1
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
2
|
Esteban-Parra GM, Sebastián ES, Cepeda J, Sánchez-González C, Rivas-García L, Llopis J, Aranda P, Sánchez-Moreno M, Quirós M, Rodríguez-Diéguez A. Anti-diabetic and anti-parasitic properties of a family of luminescent zinc coordination compounds based on the 7-amino-5-methyl-1,2,4-triazolo[1,5-a]pyrimidine ligand. J Inorg Biochem 2020; 212:111235. [PMID: 32920434 DOI: 10.1016/j.jinorgbio.2020.111235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/08/2023]
Abstract
We report on the formation of a triazolopyrimidine derivative ligand, 7-amino-5-methyl-1,2,4-triazolo[1,5-a]pyrimidine (7-amtp), and a new family of coordination compounds based on this ligand and zinc as metal ion, synthesized by conventional routes. These materials possess different mononuclear structures, namely [ZnCl2(7-amtp)2] (1), [Zn(7-amtp)2(H2O)4](NO3)2·2(7-amtp)·6H2O (2) and [Zn(7-amtp)2(H2O)4](SO4)·1.5H2O (3) derived from the use of different zinc (II) salts, in such a way that the counterions govern the crystallization to a large extent. These compounds present and show variable luminescent properties based on ligand-centred charge transfers which have been deeply studied by Time Dependent Density Functional Theory (TD-DFT) calculations. When these compounds are transferred to solution, preserving complex entities as corroborated by NMR studies, they present interesting anti-diabetic and anti-parasitic capabilities, with a comparatively higher selectivity index than other previously reported triazolopyrimidine-based materials. The results derived from in vivo experiments conducted in mice also confirm their promising activity as anti-diabetic drug being capable of dropping glucose levels after oral administration. Therefore, these new materials may be considered as excellent candidates to be further investigated in the field of luminescent coordination compounds with biomedical applications.
Collapse
Affiliation(s)
- Ginés M Esteban-Parra
- Dept. of Inorganic Chemistry, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain
| | - Eider San Sebastián
- Departmento de Quimica Aplicada, Facultad de Química, University of The Basque Country (UPV/EHU), 20018 San Sebastian, Spain
| | - Javier Cepeda
- Departmento de Quimica Aplicada, Facultad de Química, University of The Basque Country (UPV/EHU), 20018 San Sebastian, Spain
| | | | - Lorenzo Rivas-García
- Dept. of Physiology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Juan Llopis
- Dept. of Physiology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Pilar Aranda
- Dept. of Physiology, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Manuel Sánchez-Moreno
- Dept. of Parasitology, University of Granada, Avda. Severo Ochoa s/n, 18071 Granada, Spain
| | - Miguel Quirós
- Dept. of Inorganic Chemistry, University of Granada, C/Severo Ochoa s/n, 18071 Granada, Spain.
| | | |
Collapse
|
3
|
Exploration of Zinc(II) Complexes as Potent Inhibitors Against Protein Tyrosine Phosphatase 1B. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-8265-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Parente JE, Naso LG, Jori K, Franca CA, da Costa Ferreira AM, Williams PAM, Ferrer EG. In vitroexperiments and infrared spectroscopy analysis of acid and alkaline phosphatase inhibition by vanadium complexes. NEW J CHEM 2019. [DOI: 10.1039/c9nj01638d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two oxidovanadium complexes with 4-aminobenzoic acid and/or the peroxo anion as ligands were synthesized and characterized by elemental analysis, conductivity measurements, TGA/DTA,1H NMR, EPR, FTIR, and UV/vis spectroscopies.
Collapse
Affiliation(s)
- Juliana E. Parente
- Center of Inorganic Chemistry (CEQUINOR, CONICET-CICPBA-UNLP)
- Department of Chemistry
- Faculty of Exact Sciences
- National University of La Plata
- 1900 La Plata
| | - Luciana G. Naso
- Center of Inorganic Chemistry (CEQUINOR, CONICET-CICPBA-UNLP)
- Department of Chemistry
- Faculty of Exact Sciences
- National University of La Plata
- 1900 La Plata
| | - Khalil Jori
- Center of Inorganic Chemistry (CEQUINOR, CONICET-CICPBA-UNLP)
- Department of Chemistry
- Faculty of Exact Sciences
- National University of La Plata
- 1900 La Plata
| | - Carlos A. Franca
- Center of Inorganic Chemistry (CEQUINOR, CONICET-CICPBA-UNLP)
- Department of Chemistry
- Faculty of Exact Sciences
- National University of La Plata
- 1900 La Plata
| | | | - Patricia A. M. Williams
- Center of Inorganic Chemistry (CEQUINOR, CONICET-CICPBA-UNLP)
- Department of Chemistry
- Faculty of Exact Sciences
- National University of La Plata
- 1900 La Plata
| | - Evelina G. Ferrer
- Center of Inorganic Chemistry (CEQUINOR, CONICET-CICPBA-UNLP)
- Department of Chemistry
- Faculty of Exact Sciences
- National University of La Plata
- 1900 La Plata
| |
Collapse
|
5
|
Azam A, Raza MA, Sumrra SH. Therapeutic Application of Zinc and Vanadium Complexes against Diabetes Mellitus a Coronary Disease: A review. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AbstractDuring the last two decades, number of peoples suffering from diabetes has increased from 30-230 million globally. Today, seven out of the ten top countries are suffering from diabetes, are emergent countries. Due to alarming situations of diabetes, chemists and pharmacist are continuously searching and synthesizing new potent therapeutics to treat this disease. Now a days, considerable attention is being paid to the chemistry of the metal-drug interactions. Metals and their organic based complexes are being used clinically for various ailments. In this review, a comprehensive discussion about synthesis and diabetic evaluation of zinc and vanadium complex is summarized.
Collapse
Affiliation(s)
- Aisha Azam
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | - Muhammad Asam Raza
- Department of Chemistry, Hafiz Hayat Campus, University of Gujrat, Gujrat, Pakistan
| | | |
Collapse
|
6
|
Cilibrizzi A, Fedorova M, Collins J, Leatherbarrow R, Woscholski R, Vilar R. A tri-functional vanadium(iv) complex to detect cysteine oxidation. Dalton Trans 2017; 46:6994-7004. [PMID: 28513686 DOI: 10.1039/c7dt00076f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of effective molecular probes to detect and image the levels of oxidative stress in cells remains a challenge. Herein we report the design, synthesis and preliminary biological evaluation of a novel optical probe to monitor oxidation of thiol groups in cysteine-based phosphatases (CBPs). Following orthogonal protecting approaches we synthesised a new vanadyl complex designed to bind to CBPs. This complex is functionalised with a well-known dimedone derivative (to covalently trap sulfenic acids, SOHs) and a coumarin-based fluorophore for optical visualization. We show that this new probe efficiently binds to a range of phosphatases in vitro with nanomolar affinity. Moreover, preliminary flow cytometry and microscopy studies in live HCT116 cells show that this probe can successfully image cellular levels of sulfenic acids - one of the species resulting from protein oxidative damage.
Collapse
|
7
|
Bellomo E, Birla Singh K, Massarotti A, Hogstrand C, Maret W. The metal face of protein tyrosine phosphatase 1B. Coord Chem Rev 2016; 327-328:70-83. [PMID: 27890939 PMCID: PMC5115158 DOI: 10.1016/j.ccr.2016.07.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 01/12/2023]
Abstract
A new paradigm in metallobiochemistry describes the activation of inactive metalloenzymes by metal ion removal. Protein tyrosine phosphatases (PTPs) do not seem to require a metal ion for enzymatic activity. However, both metal cations and metal anions modulate their enzymatic activity. One binding site is the phosphate binding site at the catalytic cysteine residue. Oxyanions with structural similarity to phosphate, such as vanadate, inhibit the enzyme with nanomolar to micromolar affinities. In addition, zinc ions (Zn2+) inhibit with picomolar to nanomolar affinities. We mapped the cation binding site close to the anion binding site and established a specific mechanism of inhibition occurring only in the closed conformation of the enzyme when the catalytic cysteine is phosphorylated and the catalytic aspartate moves into the active site. We discuss this dual inhibition by anions and cations here for PTP1B, the most thoroughly investigated protein tyrosine phosphatase. The significance of the inhibition in phosphorylation signaling is becoming apparent only from the functions of PTP1B in the biological context of metal cations as cellular signaling ions. Zinc ion signals complement redox signals but provide a different type of control and longer lasting inhibition on a biological time scale owing to the specificity and affinity of zinc ions for coordination environments. Inhibitor design for PTP1B and other PTPs is a major area of research activity and interest owing to their prominent roles in metabolic regulation in health and disease, in particular cancer and diabetes. Our results explain the apparent dichotomy of both cations (Zn2+) and oxyanions such as vanadate inhibiting PTP1B and having insulin-enhancing ("anti-diabetic") effects and suggest different approaches, namely targeting PTPs in the cell by affecting their physiological modulators and considering a metallodrug approach that builds on the knowledge of the insulin-enhancing effects of both zinc and vanadium compounds.
Collapse
Affiliation(s)
- Elisa Bellomo
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Kshetrimayum Birla Singh
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Christer Hogstrand
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Wolfgang Maret
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
8
|
Collins J, Cilibrizzi A, Fedorova M, Whyte G, Mak LH, Guterman I, Leatherbarrow R, Woscholski R, Vilar R. Vanadyl complexes with dansyl-labelled di-picolinic acid ligands: synthesis, phosphatase inhibition activity and cellular uptake studies. Dalton Trans 2016; 45:7104-13. [DOI: 10.1039/c5dt04753f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Two new vanadyl complexes with a fluorescent label are reported. We show that these complexes inhibit selected phosphatases and are cell permeable.
Collapse
Affiliation(s)
- Juliet Collins
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
- Institute of Chemical Biology
| | - Agostino Cilibrizzi
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
- Institute of Chemical Biology
| | - Marina Fedorova
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
| | - Gillian Whyte
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
| | - Lok Hang Mak
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
| | - Inna Guterman
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
| | - Robin Leatherbarrow
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
- Institute of Chemical Biology
| | - Rudiger Woscholski
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
- Institute of Chemical Biology
| | - Ramon Vilar
- Department of Chemistry
- Imperial College London
- London SW7 2AZ
- UK
- Institute of Chemical Biology
| |
Collapse
|
9
|
Fernández B, Gómez-Vílchez A, Sánchez-González C, Bayón J, San Sebastián E, Gómez-Ruiz S, López-Chaves C, Aranda P, Llopis J, Rodríguez-Diéguez A. Novel anti-diabetic and luminescent coordination compounds based on vanadium. NEW J CHEM 2016. [DOI: 10.1039/c5nj02907d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel vanadium coordination compounds have been synthesized. Both compounds exhibit intense photoluminescence emission and showin vivoantidiabetic activity.
Collapse
Affiliation(s)
- Belén Fernández
- Departamento de Química Inorgánica
- Universidad de Granada
- Granada
- Spain
| | - Alejandro Gómez-Vílchez
- Departamento de Química Inorgánica
- Universidad de Granada
- Granada
- Spain
- Instituto de Nutrición y Tecnología de los Alimentos y Departamento de Fisiología
| | - Cristina Sánchez-González
- Instituto de Nutrición y Tecnología de los Alimentos y Departamento de Fisiología
- Campus Cartuja
- Universidad de Granada
- Granada
- Spain
| | - Jakelhyne Bayón
- Departamento de Química Inorgánica
- Universidad de Granada
- Granada
- Spain
- Instituto de Nutrición y Tecnología de los Alimentos y Departamento de Fisiología
| | - Eider San Sebastián
- Departamento de Química Aplicada
- Facultad de Químicas de San Sebastián
- Euskal HerrikoUnibertsitatea UPV/EHU
- San Sebastián
- Spain
| | - Santiago Gómez-Ruiz
- Departamento de Biología y Geología
- física y Química Inorgánica
- E.S.C.E.T
- Universidad Rey Juan Carlos
- 28933 Móstoles
| | - Carlos López-Chaves
- Instituto de Nutrición y Tecnología de los Alimentos y Departamento de Fisiología
- Campus Cartuja
- Universidad de Granada
- Granada
- Spain
| | - Pilar Aranda
- Instituto de Nutrición y Tecnología de los Alimentos y Departamento de Fisiología
- Campus Cartuja
- Universidad de Granada
- Granada
- Spain
| | - Juan Llopis
- Instituto de Nutrición y Tecnología de los Alimentos y Departamento de Fisiología
- Campus Cartuja
- Universidad de Granada
- Granada
- Spain
| | | |
Collapse
|
10
|
McLauchlan CC, Peters BJ, Willsky GR, Crans DC. Vanadium–phosphatase complexes: Phosphatase inhibitors favor the trigonal bipyramidal transition state geometries. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.12.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
López-Viseras ME, Fernández B, Hilfiker S, González CS, González JL, Calahorro AJ, Colacio E, Rodríguez-Diéguez A. In vivo potential antidiabetic activity of a novel zinc coordination compound based on 3-carboxy-pyrazole. J Inorg Biochem 2014; 131:64-7. [DOI: 10.1016/j.jinorgbio.2013.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
|
12
|
Zabierowski P, Szklarzewicz J, Gryboś R, Modryl B, Nitek W. Assemblies of salen-type oxidovanadium(iv) complexes: substituent effects and in vitro protein tyrosine phosphatase inhibition. Dalton Trans 2014; 43:17044-53. [DOI: 10.1039/c4dt02344g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic study of 5,5′-disubstituted oxidovanadium(iv) complexes with a chiral salen type ligand showed variable assemblies of complex molecules dependent on steric and electronic factors of the substituents.
Collapse
Affiliation(s)
| | | | - Ryszard Gryboś
- Faculty of Chemistry
- Jagiellonian University
- 30-060 Kraków, Poland
| | - Barbara Modryl
- Faculty of Pharmacy
- Jagiellonian University Medical College
- Kraków 30-688, Poland
| | - Wojciech Nitek
- Faculty of Chemistry
- Jagiellonian University
- 30-060 Kraków, Poland
| |
Collapse
|
13
|
Gryboś R, Paciorek P, Szklarzewicz JT, Matoga D, Zabierowski P, Kazek G. Novel vanadyl complexes of acetoacetanilide: Synthesis, characterization and inhibition of proteintyrosine phosphatase. Polyhedron 2013. [DOI: 10.1016/j.poly.2012.09.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Molecular dynamics simulation of the interaction between protein tyrosine phosphatase 1B and aryl diketoacid derivatives. J Mol Graph Model 2012; 38:186-93. [PMID: 23085163 DOI: 10.1016/j.jmgm.2012.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/28/2012] [Accepted: 06/28/2012] [Indexed: 11/22/2022]
Abstract
The protein tyrosine phosphatase 1B (PTP-1B) is acknowledged as an outstanding therapeutic target for the treatment of diabetes, obesity and cancer. In this work, six aryl diketoacid compounds have been studied on the basis of molecular dynamics simulations. Hydrogen bonds, binding energies and conformation changes of the WPD loop have been analyzed. The results indicated that their activation model falls into two parts: the target region of the monomeric aryl diketoacid compounds is the active site, whereas the target region of the dimeric aryl diketoacid compounds is the WPD loop or the R loop. The van der Waals interactions exhibit stronger effects than the short-range electrostatic interactions. The van der Waals interaction energy and the IC50 values exhibit an approximately exponential relationship. Furthermore, the van der Waals interactions cooperate with the hydrogen bond interactions. This study provides a more thorough understanding of the PTP-1B inhibitor binding processes.
Collapse
|
15
|
Mouriño V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 2011; 9:401-19. [PMID: 22158843 PMCID: PMC3262432 DOI: 10.1098/rsif.2011.0611] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This article provides an overview on the application of metallic ions in the fields of regenerative medicine and tissue engineering, focusing on their therapeutic applications and the need to design strategies for controlling the release of loaded ions from biomaterial scaffolds. A detailed summary of relevant metallic ions with potential use in tissue engineering approaches is presented. Remaining challenges in the field and directions for future research efforts with focus on the key variables needed to be taken into account when considering the controlled release of metallic ions in tissue engineering therapeutics are also highlighted.
Collapse
Affiliation(s)
- Viviana Mouriño
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín Street, Sixth Floor, Buenos Aires CP1113, Argentina
| | | | | |
Collapse
|
16
|
Almeida C, Kehraus S, Prudêncio M, König GM. Marilones A-C, phthalides from the sponge-derived fungus Stachylidium sp. Beilstein J Org Chem 2011; 7:1636-42. [PMID: 22238541 PMCID: PMC3252867 DOI: 10.3762/bjoc.7.192] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 09/02/2011] [Indexed: 12/17/2022] Open
Abstract
The marine-derived fungus Stachylidium sp. was isolated from the sponge Callyspongia sp. cf. C. flammea. Culture on a biomalt medium supplemented with sea salt led to the isolation of three new phthalide derivatives, i.e., marilones A-C (1-3), and the known compound silvaticol (4). The skeleton of marilones A and B is most unusual, and its biosynthesis is suggested to require unique biochemical reactions considering fungal secondary metabolism. Marilone A (1) was found to have antiplasmodial activity against Plasmodium berghei liver stages with an IC(50) of 12.1 µM. Marilone B (2) showed selective antagonistic activity towards the serotonin receptor 5-HT(2B) with a K(i) value of 7.7 µM.
Collapse
Affiliation(s)
- Celso Almeida
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Malaria Unit, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| |
Collapse
|
17
|
How environment affects drug activity: Localization, compartmentalization and reactions of a vanadium insulin-enhancing compound, dipicolinatooxovanadium(V). Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2011.01.032] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Almeida C, Part N, Bouhired S, Kehraus S, König GM. Stachylines A-D from the sponge-derived fungus Stachylidium sp. JOURNAL OF NATURAL PRODUCTS 2011; 74:21-5. [PMID: 21162532 PMCID: PMC3070797 DOI: 10.1021/np1005345] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The marine-derived fungus Stachylidium sp. was isolated from the sponge Callyspongia cf. C. flammea. Four new, putatively tyrosine-derived and O-prenylated natural products, stachylines A-D (1-4), were obtained from the fungal extract. The structures of 1-4 were elucidated on the basis of extensive spectroscopic analyses. The absolute configuration of compound 2 was established by Mosher's method. Stachyline A (1) possesses a rare terminal oxime group and occurs as an interchangeable mixture of E/Z-isomers.
Collapse
Affiliation(s)
- Celso Almeida
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Natalja Part
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Sarah Bouhired
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| | - Gabriele M. König
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany
| |
Collapse
|
19
|
Mak LH, Vilar R, Woscholski R. Characterisation of the PTEN inhibitor VO-OHpic. J Chem Biol 2010; 3:157-63. [PMID: 21643420 DOI: 10.1007/s12154-010-0041-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022] Open
Abstract
PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a phosphatidylinositol triphosphate 3-phosphatase that counteracts phosphoinositide 3-kinases and has subsequently been implied as a valuable drug target for diabetes and cancer. Recently, we demonstrated that VO-OHpic is an extremely potent inhibitor of PTEN with nanomolar affinity in vitro and in vivo. Given the importance of this inhibitor for future drug design and development, its mode of action needed to be elucidated. It was discovered that inhibition of recombinant PTEN by VO-OHpic is fully reversible. Both K(m) and V(max) are affected by VO-OHpic, demonstrating a noncompetitive inhibition of PTEN. The inhibition constants K(ic) and K(iu) were determined to be 27 ± 6 and 45 ± 11 nM, respectively. Using the artificial phosphatase substrate 3-O-methylfluorescein phosphate (OMFP) or the physiological substrate phosphatidylinositol 3,4,5-triphosphate (PIP(3)) comparable parameters were obtained suggesting that OMFP is a suitable substrate for PTEN inhibition studies and PTEN drug screening.
Collapse
|
20
|
Abstract
Leptin resistance and insulin resistance are the common pathology of various metabolic diseases, and make great contribution to the metabolic syndrome. Many researches have proved that the two processes affected each other, whereas the exploration of the resistance mechanism was often independently carried out. Here, we'd like to make a review focusing on the relationship between leptin resistance and insulin resistance, and their interactions at multiple levels.
Collapse
|
21
|
Ternary oxovanadium(IV) complexes of ONO-donor Schiff base and polypyridyl derivatives as protein tyrosine phosphatase inhibitors: synthesis, characterization, and biological activities. J Biol Inorg Chem 2009; 14:841-51. [PMID: 19290551 DOI: 10.1007/s00775-009-0496-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
|
22
|
Li M, Ding W, Baruah B, Crans DC, Wang R. Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato)oxovanadium (IV). J Inorg Biochem 2008; 102:1846-53. [PMID: 18728000 DOI: 10.1016/j.jinorgbio.2008.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 06/01/2008] [Accepted: 06/05/2008] [Indexed: 11/25/2022]
Abstract
Vanadate has been recognized as a specific and potent phosphatase inhibitor since its structure is similar to that of phosphate. In this study, we measured the inhibition of glutathione S-transferase-tagged protein tyrosine phosphatase 1B (GST-PTP1B) and alkaline phosphatase (ALP) by the insulin enhancing compounds, bis(maltolato)oxovanadium(IV) (BMOV). The results showed that the activity of GST-PTP1B was reversibly inhibited by solutions of BMOV with an IC(50) value of 0.86+/-0.02 microM. Steady state kinetic studies showed that inhibition of GST-PTP1B by BMOV was of a mixed competitive and noncompetitive type. In addition, incubation of GST-PTP1B with BMOV showed a time-dependent biphasic inactivation of the protein. On the other hand, the inhibitory behavior of BMOV on ALP activity was reversible and competitive with an IC(50) value of 32.1+/-0.6 microM. Incubation with BMOV did not show biphasic inactivation of ALP. The reversible inhibition of GST-PTP1B by BMOV is more potent than that of ALP, but solutions of BMOV inhibited both enzymes. This data support the suggestion that mechanisms for the inhibitory effects of BMOV on GST-PTP1B and ALP are very different.
Collapse
Affiliation(s)
- Ming Li
- College of Life Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | | | | |
Collapse
|
23
|
Basuki W, Hiromura M, Sakurai H. Molecular Mechanism for Antidiabetic Activity of [meso-Tetrakis(4-sulfonatophenyl)porphyrinato]oxovanadium(IV) (VO(tpps)) Complex. Studies on Akt Phosphorylation and GLUT4 Translocation in 3T3-L1 Adipocytes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2007. [DOI: 10.1246/bcsj.80.1605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
24
|
Yasumatsu N, Yoshikawa Y, Adachi Y, Sakurai H. Antidiabetic copper(II)-picolinate: impact of the first transition metal in the metallopicolinate complexes. Bioorg Med Chem 2007; 15:4917-22. [PMID: 17531495 DOI: 10.1016/j.bmc.2007.04.062] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 04/24/2007] [Accepted: 04/25/2007] [Indexed: 11/21/2022]
Abstract
In order to examine the effect of metallopicolinate complexes with first transition metals and develop complexes that are more active than an insulinomimetic leading compound such as oxovanadium(IV)-picolinate complex, VO(pa)2, 10 metallopicolinate complexes were prepared, and their in vitro insulinomimetic and in vivo antidiabetic activities were evaluated. The in vitro activity was estimated by determining the inhibitory effects of these complexes on free fatty acid release from isolated rat adipocytes treated with epinephrine. Among the complexes, Cu(pa)2, and Mn(pa)3 exhibited higher activity than their respective metal ions and better activity than VO(pa)2. Since Cu(pa)2 was non-toxic in the cultured rat hepatic M cells, this complex was given streptozotocin (STZ)-induced type 1-like diabetic mice by single intraperitoneal injection, and found that this complex exhibited a higher hypoglycemic effect than the VO(pa)2 complex. Based on these results, we propose that Cu(pa)2 may be a potent alternative antidiabetic agent.
Collapse
Affiliation(s)
- Naoko Yasumatsu
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | | | |
Collapse
|
25
|
Synthesis of the Water Dispersible L-Valine Capped ZnS:Mn Nanocrystal and the Crystal Structure of the Precursor Complex: [Zn(Val)2(H2O)]. B KOREAN CHEM SOC 2006. [DOI: 10.5012/bkcs.2006.27.11.1809] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Sakurai H, Katoh A, Yoshikawa Y. Chemistry and Biochemistry of Insulin-Mimetic Vanadium and Zinc Complexes. Trial for Treatment of Diabetes Mellitus. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2006. [DOI: 10.1246/bcsj.79.1645] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Kawabe K, Yoshikawa Y, Adachi Y, Sakurai H. Possible mode of action for insulinomimetic activity of vanadyl(IV) compounds in adipocytes. Life Sci 2006; 78:2860-6. [PMID: 16337244 DOI: 10.1016/j.lfs.2005.11.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 11/07/2005] [Indexed: 11/22/2022]
Abstract
Vanadyl(IV) ions (+4 oxidation state of vanadium) and their complexes have been shown to have in vitro insulinomimetic activity and to be effective in treating animals with diabetes mellitus. Although, researchers have proposed many vanadyl compounds for the treatment of diabetes patients, the mode of action of vanadyl compounds remains controversial. In order to evaluate the mode of action of these compounds, we examined the insulinomimetic activity of VOSO4, bis(picolinato)oxovanadyl(IV), and bis(maltolato)oxovanadyl(IV) in the presence of several inhibitors relevant to the glucose metabolism. After confirming that these vanadyl compounds were incorporated in the adipocytes as estimated by ESR method, we evaluated the mode of action by examining free fatty acids (FFA) release in the adipocytes. Inhibition of FFA release by these vanadyl compounds was found to be reversed by the addition of inhibitors, typically by cytochalasin B (glucose transporter 4 (GLUT4) inhibitor), cilostamide (phosphodiesterase inhibitor), HNMPA-(AM)3 (tyrosine kinase inhibitor), and wortmannin (PI3-k inhibitor), indicating that these compounds affect primarily GLUT4 and phosphodiesterase, as named "ensemble mechanism". Based on these results, we suggest that vanadyl compounds act on at least four sites relevant to the glucose metabolism, and on GLUT4 and phosphodiesterase in particular in rat adipocytes, which in turn normalizes the blood glucose levels of diabetic animals. The obtained results provide evidence for the role of vanadyl ion and its complexes in stimulation of the uptake and degeneration of glucose.
Collapse
Affiliation(s)
- Kenji Kawabe
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | | | | | | |
Collapse
|