced PD mice that received rTMS or sham treatment, along with quantitative proteomic approach reveal novel molecular targets for Parkinson's disease, and finally, the RNA interference method verifies the role of these new molecular targets in the treatment of PD. RESULTS We demonstrated that a 10-day rTMS treatment on the M1 motor cortex significantly improved motor dysfunction in PD patients. The beneficial effects persisted for up to 40 days, and were associated with an increase in peripheral Tregs. There was a positive correlation between Tregs and motor improvements in PD cases. Similarly, a 10-day rTMS treatment on the brains of MPTP-induced PD mice significantly ameliorated motor symptoms. rTMS reversed the downregulation of circulating Tregs and tyrosine hydroxylase neurons in these mice. It also increased anti-inflammatory mediators, deactivated microglia, and decreased inflammatory cytokines. These effects were blocked by administration of a Treg inhibitor anti-CD25 antibody in MPTP-induced PD mice. Quantitative proteomic analysis identified TLR4, TH, Slc6a3 and especially Syt6 as the hub node proteins related to Tregs and rTMS therapy. Lastly, we validated the role of Treg and rTMS-related protein syt6 in MPTP mice using the virus interference method. CONCLUSIONS Our clinical and experimental studies suggest that rTMS improves motor function by modulating the function of Tregs and suppressing toxic neuroinflammation. Hub node proteins (especially Syt6) may be potential therapeutic targets. TRIAL REGISTRATION Chinese ClinicalTrials, ChiCTR2100051140. Registered 15 December 2021, https://www.chictr.org.cn/bin/project/edit?pid=133691.
Collapse
Affiliation(s)
- Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Bibiao Shen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yuqi Luo
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Hang Zhou
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhenchao Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhaohua Zhu
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Changhai Ding
- Clinical Research Centre, Orthopedic Centre, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Chengwu Yang
- Division of Biostatistics and Health Services Research, Department of Population and Quantitative Health Sciences, T. H. Chan School of Medicine, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Lucia Batzu
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - K Ray Chaudhuri
- Parkinson Foundation International Centre of Excellence at King's College Hospital, and Kings College, Denmark Hill, London, SE5 9RS, UK
| | - Ling-Ling Chan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- 7Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore, Singapore.
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China.
| |
Collapse
|
2
|
Paterno A, Polsinelli G, Federico B. Changes of brain-derived neurotrophic factor (BDNF) levels after different exercise protocols: a systematic review of clinical studies in Parkinson's disease. Front Physiol 2024; 15:1352305. [PMID: 38444767 PMCID: PMC10912511 DOI: 10.3389/fphys.2024.1352305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Background: Brain-Derived Neurotrophic Factor (BDNF) serum levels are reduced in patients with Parkinson's Disease (PD). Objectives: This study aimed to assess the effect of exercise intensity, volume and type on BDNF levels in patients with PD. Methods: We searched clinicaltrials.gov, CINAHL, Embase, PubMed, Scopus, Web of Science for both controlled and non-controlled studies in patients with PD, published between 2003 and 2022, which assessed Brain-Derived Neurotrophic Factor before and after different exercise protocols. Exercise intensity was estimated using a time-weighted average of Metabolic Equivalent of Task (MET), while exercise volume was estimated by multiplying MET for the duration of exercise. Exercise types were classified as aerobic, resistance, balance and others. We computed two distinct standardized measures of effects: Hedges' g to estimate differences between experimental and control group in pre-post intervention BDNF changes, and Cohen's d to measure pre-post intervention changes in BDNF values for each study arm. Meta-regression and linear regression were used to assess whether these effect measures were associated with intensity, volume and type. PROSPERO registration number: CRD42023418629. Results: Sixteen studies (8 two-arm trials and 8 single-arm trials) including 370 patients with PD were eligible for the systematic review. Selected studies had a large variability in terms of population and intervention characteristics. The meta-analysis showed a significant improvement in BDNF levels in the exercise group compared to the control group, Hedges' g = 0.70 (95% CI: 0.03, 1.38), with substantial heterogeneity (I2 = 76.0%). Between-group differences in intensity were positively associated with change in BDNF in a subset of 5 controlled studies. In the analysis which included non-controlled studies, intensity and total exercise volume were both positively associated with BDNF change. No difference was found according to exercise type. Conclusion: Exercises of greater intensity may increase BDNF levels in patients with PD, while the role of volume of exercise needs to be further explored.
Collapse
Affiliation(s)
- Andrea Paterno
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, Cassino, Italy
| | | | | |
Collapse
|
3
|
Fornari Laurindo L, Aparecido Dias J, Cressoni Araújo A, Torres Pomini K, Machado Galhardi C, Rucco Penteado Detregiachi C, Santos de Argollo Haber L, Donizeti Roque D, Dib Bechara M, Vialogo Marques de Castro M, de Souza Bastos Mazuqueli Pereira E, José Tofano R, Jasmin Santos German Borgo I, Maria Barbalho S. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front Immunol 2024; 14:1305933. [PMID: 38259497 PMCID: PMC10800801 DOI: 10.3389/fimmu.2023.1305933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The increasing life expectancy has led to a higher incidence of age-related neurodegenerative conditions. Within this framework, neuroinflammation emerges as a significant contributing factor. It involves the activation of microglia and astrocytes, leading to the release of pro-inflammatory cytokines and chemokines and the infiltration of peripheral leukocytes into the central nervous system (CNS). These instances result in neuronal damage and neurodegeneration through activated nucleotide-binding domain and leucine-rich repeat containing (NLR) family pyrin domain containing protein 3 (NLRP3) and nuclear factor kappa B (NF-kB) pathways and decreased nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Due to limited effectiveness regarding the inhibition of neuroinflammatory targets using conventional drugs, there is challenging growth in the search for innovative therapies for alleviating neuroinflammation in CNS diseases or even before their onset. Our results indicate that interventions focusing on Interleukin-Driven Immunomodulation, Chemokine (CXC) Receptor Signaling and Expression, Cold Exposure, and Fibrin-Targeted strategies significantly promise to mitigate neuroinflammatory processes. These approaches demonstrate potential anti-neuroinflammatory effects, addressing conditions such as Multiple Sclerosis, Experimental autoimmune encephalomyelitis, Parkinson's Disease, and Alzheimer's Disease. While the findings are promising, immunomodulatory therapies often face limitations due to Immune-Related Adverse Events. Therefore, the conduction of randomized clinical trials in this matter is mandatory, and will pave the way for a promising future in the development of new medicines with specific therapeutic targets.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Jefferson Aparecido Dias
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Karina Torres Pomini
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Cristiano Machado Galhardi
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Luíza Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Domingos Donizeti Roque
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Anatomy, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Ricardo José Tofano
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
| | - Iris Jasmin Santos German Borgo
- Department of Biological Sciences (Anatomy), School of Dentistry of Bauru, Universidade de São Paulo (FOB-USP), Bauru, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, Brazil
| |
Collapse
|
4
|
Cáceres C, Heusser B, Garnham A, Moczko E. The Major Hypotheses of Alzheimer's Disease: Related Nanotechnology-Based Approaches for Its Diagnosis and Treatment. Cells 2023; 12:2669. [PMID: 38067098 PMCID: PMC10705786 DOI: 10.3390/cells12232669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a well-known chronic neurodegenerative disorder that leads to the progressive death of brain cells, resulting in memory loss and the loss of other critical body functions. In March 2019, one of the major pharmaceutical companies and its partners announced that currently, there is no drug to cure AD, and all clinical trials of the new ones have been cancelled, leaving many people without hope. However, despite the clear message and startling reality, the research continued. Finally, in the last two years, the Food and Drug Administration (FDA) approved the first-ever medications to treat Alzheimer's, aducanumab and lecanemab. Despite researchers' support of this decision, there are serious concerns about their effectiveness and safety. The validation of aducanumab by the Centers for Medicare and Medicaid Services is still pending, and lecanemab was authorized without considering data from the phase III trials. Furthermore, numerous reports suggest that patients have died when undergoing extended treatment. While there is evidence that aducanumab and lecanemab may provide some relief to those suffering from AD, their impact remains a topic of ongoing research and debate within the medical community. The fact is that even though there are considerable efforts regarding pharmacological treatment, no definitive cure for AD has been found yet. Nevertheless, it is strongly believed that modern nanotechnology holds promising solutions and effective clinical strategies for the development of diagnostic tools and treatments for AD. This review summarizes the major hallmarks of AD, its etiological mechanisms, and challenges. It explores existing diagnostic and therapeutic methods and the potential of nanotechnology-based approaches for recognizing and monitoring patients at risk of irreversible neuronal degeneration. Overall, it provides a broad overview for those interested in the evolving areas of clinical neuroscience, AD, and related nanotechnology. With further research and development, nanotechnology-based approaches may offer new solutions and hope for millions of people affected by this devastating disease.
Collapse
Affiliation(s)
| | | | | | - Ewa Moczko
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar 2562307, Chile; (C.C.)
| |
Collapse
|
5
|
Li X, Huang Z, Lu T, Liang J, Guo H, Wang L, Chen Z, Zhou X, Du Q. Effect of virtual reality combined with repetitive transcranial magnetic stimulation on musculoskeletal pain and motor development in children with spastic cerebral palsy: a protocol for a randomized controlled clinical trial. BMC Neurol 2023; 23:339. [PMID: 37752420 PMCID: PMC10521467 DOI: 10.1186/s12883-023-03359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/03/2023] [Indexed: 09/28/2023] Open
Abstract
PURPOSE This trial aims to investigate the efficacy and safety of virtual reality (VR) combined with repetitive transcranial magnetic stimulation (rTMS) for improving musculoskeletal pain and motor development in children with unilateral spastic cerebral palsy (CP). METHODS This study protocol is for a randomized controlled trial consisting of 2 treatment sessions (3 days/week for 4 weeks in each session, with a 1-week interval between sessions). We will recruit children aged 3-10 years with unilateral spastic CP (Gross Motor Function Classification System level I or II). Participants will be randomly divided into 3 groups: the VR + rTMS group (immersive VR intervention, rTMS and routine rehabilitation therapy), rTMS group (rTMS and routine rehabilitation therapy), and control group (sham rTMS and routine rehabilitation therapy). VR therapy will involve a daily 40-minute movement training session in a fully immersive environment. rTMS will be applied at 1 Hz over the primary motor cortex for 20 min on the contralateral side. The stimulation intensity will be set at 90% of the resting motor threshold, with 1200 pulses applied. A daily 60-minute routine rehabilitation therapy session including motor training and training in activities of daily living will be administered to all participants. The primary outcome will be pain intensity, assessed by the Revised Face, Legs, Activity, Cry, and Consolability Scale (R-FLACC). The secondary outcomes will include motor development, evaluated by the 66-item version of the Gross Motor Function Measure (GMFM-66) and Fine Motor Function Measure (FMFM); balance capacity, measured by the interactive balance system; activities of daily living; and quality of life, measured by the Barthel index and the Chinese version of the Cerebral Palsy Quality of Life scale for Children (C-CP QOL-Child). Safety will be monitored, and adverse events will be recorded during and after treatment. DISCUSSION Combined application of VR therapy and rTMS may reveal additive effects on pain management and motor development in children with spastic CP, but further high-quality research is needed. The results of this trial may indicate whether VR therapy combined with rTMS achieves a better analgesic effect and improves the motor development of children with spastic CP. TRIAL REGISTRATION Registration number: ChiCTR230069853. Trial registration date: 28 March 2023. Prospectively registered.
Collapse
Affiliation(s)
- Xin Li
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zefan Huang
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tijiang Lu
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Juping Liang
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Haibin Guo
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Lixia Wang
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Zhengquan Chen
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Xuan Zhou
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Qing Du
- Department of Rehabilitation Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 1665 Kongjiang Road, Shanghai, 200092, China.
- Chongming Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, China.
| |
Collapse
|
6
|
Muksuris K, Scarisbrick DM, Mahoney JJ, Cherkasova MV. Noninvasive Neuromodulation in Parkinson's Disease: Insights from Animal Models. J Clin Med 2023; 12:5448. [PMID: 37685514 PMCID: PMC10487610 DOI: 10.3390/jcm12175448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The mainstay treatments for Parkinson's Disease (PD) have been limited to pharmacotherapy and deep brain stimulation. While these interventions are helpful, a new wave of research is investigating noninvasive neuromodulation methods as potential treatments. Some promising avenues have included transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), electroconvulsive therapy (ECT), and focused ultrasound (FUS). While these methods are being tested in PD patients, investigations in animal models of PD have sought to elucidate their therapeutic mechanisms. In this rapid review, we assess the available animal literature on these noninvasive techniques and discuss the possible mechanisms mediating their therapeutic effects based on these findings.
Collapse
Affiliation(s)
- Katherine Muksuris
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
| | - David M. Scarisbrick
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - James J. Mahoney
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Mariya V. Cherkasova
- Department of Psychology, West Virginia University, Morgantown, WV 26506, USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
7
|
Qiu Y, Yin Z, Wang M, Duan A, Xie M, Wu J, Wang Z, Chen G. Motor function improvement and acceptability of non-invasive brain stimulation in patients with Parkinson's disease: a Bayesian network analysis. Front Neurosci 2023; 17:1212640. [PMID: 37564368 PMCID: PMC10410144 DOI: 10.3389/fnins.2023.1212640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/11/2023] [Indexed: 08/12/2023] Open
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disorder defined by progressive motor and non-motor symptoms. Currently, the pro-cognitive effects of transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) are well-supported in previous literatures. However, controversy surrounding the optimal therapeutic target for motor symptom improvement remains. Objective This network meta-analysis (NMA) was conducted to comprehensively evaluate the optimal strategy to use rTMS and tDCS to improve motor symptoms in PD. Methods We searched PubMed, Embase, and Cochrane electronic databases for eligible randomized controlled studies (RCTs). The primary outcome was the changes of Unified Parkinson's Disease Rating Scale (UPDRS) part III score, the secondary outcomes were Time Up and Go Test (TUGT) time, and Freezing of Gait Questionnaire (FOGQ) score. The safety outcome was indicated by device-related adverse events (AEs). Result We enrolled 28 studies that investigated various strategies, including high-frequency rTMS (HFrTMS), low-frequency rTMS (LFrTMS), anodal tDCS (AtDCS), AtDCS_ cathode tDCS (CtDCS), HFrTMS_LFrTMS, and Sham control groups. Both HFrTMS (short-term: mean difference (MD) -5.21, 95% credible interval (CrI) -9.26 to -1.23, long-term: MD -4.74, 95% CrI -6.45 to -3.05), and LFrTMS (long-term: MD -4.83, 95% CrI -6.42 to -3.26) were effective in improving UPDRS-III score compared with Sham stimulation. For TUGT time, HFrTMS (short-term: MD -2.04, 95% CrI -3.26 to -0.8, long-term: MD -2.66, 95% CrI -3.55 to -1.77), and AtDCS (short-term: MD -0.8, 95% CrI -1.26 to -0.34, long-term: MD -0.69, 95% CrI -1.31 to -0.08) produced a significant difference compared to Sham stimulation. However, no statistical difference was found in FOGQ score among the various groups. According to the surface under curve ranking area, HFrTMS ranked first in short-term UPDRS-III score (0.77), short-term (0.82), and long-term (0.84) TUGT time, and short-term FOGQ score (0.73). With respect to the safety outcomes, all strategies indicated few and self-limiting AEs. Conclusion HFrTMS may be the optimal non-invasive brain stimulation (NIBS) intervention to improve motor function in patients with PD while NIBS has generally been well tolerated. However, further studies focusing on the clinical outcomes resulting from the different combined schedules of tDCS and rTMS are required. Systematic review registration https://inplasy.com/inplasy-2023-4-0087/, identifier: 202340087.
Collapse
Affiliation(s)
- Youjia Qiu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ziqian Yin
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Menghan Wang
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Aojie Duan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Minjia Xie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
8
|
Asp AJ, Chintaluru Y, Hillan S, Lujan JL. Targeted neuroplasticity in spatiotemporally patterned invasive neuromodulation therapies for improving clinical outcomes. Front Neuroinform 2023; 17:1150157. [PMID: 37035718 PMCID: PMC10080034 DOI: 10.3389/fninf.2023.1150157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Anders J. Asp
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Yaswanth Chintaluru
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Neurology and Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora, CO, United States
| | - Sydney Hillan
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - J. Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Dong K, Zhu X, Xiao W, Gan C, Luo Y, Jiang M, Liu H, Chen X. Comparative efficacy of transcranial magnetic stimulation on different targets in Parkinson's disease: A Bayesian network meta-analysis. Front Aging Neurosci 2023; 14:1073310. [PMID: 36688161 PMCID: PMC9845788 DOI: 10.3389/fnagi.2022.1073310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Background/Objective The efficacy of transcranial magnetic stimulation (TMS) on Parkinson's disease (PD) varies across the stimulation targets. This study aims to estimate the effect of different TMS targets on motor symptoms in PD. Methods A Bayesian hierarchical model was built to assess the effects across different TMS targets, and the rank probabilities and the surface under the cumulative ranking curve (SUCRA) values were calculated to determine the ranks of each target. The primary outcome was the Unified Parkinson's Disease Rating Scale part-III. Inconsistency between direct and indirect comparisons was assessed using the node-splitting method. Results Thirty-six trials with 1,122 subjects were included for analysis. The pair-wise meta-analysis results showed that TMS could significantly improve motor symptoms in PD patients. Network meta-analysis results showed that the high-frequency stimulation over bilateral M1, bilateral DLPFC, and M1+DLPFC could significantly reduce the UPDRS-III scores compared with sham conditions. The high-frequency stimulation over both M1 and DLPFC had a more significant effect when compared with other parameters, and ranked first with the highest SCURA value. There was no significant inconsistency between direct and indirect comparisons. Conclusion Considering all settings reported in our research, high-frequency stimulation over bilateral M1 or bilateral DLPFC has a moderate beneficial effect on the improvement of motor symptoms in PD (high confidence rating). High-frequency stimulation over M1+DLPFC has a prominent beneficial effect and appears to be the most effective TMS parameter setting for ameliorating motor symptoms of PD patients (high confidence rating).
Collapse
Affiliation(s)
- Ke Dong
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxia Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenwu Xiao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chu Gan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yulu Luo
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Manying Jiang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Guangzhou, China,Hanjun Liu,
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China,*Correspondence: Xi Chen,
| |
Collapse
|
10
|
Huntley JH, Rezvani Habibabadi R, Vaishnavi S, Khoshpouri P, Kraut MA, Yousem DM. Transcranial Magnetic Stimulation and its Imaging Features in Patients With Depression, Post-traumatic Stress Disorder, and Traumatic Brain Injury. Acad Radiol 2023; 30:103-112. [PMID: 35437218 DOI: 10.1016/j.acra.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/01/2022]
Abstract
Transcranial magnetic stimulation (TMS) is a type of noninvasive neurostimulation used increasingly often in clinical medicine. While most studies to date have focused on TMS's ability to treat major depressive disorder, it has shown promise in several other conditions including post-traumatic stress disorder (PTSD) and traumatic brain injury (TBI). As different treatment protocols are often used across studies, the ability to predict patient outcomes and evaluate immediate and long-term changes using imaging becomes increasingly important. Several imaging features, such as thickness, connectedness, and baseline activity of a variety of cortical and subcortical areas, have been found to be correlated with a greater response to TMS therapy. Intrastimulation imaging can reveal in real time how TMS applied to superficial areas activates or inhibits activity in deeper brain regions. Functional imaging performed weeks to months after treatment can offer an understanding of how long-term effects on brain activity relate to clinical improvement. Further work should be done to expand our knowledge of imaging features relevant to TMS therapy and how they vary across patients with different neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Joseph H Huntley
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland.
| | - Roya Rezvani Habibabadi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Sandeep Vaishnavi
- MindPath Care Centers Clinical Research Institute, Raleigh, North Carolina
| | - Parisa Khoshpouri
- Department of Radiology, University of British Columbia, Vancouver General Hospital, Vancouver, BC, Canada
| | - Michael A Kraut
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - David M Yousem
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
11
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Effect of Repetitive Transcranial Magnetic Stimulation on Serum Levels of Steroid Adrenal Hormones in Parkinson’s Disease: Sex Differences. Bull Exp Biol Med 2022; 173:322-325. [DOI: 10.1007/s10517-022-05542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 10/17/2022]
|
13
|
High-Frequency Repetitive Transcranial Magnetic Stimulation Regulates Astrocyte Activation by Modulating the Endocannabinoid System in Parkinson’s Disease. Mol Neurobiol 2022; 59:5121-5134. [DOI: 10.1007/s12035-022-02879-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
|
14
|
Stekic A, Zeljkovic M, Zaric Kontic M, Mihajlovic K, Adzic M, Stevanovic I, Ninkovic M, Grkovic I, Ilic TV, Nedeljkovic N, Dragic M. Intermittent Theta Burst Stimulation Ameliorates Cognitive Deficit and Attenuates Neuroinflammation via PI3K/Akt/mTOR Signaling Pathway in Alzheimer’s-Like Disease Model. Front Aging Neurosci 2022; 14:889983. [PMID: 35656538 PMCID: PMC9152158 DOI: 10.3389/fnagi.2022.889983] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Neurodegeneration implies progressive neuronal loss and neuroinflammation further contributing to pathology progression. It is a feature of many neurological disorders, most common being Alzheimer’s disease (AD). Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive stimulation which modulates excitability of stimulated brain areas through magnetic pulses. Numerous studies indicated beneficial effect of rTMS in several neurological diseases, including AD, however, exact mechanism are yet to be elucidated. We aimed to evaluate the effect of intermittent theta burst stimulation (iTBS), an rTMS paradigm, on behavioral, neurochemical and molecular level in trimethyltin (TMT)-induced Alzheimer’s-like disease model. TMT acts as a neurotoxic agent targeting hippocampus causing cognitive impairment and neuroinflammation, replicating behavioral and molecular aspects of AD. Male Wistar rats were divided into four experimental groups–controls, rats subjected to a single dose of TMT (8 mg/kg), TMT rats subjected to iTBS two times per day for 15 days and TMT sham group. After 3 weeks, we examined exploratory behavior and memory, histopathological and changes on molecular level. TMT-treated rats exhibited severe and cognitive deficit. iTBS-treated animals showed improved cognition. iTBS reduced TMT-induced inflammation and increased anti-inflammatory molecules. We examined PI3K/Akt/mTOR signaling pathway which is involved in regulation of apoptosis, cell growth and learning and memory. We found significant downregulation of phosphorylated forms of Akt and mTOR in TMT-intoxicated animals, which were reverted following iTBS stimulation. Application of iTBS produces beneficial effects on cognition in of rats with TMT-induced hippocampal neurodegeneration and that effect could be mediated via PI3K/Akt/mTOR signaling pathway, which could candidate this protocol as a potential therapeutic approach in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Andjela Stekic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milica Zeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marina Zaric Kontic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Mihajlovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Adzic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Milica Ninkovic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
- Institute for Medical Research, Military Medical Academy, Belgrade, Serbia
| | - Ivana Grkovic
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tihomir V. Ilic
- Medical Faculty of Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- *Correspondence: Milorad Dragic,
| |
Collapse
|
15
|
Fu J, Huang Y, Bao T, Liu C, Liu X, Chen X. The role of Th17 cells/IL-17A in AD, PD, ALS and the strategic therapy targeting on IL-17A. J Neuroinflammation 2022; 19:98. [PMID: 35459141 PMCID: PMC9034482 DOI: 10.1186/s12974-022-02446-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/29/2022] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive loss of certain populations of neurons, which eventually lead to dysfunction. These diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Immune pathway dysregulation is one of the common features of neurodegeneration. Recently, there is growing interest in the specific role of T helper Th 17 cells and Interleukin-17A (IL-17A), the most important cytokine of Th 17 cells, in the pathogenesis of the central nervous system (CNS) of neurodegenerative diseases. In the present study, we summarized current knowledge about the function of Th17/IL-17A, the physiology of Th17/IL-17A in diseases, and the contribution of Th17/IL-17A in AD, PD, and ALS. We also update the findings on IL-17A-targeting drugs as potentially immunomodulatory therapeutic agents for neurodegenerative diseases. Although the specific mechanism of Th17/IL-17A in this group of diseases is still controversial, uncovering the molecular pathways of Th17/IL-17A in neurodegeneration allows the identification of suitable targets to modulate these cellular processes. Therapeutics targeting IL-17A might represent potentially novel anti-neurodegeneration drugs.
Collapse
Affiliation(s)
- Jiajia Fu
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Xiang 37#, Chengdu, Sichuan, China
| | - Yan Huang
- Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Bao
- Management Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Wai Nan Guo Xue Xiang 37#, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Effects of Chronic High-Frequency rTMS Protocol on Respiratory Neuroplasticity Following C2 Spinal Cord Hemisection in Rats. BIOLOGY 2022; 11:biology11030473. [PMID: 35336846 PMCID: PMC8945729 DOI: 10.3390/biology11030473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary High spinal cord injuries (SCIs) are known to lead to permanent diaphragmatic paralysis, and to induce deleterious post-traumatic inflammatory processes following cervical spinal cord injury. We used a noninvasive therapeutic tool (repetitive transcranial magnetic stimulation (rTMS)), to harness plasticity in spared descending respiratory circuit and reduce the inflammatory processes. Briefly, the results obtained in this present study suggest that chronic high-frequency rTMS can ameliorate respiratory dysfunction and elicit neuronal plasticity with a reduction in deleterious post-traumatic inflammatory processes in the cervical spinal cord post-SCI. Thus, this therapeutic tool could be adopted and/or combined with other therapeutic interventions in order to further enhance beneficial outcomes. Abstract High spinal cord injuries (SCIs) lead to permanent diaphragmatic paralysis. The search for therapeutics to induce functional motor recovery is essential. One promising noninvasive therapeutic tool that could harness plasticity in a spared descending respiratory circuit is repetitive transcranial magnetic stimulation (rTMS). Here, we tested the effect of chronic high-frequency (10 Hz) rTMS above the cortical areas in C2 hemisected rats when applied for 7 days, 1 month, or 2 months. An increase in intact hemidiaphragm electromyogram (EMG) activity and excitability (diaphragm motor evoked potentials) was observed after 1 month of rTMS application. Interestingly, despite no real functional effects of rTMS treatment on the injured hemidiaphragm activity during eupnea, 2 months of rTMS treatment strengthened the existing crossed phrenic pathways, allowing the injured hemidiaphragm to increase its activity during the respiratory challenge (i.e., asphyxia). This effect could be explained by a strengthening of respiratory descending fibers in the ventrolateral funiculi (an increase in GAP-43 positive fibers), sustained by a reduction in inflammation in the C1–C3 spinal cord (reduction in CD68 and Iba1 labeling), and acceleration of intracellular plasticity processes in phrenic motoneurons after chronic rTMS treatment. These results suggest that chronic high-frequency rTMS can ameliorate respiratory dysfunction and elicit neuronal plasticity with a reduction in deleterious post-traumatic inflammatory processes in the cervical spinal cord post-SCI. Thus, this therapeutic tool could be adopted and/or combined with other therapeutic interventions in order to further enhance beneficial outcomes.
Collapse
|
17
|
da Silva Machado CB, da Silva LM, Gonçalves AF, Andrade PRD, Mendes CKTT, de Assis TJCF, Godeiro Júnior CDO, Andrade SM. Multisite non-invasive brain stimulation in Parkinson's disease: A scoping review. NeuroRehabilitation 2021; 49:515-531. [PMID: 34776426 PMCID: PMC8764602 DOI: 10.3233/nre-210190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
BACKGROUND: Parkinson’s disease (PD) is a progressive neurodegenerative disorder, characterized by cardinal motor symptoms in addition to cognitive impairment. New insights concerning multisite non-invasive brain stimulation effects have been gained, which can now be used to develop innovative treatment approaches. OBJECTIVE: Map the researchs involving multisite non-invasive brain stimulation in PD, synthesize the available evidence and discuss future directions. METHODS: The databases PubMed, PsycINFO, CINAHL, LILACS and The Cochrane Library were searched from inception until April 2020, without restrictions on the date of publication or the language in which it was published. The reviewers worked in pairs and sequentially evaluated the titles, abstracts and then the full text of all publications identified as potentially relevant. RESULTS: Twelve articles met the inclusion criteria. The target brain regions included mainly the combination of a motor and a frontal area, such as stimulation of the primary motor córtex associated with the dorsolateral prefrontal cortex. Most of the trials showed that this modality was only more effective for the motor component, or for the cognitive and/or non-motor, separately. CONCLUSIONS: Despite the results being encouraging for the use of the multisite aproach, the indication for PD management should be carried out with caution and deserves scientific deepening.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Clécio de Oliveira Godeiro Júnior
- Division of Neurology, CHU of Grenoble, Grenoble Alpes University, La Tronche, Grenoble, France.,Division of Neurology, Hospital Universitario Onofre Lopes, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
18
|
Repetitive Transcranial Magnetic Stimulation: A Potential Treatment for Obesity in Patients with Schizophrenia. Behav Sci (Basel) 2021; 11:bs11060086. [PMID: 34208079 PMCID: PMC8230713 DOI: 10.3390/bs11060086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Obesity is highly prevalent in patients with schizophrenia and, in association with metabolic syndrome, contributes to premature deaths of patients due to cardiovascular disease complications. Moreover, pharmacologic, and behavioral interventions have not stemmed the tide of obesity in schizophrenia. Therefore, novel effective interventions are urgently needed. Repetitive transcranial magnetic stimulation (rTMS) has shown efficacy for inducing weight loss in obese non-psychiatric samples but this promising intervention has not been evaluated as a weight loss intervention in patients with schizophrenia. In this narrative review, we describe three brain mechanisms (hypothalamic inflammation, dysregulated mesocorticolimbic reward system, and impaired prefrontal cortex function) implicated in the pathogenesis and pathophysiology of obesity and emphasize how the three mechanisms have also been implicated in the neurobiology of schizophrenia. We then argue that, based on the three overlapping brain mechanisms in obesity and schizophrenia, rTMS would be effective as a weight loss intervention in patients with schizophrenia and comorbid obesity. We end this review by describing how deep TMS, relative to conventional TMS, could potentially result in larger effect size for weight loss. While this review is mainly conceptual and based on an extrapolation of findings from non-schizophrenia samples, our aim is to stimulate research in the use of rTMS for weight loss in patients with schizophrenia.
Collapse
|
19
|
Cosmo C, Zandvakili A, Petrosino NJ, Berlow YA, Philip NS. Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression: Recent Critical Advances in Patient Care. CURRENT TREATMENT OPTIONS IN PSYCHIATRY 2021; 8:47-63. [PMID: 33723500 PMCID: PMC7946620 DOI: 10.1007/s40501-021-00238-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Transcranial magnetic stimulation (TMS) is an evidence-based treatment for pharmacoresistant major depressive disorder (MDD). In the last decade, the field has seen significant advances in the understanding and use of this new technology. This review aims to describe the large, randomized controlled studies leading to the modern use of rTMS for MDD. It also includes a special section briefly discussing the use of these technologies during the COVID-19 pandemic. RECENT FINDINGS Several new approaches and technologies are emerging in this field, including novel approaches to reduce treatment time and potentially yield new approaches to optimize and maximize clinical outcomes. Of these, theta burst TMS now has evidence indicating it is non-inferior to standard TMS and provides significant advantages in administration. Recent studies also indicate that neuroimaging and related approaches may be able to improve TMS targeting methods and potentially identify those patients most likely to respond to stimulation. SUMMARY While new data is promising, significant research remains to be done to individualize and optimize TMS procedures. Emerging new approaches, such as accelerated TMS and advanced targeting methods, require additional replication and demonstration of real-world clinical utility. Cautious administration of TMS during the pandemic is possible with careful attention to safety procedures.
Collapse
Affiliation(s)
- Camila Cosmo
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| | - Amin Zandvakili
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| | - Nicholas J. Petrosino
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| | - Yosef A. Berlow
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| | - Noah S. Philip
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence VA Healthcare System, 830 Chalkstone Ave, Providence, 02908 USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI USA
| |
Collapse
|
20
|
Nehra A, Sharma PS, Narain A, Kumar A, Bajpai S, Rajan R, Kumar N, Goyal V, Srivastava AK. The Role of Repetitive Transcranial Magnetic Stimulation for Enhancing the Quality of Life in Parkinson's Disease: A Systematic Review. Ann Indian Acad Neurol 2021; 23:755-759. [PMID: 33688123 PMCID: PMC7900726 DOI: 10.4103/aian.aian_70_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/08/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Parkinson's disease (PD) is a neurodegenerative disorder which greatly affects patients' quality of life. Despite an exponential increase in PD cases, not much attention has been paid to enhancing their quality of life (QoL). Thus, this systematic review aims to summarize the available literature for the role of repetitive transcranial magnetic stimulation (rTMS) intervention to improve QoL of PD patients. Methods: Literature review was carried out using PubMed, Embase, Web of Science and Scopus databases. The key search words were, “rTMS AND Parkinson AND QoL”, “rTMS AND Parkinson AND Quality of Life”. Cochrane Collaboration software Revman 5.3 was used to assess the quality of studies. Results: Over 707 studies were identified out of which 5 studies were included which consisted of 160 subjects, 89 male and 71 female, with mean age of 65.04 years. PD type varied from idiopathic PD, rigid, akinetic, tremor dominant to mixed type. The overall risk of bias across the studies was low and unclear with high risk of bias in incomplete outcome data domain in one study. Conclusions: The efficacy of rTMS as an adjunct intervention to enhance QoL of PD patients is uncertain due to dire lack of research in this area. The findings of the present review would help researchers conduct a well-defined, randomized, controlled trial by overcoming the present limitations associated with rTMS intervention to improve QoL of PD patients.
Collapse
Affiliation(s)
- Ashima Nehra
- Division of Neuropsychology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Priya S Sharma
- Division of Neuropsychology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Avneesh Narain
- Division of Neuropsychology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Amit Kumar
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Swati Bajpai
- Department of Geriatric Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Roopa Rajan
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Nand Kumar
- Department of Psychiatry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vinay Goyal
- Department of Neurology, Medanta, Gurgaon, Haryana, India
| | - Achal K Srivastava
- Department of Neurology, Neurosciences Centre, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
21
|
Stirton H, Meek BP, Edel AL, Solati Z, Surendran A, Aukema H, Modirrousta M, Ravandi A. Oxolipidomics profile in major depressive disorder: Comparing remitters and non-remitters to repetitive transcranial magnetic stimulation treatment. PLoS One 2021; 16:e0246592. [PMID: 33571313 PMCID: PMC7877633 DOI: 10.1371/journal.pone.0246592] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Repetitive Transcranial Magnetic Stimulation [rTMS] is increasingly being used to treat Major Depressive Disorder [MDD]. Given that not all patients respond to rTMS, it would be clinically useful to have reliable biomarkers that predict treatment response. Oxidized phosphatidylcholine [OxPC] and some oxylipins are important plasma biomarkers of oxidative stress and inflammation. Not only is depression associated with oxidative stress, but rTMS has been shown to have anti-oxidative effects. OBJECTIVES To investigate whether plasma oxolipidomics profiles could predict treatment response in patients with treatment resistant MDD. METHODS Fourty-eight patients undergoing rTMS treatment for MDD were recruited along with nine healthy control subjects. Plasma OxPCs and oxylipins were extracted and analyzed through high performance liquid chromatography coupled with mass spectrometry. Patients with a Hamilton Depression Rating Scale score [Ham-D] ≤7 post-treatment were defined as having entered remission. RESULTS Fifty-seven OxPC and 32 oxylipin species were identified in our subjects. MDD patients who entered remission following rTMS had significantly higher pre-rTMS levels of total and fragmented OxPCs compared to non-remitters and controls [one-way ANOVA, p<0.05]. However, no significant changes in OxPC levels were found as a result of rTMS, regardless of treatment response [p>0.05]. No differences in plasma oxylipins were found between remitters and non-remitters at baseline. CONCLUSION Certain categories of OxPCs may be useful predictive biomarkers for response to rTMS treatment in MDD. Given that elevated oxidized lipids may indicate higher levels of oxidative stress and inflammation in the brain, patients with this phenotype of depression may be more receptive to rTMS treatment.
Collapse
Affiliation(s)
- Hannah Stirton
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Benjamin P. Meek
- Dept. of Psychiatry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrea L. Edel
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Zahra Solati
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arun Surendran
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Harold Aukema
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
| | - Mandana Modirrousta
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Dept. of Psychiatry, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (MM); (AR)
| | - Amir Ravandi
- Cardiovascular Lipidomics Laboratory, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (MM); (AR)
| |
Collapse
|
22
|
Systematic review of biological markers of therapeutic repetitive transcranial magnetic stimulation in neurological and psychiatric disorders. Clin Neurophysiol 2021; 132:429-448. [DOI: 10.1016/j.clinph.2020.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/16/2020] [Accepted: 11/08/2020] [Indexed: 01/05/2023]
|
23
|
Riancho J, Sanchez de la Torre JR, Paz-Fajardo L, Limia C, Santurtun A, Cifra M, Kourtidis K, Fdez-Arroyabe P. The role of magnetic fields in neurodegenerative diseases. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:107-117. [PMID: 32198562 DOI: 10.1007/s00484-020-01896-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The term neurodegenerative diseases include a long list of diseases affecting the nervous system that are characterized by the degeneration of different neurological structures. Among them, Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) are the most representative ones. The vast majority of cases are sporadic and results from the interaction of genes and environmental factors in genetically predisposed individuals. Among environmental conditions, electromagnetic field exposure has begun to be assessed as a potential risk factor for neurodegeneration. In this review, we discuss the existing literature regarding electromagnetic fields and neurodegenerative diseases. Epidemiological studies in AD, PD, and ALS have shown discordant results; thus, a clear correlation between electromagnetic exposure and neurodegeneration has not been demonstrated. In addition, we discuss the role of electromagnetic radiation as a potential non-invasive therapeutic strategy for some neurodegenerative diseases, particularly for PD and AD.
Collapse
Affiliation(s)
- Javier Riancho
- Service of Neurology, Hospital Sierrallana-IDIVAL, Barrio Ganzo s/n, 39300, Torrelavega, Spain.
- CIBERNED, Barcelona, Spain.
- Medicine and Psychiatry Department, University of Cantabria, Santander, Spain.
| | | | - Lucía Paz-Fajardo
- Service of Internal Medicine, Hospital Sierrallana, Torrelavega, Spain
| | - Cristina Limia
- Service of Internal Medicine, Hospital Sierrallana, Torrelavega, Spain
| | - Ana Santurtun
- Legal Medicine and Toxicology Unit, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic
| | - Kostas Kourtidis
- Department of Environmental Engineering, Democritus University of Thrace, 67100, Xanthi, Greece
- Environmental and Networking Technologies and Applications Unit (ENTA), Athena Research and Innovation Center, 67100, Xanthi, Greece
| | - Pablo Fdez-Arroyabe
- Geography and Planning Department, Geobiomet Research Group, University of Cantabria, Santander, Spain
| |
Collapse
|
24
|
Baptista AF, Baltar A, Okano AH, Moreira A, Campos ACP, Fernandes AM, Brunoni AR, Badran BW, Tanaka C, de Andrade DC, da Silva Machado DG, Morya E, Trujillo E, Swami JK, Camprodon JA, Monte-Silva K, Sá KN, Nunes I, Goulardins JB, Bikson M, Sudbrack-Oliveira P, de Carvalho P, Duarte-Moreira RJ, Pagano RL, Shinjo SK, Zana Y. Applications of Non-invasive Neuromodulation for the Management of Disorders Related to COVID-19. Front Neurol 2020; 11:573718. [PMID: 33324324 PMCID: PMC7724108 DOI: 10.3389/fneur.2020.573718] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Novel coronavirus disease (COVID-19) morbidity is not restricted to the respiratory system, but also affects the nervous system. Non-invasive neuromodulation may be useful in the treatment of the disorders associated with COVID-19. Objective: To describe the rationale and empirical basis of the use of non-invasive neuromodulation in the management of patients with COVID-10 and related disorders. Methods: We summarize COVID-19 pathophysiology with emphasis of direct neuroinvasiveness, neuroimmune response and inflammation, autonomic balance and neurological, musculoskeletal and neuropsychiatric sequela. This supports the development of a framework for advancing applications of non-invasive neuromodulation in the management COVID-19 and related disorders. Results: Non-invasive neuromodulation may manage disorders associated with COVID-19 through four pathways: (1) Direct infection mitigation through the stimulation of regions involved in the regulation of systemic anti-inflammatory responses and/or autonomic responses and prevention of neuroinflammation and recovery of respiration; (2) Amelioration of COVID-19 symptoms of musculoskeletal pain and systemic fatigue; (3) Augmenting cognitive and physical rehabilitation following critical illness; and (4) Treating outbreak-related mental distress including neurological and psychiatric disorders exacerbated by surrounding psychosocial stressors related to COVID-19. The selection of the appropriate techniques will depend on the identified target treatment pathway. Conclusion: COVID-19 infection results in a myriad of acute and chronic symptoms, both directly associated with respiratory distress (e.g., rehabilitation) or of yet-to-be-determined etiology (e.g., fatigue). Non-invasive neuromodulation is a toolbox of techniques that based on targeted pathways and empirical evidence (largely in non-COVID-19 patients) can be investigated in the management of patients with COVID-19.
Collapse
Affiliation(s)
- Abrahão Fontes Baptista
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Brazilian Institute of Neuroscience and Neurotechnology Centros de Pesquisa, Investigação e Difusão - Fundação de Amparo à Pesquisa do Estado de São Paulo (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
| | - Adriana Baltar
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Specialized Neuromodulation Center—Neuromod, Recife, Brazil
| | - Alexandre Hideki Okano
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Brazilian Institute of Neuroscience and Neurotechnology Centros de Pesquisa, Investigação e Difusão - Fundação de Amparo à Pesquisa do Estado de São Paulo (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, Brazil
- Graduate Program in Physical Education, State University of Londrina, Londrina, Brazil
| | - Alexandre Moreira
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Ana Mércia Fernandes
- Centro de Dor, LIM-62, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - André Russowsky Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria, São Paulo, Brazil
- Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Bashar W. Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Clarice Tanaka
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
- Instituto Central, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Centro de Dor, LIM-62, Departamento de Neurologia, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Edgard Morya
- Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute, Macaiba, Brazil
| | - Eduardo Trujillo
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
| | - Jaiti K. Swami
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, United States
| | - Joan A. Camprodon
- Laboratory for Neuropsychiatry and Neuromodulation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Katia Monte-Silva
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Applied Neuroscience Laboratory, Universidade Federal de Pernambuco, Recife, Brazil
| | - Katia Nunes Sá
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
| | - Isadora Nunes
- Department of Physiotherapy, Pontifícia Universidade Católica de Minas Gerais, Betim, Brazil
| | - Juliana Barbosa Goulardins
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
- Laboratory of Medical Investigations 54 (LIM-54), São Paulo University, São Paulo, Brazil
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
- Universidade Cruzeiro do Sul (UNICSUL), São Paulo, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, United States
| | | | - Priscila de Carvalho
- Instituto Central, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Jardim Duarte-Moreira
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
- NAPeN Network (Rede de Núcleos de Assistência e Pesquisa em Neuromodulação), Brazil
| | | | - Samuel Katsuyuki Shinjo
- Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Yossi Zana
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| |
Collapse
|
25
|
Pilloni G, Bikson M, Badran BW, George MS, Kautz SA, Okano AH, Baptista AF, Charvet LE. Update on the Use of Transcranial Electrical Brain Stimulation to Manage Acute and Chronic COVID-19 Symptoms. Front Hum Neurosci 2020; 14:595567. [PMID: 33281589 PMCID: PMC7689057 DOI: 10.3389/fnhum.2020.595567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
The coronavirus disease 19 (COVID-19) pandemic has resulted in the urgent need to develop and deploy treatment approaches that can minimize mortality and morbidity. As infection, resulting illness, and the often prolonged recovery period continue to be characterized, therapeutic roles for transcranial electrical stimulation (tES) have emerged as promising non-pharmacological interventions. tES techniques have established therapeutic potential for managing a range of conditions relevant to COVID-19 illness and recovery, and may further be relevant for the general management of increased mental health problems during this time. Furthermore, these tES techniques can be inexpensive, portable, and allow for trained self-administration. Here, we summarize the rationale for using tES techniques, specifically transcranial Direct Current Stimulation (tDCS), across the COVID-19 clinical course, and index ongoing efforts to evaluate the inclusion of tES optimal clinical care.
Collapse
Affiliation(s)
- Giuseppina Pilloni
- Department of Neurology, NYU Langone Health, New York, NY, United States
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, United States
| | - Bashar W. Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
| | - Mark S. George
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, United States
- Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, United States
| | - Steven A. Kautz
- Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC, United States
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, United States
| | - Alexandre Hideki Okano
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
- Brazilian Institute of Neuroscience and Neurothechnology 52 (BRAINN/CEPID53 FAPESP), University of Campinas, Campinas, Brazil
| | - Abrahão Fontes Baptista
- Center for Mathematics, Computation and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
- Brazilian Institute of Neuroscience and Neurothechnology 52 (BRAINN/CEPID53 FAPESP), University of Campinas, Campinas, Brazil
- Laboratory of Medical Investigation 54 (LIM-54), São Paulo University, São Paulo, Brazil
| | - Leigh E. Charvet
- Department of Neurology, NYU Langone Health, New York, NY, United States
| |
Collapse
|
26
|
Bikson M, Hanlon CA, Woods AJ, Gillick BT, Charvet L, Lamm C, Madeo G, Holczer A, Almeida J, Antal A, Ay MR, Baeken C, Blumberger DM, Campanella S, Camprodon JA, Christiansen L, Loo C, Crinion JT, Fitzgerald P, Gallimberti L, Ghobadi-Azbari P, Ghodratitoostani I, Grabner RH, Hartwigsen G, Hirata A, Kirton A, Knotkova H, Krupitsky E, Marangolo P, Nakamura-Palacios EM, Potok W, Praharaj SK, Ruff CC, Schlaug G, Siebner HR, Stagg CJ, Thielscher A, Wenderoth N, Yuan TF, Zhang X, Ekhtiari H. Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain Stimul 2020; 13:1124-1149. [PMID: 32413554 PMCID: PMC7217075 DOI: 10.1016/j.brs.2020.05.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic has broadly disrupted biomedical treatment and research including non-invasive brain stimulation (NIBS). Moreover, the rapid onset of societal disruption and evolving regulatory restrictions may not have allowed for systematic planning of how clinical and research work may continue throughout the pandemic or be restarted as restrictions are abated. The urgency to provide and develop NIBS as an intervention for diverse neurological and mental health indications, and as a catalyst of fundamental brain research, is not dampened by the parallel efforts to address the most life-threatening aspects of COVID-19; rather in many cases the need for NIBS is heightened including the potential to mitigate mental health consequences related to COVID-19. OBJECTIVE To facilitate the re-establishment of access to NIBS clinical services and research operations during the current COVID-19 pandemic and possible future outbreaks, we develop and discuss a framework for balancing the importance of NIBS operations with safety considerations, while addressing the needs of all stakeholders. We focus on Transcranial Magnetic Stimulation (TMS) and low intensity transcranial Electrical Stimulation (tES) - including transcranial Direct Current Stimulation (tDCS) and transcranial Alternating Current Stimulation (tACS). METHODS The present consensus paper provides guidelines and good practices for managing and reopening NIBS clinics and laboratories through the immediate and ongoing stages of COVID-19. The document reflects the analysis of experts with domain-relevant expertise spanning NIBS technology, clinical services, and basic and clinical research - with an international perspective. We outline regulatory aspects, human resources, NIBS optimization, as well as accommodations for specific demographics. RESULTS A model based on three phases (early COVID-19 impact, current practices, and future preparation) with an 11-step checklist (spanning removing or streamlining in-person protocols, incorporating telemedicine, and addressing COVID-19-associated adverse events) is proposed. Recommendations on implementing social distancing and sterilization of NIBS related equipment, specific considerations of COVID-19 positive populations including mental health comorbidities, as well as considerations regarding regulatory and human resource in the era of COVID-19 are outlined. We discuss COVID-19 considerations specifically for clinical (sub-)populations including pediatric, stroke, addiction, and the elderly. Numerous case-examples across the world are described. CONCLUSION There is an evident, and in cases urgent, need to maintain NIBS operations through the COVID-19 pandemic, including anticipating future pandemic waves and addressing effects of COVID-19 on brain and mind. The proposed robust and structured strategy aims to address the current and anticipated future challenges while maintaining scientific rigor and managing risk.
Collapse
Affiliation(s)
- Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Colleen A Hanlon
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USA
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, MN, Minneapolis, USA
| | - Leigh Charvet
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | | | - Adrienn Holczer
- Department of Neurology, Albert Szent-Györgyi Health Center, Faculty of Medicine, University of Szeged, Hungary
| | - Jorge Almeida
- Proaction Lab, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal; CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany; Institute of Medical Psychology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Mohammad Reza Ay
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Tehran, Iran
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium; Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Salvatore Campanella
- Laboratoire de Psychologie Médicale et D'Addiction, ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Place Vangehuchten, B-1020, Brussels, Belgium
| | - Joan A Camprodon
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Colleen Loo
- School of Psychiatry & Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Jennifer T Crinion
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Paul Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Department of Psychiatry, Monash University, Camberwell, Victoria, Australia
| | | | - Peyman Ghobadi-Azbari
- Department of Biomedical Engineering, Shahed University, Tehran, Iran; Iranian National Center for Addiction Studies (INCAS), Tehran, Iran
| | - Iman Ghodratitoostani
- Neurocognitive Engineering Laboratory (NEL), Center for Mathematical Sciences Applied to Industry, Institute of Mathematical and Computer Sciences, University of Sao Paulo, Brazil
| | - Roland H Grabner
- Educational Neuroscience, Institute of Psychology, University of Graz, Austria
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Adam Kirton
- Departments of Pediatrics and Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Helena Knotkova
- MJHS Institute for Innovation in Palliative Care, New York, NY, USA; Department of Family and Social Medicine, Albert Einstein College of Medicine, The Bronx, NY, USA
| | - Evgeny Krupitsky
- First Pavlov State Medical University, V. M. Bekhterev National Research Medical Center for Psychiatry and Neurology, St. Petersburg, Russia
| | - Paola Marangolo
- Department of Humanities Studies, University Federico II, Naples, Italy; Aphasia Research Lab, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Weronika Potok
- Neural Control of Movement Lab, Department of Health Science and Technology, ETH Zurich, Switzerland
| | - Samir K Praharaj
- Department of Psychiatry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Christian C Ruff
- Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland
| | - Gottfried Schlaug
- Neuroimaging-Neuromodulation and Stroke Recovery Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center and Baystate Medical Center, UMass Medical School, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Institute of Clinical Medicine, Faculty of Health Sciences and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging and MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Science and Technology, ETH Zurich, Switzerland
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaochu Zhang
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | | |
Collapse
|
27
|
Lee JY, Kim HS, Kim SH, Kim HS, Cho BP. Combination of Human Mesenchymal Stem Cells and Repetitive Transcranial Magnetic Stimulation Enhances Neurological Recovery of 6-Hydroxydopamine Model of Parkinsonian's Disease. Tissue Eng Regen Med 2020; 17:67-80. [PMID: 31970698 DOI: 10.1007/s13770-019-00233-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) has been in use for the treatment of various neurological diseases, including depression, anxiety, stroke and Parkinson's disease (PD), while its underlying mechanism is stills unclear. This study was undertaken to evaluate the potential synergism of rTMS treatment to the beneficial effect of human mesenchymal stem cells (hMSCs) administration for PD and to clarify the mechanism of action of this therapeutic approach. METHODS The neuroprotective effect in nigral dopamine neurons, neurotrophic/growth factors and anti-/pro-inflammatory cytokine regulation, and functional recovery were assessed in the rat 6-hydroxydopamine (6-OHDA) model of PD upon administration of hMSCs and rTMS. RESULTS Transplanted hMSCs were identified in the substantia nigra, and striatum. Enhancement of the survival of SN dopamine neurons and the expression of the tyrosine hydroxylase protein were observed in the hMSCs + rTMS compared to that of controls. Combination therapy significantly elevated the expression of several key neurotrophic factors, of which the highest expression was recorded in the rTMS + hMSC group. In addition, the combination therapy significantly upregulated IL-10 expression while decreased IFN-γ and TNF-α production in a synergistic manner. The treadmill locomotion test (TLT) revealed that motor function was improved in the rTMS + hMSC treatment with synergy. CONCLUSION Our findings demonstrate that rTMS treatment and hMSC transplantation could synergistically create a favorable microenvironment for cell survival within the PD rat brain, through alteration of soluble factors such as neurotrophic/growth factors and anti-/pro-inflammatory cytokines related to neuronal protection or repair, with preservation of DA neurons and improvement of motor functions.
Collapse
Affiliation(s)
- Ji Yong Lee
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, Republic of Korea
| | - Hyun Soo Kim
- FCB-Pharmicell Co. Ltd., 520 Sicox Tower, 484 Dunchon-daero, Jungwon-gu, Seongnam-si, Gyeonggi-do, 13229, Republic of Korea
| | - Sung Hoon Kim
- Department and Rehabilitation Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, Republic of Korea
| | - Han-Soo Kim
- Department of Biomedical Sciences, Catholic Kwandong University College of Medical Convergence, 24 Beomil-ro, 579 beon-gil, Gangneung-Si, Gangwon-do, 25601, Republic of Korea.
- Basic Research Division, Biomedical Institute of Mycological Resource, College of Medicine, Catholic Kwandong University, 24 Beomil-ro, 579 beon-gil, Gangneung-Si, Gangwon-do, 25601, Republic of Korea.
| | - Byung Pil Cho
- Department of Anatomy, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, Republic of Korea.
- Institute of Lifestyle Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju, Gangwon-do, 26426, Republic of Korea.
| |
Collapse
|
28
|
Li J, Long X, Hu J, Bi J, Zhou T, Guo X, Han C, Huang J, Wang T, Xiong N, Lin Z. Multiple pathways for natural product treatment of Parkinson's disease: A mini review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 60:152954. [PMID: 31130327 DOI: 10.1016/j.phymed.2019.152954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND It is established that natural medicines for Parkinson's disease (PD) provide an antioxidant activity in preventing dopaminergic neurons from degeneration. However, the underlying and related molecular details remain poorly understood. METHODS AND AIM We review published in vitro and rodent studies of natural products in PD models with the aim to identify common molecular pathways contributing to the treatment efficacy. Commonly regulated genes were identified through the systemic literature search and further analyzed from a network perspective. FINDINGS Approximately thirty different types of natural products have been investigated for their ability to regulate protein density and gene activity in various experimental systems. Most were found to attenuate neurotoxin-induced regulations. Three common PD pathways are involved. The most studied pathway was neuronal development/anti-apoptosis consisting of Bax/Bcl-2, caspases 3/9, and MAPK signaling. Another well studied was anti-inflammation comprising iNOS, nNOS, Nrf2/ARE, cytokines, TNFα, COX2 and MAPK signaling. The third pathway referred to dopamine transmission modulation with upregulated VMAT2, DAT, NURR1 and GDNF levels. To date, HIPK2, a conserved serine/threonine kinase and transcriptional target of Nrf2 in an anti-apoptosis signaling pathway, is the first protein identified as the direct binding target of a natural product (ZMHC). IMPLICATIONS Natural products may utilize multiple and intercellular pathways at various steps to prevent DA neurons from degeneration. Molecular delineation of the mechanisms of actions is revealing new, perhaps combinational therapeutic approaches to stop the progression of DA degeneration.
Collapse
Affiliation(s)
- Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xi Long
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jichuan Hu
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, China
| | - Juan Bi
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, China
| | - Ting Zhou
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, China
| | - Xingfang Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Chao Han
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Department of Neurology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China; Department of Neurology, People's Hospital of Dongxihu District, Wuhan, Hubei 430040, China.
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital, Harvard Medical School, Belmont, MA 02478, United States.
| |
Collapse
|
29
|
Yanuck SF. Microglial Phagocytosis of Neurons: Diminishing Neuronal Loss in Traumatic, Infectious, Inflammatory, and Autoimmune CNS Disorders. Front Psychiatry 2019; 10:712. [PMID: 31632307 PMCID: PMC6786049 DOI: 10.3389/fpsyt.2019.00712] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023] Open
Abstract
Errors in neuron-microglial interaction are known to lead to microglial phagocytosis of live neurons and excessive neuronal loss, potentially yielding poorer clinical outcomes. Factors that affect neuron-microglial interaction have the potential to influence the error rate. Clinical comorbidities that unfavorably impact neuron-microglial interaction may promote a higher rate of neuronal loss, to the detriment of patient outcome. This paper proposes that many common, clinically modifiable comorbidities have a common thread, in that they all influence neuron-microglial interactions. Comorbidities like traumatic brain injury, infection, stress, neuroinflammation, loss of neuronal metabolic integrity, poor growth factor status, and other factors, all have the potential to alter communication between neurons and microglia. When this occurs, microglial phagocytosis of live neurons can increase. In addition, microglia can shift into a morphological form in which they express major histocompatibility complex II (MHC-II), allowing them to function as antigen presenting cells that present neuronal debris as antigen to invading T cells. This can increase risk for the development of CNS autoimmunity, or can exacerbate existing CNS autoimmunity. The detrimental influence of these comorbidities has the potential to contribute to the mosaic of factors that determine patient outcome in some CNS pathologies that have neuropsychiatric involvement, including TBI and CNS disorders with autoimmune components, where excessive neuronal loss can yield poorer clinical outcomes. Recognition of the impact of these comorbidities may contribute to an understanding of the common clinical observation that many seemingly disparate factors contribute to the overall picture of case management and clinical outcome in these complex disorders. In a clinical setting, knowing how these comorbidities can influence neuron-microglial interaction can help focus surveillance and care on a broader group of potential therapeutic targets. Accordingly, an interest in the mechanisms underlying the influence of these factors on neuron-microglial interactions is appropriate. Neuron-microglial interaction is reviewed, and the various mechanisms by which these potential comorbidities influence neuro-microglial interaction are described.
Collapse
Affiliation(s)
- Samuel F Yanuck
- Program on Integrative Medicine, Department of Physical Medicine and Rehabilitation, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|